小学数学 数阵图(一).教师版

合集下载

五年级下册数学奥数有趣的数阵图人教版

五年级下册数学奥数有趣的数阵图人教版
按照前面学习的方法, 先列出一个等式,再考虑三 个未知的数吧。
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
假设重叠数是a、b、c 5+6+7+8+9+10+a+b+c=24×3
45+a+b+c=72 a+b+c=27
8+9+10=27
8 76 9 5 10
2 9 561 3 8 45~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
中间的三个数只加一次, 三个角上的数都加了两次, 有三个数要设字母吗?
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
1
3
2
1+2+…+7+8+a+b=21×2 6
5
36+a+b=42 a+b=6
4
8
7
1+5=6或2+4=6
将1、3、5、7、9、11、13、15这八个数,分别填入图中的 八个○内,使得每个大圆上五个○内数的和都是39。
1+3+5+……+15=64
3
5
1
39×2-64=14
7
9
中间的两个圆圈数重叠一次, 15 13 11
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6

数学:第七讲《树阵图》讲义

数学:第七讲《树阵图》讲义

三年级尖子班第七讲数阵图【例1】(难度★)∼分别填入下图的○中,①将19使得横、竖五个数相加的和都等于25。

②(难度★★)请你把1~7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】①(1)这9个自然数+++++之和:123456+++=;78945(2)这个图形共有2条边,2×=;条边总和为25250(3)而中间数被重复计算了1−=;次,所以,中间数=50455(4)剩下8个数之和为40,所以每边剩下2数之和为÷=;40220=+++=(5)凑数,209731+++,那么可得填法如右8642上图(答案不唯一)②1~7这七个自然数的和为:123456728++++++=; 而中心数被重复计算了两次,假设中心数为a ,三条直线上的三个数总和为S ,则2823a S +=,即282a +能被3整除,所以,中心数a 的可能取值为:1、4、7;(1)当a 的取值为1时,除中心数外其它两数和为9273645=+=+=+(2)当a 的取值为4时,除中心数外其它两数和为8172635=+=+=+(3)当a的取值为7时,除中心数外其它两数和为=+=+=+7162534答案如图所示。

【例2】(难度★★)将1~6这六个自然数分别填入下图的六个○中使得三角形每条边上的三个数之和都相等【分析】(1)这6个自然数之和:12345621+++++=;(2)假设每条边上的数字和为S,重复数为a 、b 、c ,则213a b c S +++=,而3S 是3的倍数,所以21a b c +++也是3的倍数, 所以,a b c ++可能的取值为:6、9、12、15;⑶凑数,当6123a b c ++==++时,答案如图所示; 当9135a b c ++==++时,答案如图所示;当12246a b c ++==++时,答案如图所示;当15456a b c ++==++时,答 案如图所示。

小学数学5年级培优奥数讲义 第09讲-数阵(教师版)

小学数学5年级培优奥数讲义 第09讲-数阵(教师版)

