Matlab环境下采样定理的验证
实验六 matlab采样定理的建模和验证
![实验六 matlab采样定理的建模和验证](https://img.taocdn.com/s3/m/d5e67ba04028915f814dc23a.png)
页眉内容
实验六
题目:采样定理的建模和验证
实验目的:通过建模与仿真验证采样定理,理解采样定理的物理实质实验要求:学习和回顾采样定理内容,对采样定理作建模和仿真
实验内容:
卷
乘
fs=1/Ts
2、建模参数要求:
设计模型,验证采样定理.
设基带波形频谱在 0Hz~200Hz 内. Fh=200Hz(信号最高频率),采样率就应该大于 400Hz 。
用窄脉冲采样,要求窄脉冲宽度是采样周期的 1/10。
从而得到系统仿真步长: 小于等于 1/4000,仿真系统的仿真步长取 1/4000。
采样器用乘法器实现. 而恢复时用低通滤波器实现. 低通滤波器的带宽等于信
号最高频率 Fh,即等于 200Hz.
4、修改基带信号最高频率,如最高频率为200Hz、250Hz 等等,观察采样前后以及恢复的
波形和频谱。
请用实验方法得到频谱混叠后的频谱图和相应的波形。
5. 将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。
实验报告内容和要求:(!!注意每部分得分情况!!)
1.建立采样和恢复模型,说明关键模块的参数设置(30分)
仿真模型建立:
参数设置:
信源与滤波器参数:
2.修改采样率,如采样率为150Hz,200Hz、300Hz等等,观察采样前后以及恢复的波形和频谱。
请用实验方法得到频谱混叠后的频谱图和相应的波形。
(40分)
150Hz:
200Hz:
300Hz:。
MATLAB实现抽样定理探讨及仿真
![MATLAB实现抽样定理探讨及仿真](https://img.taocdn.com/s3/m/de724b4e04a1b0717ed5dd4b.png)
应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。
二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。
为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。
时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。
)(2) 取样频率不能过低,必须>2(或>2)。
(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。
)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。
一个频谱在区间(- ,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。
根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。
(a))(t f )()(t t s S T =)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号(b)(c)图2.1抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。
设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为m ω, )(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍)。
基于MATLAB的信号的采样与恢复、采样定理的仿真
![基于MATLAB的信号的采样与恢复、采样定理的仿真](https://img.taocdn.com/s3/m/d26c6705f61fb7360a4c659e.png)
山东建筑大学课程设计指导书课程名称:数字信号处理课程设计设计题目:信号的采样与恢复、采样定理的仿真使用班级:电信082 指导教师:张君捧一、设计要求1.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。
2.基本教学要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。
二、设计步骤1.理论依据根据设计要求分析系统功能,掌握设计中所需理论(信号的采样、信号的恢复、抽样定理、频谱分析),阐明设计原理。
2.信号的产生和频谱分析产生一个连续时间信号(正弦信号、余弦信号、Sa函数等),并进行频谱分析,绘制其频谱图。
3.信号的采样对所产生的连续时间信号进行采样,并进行频谱分析,和连续信号的频谱进行分析比较。
改变采样频率,重复以上过程。
4.信号的恢复设计低通滤波器,采样信号通过低通滤波器,恢复原连续信号,对不同采样频率下的恢复信号进行比较,分析信号的失真情况。
