勒贝格积分的分部积分和变量替换
《实变函数与泛函分析基础》目录简介
《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。
《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。
这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。
《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。
第4章_第一节 Lesbesgue积分的定义及性质
0
1
定理4.1 设ϕ ( x )和ψ ( x )为可测集E上的非负简单函数,则有
(2) ∫ cϕ ( x )dx = c ∫ ϕ ( x )dx (c为非负实数);
E E
(1) 0 ≤ ∫ ϕ ( x )dx ≤ ∞;
E
(3) ∫ (ϕ ( x ) + ψ ( x )) dx = ∫ ϕ ( x )dx + ∫ ψ ( x )dx;
n →∞
limψ n ( x) = f ( x) ≥ ϕ m ( x), ∀m
n →∞
由引理 4.1可得
n →∞
lim ∫ ϕn ( x)dx ≥ ∫ ψ l ( x)dx, ∀l
n →∞ E E
lim ∫ ψ n ( x)dx ≥ ∫ ϕm ( x)dx, ∀m
再对 l , m分别取极限可得 lim ∫ ϕn ( x)dx = lim ∫ ψ n ( x)dx.
令 Ak = { x ∈ Ei | ψ k ( x) ≥ ci − ε } (ε > 0, k = 1, 2, ),
Байду номын сангаасEi
k →∞
Ei
由于{Ak }是递增的可测集列及 limψ k ( x) ≥ ϕ ( x) > ci − ε ( x ∈ Ei ).
k →∞ ∞
则有 mEi =m(∪ Ak )=m( lim Ak )= lim mAk ,
⒉ 一般可测函数积分的性质
⑴零测集上的任何函数的积分为0. ⑵ f(x)可积当且仅当|f(x)|可积(f(x)是可测函数), 且 | ∫E f ( x )dx |≤ ∫E | f ( x ) |dx
f (x) = f
+
(x) − f
勒贝格积分的概念
勒贝格积分的概念在数学分析和测度论中,积分是求一个函数在某个区间内的累积量的基本工具。
对于一类较为复杂的函数传统的黎曼积分往往不够应用,这就引出了勒贝格积分的概念。
勒贝格积分由法国数学家亨利·勒贝格(Henri Lébeau)于20世纪初提出,它的重要性不仅在于其理论深度,还由于其广泛的应用。
勒贝格积分的定义勒贝格积分的定义以测度为基础。
首先,需要了解可测函数与测度空间的概念。
测度在实数轴上,我们通常用“长度”来度量某个区间的大小。
例如,区间[a, b]的长度为(b - a)。
这种对长度的度量可以推广到更一般的情况下,即测度。
在更广泛的集合论和分析中,测度是一种赋予集合“大小”的方法。
设(X)为一个集合,若给定一个σ-代数()与一个非负的加法可数可加集函数(),则称((X, , ))为一个测度空间。
在此空间中,测度()为我们提供了一种量化能否对集合进行积分的方法。
可测函数一个函数是可测函数,如果其逆像对所有开集在测度下都可测。
这一性质使得我们可以运用勒贝格测度理论进行分解和重构,使得我们能够对其进行积分操作。
令(f: X )为一个可测函数,并且定义勒贝格积分为:[ _X f d ]这里,(d) 表示对测度()进行积分。
对于Lebesgue积分,我们有一个更直观的在区间上的定义,这与概率论中的期望有些相似。
勒贝格积分与黎曼积分的区别传统黎曼积分是通过将区间分割成更小子区间,然后求每个子区间内对应函数图像下方矩形面积之和实现。
但这种方法对于不连续或具有复杂性质的函数不适用。
相比之下,勒贝格积分则更加灵活,允许我们对包含更多“维度”的未知数进行处理。
通过引入重复应用可测性的理念,勒贝格积分能够处理更多种类的函数和基于不同自变量域的问题。
勒贝格积分的一些重要性质勒贝格积分拥有众多重要性质,使其在数学及其它科学领域内被广泛应用。
线性性质:对于任意常数(a, b)和可积函数(f, g),我们有[ (af + bg) d= a f d+ b g d. ]单调收敛定理:若一列可测非负函数(f_n)满足 (f_n f ,(n )),则 [ f_n df d. ]重复应用:如有一列互不重合且具有有限长度的集合,可以得到如下结果: [ {{n=1}^{} E_n} f d= {n=1}^{} {E_n} f d. ]变化性与限制性:如果(f_n(x))逐点收敛到(f(x)),且(f_n(x))被某个可积函数所界限,则同样可以得到结论: [ _{n } f_n d= f d. ]这些性质提供了工具,使其不仅在纯数学理论中发挥作用,同时也能用于实际计算。
第七章 勒贝格积分理论简介
第七章 勒贝格积分理论简介本章所讨论的测度都是勒贝格测度,故不再特别说明。
所说可测均指。
所指函数也都是定义在实数子集上的实值函数。
可测-L 在第六章第二节中,我们曾经提到勒贝格积分的一种定义方式。
由此积分的定义可以看出,定义在一个可测集上的符号函数是可以积分的当且仅当E f 是可测的,由此引入了可测函数的概念。
但是从可测函数的角)(1+<≤i i y f y E 度考虑,可测函数可以另外的方式引入。
本章先讨论可测函数的刻画方式和一些基本性质,然后对勒贝格积分的常见计算方式作一些粗略的介绍。
进一步的内容可以在任何一本实变函数的教材可见。
§1 可测函数的定义刻画与运算我们先给出可测函数的一种最朴素的定义方式。
7.1定义:设是定义在上的函数,若对任意集合是可侧集,f E R ∈a )(a f E <称是可侧函数。
f 7.2命题. 设是集合上的函数。
f E (1)若是可侧,在上连续,则是上可测函数。
E f E f E (2)若是上可测函数,,则集合,,,f E R ∈a E )(f a E ≤)(f a E <都是可测集。
)(a f E ≤(3)若,且在上可测,则是上的可测函数。
φ==)0(f E f E f1E 证明:(1)对任意,是中开集,即存在中开集,使得R ∈a )(a f E <E R G ,故是可侧集。
E G a f E =<)()(a f E <(2)结论可由如下的集合等式得到)(a f E E n <=∈ω)(\)(a f E E f a E <=≤)1()(1f na E f a E n ≤+=<∞= )(\)(f a E E a f E <=≤(3)由⎪⎪⎩⎪⎪⎨⎧<><=<><>=<0)1()0(0)0(0)0()1()1(a a f E f E a f E a f E a f E a f E 可知是可侧集。
第七章 勒贝格积分理论简介
第七章 勒贝格积分理论简介本章所讨论的测度都是勒贝格测度,故不再特别说明。
所说可测均指可测-L 。
所指函数也都是定义在实数子集上的实值函数。
在第六章第二节中,我们曾经提到勒贝格积分的一种定义方式。
由此积分的定义可以看出,定义在一个可测集E 上的符号函数f 是可以积分的当且仅当)(1+<≤i i y f y E 是可测的,由此引入了可测函数的概念。
但是从可测函数的角度考虑,可测函数可以另外的方式引入。
本章先讨论可测函数的刻画方式和一些基本性质,然后对勒贝格积分的常见计算方式作一些粗略的介绍。
进一步的内容可以在任何一本实变函数的教材可见。
§1 可测函数的定义刻画与运算我们先给出可测函数的一种最朴素的定义方式。
7.1定义:设f 是定义在E 上的函数,若对任意R ∈a 集合)(a f E <是可侧集,称f 是可侧函数。
7.2命题. 设f 是集合E 上的函数。
(1)若E 是可侧,f 在E 上连续,则f 是E 上可测函数。
(2) 若f 是E 上可测函数,R ∈a ,则集合E ,)(f a E ≤,)(f a E <,)(a f E ≤都是可测集。
(3)若φ==)0(f E ,且f 在E 上可测,则f1是E 上的可测函数。
证明:(1)对任意R ∈a ,)(a f E <是E 中开集,即存在R 中开集G ,使得E G a f E I =<)(,故)(a f E <是可侧集。
(2)结论可由如下的集合等式得到)(a f E E n <=∈ωY)(\)(a f E E f a E <=≤)1()(1f na E f a E n ≤+=<∞=Y )(\)(f a E E a f E <=≤(3)由⎪⎪⎩⎪⎪⎨⎧<><=<><>=<0)1()0(0)0(0)0()1()1(a a f E f E a f E a f E a f E a f E I Y 可知)1(a fE <是可侧集。
第三节 变量置换法与分部积分法
x)
C.
小结 遇到下列被积分式时,凑微分如下:
P( x)exdx P( x)de x (P( x)为多项式,下同);
P( x)sin xdx或P( x)cos xdx凑为 P( x)dcos x或P( x)dsinx;
P( x)ln xdx把P( x)dx凑成微分,如x2 ln xdx 1 ln xdx3; 3
a
dt sec2 t
sec2 tdt sec t
sec tdt
a2 x2 x
t a
ln | sec t tan t | C1
图4 3
图4 3 ln | x a
a2 a
x2
|
C1
ln( x
a2 x2) C.
例5 求
1 x dx.
1 x2
解
1 x dx 1 x2
1
1
x
2
dx
x dx 1 x2
eax cosbxdx或eax sin bxdx把eaxdx凑微分或 把cosbxdx,sin bxdx凑微分都可以, 经过两次分部积分后会出现原来的积分.
三、拓展与思考
ቤተ መጻሕፍቲ ባይዱ
例13 求
1 dx.
