高中数学高考总复习函数概念习题及详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学高考总复习函数概念习题及详解
一、选择题
1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2
D .3
[答案] B
[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.
(理)(2010·广东六校)设函数f (x )=⎩
⎪⎨⎪⎧
2x x ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是
( )
A .2
B .16
C .2或16
D .-2或16
[答案] C
[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.
2.(文)(2010·湖北文,3)已知函数f (x )=⎩
⎪⎨⎪⎧
log 3x x >02x x ≤0,则f (f (1
9))=( )
A .4 B.1
4 C .-4
D .-14
[答案] B
[解析] ∵f (19)=log 31
9=-2<0
∴f (f (19))=f (-2)=2-
2=14
.
(理)设函数f (x )=⎩
⎪⎨⎪⎧
21-
x -1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )
A .(-∞,0)∪(10,+∞)
B .(-1,+∞)
C .(-∞,-2)∪(-1,10)
D .(0,10) [答案] A
[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪
⎧
x 0≥1lg x 0>1
⇒x 0<0或x 0>10.
3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )
A .7个
B .8个
C .9个
D .10个
[答案] C
[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.
4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x
1+x ,函数y =g (x )的图象与y =f (x )的图
象关于直线y =x 对称,则g (1)等于( )
A .-32
B .-1
C .-12
D .0
[答案] D
[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a
1+a =1,
∴a =0.
5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )
[答案] A
[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.
解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.
6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )
A.3,1,2 C .1,2,3
D .3,2,1
[答案] D
[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.
(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:
则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}
D .∅
[答案] C
[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.
7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13
B. 2
C.
2
2
D .2
[答案] D
[解析] ∵0≤x ≤1,∴1≤x +1≤2,
又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2. 8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩
⎪⎨
⎪⎧
g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )
的值域是( )
A.⎣⎡⎦⎤-9
4,0∪(1,+∞) B .[0,+∞)
C.⎣⎡⎭⎫-9
4,+∞
D.⎣⎡⎦
⎤-9
4,0∪(2,+∞) [答案] D
[解析] 由题意可知f (x )=⎩
⎪⎨⎪⎧
x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤2
1°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+7
4 由函数的图可得f (x )∈(2,+∞).
2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-9
4, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦
⎤-9
4,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-9
4,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=
⎩
⎪⎨⎪⎧
log 2(1-x ) (x ≤0)
f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1
D .2
[答案] B
[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),
∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.
9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧
a ,若a ≤
b ;b ,若a >b
函数f (x )=log 12(3x