三、设计成果1.设计说明书(约2000~3000字),一般包括:(1)封面(2)目录(3)摘要(4)正文①设计目的和要求(简述本设计的任务和要求,可参照任务书和指导书);②设计原理(简述设计过程中涉及到的基本理论知识);③设计内容(按设计步骤详细介绍设计过程,即任务书和指导书中指定的各项任务)I程序源代码:给出完整源程序清单。
II调试分析过程描述:包括测试数据、测试输出结果,以及对程序调试过程中存在问题的思考(列出主要问题的出错现象、出错原因、解决方法及效果等)。
III结果分析:对程序结果进行分析,并与理论分析进行比较。
(5)总结包括课程设计过程中的学习体会与收获、对Matlab语言和本次课程设计的认识以及自己的建议等内容。
(6)致谢(7)参考文献2.附件(可以将设计中得出的波形图和频谱图作为附件,在说明书中涉及相应图形时,注明相应图形在附件中位置即可;也可不要附件,所有内容全部包含在设计说明书中。
所有的实验结果图形都必须有横纵坐标标注,必须有图序和图题。
用matlab 频谱分析与采样定理
![用matlab 频谱分析与采样定理](https://img.taocdn.com/s3/m/b8eaab25af45b307e8719782.png)
频谱分析与采样定理
一、实验目的
1.观察模拟信号经理想采样后的频谱变化关系。
2.验证采样定理,观察欠采样时产生的频谱混叠现象
3.加深对DFT算法原理和基本性质的理解
4.熟悉FFT算法原理和FFT的应用
二、实验原理
根据采样定理,对给定信号确定采样频率,观察信号的频谱
三、实验内容和步骤
实验内容
在给定信号为:
1.x(t)=cos(100*π*at)
2.x(t)=exp(-at)
3.x(t)=exp(-at)cos(100*π*at)
其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。
实验步骤
1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。
2.复习FFT算法原理和基本思想。
3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序四、实验设备
计算机、Matlab软件
五、实验报告要求
1.整理好经过运行并证明是正确的程序,并且加上详细的注释。
2.对比不同采样频率下的频谱,作出分析报告。
matlab采样定理
![matlab采样定理](https://img.taocdn.com/s3/m/1672d79d6e1aff00bed5b9f3f90f76c661374cf7.png)
采样定理是数字信号处理中的一个基本理论,它说明了如何从离散样本中无失真地恢复连续信号。
在MATLAB中,采样定理的实现可以通过以下步骤完成:
1.确定信号的最高频率:首先需要确定待处理的信号的最高频率。
这可以通过分析信号的频谱来确
定。
2.选择采样频率:根据采样定理,采样频率应该至少是信号最高频率的两倍。
在MATLAB中,可
以使用fs = 2*fmax来计算采样频率。
3.采样信号:使用MATLAB中的fft函数对信号进行快速傅里叶变换,得到信号的频谱。
4.判断是否满足采样定理:如果采样频率大于信号最高频率的两倍,则满足采样定理,可以无失真
地恢复原信号。
否则,会产生频谱混叠现象,无法无失真地恢复原信号。
5.恢复原信号:如果满足采样定理,可以使用MATLAB中的ifft函数对频谱进行逆快速傅里叶变
换,恢复原信号。
需要注意的是,在实际应用中,可能还需要对信号进行滤波、降噪等预处理操作,以提高采样的质量。
同时,也需要考虑其他因素,如硬件设备的限制、信号的动态范围等,以确保采样的准确性。
MATLAB实现抽样定理探讨及仿真
![MATLAB实现抽样定理探讨及仿真](https://img.taocdn.com/s3/m/a553f78759eef8c75fbfb3c9.png)
MATLAB实现抽样定理探讨及仿真应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。
二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。
为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。
时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求,即只有带限信号才能适用采样定理。
)(2) 取样频率不能过低,必须 >2 (或 >2)。
(对取样频率的要求,即取样频率要足够大,)(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号采得的样值要足够多,才能恢复原信号。
)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。