x x2
解
原式
1 dx
( x 1)2 (1)2
22
1
d(x 1)
( x 1)2 (1)2
2
a2
x2dx
a2 cos2
tdt
a2 2
(1
cos 2t )dt
a2
x2dx
a2
cos2
tdt
a2 2
(1
cos 2t )dt
a2 (t
1 sin 2t)
18、19、勒贝格积分概念与性质
D D
d) 称 inf { S ( D , f )} =
D
∫ f ( x ) dx为 f ( x )在 E 上 的 L 上 积 分
E
−
称 sup{ s ( D , f )} =
D
∫ f ( x ) dx为 f ( x )在 E 上 的 L 下 积 分
s ( D ) = ∑ bi mEi , S ( D ) = ∑ Bi mEi
x∈Ei
m
x∈Ei
m
类比定积分 的大、小和
§1引理1 ⅰ)E的 可测分划加细,大和不增,小和不减;
设E的两个分划D*比D更细,则sD ≤ sD* ≤ S D* ≤ S D
ii) 对于任意两个分划D*和D,均有sD ≤ S D*
4、证明:零集上任意函数都L可积,且积分值等于0
证 : 设 f 为 E上 任 意 函 数 ,
E
E
用上述思想、方式引进勒贝格积分的教 材很多。如: 【1】周民强 《实变函数》 【2】郑维行 王声望 《实变函数与泛函分析概要》(上册) 【3】钱佩玲、柳藩 《实变函数论》
2、勒贝格积分的勒贝格式的建立方式
R积分——积分区间长度有限,被积函数有界
→ (1) 测度有限 集上有界函数的勒 贝格积分 → (2)测度有限集上非负函数的勒贝格积分
实变函数论
第18、19讲
第五章 积 分 理论
(一)L积分与L可积概念的建立及L积分的基本性质
一、勒贝格积分建立方式简介
1、勒贝格积分的 非勒贝格式的建立方式 2、勒贝格积分的勒贝格式的建立方式
1、非勒贝格式的建立方式
第四章勒贝格积分
第四章 勒贝格积分本章介绍勒贝格积分理论.定义勒贝格积分有多种方法,本处采用从非负简单函数到非负可测函数,然后到一般可测函数的方法逐步建立勒贝格积分理论.§1 非负简单函数的勒贝格积分定义1 设n R E ⊂是可测集,)(x ϕ是E 上的非负简单函数,即E x x c x nk E k k∈=∑=,)()(1χϕ,其中 nk k E E 1==,k E 是互不相交的可测集,k c 是非负实数(1≤k ≤n ),记⎰∑==Enk kk mEc dx x 1)(ϕ称⎰Ex dx x )()(ϕϕ为在E 上的勒贝格积分.显然,当⎰==Edx x mE 0)(,0ϕ时.下面的定理1说明非负简单函数的勒贝格积分值与其表示无关.定理1 设)(),(x x ψϕ是可测集E 上的非负简单函数,如果E x x x ∈=),()(ψϕ,则⎰⎰=EEdx x dx x )()(ψϕ证明 设E x x a x nk E k k∈=∑=,)()(1χϕ,nk k k E E n k a 1),1(0==≤≤≥,E k 是互不相交的可测集,又E x x b x jF mj j ∈=∑=),()(1χψ,mj j j j F F E m j b 1,),1(0==≤≤≥是互不相交的可测集. 因为在E 上,)()(x x ψϕ=,所以对任何k 和),1,1(m j n k j ≤≤≤≤ 总有)()(j k j j k k F E m b F E m a ⋂=⋂,于是∑∑∑∑====⎪⎪⎭⎫ ⎝⎛⋂=⋂=nk m j j k k k nk k nk k k F E m a E E m a mE a 1111)()()()(1111j k m j nk j j kmj kn k F E m b F Em a ⋂=⋂∑∑∑∑=====∑=mj j j mF b 1即⎰⎰=EEdx x dx x )()(ψϕ .定理2 设)(),(x x ψϕ是E 上的非负简单函数,则 (1)对任何非负实数c,有⎰⎰=EEdx x c dx x c )()(ϕϕ ;(2) ()⎰⎰⎰+=+EEEdx x dx x dx x x )()()()(ψϕψϕ ; (3)若,),()(E x x x ∈≤ψϕ则⎰⎰≤EEdx x dx x )()(ψϕ ,特别地,mE x dx x E⋅≤⎰)(max )(ϕϕ ;(4)若A 、B 是E 的两个不相交的可测子集,则⎰⎰⎰+=⋃BABA dx x dx x dx x )()()(ϕϕϕ .证明 仅证(2)式,其余作为习题.设 E x x a x ni A i i ∈=∑=)()(1χϕ,,)()(1E x x b x mj B j j∈=∑=χψ其中}{},{),1,1(0,j i j i B A m j n i b a ≤≤≤≤≥均为互不相交的可测集列,且 n i mj j i B A E 11====.易知jiB A n i mj i i b a x x ⋂==∑∑+=+χψϕ11)()()(所以())()()()(11j i Eni mj j iB A m b adx x x ⋂+=+⎰∑∑==ψϕ=)()(1111j i ni m j i j i ni mj i B A m b B A m a ⋂+⋂∑∑∑∑=====∑∑∑∑====⎪⎭⎫⎝⎛⋂+⎪⎪⎭⎫ ⎝⎛⋂m j n i j i j j i m j ni i B A m b B A m a 1111)()(=⎰⎰∑∑+=+==EEmj j j i n i i dx x dx x mB b mA a )()(11ψϕ定理3 设})({)},({x x n n ψϕ是E 上单调增的非负简单函数列,如果E x x x n n n n ∈=∞→∞→)(lim )(lim ψϕ,那么 ⎰⎰∞→∞→=En n En n dx x dx x )(lim )(lim ψϕ .证明 不妨设)(lim x n n ϕ∞→在E 上几乎处处有限,因为)}({x n ψ在E 上单调增,所以对任何自然数m ≥1,有)(lim )(lim )(x x x n n n n m ϕψψ∞→∞→=≤ .令 )}(),(m in{)(x x x f n m n ϕψ=,则非负简单函数列)}({x f n 收敛,且,)()(lim E x x x f m n n ∈=∞→ψ当+∞<mE 时,由Egoroff 定理,0>∀ε,存在可测集)(),()(,\,∞→<→→n x x f E E mE E m n ψεεεε上在使,于是存在N ≥1,当n>N 时,对一切εE E x \∈,)()()(x x f x n n m ϕεεψ+≤+<从而dx x dx x n E E m E E ))(()(\\ϕεψεε+≤⎰⎰dx x mE E n ⎰+≤)(ϕε因此, dx x mE dx x En E E n m⎰⎰∞→+≤)(lim )(\ϕεψε另外, )(m ax )(m ax )(x mE x dx x m m E m ψεψψεε⋅<≤⎰故 dx x dx x dx x m E m E E E m)()()(\ψψψεε⎰⎰⎰+=dx x mE x n En m )(lim ))((max ϕψε⎰∞→++<令0→ε,),1()(lim )(≥∀≤⎰⎰∞→m dxx dx x En n Emϕψ当+∞=mE 时,存在可测集列)1(,,,},{121≥+∞<=⊂⊂⊂⊂∞=k mE E E E E E E k k k k k 使.由上述证明知,对每个k ≥1, ⎰⎰⎰∞→∞→≤≤En n E n n E m dx x dx x dx x kk)(lim )(lim )(ϕϕψ .记 Tj j j Tj F j m F F E E x x a x j 11}{,,,)()(===∈=∑其中χψ是互不相交的可测集,)1(,0T j a j ≤≤≥,则由积分定义,∑⎰==Tj k j j E m E F m a dx x k1)()( ψ ,因为 j k j k mF E F m =∞→)(lim ,所以⎰⎰∑===∞→Em E Tj j j m k dx x mF a dx x k)()(lim1ψψ,于是 ⎰⎰∞→≤En n Emdx x dx x )(lim )(ϕψ,因此⎰⎰∞→∞→≤EEn n m n dx x dx x )(lim )(lim ϕψ .同理可证相反的不等式,故⎰⎰∞→∞→=EEn n m n dx x dx x )(lim )(lim ϕψ .§2 非负可测函数的勒贝格积分定义1 设)(x f 是E 上的非负可测函数,)}({x n ϕ是E 上单调增收敛于)(x f 的非负简单函数列,记⎰⎰∞→=En En dx x dx x f )(lim )(ϕ,称 )()(x f dx x f E为⎰在E 上的勒贝格积分,或L 积分,如果⎰+∞<Edx x f )(,则称)(x f 在E 上是勒贝格可积的,或L可积,简记为)(E L f ∈.由§1定理3知,非负可测函数的勒贝格积分值与非负简单函数列)}({x n ϕ选取无关.显然,若⎰=∈=Edx x f E x x f 0)(,,0)(则;若mE =0,则对于E 上的任何非负可测函数)(x f , ⎰=Edx x f 0)( .定理1 设)(x f ,)(x g 是E 上的非负可测函数, 则 (1) 若 E x x g x f ∈≤),()(,则⎰⎰≤EEdx x g dx x f )()( ;(2) 若A 、B 是E 的可测子集,且B A ⊂,则⎰⎰≤ABdx x f dx x f )()( ;(3)若A 、B 是E 的可测子集,且φ=B A ,则⎰⎰⎰+=BA ABdx x f dx x f dx x f )()()( ;(4)若E e a x g x f 于..)()(=,则⎰⎰=EEdx x g dx x f )()( ;(5)对任何非负实数c ,⎰⎰=EEdx x f c dx x cf )()( ;(6)()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 证明由定义即得.定理2 (Levi 单调收敛定理)设)}({x f n 是E 上的非负可测函数列,满足 (1) 1,..)()(1≥≤+n E e a x f x f n n 于;(2),..)()(lim E e a x f x f n n 于=∞→则⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 因为)(x f n 是E 上非负可测函数(n ≥1),所以E x x x f n kk n ∈=∞→),(lim )()(ϕ,其中)}({)(x n k ϕ是单调增的非负简单函数列,于是⎰⎰∞→=En k k En dx x dx x f )(lim )()(ϕ ,令)}(,),(),(max {)()()2()1(x x x x k k k k k ϕϕϕψ = ,则对每个)(,1x k k ψ≥是E 上的非负简单函数,且E x x x x k ∈≤≤≤≤,)()()(21 ψψψ ,E x k n x x k n k ∈≤≤≤),1(),()()(ψϕ ,又 E x x f x f x f x f x k k k ∈=≤),()}(,),(),(max {)(21 ψ ,所以 E x k n x f x x k k n k ∈≤≤≤≤,1),()()()(ψϕ, (1) 从而dx x f dx x dx x Ek EEk n k ⎰⎰⎰≤≤)()()()(ψϕ .(2)固定n ,令∞→k ,由(1)和(2)式,有E x x f x f x x f k k k k n ∈=≤≤∞→∞→),()(lim )(lim )(ψ ,和dx x f dx x dx x f k Ek Ek k n E)(lim )(lim )(⎰⎰⎰∞→∞→≤≤ψ ,进一步,令∞→n ,则)(lim )(lim )(x x f x f k k n n ψ∞→∞→== ,及dx x dx x f k Ek En n )(lim )(lim ψ⎰⎰∞→∞→= .(3)于是,由非负可测函数勒贝格积分定义和(3)式,有⎰⎰∞→=En n Edx x f dx x f )(lim )( .定理3 (逐项积分定理)设)}({x f n 是E 上的非负可测函数列,则⎰∑⎰∑∞=∞==⎪⎭⎫⎝⎛En n E n n dx x f dx x f )()(11 .证明 由定理1,对每个n ≥1⎰∑⎰∑===⎪⎭⎫⎝⎛Ek nn E n k k dx x f dx x f )()(11令 )}({,)()(1x S x f x S n nk k n 则∑==是非负可测函数列,且 E x x S x S n n ∈≤+),()(1 ,E x x f x S n n n n ∈=∑∞=∞→1)()(lim ,由Levi 单调收敛定理知,dx x S dx x f n E n E n n )(lim )(1⎰⎰∑∞→∞==⎪⎭⎫⎝⎛ =⎰∑⎰⎪⎭⎫ ⎝⎛==∞→∞→En k k n n En dx x f dx x S 1)(lim )(lim=()⎰∑⎰∑∞==∞→=Enn k Enk n dx x f dx x f 11)(lim .推论 设{E n }是可测集列,互不相交,∞==1n n E E 如果)(x f 是E 上的非负可测函数,则⎰∑⎰∞==En E ndx x f dx x f 1)()( .证明 令)1(,),()()(≥∈=n E x x x f x f n E n χ,则 )(x f n 是E 上的非负可测函数,且 ∑∞==1)()(n n x f x f ,⎰⎰=EnEn dx x f dx x f )()( .由逐项积分定理知∑⎰⎰∑⎰∞=∞===11)()()(n EnEn n Edx x f dx x f dx x f .定理4 设)(x f 是E 上几乎处处有限的非负可测函数,),0[}{,+∞⊂+∞<n y mE ,满足)(,01∞→+∞→<<<<=n y y y y n n o其中 δ<-+n n y y 1,令,1,0],)(|[1=<≤=+n y x f y x E E n n n则)(x f 在E 上是勒贝格可积的充分必要条件是∑∞=∞<0n nn mEy ,此时⎰∑=∞=→En n n dx x f mE y )(lim 0δ .