第09讲数阵教学目标学会掌握数阵图形的基本分析方法;会运用数阵图的几类解法.知识梳理一、数阵图把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵是一种由幻方演变而来的数字图.二、数阵图的分类封闭型数阵图、辐射型数阵图和复合型数阵图.三、数阵图的解法(1)辐射型数阵图方法一:尝试法,即去掉中间数时剩下的数应该两两一对,每队和相等,因此最中间数只能填最大数、最小数或中间数;方法二:公式法,线和×线数=数字和+重叠数×重叠次数;重叠次数=线数-1(2)封闭型数阵图公式:线和×线数=数字和+重叠数之和(3)复合型数阵图综合了辐射型和封闭型数阵图的特点,要具体情况具体分析.典例分析考点一:辐射型数阵图例1、把1~5这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于9.【解析】中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”.也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次.因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3.重叠数求出来了,其余各数就好填了(见右上图).例2、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10.【解析】与例1类似,知道每条边上的三数之和,但不知道重叠数.因为有3条边,所以中间的重叠数重叠了两次.于是得到(1+2+…+7)+重叠数×2=10×3.由此得出重叠数为[10×3-(1+2+…+7)]÷2=1.剩下的六个数中,两两之和等于9的有2,7;3,6;4,5.可得右上图的填法.如果把例4中“每条边上的三个数之和都等于10”改为“每条边上的三个数之和都相等”,其他不变,那么仿照例3,重叠数可能等于几?怎样填?考点二:封闭型数阵图例1、将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.【解析】此图是封闭3—3图,因为每条边上的和都为11,那么三条边上的数字之和为11⨯=,而1+2+…+5+6=21.所以三角形的三个数之和等于33-21=12,在1~6中选3个和为12 333的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法如图.例2、将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?答案:见右图例3、把1~9 这9 个数,分别填在下图的9个圆中,使得三角形每条边上的4 个圆内数之和都是23.考点三:复合型数阵例1:将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等.【解析】所有的数都是重叠数,中心数重叠两次,其它数重叠一次.所以三条边及两个圆周上的所有数之和为(1+2+…+7)×2+中心数=56+中心数.因为每条边及每个圆周上的三数之和都相等,所以这个和应该是5的倍数,再由中心数在1至7之间,所以中心数是4.每条边及每个圆周上的三数之和等于(56+4)÷5=12.中心数确定后,其余的数一下还不好直接确定.我们可以试着先从辐射型3-3图开始.中心数是4,每边其余两数之和是12-4=8,两数之和是8的有1,7;2,6;3,5.于是得到左下图的填法.对于左上图,适当调整每条边上除中心数外的两个数的位置,便得到本题的解(见右上图).例2:将1~10这十个数填入图中的圆圈内,使每个正方形的四个数字之和都等于23,应怎样填?解:共有六解:➢课堂狙击1、将1~9这九个数分别填入下图的小方格里,使横行和竖列上五个数之和相等. (至少找出两种本质上不同的填法)答案:2、将1~11这十一个数分别填入下图的○里,使每条直线上的三个数之和相等,并且尽可能大.实战演练【解析】中心数是重叠数,并且重叠4次.所以每条直线上的三数之和等于[(1+2+ (11)+重叠数×4]÷5=(66+重叠数×4)÷5.为使上式能整除,重叠数只能是1,6或11.显然,重叠数越大,每条直线上的三数之和越大.所以重叠数是11,每条直线上的三数之和是22.填法见右上图.3、在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等.【解析】因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10.10分为三个质数之和只能是2+3+5,由此得到右图的填法.4、把1~8这八个数字分别填入下图(1)中的圆圈内,使每个圆周上与每条直线上四个数之和都相等,给出一种具体的填法.答案:不唯5、将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30.【解析】设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2,即55+a+b=60,a+b=5.在1——10这十个数中1+4=5,2+3=5.当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b 是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8).6、把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21.【解析】先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D +E=35,A+E+B+C+E+D=21×2=42.把两式相比较可知,E=42-35=7,即中间填7.然后再根据5+9=6+8便可把五个数填进方格,如图b.➢课后反击1、将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大.【解析】设中间三个圆内的数是a、b、c.因为计算三条线上的和时,a、b、c都被计算了两次,根据题意可知:1+2+3+4+5+6+(a+b+c)除以3没有余数.1+2+3+4+5+6=21,21÷3=7没有余数,那么a+b+c的和除以3也应该没有余数.在1——6六个数中,只有4+5+6的和最大,且除以3没有余数,因此a、b、c分别为4、5、6.(1+2+3+4+5+6+4+5+6)÷3=12,所以有有图的填法.2、如下图(a)四个小三角形的顶点处有六个圆圈.如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数的和相等.问这六个质数的积是多少?【解析】设每个小三角形三个顶点处○内数的和为X.因为中间的小三角形顶点处的数在求和时都用了三次,所以,四个小三角形顶点处数的总和是4X=20+2X,解方程得X=10.由此可知,每个小三角形顶点处的三个质数的和是10,这三个质数只能是2、3、5.因此这6个质数的积是2×2×3×3×5×5=900.如图(b).3、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等.【解析】两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10.因此,两条直线上另两个数(非“重叠数”)的和等于10-5=5.在剩下的四个数1,2,3,4中,只有1+4=2+ 3=5.故有右上图的填法.4、将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等.【解析】首先要确定中心圆内的数,设中心○内的数是a,那么,三条线段上的总和是1+2+3+4+5+6+7+2a=28+2a,由于三条线段上的和相等,所以(28+2a)除以3应该没有余数.由于28÷3=9……1,那么2a除以3应该余2,因此,a可以为1、4或7.当a=1时,(28+2×1)÷3-1=9,即每条线段上其他两数的和是9,因此,有这样的填法.5、将1——9九个自然数分别填入下图的九个小三角形中,使靠近大三角形每条边上五个数的和相等,并且尽可能大.这五个数之和最大是多少?【解析】靠近三角形边上一共有3条边,每条的和为S,那么3条边的和为3S.同时,这三条边相加的时候,除了2排第1、3和3排第3个.其余6个小三角都被加了2次.所以,3S=1+2+…+9+6个小三角形的和.所以3S=45+6个小三角形的和.要使S大,那么就是6个小三角形的和大,于是另外3个格子里就填1,2,3,而这6个分别是4,5,6,7,8,9,这样,S就=28.其中一种填法可以是:上面9;中间顺次1,4,3.下面顺次8,6,2,5,7.重点回顾一、数阵图的分类:封闭型数阵图、辐射型数阵图和复合型数阵图.二、数阵图的解法名师点拨(1)辐射型数阵图方法一:尝试法,即去掉中间数时剩下的数应该两两一对,每队和相等,因此最中间数只能填最大数、最小数或中间数;方法二:公式法,线和×线数=数字和+重叠数×重叠次数;重叠次数=线数-1(2)封闭型数阵图公式:线和×线数=数字和+重叠数之和学霸经验➢本节课我学到➢我需要努力的地方是。