一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。
根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。
(a)(b)(c)图2.1抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠) 2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T sδ⋅=,其中,冲激采样信号)(t sT δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n ss n )(ωωδω,其中ssT πω2=。
设)(ωj F ,)(ωj F s分别为)(t f ,)(t f s的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为mω, )(t f 经过采样后的频谱)(ωj F s就是将)(ωj F 在频率轴上搬移至ΛΛ,,,,,02ns ssωωω±±±处(幅度为原频谱的sT 1倍)。
MATLAB实现抽样定理探讨及仿真
![MATLAB实现抽样定理探讨及仿真](https://img.taocdn.com/s3/m/25c4023ea36925c52cc58bd63186bceb19e8edee.png)
MATLAB实现抽样定理探讨及仿真抽样定理,也被称为Nyquist定理或香农定理,是一种关于信号采样的基本理论。
它的核心观点是:如果对信号进行合适的采样,并且采样频率大于信号中最高频率的两倍,那么原始信号可以从采样信号中完全或几乎完全地恢复。
在MATLAB中,我们可以实现抽样定理的探讨和仿真。
下面将详细介绍如何进行这样的实现。
首先,我们可以通过使用MATLAB内置的函数来生成一个连续时间的信号。
例如,我们可以使用sinc函数生成一个带宽有限的信号,其频率范围为[-F/2, F/2],其中F是信号的最大频率。
以下是一个示例代码:```MATLABFs=100;%采样率Ts=1/Fs;%采样周期t=-1:Ts:1;%连续时间序列f_max = 10; % 信号最大频率signal = sinc(2*f_max*t); % 生成带宽有限的信号```然后,我们可以使用MATLAB的plot函数来显示生成的信号。
以下是一个示例代码:```MATLABplot(t, signal);xlabel('时间');ylabel('信号幅度');title('连续时间信号');```生成的图形将显示带宽有限的信号在连续时间域中的波形。
接下来,我们需要对信号进行离散化采样。
根据抽样定理,理想情况下,采样频率应大于信号中最高频率的两倍。
我们可以使用MATLAB的resample函数来进行采样。
以下是一个示例代码:```MATLABFs_new = 2*f_max; % 新的采样率Ts_new = 1/Fs_new; % 新的采样周期t_new = -1:Ts_new:1; % 新的时间序列signal_sampled = resample(signal, Fs_new, Fs); % 信号采样```然后,我们可以使用MATLAB的stem函数来显示采样后的信号。
以下是一个示例代码:```MATLABstem(t_new, signal_sampled);xlabel('时间');ylabel('信号幅度');title('离散时间信号');```生成的图形将显示采样后的信号在离散时间域中的序列。
MATLAB抽样定理验证
![MATLAB抽样定理验证](https://img.taocdn.com/s3/m/d0bc7edc4028915f804dc2a0.png)
end
本文来自CSDN博客,转载请标明出处:/zhaojianghan888/archive/2009/09/26/4596154.aspx
要求(画出6幅图):
当TS<TN时:
1、在一幅图中画原连续信号f(t)和抽样信号fS(t)。f(t)是包络线,fS(t)是离散信号。
2、画出重构的信号y(t)。
3、画出误差图,即error=abs(f(t)-y(t))的波形。
当TS>TN时同样可画出3幅图。
%a
wm=40*pi;
wc=1.2*wm; %理想低通截止频率
2、确定Nyquist抽样间隔TN。选定两个抽样时间:TS<TN,TS>TN。
3、MATLAB的理想抽样为
n=-200:200;nTs=n*Ts;或nTs=-0.04:Ts:0.04
4、抽样信号通过理想低通滤波器的响应
理想低通滤波器的冲激响应为
系统响应为
由于
所以
MATLAB计算为
ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));
Ts=[0.02 0.03];
N=length(Ts);
for k=1:N;