证明 不妨假设)(x f 在E 上处处有限,因为在E n 上,)0(,)(1≥<≤+n y x f y n n ,所以由定理1,对每个n ≥0,n n Enn n mE y dx x f mE y 1)(+≤≤⎰,由定理3的推论知,∑⎰⎰∞==0)()(n E Endx x f dx x f ,所以⎰∑∑∞=+∞=≤≤En n n n nn mE y dx x f mEy 010)(=∑∑∞=∞=++-01)(n n n n n n n mE y mE y y∑∞=+<0n n n mE y mE δ,因此结论成立.定理5(Fatou 定理) 设{})(x f n 是E 上的非负可测函数列,则⎰⎰∞→∞→≤En n nE n dx x f dx x f)(lim )(lim .证明 令1,),(inf )(≥∈=≥n E x x f x g k nk n ,则 g n (x)是E 上的非负可测函数,且E x x g x g n n ∈≤+),()(1,于是,由Levi 单调收敛定理知,⎰⎰⎰∞→∞→∞→==En n n E n n n Edx x g dx x g dx x f )(lim )(lim )(lim .因为 E x x f x g n n ∈≤),()(所以 dx x f dx x gEn En⎰⎰≤)()( ,从而⎰⎰∞→∞→≤En n n En dx x f dx x g )(lim )(lim ,因此,⎰⎰∞→∞→≤En n n n Edx x f dx x f )(lim )(lim .Fotou 定理中的严格不等式有可能成立,例如设⎪⎩⎪⎨⎧-∈∈=]1,0[]1,0[0]1,0[)(n x n x n x f n ,易知 )1(,1)(],1,0[,0)(lim ]1,0[≥=∈=⎰∞→n dx x f x x f n n n ,所以1)(lim 0)(lim ]1,0[]1,0[=<=⎰⎰∞→∞→x f dx x f n n n n .§3 一般可测函数的勒贝格积分定义1 设)(x f 是E 上的可测函数,如果积分⎰⎰-+EEdx x f dx x f )(,)(中至少有一个是有限值,记⎰⎰⎰-+-=EEEdx x f dx x f dx x f )()()(,则称)()(x f dx x f E为⎰在E 上的勒贝格积分.如果上式右端两个积分值均是有限的,则称)(x f 在E 上是勒贝格可积的,或称)(x f 是E 上的勒贝格可积函数.通常把区间[a ,b ]上的勒贝格积分记成dx x f a b L )()(⎰,或 dx x f ab)(⎰.定理1 设)(x f 是E 上的可测函数,则 (1))(x f 在E 上勒贝格可积的充分必要条件是)(x f 在E 上勒贝格可积,此时⎰⎰≤EEdx x f dx x f |)(||)(|;(2)若)(x f 在E 上勒贝格可积,则)(x f 在E 上几乎处处有限;(3)若)()(x g x f = ..e a 于E ,且)(x f 在E 上勒贝格可积,则)(x g 在E 上勒贝格可积,且⎰⎰=EEdx x g dx x f )()(.证明 (1))(x f 与)(x f 在E 上勒贝格可积的等价性由定义1和)()()(x f x f x f -++=即得,另外,由§2 定理1, ⎰⎰⎰⎰-+-++=+=EEEEdx x f dx x f dx x f x fdx x f )()())()((|)(|⎰⎰⎰=-≥-+EEEdx x f dx x f dx x f |)(||)()(| .(2)若)(x f 在E 上勒贝格可积,则⎰⎰+∞<+∞<-+EEdx x f dx x f )(,)( ,对任何n ≥1,记])(|[n x f x E E n ≥=,则⎰⎰⎰⋅≥=≥++EE E n nnmE n dx x f dx x f dx x f )()()( ,所以 0lim =∞→n n mE ,而n n n E E x f x E ⊂=+∞=∞= 1])(|[ ,于是 0])(|[=+∞=x f x mE ,同理可证 0])(|[=-∞=x f x mE ,因此0]|)(||[=+∞=x f x mE ,即)(x f 在E 上是几乎处处有限的.(3)因为..)()(e a x g x f =于E ,所以..)()(),()(e a x g x f x g x f --++==于E ,再由勒贝格积分定义和§2定理1知结论成立.由定理1知,对于可测函数而言,其勒贝格可积性和积分值大小与零测集无关,因而我们总可以假定可积函数是处处有限的. 定理2 设)(),(x g x f 是E 上的勒贝格可积函数,则 (1) )(,1x cf R c ∈∀在E 上勒贝格可积,且⎰⎰=EEdx x f c dx x cf )()( ;(2) )()(x g x f +在E 上勒贝格可积,且()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 (1)当0≥c 时,),())((),())((x cf x cf x cf x cf --++==于是 ⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf ))(())(()(⎰⎰-+-=EEdx x cf dx x cf )()(=()⎰⎰⎰=--+EEEdx x f c dx x f dx x f c )()()( ;当0<c 时, ()())()(),()(x cf x cf x cf x cf +--+-=-=, 所以()()⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf )()()(=()()⎰⎰+----EEdx x cf dx x cf )()(=[]⎰⎰⎰=--+-EEEdx x f c dx x f dx x f c )()()( .(2)因为|)(||)(||)()(|x g x f x g x f +≤+,所以当)(),(x g x f 在E 上勒贝格可积时,)(,)(x g x f 在E 上勒贝格可积,从而)()(x g x f +在E 上勒贝格可积,故)()(x g x f +可积.另外,由于-++-+=+))()(())()(()()(x g x f x g x f x g x f , 又 ))()(())()(()()(x g x g x f x f x g x f -+-+-+-=+ ,所以 ,))()(())()(()()()()(-+-+-++-+=-+-x g x f x g x f x g x g x f x f 从而)()())()(())()(()()(x g x f x g x f x g x f x g x f --+-+++++=+++ .于是由§2定理1(6),⎰⎰⎰-+++++EEEdx x g x f dx x g dx x f ))()(()()(=⎰⎰⎰--++++EEEdx x g dx x f dx x g x f )()())()((因此⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()())()((定理3 设函数)(x f 在E 上勒贝格可积, ∞==1n n E E ,E n 是可测集(n ≥1),且互不相交,则)(x f 在每个E n 上勒贝格可积,且dx x f dx x f Enn E⎰∑⎰∞==)()(1.证明 对每个n ≥1,)(x f 在E n 上勒贝格可积,(留作习题).因为)(x f 在E 上勒贝格可积,所以由非负可测函数积分的可数可加性,+∞<=⎰⎰∑++∞=dx x f dx x f EE n n)()(1 ,+∞<=⎰⎰∑--∞=dx x f dx x f EE n n)()(1 ,于是⎰⎰∑⎰∑-+∞=∞=-=nnnE E n E n dx x f dx x f dx x f ))()(()(11=⎰∑⎰∑-∞=+∞=-nnE n E n dx x f dx x f )()(11=⎰⎰-+-EEdx x f dx x f )()(=dx x f E)(⎰ .定理4 (勒贝格控制收敛定理) 设)(x f 、)1)((≥n x f n 是E 上的可测函数,如果(1))()(x f x f n →a . e.于E ,(2)存在E 上的勒贝格可积函数g (x ),使),()(x g x f n ≤ a. e.于E ,则)1)((),(≥n x f x f n 在E 上勒贝格可积,且⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 由(2),f (x ), f n (x )(n ≥1)在E 上勒贝格可积,且g (x )+f n (x )≥0 (n ≥1), a .e.于E . 由Fatou 定理,⎰⎰+≤+∞→∞→E n n E nn dx x f x g dx x fx g ))()((lim ))()((lim ,于是 ⎰⎰⎰⎰∞→∞→+≤+E n En En n Edx x f dx x g dx x f dx x g )(lim )()(lim )( , 从而⎰⎰⎰∞→∞→≤=E n En n n Edx x f dx x f dx x f )(lim )(lim )( .同理,由g (x )-f n (x )≥0,(n ≥1),a.e.于E 知,()⎰⎰-≤-∞→Enn Edx x fdx x f )(lim ))(( ,即⎰⎰∞→-≤-En n Edx x f dx x f )(lim )(,所以, ⎰⎰∞→≥En n Edx x f dx x f )(lim )( ,因此⎰⎰∞→=En n Edx x f dx x f )(lim )( .推论 设)(,x f mE n +∞< )1(≥n 是E 上的可测函数,如果 (1)..),()(e a x f x f n →.于E ,(2)M x f n ≤)(, a.e.于E ,(n ≥1) ,则 可积,且上在L E x f )(⎰⎰∞→=En n Edx x f dx x f )(lim )(.定理5 (积分的绝对连续性)设f (x )在E 上勒贝格可积,则对任何ε>0,存在δ>0,对E 的任何可测子集A ,当mA<δ时,ε<⎰Adx x f )(证明 不失一般性,设f (x )在E 上非负可积. 令⎩⎨⎧>≤=nx f nn x f x f x f n )()()()(,则 )1,(),()(0≥∈≤≤n E x x f x f n ,且)()(lim x f x f n n =∞→,)()(1x f x f n n +≤.因为f (x )勒贝格可积,所以对每个n ,f n (x )是勒贝格可积的,于是由Levi 单调收敛定理,有⎰⎰∞→=EEn n dx x f dx x f )(lim )( ,因此,对任意正数ε>0, 存在N ≥1,使⎰<-≤EN dx x f x f 2))()((0ε.令 N2εδ=,则对E 的任何可测子集A ,当mA<δ时,()⎰⎰⎰+-=AAN AN dx x f dx x f x f dx x f )()()()(<εεεε=+<⋅+222mA N . 定理6 设f (x )是1R E ⊂上的L 可积函数,mE<+∞,则对任何ε>0,存在R 1上的连续函数g (x ),使⎰<-Edx x g x f ε)()(.证明 令[]n x f x E E n >=)(|,则1+⊃n n E E ,且[] ∞=+∞==1)(|n n x f x E E . 因为f (x )在E 上勒贝格可积,所以f (x )在E 上几乎处处有限. 又mE <+∞,故由可测集性质,[]0)(|lim =+∞==∞→x f x mE mE n n ,因此,由积分的绝对连续性,对任何ε>0,存在N ≥1,使⎰<≤NE N dx x f NmE 4)(ε.对于E\E N ,由第三章§3定理3,存在R 1上连续函数)(x g 和闭集N N E E F \⊂,使(1)[]NF E E m N N 4\)\(ε<,(2)f (x )=g (x ), ,N F x ∈ 且,)(sup 1N x g R x ≤∈ 于是⎰⎰⎰-+-=-EE E E NNdx x g x f dx x g x f dx x g x f \)()()()()()(⎰⎰⎰---++≤NNN NE F E E E dx x g x f dx x g dx x f )(|)()(||)(|)([]N N N F E E Nm NmE \)\(24++<εεεεε=++<244.例1 证明dy y f y x a b dy y f y x abdx d )()cos()()sin(+=+⎰⎰ , 其中f (x )是[a ,b ]上的勒贝格可积函数. 证明 对任何1R x ∈,|)(|)()sin(y f y f y x ≤+所以函数 sin(x+y )f (y )在[a ,b ]上勒贝格可积,对任何0→n ε,令[])()sin()()sin(1)(y f y x y f y x y f n nn +-++=εε ,则|)(||)(|y f y f n ≤,且 )()cos()(lim y f y x y f n n +=∞→,由控制收敛定理,dy y f y x a b dy y f y x ab dx d )()cos()()sin(+=+⎰⎰. 例2证明 0101lim 2223=+⎰∞→dx x n xn n .证明 易知]1,0[,01lim2223∈=+∞→x x n xn n ,令xx g xn xn x f n 2)(,1)(2223=+=,则)1()12(2)()(222323x n x xn nx x f x g n +-+=-, 当 0)12(2,1412323>-+≤<x n nx x n时;当 时nx 410≤≤,()04122122232323232323>⎪⎭⎫⎝⎛-≥-≥-+n n x n x n nx ,所以 1],1,0[),()(0≥∈≤≤n x x g x f n ,由习题6, g (x )在[0,1]上勒贝格可积,所以由控制收敛定理,0001101lim 2223==+⎰⎰∞→dx dx x n xn n .§4 黎曼积分与勒贝格积分本节介绍黎曼积分与勒贝格积分的关系,并给出黎曼可积函数的特征性质. 定理1 设f (x )是闭区间[a ,b ]上的有界函数,如果f (x )在[a ,b ]上黎曼可积,则f (x )在[a ,b ]上勒贝格可积,且⎰⎰=bab adx x f L dx x f R )()()()( .