四年级奥数计算数阵图教师版

四年级奥数计算数阵图教师版

知识要点数阵图就是将一些数按照一定要求排列而成的某种图形,有时简称数阵.常见的数阵图有以下三种:1.有一种数阵图,它们的特点是从一个中心出发,向外作了一些射线,我们把这种数阵图叫做辐射型数阵图.填辐射型数阵图的关键是确定中心数以及每条线段上的几个数的和,然后通过对各数的分析,进行试验填数求解.2.有一种数阵图,它的各边之间相互连接,形成封闭图形,我们称它们为“封闭型数阵图”.填这样的图形,主要是顶点数字,抓住条件提供的关系式,进行分析,用试验的方法确定顶点数以及各边上的数字之和,最后填出数阵图.3.有的数阵图既有辐射型数阵图的特点,又有封闭型数阵图的要求,所以叫做“复合型数阵图”.我们在思考数阵图问题时,首先要确定所求的和与关键数间的关系,再用试验的方法,找到相等的和与关键数字.数阵图的解题关键是找”重复数”。

解题步骤:⨯的形式。

一.从整体考虑,将要求满足相等的几个数字和全部相加,一般为n S二.从个体考虑,分别计算每一个位置数字相加的次数,将比较特殊的(多加或少加几次)位置数字用未知数表示,全部相加,一般为题目所给全部数字和⨯一般位置数字相加次数±特殊位置数字和⨯多加或少加次数的形式。

三.根据整体与个体的关系,列出等式即⨯=题目所给全部数字和⨯一般位置数字相加次数±特殊位置数字和⨯多加或少加次数。

n S四.根据数论知识即整除性确定特殊位置数的取值及相对应的S值。

五.根据确定的特殊位置数字及S值进行数字分组及尝试。

放射型老师带领同学们一起去参加数学灯谜会,同学们在里面玩的热火朝天,其中有个灯谜是这样的: 把5~1这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于9.那么应该怎么填呢?【分析】1234515++++=,92153⨯-=,可见中间的重叠数为3。

如此可得填法如右上图。

小猴丁丁和当当一起玩数阵游戏,他们在地上画了个如图所示的数阵,丁丁出题,它在最中间的圆圈中写了数字5,要求当当把4~1这四个数填入剩下的四个○里,使两条直线上的三个数之和相等.你能帮当当解决这道题吗?【分析】根据题意可知两条直线上的三个数的和为(123455)210+++++÷=,在剩下的四个数中14235+=+=,可得填法如右上图。

五年级奥数第13次课:数阵图(一)(教师版)

五年级奥数第13次课:数阵图(一)(教师版)

戴氏教育中高考名校冲刺教育中心【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】数阵图(一)一、考点、热点回顾1、在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

2、那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

人教版小学三年级数学第讲 数阵图(一)

人教版小学三年级数学第讲 数阵图(一)

第16讲数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

五年级计算数阵图与数字谜教师版

五年级计算数阵图与数字谜教师版

数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。

如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。

问这6个质数的积是多少?【分析】 设每个小三角形三个顶点上的数的和都是S ,4个小三角形的和S 相加时,中间三角形每个顶点上的数被算了3次,即多算了2次,所以 4220S S =+,即10S =这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:223355900⨯⨯⨯⨯⨯=【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少? 【分析】 方法一:由于13的倍数满足其后三位与前面隔开后,差是13的倍数。