n=-100:100;
nTs=n*Ts(k);
fs=(cos(8*pi*nTs)+2*sin(40*pi*nTs)+cos(24*pi*nTs)).*(u(nTs+pi)-u(nTs-pi));
t=-0.25:0.001:0.25;
ft=fs*Ts(k)*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));
matlab验证频域采样定理
![matlab验证频域采样定理](https://img.taocdn.com/s3/m/6560e5356294dd88d1d26b94.png)
实验二 频域采样定理时域采样定理:设x(t)是一个有限时宽的信号,即在m t t >时x(t)=0,若m t T 20>或mt f210<,则x(t)可以唯一地由其频谱样本)(0ωk X ,k= ,2,1,0±± 确定。
下面通过一个例子来验证频域采样定理。
(1) 首先产生一个三角波序列x(n),长度为M=40。
(2) 计算N=64时的X(k)=DFT[x(n)],图示x(n)和X(k)。
(3) 对X(k)在[0,π2]上进行32点抽样,得到X1k =X(2k),k=0,1,…,31。
(4) 求X1k 的32点IDFT ,即x1(n)=IDFT[X1(k)]。
(5) 绘制x1((n))32的波形图。
程序清单如下: M=40;N=64;n=0:M;xa=[0:floor(M/2)];xb=ceil(M/2)-1:-1:0; xn=[xa,xb] Xk=fft(xn,64); X1k=Xk(1:2:N) x1n=ifft(X1k,32); nc=0:4*N/2;xc=x1n(mod(nc,N/2)+1);subplot(3,2,1);stem(n,xn,'.');ylabel('x(n)');title('40 points x(n)') subplot(3,2,2);k1=0:N-1;stem(k1,abs(Xk),'.');ylabel('|X(k)|'); title('64 points DFT[x(n)]')subplot(3,2,3);k2=0:N/2-1;stem(k2,abs(X1k),'.');ylabel('|X1(k)|'); title('get X1(k) from X(k)')subplot(3,2,4);n1=0:N/2-1;stem(n1,x1n,'.');ylabel('x1(n)'); title('32 points IDFT[X(k)]=x1(n)')subplot(3,2,5);stem(nc,xc,'.');ylabel('x1((n))32'); title('periodic x1(n)')程序运行结果如下:x (n )|X (k )||X 1(k )|x 1(n )32 points IDFT[X 2(k)]=x1(n)x 1((n ))32由图看出,在频域[0,π2]上采样点数N=32小于离散信号x(n)的长度M=40,所以产生时域混叠现象,不能由X1(k)恢复出原序列x(n)。
基于MATLAB的正弦信号的分析及取样定理的验证
![基于MATLAB的正弦信号的分析及取样定理的验证](https://img.taocdn.com/s3/m/661443a969dc5022abea0002.png)
课程设计说明书课程名称医学信号处理题目基于MATLAB的正弦信号的分析及取样定理的验证(2)学院医工学院班级学生姓名指导教师日期课程设计任务书(指导教师填写)课程设计名称医学信号处理学生姓名专业班级设计题目基于MATLAB的正弦信号的分析及取样定理的验证(2)一、课程设计目的1.熟练掌握使用MATLAB程序设计方法2.探究数字信号处理的基本概念和特点3.掌握序列离散傅里叶变换的MATLAB实现,并进行频谱分析4.学会用MATLAB对信号进行分析和处理二、设计内容、技术条件和要求一)设计内容与技术条件1.产生频率为50HZ的正弦信号1,画出信号1的时域(横坐标用时间/s表示)和频谱图(频谱图横坐标用频率/Hz表示)。
注意自行采样频率。
分析时域频域信号及其关系。
2.对信号1加上同幅度的频率为100的正弦信号得信号2,画出此时信号2的时域和频谱图。
分析时域频域信号及其关系。
3.在信号2的基础上加上随机信号得信号3,画出此时信号3的时域和频谱图。
分析时域频域信号及其关系。
4.改变采样频率重复1-3操作,对比分析频谱图,解释取样定理。
5.调用fir1函数设计一个20阶带通滤波器,并滤除信号3中50Hz的信号,分析滤波后信号的时域和频域波形。
二)设计要求1.设计程序整齐易懂,要求有注释;2.设计结果中的图示要美观,整齐,有标题,有纵横坐标标示;3.课程设计报告要有理论依据、设计过程,结果分析。
报告要求实事求是、文理通顺、字迹端正。
三、时间进度安排11月24日:查阅资料,熟悉任务书内容,熟悉Matlab 的工作环境,掌握编程方法。
11月25日~28日:按照课程设计任务书要求,编程实现课程设计的内容。