证明 设|,)(|sup ],[x f M b a x ∈= 则0≤M<+∞.作[a ,b ]的分划D n 如下:D n : b x x a x n k n n n=<<<=)()(1)(0 , 使1+n D 比n D 更细密,并且())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n.记 )(sup )(inf ],[)(],[)(11x f M x f m j j j j x x x n j x x x n j --∈∈==,作简单函数[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n j n n n n x x x m x x x m x L ,n k j ≤≤2,[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n jn n n n x x x M x x x M x U ,n k j ≤≤2,易知简单函数列{L n (x )}和{U n (x )}满足 )()(1x L x L n n +≤ , )()(1x U x U n n +≥ ,],[),()()(b a x x U x f x L n n ∈≤≤ .令 )(lim )(),(lim )(x U x U x L x L n n n n ∞→∞→==,则],[),()()(b a x x U x f x L ∈≤≤ .因为对每个n ,],[,|)(|,|)(|b a x M x U M x L n n ∈≤≤,所以由有界控制收敛定理, ⎰⎰∞→=],[],[)(lim )(b a b a n n dx x L dx x L ,⎰⎰∞→=],[],[)(lim )(b a b a n n dx x U dx x U .另外,由简单函数勒贝格积分定义知,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D s x x m dx x L ,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D S x x M dx x U ,其中s (D n , f )与S(D n , f )分别是f (x )关于分别D n f (x )在[a ,b ]上黎曼可积,所以),(lim ),(lim )()(f D S f D s dx x f R n n n n ba∞→∞→==⎰ ,从而 ⎰⎰⎰==],[],[)()()()(b a b a badx x U dx x L dx x f R ,注意到 ()⎰=-≥-],[,0)()(0)()(b a dx x L x U x L x U 及于是 U (x )-L (x )=0 a .e .于[a ,b ], 因此 f (x )=U (x )=L (x ) a .e .于[a ,b ].故f (x )在[a ,b ]上L 可积,并且⎰⎰⎰==],[],[)()()()(b a b a ba dx x U dx x L dx x f L ,于是 ⎰⎰=b a dx x f L dx x f abR )()()()(.以下我们给出黎曼可积函数的充分必要条件,先给出如下引理.引理 函数f (x )在],[0b a x ∈处连续的充分必要条件是对任意ε>0,存在包含x 0的开区间I ,使f (x )在I 上的振幅.ε<-=∈∈)(inf)(sup )(],[],[x f x f I w Ib a x Ib a x f证明 由连续函数的定义即得.定理2 设f (x )为[a ,b ]上的有界函数,则f (x )在[a ,b ]上黎曼可积的充分必要条件是它的不连续点的全体是零测集,即f (x )在[a ,b ]上几乎处处连续.证明 必要性 因为f (x )黎曼可积,所以同于定理1的证明,做[a ,b ]的分划列{D n }和简单函数列{L n (x )}与{U n (x )},得知.],[),()()(b a x x U x f x L ∈≤≤, 进而],[..),()()(b a e a x f x L x U 于==,其中 )(lim )(),(lim )(x L x L x U x U n n n n ∞→∞→== .记D 是分划{D n }的所有分点所成之集,令 )}()()()(],,[|{x U x f x L x f b a x x E <>∈=或 ,E DF = ,则mF =0,下证f (x )在[a ,b ]-F 上连续.事实上,设E x D x F b a x ∉∉-∈000,,],[且则. 若f (x )在x 0处不连续,则由引理知,存在00>ε,对任何包含x 0的开区间I ,有0)(ε≥I w f . 因为D x ∉0,所以对每个n ,存在)1(00n k k k ≤≤,使())()(1000,n k n k x x x -∈,于是()0)()(100),()()(00ε≥=--n k n k f n n x x w x L x U , 而 )(lim )(),(lim )(0000x L x L x U x U n n n n ∞→∞→==,所以0)()(000>≥-εx L x U ,这与E x ∉0矛盾,故f (x )在x 0处连续. 充分性设f (x )在[a ,b ]上几乎处处连续,且|f (x )|≤M ,],[b a x ∈. 作[a ,b ]上的一列越来越细密的分划{D n },D n :b x x x a n k n n n=<<<=)()(1)(0 , 满足:())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n同于定理1的证明,做简单函数列{U n (x )}和{L n (x )},使1],,[,)(,)(≥∈≤≤n b a x M x L M x U n n , 并且].,[),(lim )()(lim b a x x U x f x L n n n n ∈≤≤∞→∞→下证对于f (x )的任何连续点x ,有).()(lim )(lim x f x U x L n n n n ==∞→∞→事实上,设f (x )在x 处连续,则由引理,任给0>ε,存在开区间I =(α,β),使ε<∈)(,I w I x f 且. 因为0→n D ,所以存在N ≥1,当n ≥N 时,},min{x x D n --<βα,另外,存在k 0(1≤k 0≤k n ),使[]I x x x n k n k ⊂∈-)()(100,,因此[]()ε<≤=--)(,)()()()(100I w x x w x L x U f n k n k f n n , 由ε的任意性知,).()(lim )(lim x f x L x U n n n n ==∞→∞→因为f (x )在[a ,b ]上几乎处处连续,所以].,[..)()(lim )(lim b a e a x f x L x U n n n n 于==∞→∞→又 ⎰=],[),()(b a n n f D S dx x U ,⎰=],[),()(b a n n f D s dx x L ,于是由勒贝格有界控制收敛定理, ⎰⎰==∞→∞→bab a n n n n dx x f L dx x U f D S )()()(lim ),(lim ],[,⎰⎰==∞→∞→bab a n n n n dx x f L dx x L f D s )()()(lim),(lim ],[,因此 ()0),(),(lim =-∞→f D s f D S n n n ,故f (x )在[a ,b ]上黎曼可积.例1 设⎩⎨⎧=,]1,0[1,]1,0[0)(中有理数为中无理数为x x x D 则D (x )在[0,1]上黎曼不可积.证明 因为D (x )在[0,1]上处处不连续,所以由定理2,D (x )在[0,1]上黎曼不可积. 例2 黎曼函数⎪⎩⎪⎨⎧=,]1,0[0,1)(上其它数为为任约真分数x q px qx ξ则ξ(x )在[0,1]上黎曼可积.证明 因为ξ(x )不连续点的全体为(0,1)中的有理数集,而该集合为零测集,所以由定理2,ξ(x )在[0,1]上黎曼可积.§5 重积分与累次积分在黎曼积分中,重积分可化为累次积分. 例如设D =[a ,b ]×[c ,d ], f (x ,y )是D 上的连续函数,则⎰⎰⎰⎰⎰⎰==Ddx y x f abdy c d dy y x f c d dx a b dxdy y x f ),(),(),(本节我们在勒贝格积分中建立相应的定理——即富比尼(Fubini )定理,由此看到,在勒贝格积分中重积分化为累次积分,以及积分次序的交换等问题中,勒贝格积分要求的条件比在黎曼积分时要求的条件弱得多,这再次显示了勒贝格积分的优越性. 一、富比尼定理设p 、q 是正整数,n =p +q ,此时R n 可以看成R p 和R q 的直积,即R n =R p ×R q . R n上的函数f 可以用f (x ,y )表示,其中,,q p R y R x ∈∈相应的积分可写成⎰⨯qp R R dxdy y x f ),(,称为重积分. 另一方面,固定),(,y x f R x p ∈看成q R y ∈的函数,令⎰=q Rdy y x f x F ),()(,则称[]⎰⎰⎰⎰⎰∆=p q ppqRRR R R dy y x f dx dx dy y x f dx x F ),(),()(为累次积分. 富比尼定理给出了等式⎰⎰⎰⨯=p q qp RRR R dy y x f dx dxdy y x f ),(),(成立的条件. 定理1 (Tonelli )设f (x ,y )是R p ×R q 上的非负可测函数,则 (1)对几乎所有的q p R y y x f R x ∈∈作为),(,的函数是非负可测的; (2)⎰∈=q RP R x dy y x f x F 作为),()(的函数是非负可测的;(3).),(),(⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f证明 由于非负可测函数是非负单调增简单函数列的极限,我们只需证)(x f 是R p ×R q 中可测集E 的特征函数的情形即可.以下分五种情形加以证明.情形1 E=I 1×I 2,其中I 1和I 2分别是R p 和R q 中的区间; 当1I x ∉时,f (x ,y )=0;当,1时I x ∈⎩⎨⎧∉∈=,,1),(22I y I y y x f所以对一切q p R y y x f R x ∈∈作为),(,的函数是非负可测的,并且⎰⎩⎨⎧∉∈==q R I x I x I dy y x f x F ,0,||),()(112于是 ⎰⎰⨯==p RI I I dx I dx x F 1||||||)(212 . 而⎰⨯⨯==qp R R I I mE dxdy y x f ||||),(21 ,所以⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f ),(),( .情形2 E 是开集;由开集结构知, ∞==1)(k k I E ,其中I (k) (k ≥1)是R p ×R q 中互不相交的半开半闭区间,记)(2)(1)(k k k I I I ⨯=,其中)(2)(1k k I I 和分别是R p 和R q 中的区间,令⎩⎨⎧⨯∉⨯∈=,),(0,),(1),()(2)(1)(2)(1k k k k k I I y x I I y x y x f 则 ∑∞==1),(),(k k y x f y x f .由情形1,每个f k (x ,y )满足(1)~(3),于是对一切qp R y y x f R x ∈∈作为),(,的函数是非负可测的,从而由逐项积分定理,∑∑⎰⎰⎰∞=∞====11),(),(),()(k k Rk kRRq q qdy y x f dy y x fdy y x f x F在R p 上非负可测,仍由逐项积分定理,∑⎰⎰∞=⨯⨯=1),(),(k kR R R R dxdy y x fdxdy y x f qp qp=[]∑∑⎰⎰⎰∞=∞=⨯=11),(),(k k R R k k R R pqqp dx dy y x f dxdy y x f=⎰⎰⎰∑∑⎰⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∞=∞=p p q q R RR k k k R k dx dy y x f dx dy y x f 11),(),( =[]⎰⎰⎰⎰=pp q qR RRR dy y x f dx dx dy y x f ),(),( .情形3 E 是有界闭集; 令 },1)),,((0),{(1<<⨯∈=E y x d R R y x G q p},1)),,((),{(2<⨯∈=E y x d R R y x G qp则G 1和G 2是R p ×R q 中的有界开集,且E =G 2\G 1,21G G ⊂,及,0),(),(),(12≥-=y x f y x f y x f其中f 1, f 2分别是G 1与G 2的特征函数,由情形2,f 1, f 2均满足(1)~(3),并且对一切),(,y x f R x p ∈关于p R y ∈是非负可积的,从而dy y x f dy y x f dy y x f x F q q q RRR),(),(),()(12⎰⎰⎰-==在R p 上非负可积,并且[]dy y x f dx dy y x f y x f dx dx x F q p p q pRRRRR ),(),(),()(12⎰⎰⎰⎰⎰=-= .另外,由f i (x ,y )在R p ×R q 上非负可积及情形2知(i=1,2),⎰⎰⎰⨯⨯⨯-=qp qp qp R R R R R R dxdy y x f dxdy y x f dxdy y x f ),(),(),(12=⎰⎰⎰⎰-p q p q RRRRdy y x f dx dy y x f dx ),(),(12=[]⎰⎰⎰⎰=-pq qRRRR dy y x f dx dy y x f y x f dx ),(),(),(112.