1231396÷=L L ,所以123与6的差是13的倍数,所以6123一定是13的倍数,且为满足条件的最小自然数。

2019春三年级下册精英班讲义 第14讲 数阵图(教师版)

2019春三年级下册精英班讲义 第14讲 数阵图(教师版)

知识要点数阵图根据图形的形状可分为辐射型、闭合型、复合型三类。

通常情况下,数阵图中给出的数比较多,如果采用逐一尝试去解决,则会使得题目异常复杂,所以我们就需要利用一定的方法来解决。

解决数阵图的一般步骤:第一步:确定重叠部分;第二步:求出所有数的总和;第三步:求出规定区域的总和;第四步:确定重叠部分的数;第五步:试填。

一、基础例题1、在下图的3 个空白○内填入3 个不同的自然数,使得三角形每条边上的3 个数之和都相等,那么右下角的数A 是多少?答案:A=6。

解析:比较上右图中的两条粗线,它们公有圆圈B,所以2+5=A+1,A=6。

2、请在下图3 个空白圆圈内填入3 个数,使得每条直线上3 个数的和相等。

答案:见解析。

解析:比较上中图中两条粗线,它们公有圆圈B,所以8+9=A+7,A=10。

那么每条直线上三个数的和为8+3+10=21,所以B=21-10-7=4,C=21-8-7=6。

填法如右上图所示。

3、把5、6、7、8、9 填入下图的小方格中,使横行三数的和与竖行三数的和都等于20。

答案:见解析。

解析:五个数之和为5+6+7+8+9=35,横行和竖行的总和为2×20=40,40-35=5,第一行中间为重叠数,剩下两个数的和为20-5=15,15=7+8=6+9,填法如右上图。

(填法不唯一)二、举一反三4、在图中的8 个○内分别填入8 个不同的自然数,使得正方形每条边上3 个数的和都相等,那么数A 和B 分别是多少?答案:A=4;B=13。

解析:由上中图可知,A+9=7+6,所以A=4;再由上右图可知,B+7=16+4,所以B=13。

5、请在下图2 个空白○内填入2 个数,使得每条线上4 个数的和都相等。

答案:见解析。

解析:由上中图可知,5+9+A=8+4+3,所以A=1,每条边上的和为1+6+7+3 =17,B=17-3-4-8=2,填法如右上图所示。

6、将3~7 这5 个数填入下图中的方格内,使得横行三数之和与竖列三数之答案:见解析。

小学奥数专题-数阵图(一).教师版

小学奥数专题-数阵图(一).教师版

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图【难度】2星【题型】填空【解析】为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)hg f edcbaa+b+c=14(1)c+d+e=14 (2)e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h)-(d+h)=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8,又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h与b+f只能有2+6和3+5两种填法.又由对称性,不妨设b=2,f=6,d=3,h=5.a,c,e,g可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行.若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

人教版四年级数学数阵图(一)例题解析

人教版四年级数学数阵图(一)例题解析

四年级数学数阵图(一)例题解析我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。

本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。

也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

例1中的数阵图,我国古代称为“纵横图”、“九宫算”。

一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。

在例1中如果只要求任一横行及任一竖列的三数之和相等,而不要求两条对角线上的三数之和也相等,则解不唯一,这是因为在例1的解中,任意交换两行或两列的位置,不影响每行或每列的三数之和,故仍然是解。

例2用11,13,15,17,19,21,23,25,27编制成一个三阶幻方。

分析与解:给出的九个数形成一个等差数列,对照例1,1~9也是一个等差数列。

不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13+25=17+21;余下各数就不难填写了(见右图)。

与幻方相反的问题是反幻方。

将九个数填入3×3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方。

北师大版三年级下册数学竞赛试题 树阵图(含答案)-精编

北师大版三年级下册数学竞赛试题 树阵图(含答案)-精编

数阵图【名师解析】填数时,要仔细观察图形,确定图形中关键的位置应填几,一般是图形的顶点及中间位置。

另外,要将所填的空与所提供的数字联系起来,一般要先计算所填数的总和与所提供数字的和之差,从而确定关键位置应填几。

关键位置的数确定好了,其他问题就迎刃而解了。

【例题精讲】例1:在下图中分别填入1——9,使两条直线上五个数的和相等,和是多少呢?练习:在下图中填入2——10,使横行、竖行中的五个数的和相同。

和是多少呢?例2:把数字1——8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。

练习:数字1——6填入下图中的小圆圈内,使每个大圆上4个数的和都是15。

例3:在图中填入2——9,使每边3个数的和等于15。

练习:把1——8填入下图中,使每边3个数的和等于13。

例4:把1——8填入下图○内,使每边上三个数的和最大。

求最大的和是多少?练习:把3——10填入下图○中,使每边上三个数的和最大,求最大的和是多少?例5:在下图各圆空余部分填上3、5、7、8,使每个圆的4个数的和都是21。