12月1日~3日:完善程序并撰写完成课程设计说明书。
12月4日~5日:答辩。
四、主要参考文献参考资料(1)信号与系统郑君里清华大学出版社(2)数字信号处理及MATLAB实现余成波清华大学出版社(3)MATLAB7.0在数字信号处理中的应用罗军辉机械工业出版社(4)Matlab帮助文件目录摘要……………………………………………………………………一、设计内容………………………………………………………1.1 设计目的…………………………………………………………1.2 设计内容…………………………………………………………二、原理介绍…………………………………………………………2.1 MATLAB简介……………………………………………………2.2函数实现…………………………………………………………2.3采样定理…………………………………………………………三、设计过程及分析…………………………………………………3.1 实验过程…………………………………………………………3.2 改变采样频率后的信号频谱……………………………………3.3 滤波器设计………………………………………………………四、总结………………………………………………………………五、参考文献…………………………………………………………六、附录……………………………………………………………基于MATLAB的正弦信号的分析及取样定理的验证摘要现在,信号与系统的概念已经深入到人们的生活和社会的各个方面。
实验一 MATLAB验证抽样定理
![实验一 MATLAB验证抽样定理](https://img.taocdn.com/s3/m/202d756da45177232f60a20f.png)
实验一MATLAB验证抽样定理一、实验目的1、掌握脉冲编码调制(PCM)的工作原理。
2、通过MATLAB编程实现对时域抽样定理的验证,加深抽样定理的理解。
同时训练应用计算机分析问题的能力。
二、实验预习要求1、复习《现代通信原理》中有关PCM的章节;2、复习《现代通信原理》中有关ADPCM的章节;;3、认真阅读本实验内容,熟悉实验步骤。
4、预习附录中的杂音计,失真度仪的使用。
三、实验环境PC电脑,MA TLAB软件四、实验原理1、概述脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用。
十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积、减轻重量、降低功耗、简化调试以及方便维护等方面都有了显著的改进。
目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化。
本实验是以这些产品编排的PCM编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术。
PCM数字电话终端机的构成原理如图3-1所示。
实验只包括虚线框内的部分,故名PCM 编译码实验。
混合装置V oice发滤波器波器收滤编码器器码译分路路合发收图3-1 PCM 数字电话终端机的结构示意图ADPCM 是在DPCM 基础上逐步发展起来的,DPCM 的工作原理请参阅教材有关章节。
它在实现上采用预测基数减少量化编码器输入信号多余度,将差值信号编码以提高效率、降低编码信号速率,这广泛应用于语音和图像信号数字化。
ADPCM 中的量化器与预测器均采用自适应方式,即量化器与预测器的参数能根据输入信号的统计特性自适应于最佳式接近于最佳参数状态。
通常,人们把低于64Kbps 数码率的语音编码方法称为语音压缩编码技术,语音压缩编码方法很多,ADPCM 是语音压缩编码种复杂程度较低的一种方法。
它能在32Kbps 数码率上达到符合64Kbps 数码率的语音质量要求,也就是符合长途电话的质量要求。
2、 实验原理(1) PCM 编译码原理PCM 编译码系统由定时部分和PCM 编译码器构成,如图3-2所示图3-2 PCM 调制原理框图PCM 主要包括抽样、量化与编码三个过程。
MATLAB实现抽样定理探讨及仿真
![MATLAB实现抽样定理探讨及仿真](https://img.taocdn.com/s3/m/dd2c0c8bab00b52acfc789eb172ded630a1c9861.png)
MATLAB实现抽样定理探讨及仿真抽样定理是信号处理与通信领域中的一个重要定理,它指出在进行信号采样时,为了避免失真和信息丢失,采样频率必须至少为信号带宽的两倍。
抽样定理还提供了信号的重构方法,可以从采样信号中恢复出原始信号的全部信息。
在这篇文章中,我们将使用MATLAB对抽样定理进行探讨,并进行相关的仿真实验。
首先,我们将介绍抽样定理的基本原理。
在信号处理中,信号可以被表示为时域函数或频域函数。
在时域中,信号可以用冲激函数的线性组合来表示,而在频域中,信号可以被表示为复指数函数的线性组合。
信号的带宽是指信号中包含的频率的范围,通常用赫兹(Hz)来表示。