情形4 E 是零测集;因为E 是零测集,所以存在递减开集列{G k },使)1(≥⊂k G E k 且)(0∞→→k mG k ,令k k G H ∞==1,则.0,=⊂mH H E 且令⎩⎨⎧∉∈=kkk G y x G y x y x f ),(0),(1),(, 则由控制收敛定理和情形2, 0=⎰⎰⨯⨯∞→=qP qp R R RR k k H dxdy y x f dxdy y x ),(lim ),(χ =[]⎰⎰⎰⎰∞→∞→=p q p qRRR R k k k k dx dy y x f dy y x f dx ),(lim ),(lim=[]⎰⎰⎰⎰=∞→pp q q R RRH R k k dy y x dx dx dy y x f ),(),(lim χ .因此,对几乎所有的p R x ∈,有⎰=q RH dy y x 0),(χ,从而对几乎所有p R x ∈,q H R y y x ∈关于),(χ几乎处处为零,但),(),(),(0y x y x y x f H E χχ≤=≤,因而对几乎所有的p R x ∈,几乎处处为零关于q R y y x f ∈),(,因此对几乎所有的p R x ∈,⎰==0),()(dy y x f x F q R ,于是⎰⎰⎰==⨯0),(),(dy y x f dx dxdy y x f q p qp R R R R .情形5 E 是一般可测集.由可测集结构知,存在有界单增的闭集列Z F k 和零测集}{,使φ=⎪⎪⎭⎫ ⎝⎛=∞= Z F Z F E k k k ,1(k ≧1),记()则的特征函数和分别为和,1≥k F Z f f k k o),(),(lim ),(),(y x f y x f y x y x f o k k E +==∞→χ.由情形3和4,)1(,≥k f f o k 满足定理(1)~(3),故由单调收敛定理和可积函数性质知),(y x f 也满足(1)~(3).至此我们证明了q p R R ⨯中任何可测集E 上的特征函数)3(~)1()(满足定理x f ,从而易知任何非负简单函数和非负可测函数都满足定理(1)~(3). 定理2 (Fubini ),设),(y x f 在q p R R ⨯上可积,则(1)对几乎所有的q R x ∈,),(y x f 作为q R y ∈ 的函数在q R 上可积; (2)⎰=q Rdy y x f x F 在),()(q R x ∈上可积;(3)⎰⎰⎰⨯=qp qpR R R R dy y x f dx dxdy y x f ),(),(.证明 因为),(),(),(y x f y x f y x f -+-=,而q P R R f f ⨯-+都是,上的非负可积函数,所以由定理1即得结论.推论 设),(y x f 在q p R R ⨯上非负可测(L 可积),则dx y x f dy dxdy y x f dy y x f dx pqqp qpR R R R R R ),(),(),(⎰⎰⎰⎰⎰==⨯ .证明 在定理1和定理2的证明中交换y x 与的位置即得结论. 二、富比尼定理的应用以下我们介绍富比尼定理在函数的卷积和分布函数方面的应用.为此先给出如下引理:引理 设上的可测函数是则上的可测函数是n n n n R R R y x f R x f 2)(,)(=⨯-. 证明 因为函数上可测在n R x f )(,所以对任何})({,1αα>∈=∈x f R x A R n 是n R y x y x g -=),(,则})(),{(a y x f R R y x n n >-⨯∈)(}),{(1A g A y x R R y x n n -=∈-⨯∈=. 为证引理,只需证明 中可测集是n R A g 21)(-. 分三种情形证明:(1)若A 为中n R Borel 集,因为n n R R g →2:是连续映射,则)(1A g -为n R 2中Borel 集,从而)(1A g -是可测集. (2)若A 是中n R 零测集,即mA=0,则存在δG 型集G ),(,0,1G g B mA mG A -===⊃令且则B 的特征函数B χn R 2是上的非负可测函数,由推论及有,0}){(==+mG y G m.0}){(),(),(),(}{2=+=====⎰⎰⎰⎰⎰⎰⎰⎰+dy y G m dxdy dx y x dy dyy x dx dxdy y x mB nnnn nnn R y G R B R R B R R B R χχχ另外,由A G ⊃知,从而所以,0))((,)()(111==⊂---A g m B G g A g )(1A g -是n R 2中可测集.(3)若A 是n R 中任一可测集,则存在,0)\(,=⊂F A m A F F 使型集σ因为知所以由集型集是)1(,Borel F σ,)2(,)(1知又由是可测集F g -)\(1F A g -是可测集,从而)\()()(111F A g F g A g ---= 是可测集.定义 设n R x g x f 是)(),(上的可测函数,如果对几乎所有的n R x ∈,积分dy y g y x f nR )()(-⎰存在,则称dy y g y x f x g f nR )()())(*(-=⎰为)()(y g x f 与的卷积.定理3 设)(x f ,)(x g 在n R 上可积,则对几乎所有的n R x ∈,))(*(x g f 存在,并且))()()(()(*dx x g dx x f dx x g f nnnR R R ⎰⎰⎰≤.证明 先设0)(≥x f ,0)(≥y g ,由引理,)()(y g y x f -在n n R R ⨯上是非负可测的,由推论,).)()()(())()((])()([))()(())(*(dy y g dx x f dydx y x f y g dydx y g y x f dxdy y g y x f dx x g f nnnnnn nnnR R R R R R R R R ⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=-=-=一般情形由下式即得:dx x g Rdx x f Rdx x g f Rdx x g f Rnnnn)()())(*())(*(⎰⎰⎰⎰=≤.定理4 设n R E ⊂是可测集,)(x f 是E 上几乎处处有限的可测函数,对每个0>λ,令 }))(({)(λλ>∈=x f E x m F ,称的分布函数为)()(x f F λ,则当∞<≤p 1时,λλλd F p dx x f E p p)(0)(1-⎰⎰∞=.证明 令⎩⎨⎧≤>=,)(0,)(1),(λλλx f x f x g固定的函数是可测集合作为时x x g ),(,0λλ>})({λ>∈x f E x 的特征函数,所以由定理1,⎰⎰⎰-=λλd p x f dx dx x f p E pE10)()(().)(.),(101010λλλλλλλλλd F p dx x g d p d x g p dx p E p p E -∞-∞-∞⎰⎰⎰⎰⎰===习 题1、证明§1定理2中(1)、(3)、(4).2、证明§2定理1中(2)、(4)、(6).3、设则上可测在,)(E x f 对任何0>η,有,)(])([dx x f x f x mE E ⎰≤≥ηη4、设上在E x f )(非负可测,且⎰=0)(dx x f E,则E e a x f 于,,0)(=5、设令上可测在,0)(E x f ≥,)(,)(0)()]([n x f n x f x f x f n >≤⎩⎨⎧= 若则于,..)(E e a x f +∞<[]⎰⎰=∞→dx x f dx x f E n En )()(lim .6、设(]⎪⎩⎪⎨⎧=∈=⎪⎩⎪⎨⎧=,00,1,02)(,]1,0[,]1,0[1)(4x x xx g x x x xx f 中有理数为中无理数为证明并求可积上在,]1,0[)(),(L x g x f ⎰⎰dx x g dx x f )()(]1,0[]1,0[和.7、 设中任一点至少属于如果的可测子集是]01[,]1,0[,,,21n E E E 这n 个集合中的q个,证明必有一个集合,它的测度大于或等于nq. 8、设是上可积的充分必要条件在证明上非负可测在E x f E x f mE )(,)(,+∞<级数])([1n x f x mE n ≥∑∞=)收敛, +∞=mE 时,结论是否成立?9、设()x f 在可测集E 上L 可积,1E 是E 的可测子集,则()x f 在1E 上L 可积. 10、设+∞<mE ,()x f 在E 上有界可测,则()x f 在E 上L 可积,从而[ a ,b ]上的连续函数是L 可积的.11、设()x f ,()x g 是E 上的可积函数,则)()(22x g x f +,也在E 上可积.12、设]1,0[0为P 中康托集,⎪⎩⎪⎨⎧∈∈=阶邻接区间n x P x n x f 0100)( ,证明 3)(]1,0[=⎰dx x f .13、设()x f 在E 上L 可积,mE mE mE n E E n n n =+∞<≥⊂→∞lim ,),1(且,证明dx x f dx x f E E n n )()(lim ⎰⎰=→∞.14、设.0lim ],)([,)(,=≥=+∞<∞→n n n nmE n x f x E E L E x f mE 证明记可积上在15、设mE ≠0,()x f 在E 上L 可积,如果对于任何有界可测函数)(x ϕ,都有0)()(=⎰dx x x f Eϕ,则()x f =0,a.e.于E16、设+∞<mE ,0,,)}({⇒n n f E E x f 上证明在函数列上几乎处处有限的可测为的充要条件为 0)(1)(lim =+⎰∞→dx x f x f n n En .17、设{})(x f n 为E 上非负可测函数列,且)1()()(1≥≥+n x f x f n n ,若)()(lim x f x f n n =∞→,且存在0k ,使⎰+∞<Ek dx x f )(0,则dx x f dx x f En En )()(lim ⎰⎰=∞→ .18、设()x f 在[a ,b ]上L 可积,则对任意ε>0,存在[a ,b ]上的连续函数()x g ,使ε<-⎰dx x g x f b a )()(],[.19、若()x f 是),(+∞-∞上的L 可积函数,则0)()(lim ],[0=-+⎰→dx x f h x f b a h .。
积分的勒贝格积分
积分的勒贝格积分积分是高等数学中一项重要的内容,被广泛用于各个领域的计算和研究中。
其中,勒贝格积分是一种被广泛采用的积分方法,其应用范围涵盖了大部分实数函数和复杂函数。
本文将结合实例,详细探讨勒贝格积分的定义、计算方法、性质及其与其他积分方法的对比等方面。
一、勒贝格积分的定义勒贝格积分是由法国数学家亨利·勒贝格发明的一种积分方法,其理论基础是将积分范围进行分割,然后计算每个小范围内的积分,最终将这些小范围内的积分加起来,得到整个积分的结果。
具体来说,勒贝格积分将被积函数划分为正函数和负函数的和,分别求出其在积分范围内的上、下积分和,然后将两者相加或相减,得到最终积分的结果。
其中,上积分指的是在积分区间范围内,被积函数处于一个上界之下的部分的积分值,而下积分则是指处于下界之上的部分的积分值。
这种分段计算的方法,不仅适用于实数函数,也适用于复杂函数,而且具有很高的计算精度和广泛的应用价值。
二、勒贝格积分的计算方法勒贝格积分的计算方法相对来说比较复杂,需要根据具体的函数形式,采用相应的积分公式进行计算。
下面将通过两个例子讲解具体的计算过程,以帮助读者更好地理解。
1、勒贝格积分的计算:计算f(x)=x在[0,1]上的勒贝格积分。
解:首先将函数f(x)划分为正函数和负函数的和,其结果为f(x)= max{0,x}-min{0,x}。
然后,分别计算max{0,x}和min{0,x}在区间[0,1]上的上、下积分。
max{0,x}在该区间上的上积分和下积分分别为:$∫_{0}^{1}max\{0,x\}dx=1/2$$∫_{0}^{1}max\{0,x\}dx=0$min{0,x}在该区间上的上积分和下积分分别为:$∫_{0}^{1}min\{0,x\}dx=0$$∫_{0}^{1}min\{0,x\}dx=-1/2$因此,f(x)在该区间上的上积分和下积分分别为:$∫_{0}^{1}f(x)dx =∫_{0}^{1}(max\{0,x\}-min\{0,x\})dx$$=∫_{0}^{1}max\{0,x\}dx-∫_{0}^{1}min\{0,x\}dx=1$2、勒贝格积分的计算:计算f(x)=sin(x)在[0,π]上的勒贝格积分。
Lesbesgue积分的定义及性质
则 lim f n ( x)dx lim f n ( x)dx
n E E n
f(x) fn(x) cf(x)
说明:小于等于显然成立,
因为fn(x)总在f(x)的下方,
只要证明大于等于,但一般而 言fn(x)不会跑到f(x)上方,所以 我们有必要先把f(x)下移一点。
Levi逐项积分定理的证明
1 ], n
1 , x An n ( x) n 0, x E \ An
0
E
1 f ( x)dx n ( x)dx mAn 0 E n
故mAn 0, 而E[ f 0] An
n 1
故m[ f 0] 0,因而f ( x) 0a.e.于E
显然x E1时,0 ( x) g ( x), 故
E1
E1
( x)dx g ( x)dx
E1
因而 f ( x)dx g ( x)dx,由此得 f ( x)dx g ( x)dx
E1 E E
1.Levi逐项积分定理 若fn(x)为E上非负可测函数列,
f1 ( x) f 2 ( x) f 3 ( x) f n ( x) , 且 lim f n ( x) f ( x)
n
所以存在i0,使mEi0 k n。
⑵非负可测函数的积分
设f(x)为E上非负可测函数,定义
( L) f ( x)dx sup{( L) ( x)dx : ( x)为E上的简单函数
E E
且x E时, 0 ( x) f ( x)}
为f(x)在E上的Lebesgue积分
,a, b R且a, b 0, 则
小波分析之Lebesgue积分
Lebesgue积分概述
设 f 为定义在实数子集E上的有界函数, f ( x) c (c为正的常数). 任取分点组
D : c y0 y1 yn c.