练习:图中各圆的空余部分分别填上1、2、4、6,使每个圆中4个数的和是15。

例6:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是12.若A 、B 、C 的和为18,则三个顶点上的三个数的和是________。

练习:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是21.若A 、B 、C 的和为30,则三个顶点上的三个数的和是________。

选讲:将1--12这十二个自然数分别填人下图的12个圆圈内,使得每条直线上的四个数之和 都相等,这个相等的和为___________。

642537【综合精练】1.把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条直线上三个数的和相等。

2.把6、8、10、12、14、16、18七个数填在下图的○中,使每排三个数及外圆上三个数的和都是32。

3.把5、6、7、8、9、10这六个数填入下图三角形三条边的○内,使得每条边上的三个数的和是21。

华罗庚金杯数学辅导数阵图(一)1

华罗庚金杯数学辅导数阵图(一)1

文武个性化教案学生姓名年级授课时间教师课时课题数阵图(一)教学目标了解数阵图及其特点,掌握数阵图的解题思路。

重点掌握较简单的数阵图的解题思路。

难点学会利用数量分析的方法解答较简单的数阵图问题。

数阵图(一)一、专题简析将一些数按照一定要求排列而成的某种图形,叫做数阵图,有时简称数阵。

数阵是一种由幻方演变而来的数字图。

1.有关幻方的研究在我国已经流传了两千多年,它是具有独特形式的填数字问题。

2.填幻方和数阵的关键,是以图中容易填的部分,例如图的中心作为突破口,将其确定下来之后,其他部分就容易填了。

二、典例解析例1把1、2、3、4、5、6这几个数填在图中,使每条边上的3个数的和等于12。

注:本题的突破点在重复计算的3个顶点。

例2 把1至7这7个数填到图中,使每条直线上3个圆圈内数字之和相等。

注:本题的突破口在中间,在计算3条直线上数的总和时,找到多加了2次的数,这样可以求出中间数。

作业例3 把2、4、6、8、10这5个数分别填入图中正方形内,使图中每横行3个数的和与竖行3个数的和相等。

例4将1、2、3、4、5、6这6个数字填入图中的圆圈内,使每个大圆上4个数字的和都是12。

注:中间重复相加的数无疑是本题的突破口。

例5 把2、3、4、5、6、7、8、9这8个数字,分别填入图中的正方形的各个圆圈内,使得正方形每条边上的3个圆圈内数字的和都是15。

注:本题关键是从正方形4个顶点入手尝试。

你还有其他的填法吗?试试看!例6 请你将数字1到7填入图中的圆圈内,使每个圆上3个数字之和相等,而且每条直线上3个数的和也相等,应该怎么填?三、巩固练习1.把1、2、3、4、5、6这几个数填在图中,使每条边上的3个数的和都相等。

2.将1至9这9个数字填入图中的圆圈内,使每条线段上3个圆圈内的数字之和相等。

3.在圆中的空白处填上1、3、5、7四个数,使每个圆中的4个数字的和都是15。

4.把1至6这6个数分别填入圆圈里,使横行3个数的和与竖行4个数的和都是11。

(完整)一年级数学巧填数阵图

(完整)一年级数学巧填数阵图

填数游戏
1、填数,使横行、竖行的三个数相加都得11.
2、填数,使每条线上的三个数之和都得15.
3、在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是18.
4、要使表格中每行、每列和两条对角线上的三个数的和都为18,下面每个方框里应填什么数?
5、在下面的○中填上适当的数,使每条线上的三个数相加都等于15.
6、在下面的○里填上适当的数,使每条线上的三个数之和都是12.
提高篇
1、把1,2,3,4,5,6六个数,分别填入○内,使每条线上3个数的和相等.
2、把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于1 2.
3、把1,2,3,4,5,6,7这七个数分别填入○里,使每条直线上的三个数相加的和都为12.。