根据抽样定理,为了准确地恢复信号,采样频率必须至少是信号带宽的两倍。
接下来,我们将使用MATLAB对抽样定理进行仿真实验。
首先,我们将生成一个具有限带宽的信号,并对其进行采样。
然后,我们将根据抽样定理的要求重新构建信号,以验证定理的有效性。
假设我们有一个信号x(t),其频率范围为0至10赫兹,并且我们以20赫兹的采样频率对其进行采样。
我们可以使用MATLAB生成这个信号,并进行采样,代码如下所示:```matlabFs=20;%采样频率t=0:1/Fs:1-1/Fs;%1秒内的采样时刻x = sin(2*pi*10*t); % 10赫兹的正弦波信号stem(t,x);xlabel('时间(秒)');ylabel('幅度');title('原始信号');```接下来,我们将使用抽样定理的频率限制条件对信号进行重构,并绘制重构后的信号。
我们将使用插值的方法对采样信号进行重构,代码如下所示:```matlabt_recon = 0:1/(2*Fs):1-1/(2*Fs); % 重新构建信号时的采样时刻x_recon = interp1(t,x,t_recon); % 插值重构信号stem(t_recon,x_recon);xlabel('时间(秒)');ylabel('幅度');title('重构信号');```通过对原始信号和重构信号的比较,我们可以看到抽样定理的有效性。
基于matlab时域采样和频域采样验证
![基于matlab时域采样和频域采样验证](https://img.taocdn.com/s3/m/9b2b4366ddccda38376baf0a.png)
时域采样理论与频域采样定理验证一、实验目的1时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理及方法时域采样定理的要点是:(a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s/2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt xFT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj eX ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
频域采样定理的要点是: a) 对信号x(n)的频谱函数X(e jω)在[0,2π]上等间隔采样N 点,得到2()(), 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N Ni x n X k x n iN Rn ∞=-∞==+∑(b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
MATLAB实现抽样定理探讨及仿真
![MATLAB实现抽样定理探讨及仿真](https://img.taocdn.com/s3/m/8e1aa07ef7ec4afe05a1df15.png)
应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。
二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。
为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。
时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。
)(2) 取样频率不能过低,必须>2(或>2)。
(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。
)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。
一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。
根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。
(a))(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号(b)(c)图2.1抽样定理a)等抽样频率时的抽样信号及频谱(不混叠)b)高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a)由图1可见,)()()(ttftfsTsδ⋅=,其中,冲激采样信号)(ts Tδ的表达式为:∑∞-∞=-=nsTnTtts)()(δδ其傅立叶变换为∑∞-∞=-nssn)(ωωδω,其中ss Tπω2=。