作和式
S ( f , D) i m( Ei ).
n
其中 Ei x yi 1 f ( x) yi , i [ yi 1, yi ]. m( Ei )为Ei的长度度量.记 max{ yi yi 1 1 i n }. 若lim S ( f , D) A, 则称f 在E上LebesgueL-可积. 0
定积分定义
回顾定积分或称为黎曼积分的定义:
S f ( x)dx lim f (i ) ( xi xi 1 ) lim f (i ) ([ xi , xi 1 ]).
b a 0 i 0 0 i 0 n n
显然有 lim mi ([ xi , xi 1 ]) f ( x)dx lim M i ([ xi , xi 1 ]).
n n
U ( x0 , ) x d ( x, x0 ) 为 x0的 邻域. (2) 若x0 A, 且存在x0的某 邻域U(x0 , ), . 使得 U ( x0 , ) A, 则称 x0为A的一个内点
(3) 由A的全体内点所成的集称为A的内部, 记 为 A0 .
可测函数的定义
设(X ,F )为一可测空间, E 为 X 上的一个可 测集. f : E → R∗为ห้องสมุดไป่ตู้义在E 上的函数. 若对任意实数 a b, 总有
{x E a f ( x) b }F,
则称f为E上的F-可测函数. 特别地,X 上的可测函数也称为可测空间 (X ,F )上的可测函数. (X ,F )上的可测函数记为M (X , F ).
勒贝格积分_高等教育-微积分
第5章 勒贝格积分到现在我们为了建立勒贝格积分已经做了必要的准备工作,我们有了可测集,可测函数的概念和理论,定义Lebesgue 积分的条件已经成熟. 本章我们讨论Lebesgue 积分的基本内容.§5.1 测度有限集上有界可测函数的积分1.有界可测函数积分的定义定义5.1.1 设n E R ⊂,mE <∞,f 是定义在E 上的有界可测函数,即存在,,R αβ∈,使()(,)f E αβ⊂. 若01:n D l l l αβ=<<<= 是[,]αβ的任一分点组,则记11()max()k k k nD l l δ-≤≤=-,1[]k k kE E l f l -=<≤.对任意的1[,]k k k l l η-∈,作和式1()nk k k S D mE η==∑,称()S D 为f 关于分点组D 的一个和数.如果存在常数A ,使得对任意的0ε>,总有0δ>,当任意分点组D 满足()D δδ<时,有|()|S D A ε-<.换句话说,()0lim ()D S D A δ→=时,则称f 在E 是Lebesgue 可积的,并称A 为f 在E 上的Lebesgue 积分,记作()EA f x dm =⎰.有时为了简便也记()EA f x dx =⎰,若[,]E a b =,则记[,]()a b A f x dx =⎰. 当()f x 是Riemann 可积函数时,其Riemann 积分仍沿用数学分析中的记法,记作()b af x dx ⎰.对[,]αβ的任意分点组01:n D l l l αβ=<<<= ,有两个特殊的和数尤其重要:11()[]nk k k k S D l mE l f l -==<≤∑,111()[]nk k k k S D l mE l f l --==<≤∑.称()S D 和()S D 分别为f 关于分点组D 的大和数与小和数. 显然对于f 的任一和数()S D ,有()()()S D S D S D ≤≤.因此,极限()0lim ()D S D δ→存在当且仅当()0lim ()D S D δ→和()0lim ()D S D δ→都存在且相等.定理 5.1.1 设n E R ⊂,mE <∞,f 是E 上的有界可测函数,则f 在E 上Lebesgue 可积.证明 因为()f x 是有界可测函数,所以有,R αβ∈,使()(,)f E αβ⊂.设sup{()}DS S D =,inf{()}DS S D =. 即S 是对(,)αβ的所有分点组D 的小和的上确界,S 是对(,)αβ的所有分点组D 的大和的下确界.往证S S =.首先证明:S S ≤,设01:n D l l l <<< ,01:m D l l l ''''<<< . 是对(,)αβ任意的两个分点组,则()S D S ≤,()S D S ≥.将D 和D '合并起来构成一个新的分点组,记为D '',D ''可以看成分点组D 中又加进了一些分点,称为D 的一个加细,假设对任意k ,1k l -与k l 之间加入了某些分点1j l -',1,,,k j j j j l l l ++''' ,(把1k l -和k l 算在内)即 111k k j j j j j k l l l l l l --++''''=<<<<= ,于是 111()[]nk k k k S D lmE l f l --==<≤∑111[]kj j n k i i k i j lmE l f l +--==''=<≤∑∑111[]kj j ni i i k i jl mE l f l +--=='''≤<≤∑∑()()S DS D ''''=≤ 11[]kj j n ii i k i j l mE l f l +-=='''=<≤∑∑11[]kj j nki i k i j l mE l f l +-==''≤<≤∑∑11[]nk k k k l mE lf l -==<≤∑()S D =. 这样,有()()()()S D S D S D S D ''''≤≤≤,同样的方法,有()()()()S D S D S D S D ''''''≤≤≤.这说明,对于任一分点组D ,加细后的分点组D '',其大和数不增,小和数不减. 且由()()()S D S D S D '''≤≤, ()()()S D S D S D '''≤≤.说明对于任意一个分点组的小和数不超过其它任意一个分点组的大和数. 此即sup{()}inf{()}DDS D S D ≤,于是S S ≤.再证明S S =.设D 为任意的分点组,则由于()()S D S S S D ≤≤≤,有0()()S S S D S D ≤-≤-111()[]nkk k k k ll mE l f l --==-<≤∑()D mE δ≤.这样对任意的0ε>. 取分点组*D ,使*()D mEεδ<,则0S S ε≤-<. 由0ε>是任意的,有S S =. 令S S S ==,往证()0lim ()D S D S δ→=. 注意到()()S D S S D ≤≤,()()()S D S D S D ≤≤,所以()()()()S S D S D S D D mE δ-≤-≤, ()()()()S D S S D S D D mE δ-≤-≤.因此|()|()()()S D S S D S D D mE δ-≤-≤.所以()0lim ()D S D S δ→=.即f 在E 上Lebesgue 可积.注:本定理还证明了()f x 在E 上Lebesgue 可积,则()sup{()}inf{()}EDDf x dx S D S D ==⎰.例1 考察[0,1]上的Dirichlet 函数()D x .1,[0,1]()0,[0,1]x D x x ∈⎧=⎨∈⎩则()D x 在[0,1]上Lebesgue 可积,且[0,1]()0D x dx =⎰.证明 ([0,1]){0,1}[D =⊂-,对于(1,2)-的任一组分点:D 0112n l l l -=<<<= .当11()max{}0k k k nD l l δ-≤≤=-→时,0和1不能在同一个小区间上.设10(,]i i l l -∈,11(,]j j l l -∈,则1i j n ≤<≤. 取1[,]i i i l l η-∈,则是有理数;是无理数.1|||0|||()i i i i l l D ηηδ-=-≤-≤,因此当()0D δ→时,0i η→. 而1[()]j j E l D x l Q -<≤⊂(有理数集),所以1[()]0j j mE l D x l -<≤=.当,k i j ≠时,由于1[()]k k E l D x l φ-<≤=,则1[()]0k k mE l D x l -<≤=.因此11()[()]nk k k k S D mE l D x l η-==<≤∑11[()][()]i i i j j j mE l D x l mE l D x l ηη--=<≤+<≤ 1[()]i i i m E l D x l η-=<≤ 于是1()0()0lim ()lim [()]i i i D D S D mE l D x l δδη-→→=<≤0=,即[0,1]()0D x dx =⎰.我们知道()D x 在[0,1]不是Riemann 可积的,所以Lebesgue 可积函数类比Riemann 可积函数类要广.2.有界可测函数积分的性质定理5.1.2 设nE R ⊂,mE <∞,()f x 、()g x 都是E 上的有界可测函数,则 (i )对任意的a R ∈,()()EEaf x dx a f x dx =⎰⎰;(ii )若1,,m E E 是E 的可测子集,()i j E E i j φ=≠ ,1mi i E E ==,则1()()()mEE E f x dx f x dx f x dx =++⎰⎰⎰;(iii )(()())()()EEEf xg x dx f x dx g x dx +=+⎰⎰⎰;(iv )当()()..f x g x a e ≤于E 时,()()EEf x dxg x dx ≤⎰⎰;证明 证(ii ). 只须就2m =的情形证明.设()(,)f E αβ⊂,对(,)αβ的任一分点组01:n D l l l αβ=<<<= . 令111[]i i i E E l f l -=<≤,221[]i i i E E l f l -=<≤,1,2,,i n = . 那么121[]i i i i i E E E E l f l -==<≤ ,且12i i E E φ= ,所以12i i i mE mE mE =+,1,2,,i n = .对于分点组D ,用12(),(),()E E E S D S D S D 分别表示f 在12,,E E E 上对应D 的大和数.1()nE i i i S D l mE ==∑1211nniiiii i l mE l mE===+∑∑12()()E E S D S D =+ 该等式对任意的分点组D 成立.对任意的0ε>,存在(,)αβ的分点组1D ,使得111()inf{()}2E E DS D S D ε<+,也存在(,)αβ的分点组2D ,使得222()inf{()}2E E DS D S D ε<+.设*12D D D = ,则*D 即是1D 也是2D 的加细,因此12***()inf{()}()()()E E E E EDf x dx S D S D S D S D =≤=+⎰121212()()()()E E E E S D S D f x dx f x dx ε≤+<++⎰⎰由0ε>是任意的,所以12()()()EE E f x dx f x dx f x dx ≤+⎰⎰⎰.同样考虑小和数和()sup{()}EDf x S D =⎰可证相反的不等式,所以12()()()EE E f x dx f x dx f x dx =+⎰⎰⎰.证(iii ). 设()(,)f E αβ⊂,()(,)g E αβ''⊂,对(,)αβ的任一分点组01:n D l l l αβ=<<<= ,对(,)αβ''的任一分点组01:m D l l l αβ''''''=<<<= . 令1[]i i i E E l f l -=<≤,1[]j j j E E l g l -'''=<≤ 1[]ij i j j E E l g l -''=<≤11[,]i i j j E l f l l g l --''=<≤<≤1[]j i i E l f l -'=<≤,(1,2,,;1,2,,.)i n j m == 由此可知,E 可分解为有限个互不相交的可测集的并.1111n m n mij i j i j i j E E E E ===='=== .于是()()iji j ij E f g dx l l mE '+≤+⎰i ij j ij l mE l mE '=+.11()()ijn mEE i j f g dx f g dx ==+=+∑∑⎰⎰11nmiijji j l mE l mE ==''≤+∑∑()()f g S D S D'=+. 该不等式对(,)αβ的任意分点组D 和(,)αβ''的任意分点组D '都成立. 因为inf{()}f EDfdx S D =⎰,inf{()}g ED gdx S D ''=⎰.所以对任意的0ε>,有(,)αβ的分点组1D 和(,)αβ''的分点组1D ',使 1()()2f E S D f x dx ε<+⎰, 1()()2g ES D g x dx ε'<+⎰.因此可得11()()()f g Ef g dx S D S D '+≤+⎰()()EEf x dxg x dx ε<++⎰⎰由0ε>是任意的,有()()()EEEf g dx f x dx g x dx +≤+⎰⎰⎰.