四年级上册数学思维训练讲义-第六讲 有趣的数阵图(一) 人教版

四年级上册数学思维训练讲义-第六讲  有趣的数阵图(一)   人教版

第六讲有趣的数阵图(一)第一部分:趣味数学有趣的数独技巧数独技巧是建立在数独基础上的,数独顾名思义——每个数字只能出现一次。

数独是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数字谜题。

数独盘面是个九宫,每一宫又分为九个小格。

在这八十一格中给出一定的已知数字和解题条件,利用逻辑和推理,在其他的空格上填入1-9的数字。

使1-9每个数字在每一行、每一列和每一宫中都只出现一次。

所以不少教育者认为数独是训练头脑的绝佳方式。

数独解法全是由规则衍生出来。

基本解法分为两类思路,一类为排除法,一类为唯一法。

更负责的解法,最终也会归结到这两大类中。

第二部分:奥数小练观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

【例题1】请你把1~7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等,应怎样填?【思路导航】为叙述方便,先在圆圈中标上字母,如上图(2)。

设a+b+e=a+c+f=a+d+g=k,则(a+b+e)+(a+c+f)+(a+d+g)=3k3a+b+c+d+e+f+g=3k2a+(a+b+c+d+e+f+g)=3k2a+(1+2+3+4+5+6+7)=3k2a+28=3ka为1、4或7.若a=1,则k=10,直线上另外两个数的和为9.在2、3、4、5、6、7中,2+7=3+6=4+5=9,因此得到一个解为:a=1,b=2,c=3,d=4,e=7,f=6,g=5.若a=4,则k=12,直线上另外两个数的和为8.在1、2、3、5、6、7中,1+7=2+6=3+5=8,因此得到第二个解为:a=4,b=1,c=2,d=3,e=7,f=6,g=5.若a=7,则k=14,直线上另外两个数的和为7.在1、2、3、4、5、6中,1+6=2+5=3+4=7,因此得到第三个解为:a=7,b=1, c=2,d=3,e=6,f=5,g=4.【答案】共得到三个解:如下图练习1:1.把1~7这七个数分别填入下图的○内,使每条线段上三个○内数的和相等,请给出所有填法。

(完整版)小学三年级奥数--数阵图

(完整版)小学三年级奥数--数阵图

数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。

重叠数求出来了,其余各数就好填了(见右上图)。

试一试:练习与思考第1 题。

例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。

人教版数学思维之数阵图(一)

人教版数学思维之数阵图(一)

数阵图(一)
1. 将1~6分别填在图中,使每条边上的三个○内的数的和相等.
2. 把1~8.
3. 把1~9.
4. 把1~10填入图中,使五条边上三个○内的数的和相等.
5. 将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.
6. 把1~7填入下图中.
7. 把1~16填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.
8. 把4~9填入下图中,使每条线上三个数的和相等,都是18.
9. 把1~8这8个数填入下图,使每边上的加、减、乘、除成立.
10. 把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.
11. 把1~11填入图中,使每条线上三个数的和相等.
12. 把1~8,填入图中,使每条线及正方形四个顶点上的数的和相等.
13. 把1~9,填入下图中,使每条线段三个数和及四个顶点的和也相等.
14. 把17,23,25,31,46,53,58,66,72,88,94,100十二个数填入下图,使任意三个相邻的数相加的和除以7的余数相等.。

四年级数学数阵图讲解(一)

四年级数学数阵图讲解(一)

四年级数学数阵图讲解(一)我们在三年级已经学习过辐射型和封闭型数阵.其解题的关键在于“重叠数”。

本讲和下一讲.我们学习三阶方阵.就是将九个数按照某种要求排列成三行三列的数阵图.解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中.使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45.正好是三个横行数字之和.所以每一横行的数字之和等于45÷3=15。

也就是说.每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中.三个不同的数相加等于15的有:9+5+1.9+4+2.8+6+1.8+5+2.8+4+3.7+6+2.7+5+3.6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

因为中心方格中的数既在一个横行中.又在一个竖列中.还在两对角线上.所以它应同时出现在上述的四个算式中.只有5符合条件.因此应将5填在中心方格中。

同理.四个角上的数既在一个横行中.又在一个竖列中.还在一条对角线上.所以它应同时出现在上述的三个算式中.符合条件的有2.4.6.8.因此应将2.4.6.8填在四个角的方格中.同时应保证对角线两数的和相等。