设)(ωjF,)(ωjFs分别为)(tf,)(tfs的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=nssnsssnjFTnjFjF)]([1)(*)(21)(ωωωωδωωπω若设)(tf是带限信号,带宽为mω,)(t f经过采样后的频谱)(ωjFs就是将)(ωjF在频率轴上搬移至,,,,,02nsssωωω±±±处(幅度为原频谱的sT1倍)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号1170010 5 天津城建大学数字信号处理指导教师(签字)计算机与信息工程学院2014年1月3日天津城建大学课程设计任务书2012 —2013 学年第 1 学期计算机与信息工程 学院 电子信息工程 专业 11电信1班 班级编写1.2. 3.4.5.32点和16点,得到3216()()X k X k 和,再分别对3216()()X k X k 和进行32点和16点IFFT 得到3216()()x n x n 和,分别画出()j X e ω,3216()()X k X k 和的频谱图,并画出x(n),3216()()x n x n 和的波形,进行对比。
三.课程设计要求1. 要求独立完成设计任务。
2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表13. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。
4. 运行程序,观察并保存程序运行结果,能够对运行结果进行结果分析。
5.课设说明书要求:1)说明题目的设计原理和思路、采用方法及程序。
2)详细说明调试方法和调试过程,并给程序加注释。
3)给出程序运行结果,并对其进行说明和分析。
指导教师(签字):系/教研室主任(签字):批准日期:2013年12 月19日目录第1章数字信号处理介绍 (1)1.1 背景知识 (1)1.2 MATLAB软件介绍 (1)第2章设计目的及要求 (2)2.1 设计目的 (2)2.2 设计要求 (2)第3章设计原理 (3)3.1整体设计原理 (3)3.2时域采样定理 (3)3.2.1时域采样定理公式的推导 (3)344第455第56888总结附录第1章数字信号处理介绍1.1 背景知识数字信号处理是20世纪60年代,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。
它的重要性日益在各个领域的应用中表现出来。
数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理(例如:滤波、变换、增强、估计、识别等),达到提取有用信息便于应用的目的。
Processor(5)MATLAB的图形功能强大。
(6)MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。
由于MATLAB的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。
第2章设计目的及要求2.1 设计目的1 理解并掌握序列的采样定理的条件,并进行验证;2 学会运用MATLAB验证函数的采样定理;3 学会运用MATLAB画出函数的幅频曲线;FFT第3章 设计原理3.1整体设计原理利用Matlab 对连续信号进行采样,对比采样频率max2f f s <,max2f f s =,max2f f s >三种情况下的频谱,并与理想频谱进行分析,进而从实验上验证时域采样定理。
由时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。
因此放在一起进行实验。
3.2(1频谱式为:(ˆX a(2∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ3.2.2 采样信号的恢复可用传输函数)(ωj G 的理想低通滤波器不失真地将原模拟信号)(t f 恢复出来,只是一种理想恢复。
2)2sin()(21)(t t d e j G t g s s j ΩΩ=Ω=⎰∞∞-ωωπ因为Ts π2=ΩTt T t t g ππ)sin()(=(2.2.2) 理想低通滤波器的输入输出)(t f ∧和)(t y ,)(t y =)(t f ∧*)(t g =ττd t g t f )()(-⎰∞∞- (2.2.3)3.2.3 采样信号的混叠现象3.3N 点N-Mx(n)的长度M (N X则N第4章 设计过程的实现4.1设计步骤1.连续信号00()sin()(),100,10,50*2*tf t Ae t u t A αΩαΩπ-====画出连续信号的时 2.域波形及频谱特性曲线;2 对信号进行采样得到采样序列,画出采样频率分别是200Hz ,100Hz ,60Hz 时的采样序列波形; 3.对不同采样频率下的采样序列进行频谱分析,绘制出幅频曲线,对比各频率下采样序列的幅频曲线有无区别;32点和1616()n ,分 图1 采样定理示意第5章 设计结果及分析5.1 用MATLAB 设计程序对应图形-0.500.5模拟信号X a (t )0.51模拟信号的幅度频谱|X a (j f )|x a (t )由Fs=60Hz 的抽样序列x(n)重构的信号0.010.020.030.040.050.060.070.080.090.1x a (t )由Fs=100Hz 的抽样序列x(n)重构的信号j |X (k )|k|X (k )|n图4 频域采样的频谱图5.2设计分析5.2.1 时域采样定理的分析由公式知原信号的最高截止频率为100Hz,由上图可知,在三种不同的采样频率下,只有采样频率为200Hz 时信号恢复较好。