同样考虑小和数及所有小和数的上确界可得相反的不等式. 因而()()()EEEf g dx f x dx g x dx +=+⎰⎰⎰.证(i ). 引理1 若()f x c ≡(常数),x E ∈. 则()Ef x dx cmE =⎰.因为存在,R αβ∈,使c αβ<<. 对(,)αβ的任一分点组01n l l l αβ=<<<= . 若1(,]i i c l l -∈,1i n ≤≤,则1[]i i mE l f l -<≤mE =,任取1(,]i i i l l η-∈,则1||()i i i c l l D ηδ--≤-≤.因此当()0D δ→时,i c η→.而当k i ≠时,1[]k k E l f l φ-<≤=,因而1[]0k k mE l f l -<≤=,于是11()0()01lim[]lim []nk k k i i i D D k mE lf l mE l f l δδηη--→→=<≤=<≤∑c mE =⋅.以下证明()()EEaf x dx a f x dx =⎰⎰.若0a =,则()0af x ≡,x E ∈. 由引理1,()000()()EEEaf x dx mE f x dx a f x dx =⋅===⎰⎰⎰.若0a >,设()af x αβ<<,对(,)αβ的任一分点组01:n D l l l αβ=<<<= .由于()f x aaαβ<<,分点组D 相当于(,)a aαβ的一个分点组011:n l l l D a a a a aαβ=<<<= .任取1[,]i i i l l η-∈,则1,ii i l l a a a η-⎡⎤∈⎢⎥⎣⎦. 1111[]nni i i i i i i i l l mE l af l mE f aa ηη--==⎡⎤<≤=<≤⎢⎥⎣⎦∑∑,而1111()0()011lim lim nnii i i i i D D i i l l ll a mE f a mE f a a a aa a δδηη--→→==⎡⎤⎡⎤<≤=<≤⎢⎥⎢⎥⎣⎦⎣⎦∑∑()E a f x dx =⎰,并且1()0()0D D δδ→⇔→,因此1()01()lim[]ni i i ED i af x dx mE laf l δη-→==<≤∑⎰11()01l i m ()nii iD E i l l amE f a f x dx a a a δη-→=⎡⎤=<≤=⎢⎥⎣⎦∑⎰.若0a <,则0a ->. 则0[()]Eaf a f dx =+-⎰()EEafdx a fdx =+-⎰⎰()EEafdx a fdx =+-⎰⎰于是()EEafdx a fdx =--⎰⎰Ea fdx =⎰.综上,对任意的a R ∈,有()()EEaf x dx a f x dx =⎰⎰.证(iv ). 引理2 定义在零测度集上的任何有界函数是可积的,而且积分为零. 事实上,设()f x 定义在E 上,0mE =,设()f x αβ<<,x E ∈. 对(,)αβ的任一分点组01:n D l l l αβ=<<<= ,则由1[]i i E l f l E -<≤⊂,所以1[]0,1,2,,i i mE l f l i n -<≤== .于是,任取1[,]i i i l l η-∈,11[]0ni i i i mE lf l η-=<≤=∑,因此1()01()lim[]0ni i i ED i f x dx mE lf l δη-→==<≤=∑⎰.为证(iv ),令()()()F x g x f x =-,则()0..F x a e ≥于E . 由引理2,不妨设()0,F x x E ≥∈.设()(,)F E αβ⊂. 对(,)αβ的任一分点组01:n D l l l αβ=<<<= . 对每一个1i n ≤≤,考察1[]i i i mE l F l η-<≤,其中1[,]i i i l l η-∈,若0i η<,则当()0D δ→时,0i l <,此时1[]i i E l F l φ-<≤=,因而1[]0i i i mE l F l η-<≤=.若0i η≥,则由1[]0i i mE l F l -<≤≥知1[]0i i i mE l F l η-⋅<≤≥,因此1()01()lim[]0ni i i ED i F x dx mE lF l δη-→==<≥≥∑⎰,于是()(()())EEF x dx g x f x dx =-⎰⎰ [()(())]Eg x f x dx =+-⎰ ()()EEg x dx f x dx =+-⎰⎰()()0EEg x dx f x dx =-≥⎰⎰. 因而()()EEg x dx f x dx ≥⎰⎰.推论 设mE <∞,且()f x 是E 上的有界可测函数,则||||EEfdx f dx ≤⎰⎰.证明 因为||||f f f -≤≤,所以由定理5.1.2的(iv )和(i )有||||EEEf dx fdx f dx -≤≤⎰⎰⎰,即||||EEfdx f dx ≤⎰⎰.定理 5.1.3 设mE <∞,()f x 是E 上的有界可测函数,若()0..f x a e ≥于E ,且()0Ef x dx =⎰,则()0..f x a e =于E .证明 因为()0..f x a e ≥E ,则[0]0mE f <=,且[0]()0E f f x dx <=⎰,若能证明[0]0mE f >=,则定理得证.[0][0][0]E E f E f E f ==<> .令1,1,2,n E E f n n ⎡⎤=≥=⎢⎥⎣⎦ ,则1[0]n n E f E ∞=>= ,对任意取定的n N +∈,有 0()Ef x dx =⎰[0][0]()()E f E f f x dx f x dx <≥=+⎰⎰[0]()E f f x dx ≥=⎰[0]()()nnE E f E f x f x dx ≥-=+⎰⎰1()nn E f x mE n≥≥⎰所以0,1,2,n mE n == ,因此11[0]0n n n n mE f m E mE ∞∞==⎛⎫>=≤= ⎪⎝⎭∑ ,于是()0..f x a e =于E .§5.2 一般可测集上一般可测函数的积分对于广义Riemann 积分,有积分区间无限的广义积分和无界函数的广义积分,对于Lebesgue 积分也有无限测度集上的积分和无界可测函数的积分的情形.本节的任务就是讨论这种一般情形的积分.1.有限可测集上无界可测函数的积分(i )非负函数情形 设nE R⊂,mE <∞,()f x 是E 上的非负可测函数.N R +∈,称[]()m i n {(N f x f x N =为()f x 的N -截断函数.有了N -截断函数的概念,我们可以构造有界可测函数列{()}n f x .其中()[]()n n f x f x =.1,2,n = .显然,这样构造的函数列{}n f 满足:12()()()n f x f x f x ≤≤≤≤ ,x E ∈.并且lim ()()n f x f x =.因而12()()()n EEEf x dx f x dx f x dx ≤≤≤≤⎰⎰⎰ ,所以极限lim()n n Ef x dx →∞⎰存在(可能是+∞).定义 5.2.1 设n E R ⊂,mE <∞,()f x 是E 上的非负可测函数.()[]()n n f x f x =,,1,2,x E n ∈= .称lim ()n n Ef x dx →∞⎰为()f x 在E 上的Lebesgue 积分.记为:()lim ()n En Ef x dx f x dx →∞=⎰⎰.若()n Ef x dx ⎰是有限数,称()f x 在E 上可积,若()n Ef x dx ≤+∞⎰,称()f x 在E 上有积分值.(ii )一般函数情形定义5.2.2 设()f x 在n E R ⊂上可测,如果()f x +和()f x -中至少有一个在E 上可积,那么称()()EEf x dx f x dx +--⎰⎰为()f x 在E 上的Lebesgue 积分.记为:()()()EEEf x dx f x dx f x dx +-=-⎰⎰⎰.当()f x +和()f x -都在E 上可积时,称f 在E 上可积.定义中要求()f x +和()f x -中至少有一个在E 上可积是因为如果()f x +和()f x -在E 上都不可积时,()Ef x dx +=+∞⎰且()Ef x dx -=+∞⎰.此时()Ef x dx +-⎰()()()Ef x dx -=+∞-+∞⎰,没有意义,因而没有积分值.若()f x +和()f x -中至少有一个在E 上可积时,()Ef x dx +-⎰()Ef x dx -⎰有意义,但可能为+∞或-∞.无论()Ef x dx ⎰是有限数,+∞或-∞,我们都说()f x 在E 上有积分值,当|()|Ef x dx <+∞⎰时,称f 在E 上可积.2.非有限测度可测集上的积分(i )()f x 是非负可测函数设nE R ⊂,mE =∞.设12{(,,,):||,1,2,,}m n i x x x x m i n K =≤= .令m m E E =K ,则m mE <∞,1,2,m = ,且12m E E E ⊂⊂⊂⊂ 是单调增加集列,有1lim m mm m E EE ∞→∞=== .由前面讨论,()f x 在每个m E 上有积分值()mE f x dx ⎰.记()mm E J f x dx =⎰.则{}m J 是单调增加数列,极限lim m m J →∞存在(可能是+∞).定义5.2.3 设n E R ⊂,mE =∞,()f x 是E 上的非负可测函数.称lim lim ()mm m m E J f x dx →∞→∞=⎰(m E 如上说明)为()f x 在E 上的Lebesgue 积分,记为()lim ()mEm E f x dx f x dx →∞=⎰⎰.若()Ef x dx ⎰是有限数,称()f x 在E 上可积,若()Ef x dx ≤+∞⎰,称()f x 在E 上有积分值.(ii )()f x 是一般可测函数定义5.2.4 设nE R ⊂,mE =∞,()f x 是E 上的可测函数.如果()Ef x dx +⎰和()Ef x dx -⎰至少有一个是有限数,则称()Ef x dx +⎰()Ef x dx --⎰为()f x 在E 上的Lebesgue 积分,记为()()()EEEf x dx f x dx f x dx +-=-⎰⎰⎰.若()Ef x dx +⎰和()Ef x dx -⎰都是有限数,称()f x 在E 上可积.至此,非有限测度集和无界可测函数积分的概念已经建立,以下继续讨论积分的性质. 定理5.2.1 (1)设()f x 是E 上的函数,0mE =,则()0Ef x dx =⎰.(2)设()f x 在E 上可积,则[||]0mE f =∞=,即()f x 是E 上几乎处处有限的函数. 证明 (1)由0mE =,()f x 在E 上可测,所以[]n f +和[]n f -都是E 上的有界可测函数(1,2,)n = ,从而[]()0n Ef x dx +=⎰,[]()0n Ef x dx -=⎰,(1,2,)n = .所以()Ef x dx +=⎰lim []()0n n Ef x dx +→∞=⎰,()Ef x dx -=⎰lim []()0n n Ef x dx -→∞=⎰.于是()Ef x dx =⎰()Ef x dx +-⎰()0Ef x dx -=⎰.(2)令1[]E E f ==+∞,2[]E E f ==-∞.往证120mE mE ==.用反证法,若10mE δ=>,则对任意的正整数n ,有()[]()n EE f x dx f x dx ++≥≥⎰⎰1[]()n E f x dx n δ+=⎰,1,2,n = ,所以()Ef x dx +=+∞⎰,这与()f x 在E 上可积矛盾.因此必须有10mE =.同理可证20mE =.于是1212[||]()0mE f m E E mE mE =∞=≤+= .定理5.2.2 设()f x 在E 上可测,()g x 在E 上非负可积,|()|(),f x g x x E ≤∈,则()f x 也在E 上可积,且|()|()EEf x dxg x dx ≤⎰⎰.证明 因为|()|()()f x f x f x +-=+,所以()()f x g x +≤,()()f x g x -≤.对任意的正整数,k n 有[]()kn E f x dx +≤⎰[]()kn E g x dx ≤⎰()Eg x dx <+∞⎰,所以对每一个正整数k ,{[]()}kn E f x dx +⎰,(1,2,)n = 是单调增加有上界的数列,有有限极限()kE f x dx +=⎰lim []()kn n E f x dx +→∞≤⎰()kE g x dx <+∞⎰.而{()}kE f x dx +⎰,(1,2,)k = 也是单调增加有上界的数列,也有有限极限()Ef x dx +=⎰lim ()kk E f x dx +→∞≤⎰lim ()kk E g x dx →∞⎰()Eg x dx =<+∞⎰.同理可证()Ef x dx -≤⎰()Eg x dx <+∞⎰. 因此()f x 在E 上可积.