经试验.有下面八种不同填法:上面的八个图.都可以通过一个图的旋转和翻转得到。

例如.第一行的后三个图.依次由第一个图顺时针旋转90°.180°.270°得到。

又如.第二行的各图.都是由它上面的图沿竖轴翻转得到。

所以.这八个图本质上是相同的.可以看作是一种填法。

例1中的数阵图.我国古代称为“纵横图”、“九宫算”。

一般地.将九个不同的数填在3×3(三行三列)的方格中.如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等.那么这样的图称为三阶幻方。

小学数学数阵图

小学数学数阵图

解题过程
边和X3 = a+b+c+d+e+f+g+2c 14X3 = 1+2+3+4+5+6+7+2c 42 = 28+2c 14 = 2c c= 7
2020/12/9
例1 (★★)
将1~7这七 个数字, 分别填入 2 图中各个 ○内,使 每条线段 上的三个 ○内数的 和都等于 14。
1
6
7
5
4
3
先填入边和,直线上微调,满足圆圈。
【超常大挑战】(★★★★★)
a ,b ,c ,d ,e, f, g ,h ,I ,处分别填入1至9, 如果每个圆环所填的数的和都相等, 那么这个相等的和最大是多少?最少是多少?
a+e+i+c+g+2(b+d+f+h)=和×5 45+b+d+f+h=和×5 b+d+f+h最大时为6,7,8,9 此时和为15 b+d+f+h最小时为1,2,3,4 和为11 当和为15时无解,和为14有解 最大为14,最小为11
行 业 PPT模 板 : /hangye/ PPT素 材 下 载 : /sucai/ PPT图 表 下 载 : /tubiao/ PPT教 程 : /powerpoint/ Excel教 程 : /excel/ PPT课 件 下 载 : /kejian/ 试 卷 下 载 : /shiti/
圈和X2=数字和+a+b 圈和X2=36+a+b 圈和等于21 a+b=6 则a 和b有两种可能1,5和2,4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图【答案】【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?()【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1) c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行.若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A、B、C的和为18,则三个顶点上的三个数的和是。

C BA【考点】封闭型数阵图【难度】1星【题型】填空【关键词】希望杯,五年级,复赛,第11题,5分【解析】设三个顶点为D,E,F,求D,E,F。

观察容易发现,三条边的和为36,即D+A+E+E+C+F+F+B+D=36 18+2( D+E+F)=36,所以D+E+F=9【答案】9【例 4】 将1至6这六个数字填入图中的六个圆圈中(每个数字只能使用一次),使每条边上的数字和相等.那么,每条边上的数字和是 .789fedcba 789【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 如图,用字母表示各个圆圈中的数,那么每条边上的数字和为()1293153a b ca b c ++++++++÷=+L ,由于a b c ++最小为1236++=,最大为 45615++=,所以每条边上的数字和最小为17,最大为20,如下两图为每条边上的数字和分别为17和20时的填法.598712436598712436而每条边上的数字和能否为18或19呢?答案是否定的,现说明如下.如果每条边上的数字和为18,那么()181539a b c ++=-⨯=,而918a b d +++=,即9a b d ++=,得到c d =,与题意不符,所以每条边上的数字和不能为18.如果每条边上的数字和为19,类似分析可得到b e =,也与题意不符,所以每条边上的数字和不能为19. 所以每条边上的数字和为17或20.【答案】17或20【例 5】 将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是______.BA【考点】封闭型数阵图 【难度】3星 【题型】填空 【关键词】2008年,学而思杯,五年级,4年级,第4题 【解析】 方法一:如图f e cdb aBA用字母来表示各个圆圈中的数字,设各条直线上的三个数之和都为s ,那么2a b c d e f s +++++=,3a A e b A d c B f s ++++++++=,所以2A B s +=, 253a b c d e f A B s A B A B +++++++=++=+,而12836a b c d e f A B +++++++=+++=L ,所以5336A B +=,那么A 是3的倍数.如果3A =,得7B =;如果6A =,得2B =,这两种情况下A 和B 的差都为4,所以A 和B 两个圆圈中所填的数之差(大数减小数)是4.方法二:设各条直线上的三个数之和都为s ,2(1238)5B s ++++-=L ,即725B s -=,所以214B s =⎧⎨=⎩,713B s =⎧⎨=⎩,由于(1238)3A s +++++=L ,即363A s +=,因此有146s A =⎧⎨=⎩,133s A =⎧⎨=⎩,综合有2146B s A =⎧⎪=⎨⎪=⎩,7133B s A =⎧⎪=⎨⎪=⎩,所以A 和B 两个圆圈中所填的数之差(大数减小数)是4.【答案】4【例 6】 如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A 与B 的和是________。