具体分析如下:(1) 频率为60Hz 即s f <m ax 2f 时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。
频谱重叠的现象被称为混叠现象。
(2)(3)出,率Ω时,则X(ej ω)在[0总结这次的数字信号处理的课设,我们做的是基于MATLAB的采样定理的验证。
采样定理在数字信号处理中是一个重要的内容。
以前的学习当中,有很多的不了解。
通过这次的课设,我清楚地掌握了采样定理的内容,学到了不少。
首先,通过本次课设,我掌握了MA TLAB软件的使用,了解了其优缺点,学会了利用MATLAB实现函数的波形图及频谱图的产生。
在设计过程中,有好几次图都无法产生,通过查阅资料及网上查询,最终将所要求的图形全都画了出来。
通过这个过程,我明白了所有的软件程序调试过程中,我们只有自己亲自动手,亲自编写程序,才能学会解决问题的方法,提高自己发现问题、分析和解决问题的能力。
参考文献[1] 高西全,丁玉美.数字信号处理(第三版)[M].西安:西安电子科技大学出版社,2008.10[2] 《MA TLAB在数字信号处理中的应用》薛年喜主编清华大学出版社,2003年[3] 郑阿奇,曹戈,赵阳.MATLAB实用教程[M].北京:电子工业出版社,2007.7[4] 程卫国,冯峰,姚东,徐听.MATLAB5.3应用指南[M].北京:人民邮电出版社,2003.5[5] 陈杨.MA TLAB 6.X图像编程与图像处理[M].西安:西安电子科技大学出版社,2004.4[6] 陈怀琛等编著.MATLAB及在电子信息课中的应用.北京:电子工业出版社,2002.[7] 刘卫国主编.MA TLAB程序设计与应用(第二版). 北京:高等教育出版社,2006.附录1. 时域采样程序clc;clear;close all;fs=500;fs1=200;X3=x3*exp(-j*[1:length(x3)]'*w);%x3(n)的512点DTFTfigure(1);subplot(2,2,1);plot(t,xa);axis([0,max(t),min(xa),max(xa)]);title('模拟信号');xlabel('t(s)'); %X-轴标注ylabel('Xa(t)'); %Y-轴标注line([0,max(t)],[0,0]); %添加网格和绘X-轴线subplot(2,2,2);plot(f,abs(Xa)/max(abs(Xa)));title('模拟信号的幅度频谱');axis([0,500,0,1]);xlabel('f(Hz)');ylabel('|Xa(jf)|');subplot(2,2,3);stem(t1,x1,'.'); %绘棒状图,末端用实心圆点line([0,max(t1)],[0,0]);axis([0,max(t1),min(x1),max(x1)]);title('抽样序列x1(n)(fs1=200Hz)');xlabel('f(Hz)');ylabel('|X1(jf)|');subplot(2,2,3);stem(t3,x3,'.');line([0,max(t3)],[0,0]);axis([0,max(t3),min(x3),max(x3)]);title('抽样序列x3(n)(fs3=600Hz)');xlabel('n');ylabel('X3(n)');f=fs3*k/512;subplot(2,2,4);plot(f,abs(X3)/max(abs(X3)));title('x3(n)的幅度谱');xlabel('f(Hz)');ylabel('|X3(jf)|')2.信号的恢复程序clear;close all;A=100;forst=[st1,st2]title(st);x0=A*exp(-a.*t).*sin(b*t);%以3Fs对原始模拟信号抽样stem(t,x0,'.');line([0,max(t)],[0,0]); %绘制抽样信号end3 频域采样理论的验证M=26;N=32;n=0:M;%产生M长三角波序列x(n)xa=0:M/2; xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024; %subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;点点。