BA【考点】封闭型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,六年级,二试,第5题,4分 【解析】 若每个正方形中数的和都是18,那么总和为54,而这10个数的和为45,其中A 、B 各多算了一次,故A +B =9。

【答案】9【例 7】 把2~11这10个数填到右图的10个方格中,每格内填一个数,要求图中3个22⨯的正方形中的4个数之和相等.那么,这个和数的最小值是多少?111098765432【考点】封闭型数阵图 【难度】3星 【题型】填空 【解析】 第一步:首先确定数阵图中的关键方格,即相邻两个正方形相交的两个方格;第二步:计算三个22⨯正方形内4个数之和的和,显然这个和能被3整除,其中有两个数被重复计算了两次,而231165+++=L ,除以3余2,因此被重复计算的两个数的和被3除余1,这两个数取2、5时,这个和取得最小值;第三步,由已知的两个方格中的数,得到每个22⨯正方形中的4个数之和的最小值为24,构造各个正方形中其他几个数使每个正方形中的数的和为24,如图,所以所求的最小值是24.【答案】24【例 8】 下图中有五个正方形和12个圆圈,将1~12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?861102912311457【考点】封闭型数阵图 【难度】3星 【题型】填空 【解析】 设每个正方形四角上圆圈中的数字之和为x ,则由5个正方形四角的数字之和,相当于将1~12相加,再将中间四个圆圈中的数加两遍,可得:()121225x x ++++=L ,解得26x =,即这个和为26.具体填法如右上图。

【答案】26【例 9】 如图,大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形的四个顶点上.⑴能不能使8个三角形顶点上数字之和都相等?⑵能不能使8个三角形顶点上数字之和各不相同?如果能,请画图填上满足要求的数;如果不能,请说明理由.246824688642【考点】封闭型数阵图【难度】4星【题型】填空【解析】⑴不能.如果这8个三角形顶点上数字之和都相等,设它们都等于S.考察外面的4个三角形,每个三角形顶点上的数的和是S,在它们的和4S中,大正方形的2、4、6、8各出现一次,中正方形的2、4、6、8各出现二次,即()42468360S=+++⨯=.得到60415S=÷=,但是三角形每个顶点上的数都是偶数,和不可能是奇数15,因此这8个三角形顶点上的数字之和不可能都相等.⑵由于三角形3个顶点上的数字之和最小为2226++=,最大为88824++=,可能为6、8、10、……22、24,共有10个可能的值,而三角形只有8个,所以是有可能做到8个三角形的顶点上数字之和互不相同的.根据对称性,不妨舍去这10个可能值的首尾两个,把剩下8个值(8、10、12、14、16、18、20、22)作为8个三角形的顶点上数字之和进行尝试,可以得到满足条件的填法,右上图就是一种填法.【答案】246824688642【例 10】将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.【考点】封闭型数阵图【难度】4星【题型】填空【解析】为了叙述方便,将圆圈内先填上字母,如图(2)所示:9+15+a+c=34,5+10+e+g=34,7+14+b+d=34,11+8+f+h=34,c+d+e+f=34,化简得:a+c=10 4+6=10.e+g=19 3+16=19,6+13=19b+d=13 1+12=13,f+h=15 2+13=15,3+12=15.a,b,c,d,e,f,g,h应分别从1,2,3,4,6,12,13,16中选取.因为a+c=10,所以只能选a+c=4+6;b+d=13,只能选b+d=13;e+g=19,只能选e+g=3+16;f+h=15,只能选f+h=2+13若d=1,c=4,则e+f=34-1-4=29,有e=16,f=13.若d=1,c=6,则e+f=34-1-6=27,那么e、f无值可取,使其和为27.若d=12,c=4,则e+f=34-12-4=18,有e=16,f=2.若d=12,c=6,则e+f=34-12-6=16,有e=3,f=13.解:共有三个解(见图).【答案】【例 11】一个3 3的方格表中,除中间一格无棋子外,其余梅格都有4枚一样的棋子,这样每边三个格子中都有12枚棋子,去掉4枚棋子,请你适当调整一下,使每边三格中任有12枚棋子,并且4个角上的棋子数仍然相等(画图表示)。

【考点】复合型数阵图【难度】4星【题型】填空【关键词】走美杯,3年级,初赛【解析】因为每个角上的棋子分别被两条边共用,根据这一特点可以将边上的棋子减少,同时增加角上的棋子数。

相关文档
最新文档