由|()|()f x g x ≤,x E ∈,有[||]()[](),1,2,n n f x g x n ≤= ,所以对每一个正整数k ,有[||]kn E f dx ≤⎰[](),1,2,kn E g x dx n =⎰ .令n →∞,有|()|kE f x dx ≤⎰(),1,2,kE g x dx k =⎰.令k →∞,有|()|Ef x dx ≤⎰()Eg x dx ⎰.定理5.2.3 设E 是可测集,则(i )当12,,,m E E E 是E 的互不相交的可测子集,1mi i E E ==,()f x 在E 上有积分值时,()f x 在每一个i E 上有积分值,且()Ef x dx =⎰1()E f x dx +⎰2()()mE E f x dx f x dx ++⎰⎰.特别地,当()f x 是E 上的非负可测函数时,()Ef x dx ⎰()iE f x dx ≥⎰,1,2,,i m = ;(ii )对任意常数c ,()Ecf x dx =⎰()Ec f x dx ⎰;(iii )若()f x ,()g x 都是E 上的可积函数,则[()()]Ef xg x dx +=⎰()Ef x dx +⎰()Eg x dx ⎰;(iv )若()f x 在E 上有积分值,且()()f x g x =..a e 于E ,则()Ef x dx =⎰()Eg x dx ⎰;(v )当()f x ,()g x 都在E 上可积,且()()f x g x ≤()x E ∈时,()Ef x dx ≤⎰()Eg x dx ⎰.证明 证(i ). 只须就2m =的情形证明,一般情形利用归纳法可证. 由定理5.1.2的(ii ),对任意的正整数,k m ,有[]km E f dx +=⎰12[][]k k m m E E E E f dx f dx +++⎰⎰ , []k m E f dx -=⎰12[][]k k m m E E E E f dx f dx --+⎰⎰ ,先对m 后对k 取极限,有Ef dx +=⎰12E E f dx f dx +++⎰⎰, Ef dx -=⎰12E E f dx f dx --+⎰⎰.若()f x 在E 上有积分值,则Ef dx +⎰和Ef dx -⎰至少有一个是有限数,不妨设Ef dx+⎰是有限数,那么1E f dx +⎰2E f dx ++⎰是有限数.从而1E f dx +⎰和2E f dx +⎰都是有限数,因而()f x 在1E 和2E 上都有积分值,且()Ef x dx =⎰Ef dx +-⎰Ef dx -⎰()12E E f dx f dx ++=+⎰⎰()12E E f dx f dx ---+⎰⎰1()E f x dx =⎰2()E f x dx +⎰.当()f x 是E 上非负可测函数时,由()i i E E E E =- ,且()i i E E E φ-= ,1,2i =.则()Ef x dx =⎰()()iiE E E f x dx f x dx -+⎰⎰(),1,2iE f x dx i ≥=⎰.为证明(ii )和(iii ),先证明如下结果:引理1 若(),()f x g x 是E 上的非负函数,0c >,则对任意正整数n 成立. (1)2[][][][]n n n n f g f g f g +≤+≤+; (2)[][]1[][][]n n nccc f cf c f +≤≤,其中[]nc 表示不超过nc的最大整数,而[]n f 等表示f 的n -截断函数.证明 (1)先证[][][]n n n f g f g +≤+. 设0x E ∈,若0()f x n <且0()g x n <,则000000[()()]()()[()][()]n n n f x g x f x g x f x g x +≤+=+.若0()f x 和0()g x 中至少有一个不小于n ,例如0()f x n ≥,则000[()()][()]n n f x g x n n g x +=≤+00[()][()]n n f x g x =+.再证2[][][]n n n f g f g +≤+.由于[][]n n f g f g +≤+,[][]2n n f g n +≤,所以[][]min{,2}n n f g f g n +≤+2[]n f g =+. (1)得证. (2)[]min{,}min{,}n n cf cf n c f c==, 而min{,[]}min{,}min{,[]1}n n nf f f c c c≤≤+.所以min{,[]}min{,}min{,[]1}n n nc f c f c f c c c≤≤+.于是[][]1[][][]n n n ccc f cf c f +≤≤. (2)得证.证(ii ). 若0c =,则0cf =()x E ∈.对任何正整数,k m 有()000kkk E E cf dx dx mE ===⎰⎰,所以()lim ()0kEk E Ecf dx cf dx c fdx →∞===⎰⎰⎰.若0c >,则()cf cf ++=,()cf cf --=,由引理1的(2),[][]1[][][]m m mc cc f cf c f ++++≤≤,因此()()lim []km EEm E k cf dx cf dx cf dx +++→∞→∞==⎰⎰⎰[]1l i m[]km m E c k c f dx +→∞+→∞≤⎰Ec fd x +=⎰.另外()()EEcf dx cf dx ++=⎰⎰l i m[]km m E k cf dx +→∞→∞=⎰[]lim[]km m E c k c f dx +→∞→∞≥⎰Ec f dx +=⎰.因此()EEcf dx c f dx ++=⎰⎰.同理1()EEcf dx c f dx --=⎰⎰.所以()EEcf dx c fdx =⎰⎰.当0c <,可按定理5.1.2中的(i )相应的情形证明.证(iii ). 先设()f x 和()g x 都是非负可测函数.由引理1的(1),对任意的正整数m ,有2[][][][]m m m m f g f g f g +≤+≤+,所以对任意的正整数k ,有[][][]kkkm m m E E E f g dx f dx g dx +≤+⎰⎰⎰2[]km E f g dx ≤+⎰,由f 和g 是可积的,有lim[[][]]kkm m m E E k f dx g dx →∞→∞+⎰⎰()()EEf x dxg x dx =+⎰⎰,所以,lim []()()km m E EEk f g dx f x dx g x dx →∞→∞+≤+⎰⎰⎰2lim []km m E k f g dx →∞→∞≤+⎰.由左边不等式知f g +可积,有()EEEf g dx fdx gdx +≤+⎰⎰⎰.由右边不等式,有()EEEfdx gdx f g dx +≤+⎰⎰⎰.因此()EEEf g dx fdx gdx +=+⎰⎰⎰.再设()f x 和()g x 都是一般的函数.由于()f g f g ++++≤+,()f g f g ---+≤+.因此若,f g 都在E 上可积,则f g +也在E 上可积.因为()()()()f g f g f g f g f g +-++--+-+=+=+-+,所以()()f g f g f g f g +--++-+++=+++,因而[()][()]EEf g f g dx f g f g dx +--++-+++=+++⎰⎰,由已证结果,有[()()EEEEEEf g dx f dx g dx f dx g dx f g dx +--++-+++=+++⎰⎰⎰⎰⎰⎰,所以[()()()()EEEEEEf g dx f g dx f dx f dx g dx g dx +-+-+-+-+=-+-⎰⎰⎰⎰⎰⎰.此即()EEEf g dx fdx gdx +=+⎰⎰⎰.证(iv ). 设()()f xg x =..a e 于E ,()f x 在E 上有积分值,记1[()()]E f x g x ==,2[()()]E f x g x =≠,则20mE =,12E E φ= ,12E E E = .由(i ),12EE E fdx fdx fdx =+⎰⎰⎰12E E gdx fdx =+⎰⎰因为零测度集上的有界函数积分为零(§5.1引理2).所以对任何正整数m ,2[]0m E f dx +=⎰,2[]0m E f dx -=⎰,因而22lim []0m E m E f dx f dx ++→∞==⎰⎰,22lim []0m E m E f dx f dx --→∞==⎰⎰.所以2()0E f x dx =⎰,同理2()0E g x dx =⎰.因为f 在E 上有积分值,所以由(i ),f 在1E E ⊂也有积分值,而在1E 上,f g ≡,因此g 在1E 上有积分值.对任意的正整数,m k ,由k mE <∞,[]m g +和[]m g -都是有界函数,依测度有限集上有界函数的积分定义,有121[][][][]kk k k m m m m E E E E E E E g dx g dx g dx g dx ++++=+=⎰⎰⎰⎰.令m →∞,k →∞,则1EE g dx g dx ++=⎰⎰.同理,1EE g dx g dx --=⎰⎰.因为g 在1E 上有积分值,所以g 在E 上有积分值.并且_EEEgdx g dx g dx +=-⎰⎰⎰11E E g dx g dx +-=-⎰⎰11E E gdx fdx ===⎰⎰12E E Efdx fdx fdx +=⎰⎰⎰.证(v ). 设()()()F x g x f x =-,则()0()F x x E ≥∈,并且()F x 在E 上可积,且()0EF x dx ≥⎰,而(),()f x g x 都在E 上可积,并且()()()g x F x f x =+.由(iii )()[()()]()()EEEEg x dx F x f x dx F x dx f x dx =+=+⎰⎰⎰⎰()Ef x dx ≥⎰.至此定理证毕.定理 5.2.4(积分的绝对可积性) 设()f x 是E 上的可测函数,则()f x 在E 上可积的充要条件是|()|f x 在E 上可积,并且|()||()|EE f x dx f x dx ≤⎰⎰.证明 若()f x 在E 上可积,则Ef dx +⎰和Ef dx -⎰都是有限数,即f +和f -都在E 上可积,而|()|()()f x f x f x +-=+,由定理5.2.3的(iii )有|()|()()EEEf x dx f x dx f x dx +-=+<∞⎰⎰⎰,因而|()|f x 在E 上可积.反之,若|()|f x 在E 上可积,则由||f f +≤,||f f -≤,由定理5.2.2,f +和f -都在E 上可积,所以f 在E 上可积.并且由||||f f f -≤≤,有||||EEEf dx fdx f dx -≤≤⎰⎰⎰, 此即||||EEfdx f dx ≤⎰⎰.定理5.2.5(积分的绝对连续性) 设()f x 在E 上可积,则对任意的0ε>,存在0δ>,使得对于E 的任意子集A ,当mA δ<时,就有|()|Af x dx ε<⎰.证明 (1)先证明在mE <∞,且()f x 在E 上有界的条件下结论成立.设|()|()f x x E ≤K ∈,则任取可测集,A E ⊂|()|Af x dx ⎰|()|Af x dx mA ≤≤K ⋅⎰.对任意的0ε>,取εδ≤K,则当mA δ<时,有|()|Af x dx mA εε≤K ⋅<K ⋅=K⎰.(2)一般情形()f x 在E 上可积,则|()|f x 也在E 上可积,由lim [|()|]|()|nn n E Ef x dx f x dx →∞=⎰⎰知,对任意的0ε>,存在正整数N ,使|()|[|()|]2NN EE f x dx f x dx ε-<⎰⎰.另一方面,由情形(1),对这个0ε>,存在0δ>,使当N A E ⊂,且mA δ<时,有[|()|]2N A f x dx ε<⎰,因此,当A E ⊂且mA δ<时,便有()|()||()||()||()|N NAAA A E A E f x dx f x dx f x dx f x dx -≤=+⎰⎰⎰⎰()||(||[||])[||]N NNN N A A E A E A E f dx f f dx f dx -=+-+⎰⎰⎰,因为()N N N A A E A E E E -=-⊂- ,所以|()|||(||[||])[||]NN NN N AE E E A E f x dx f dx f f dx f dx -≤+-+⎰⎰⎰⎰(||[||])[||]22NNN N EE A E f dx f dx f dx εεε=-+<+=⎰⎰⎰.例 1 设()f x 在[,]E a b =上可积,则对任何0ε>,必存在E 上的连续函数()x ϕ,使|()()|b af x x dx ϕε-<⎰.证明 设[||]n e E f n =>,则1[||]nn E f e∞==∞=.因为{}n e 是单调减少集列,所以1lim n n n n e e ∞→∞== .而由mE b a =-<∞知,1me <∞,因而1lim (lim )()[||]0n n n n n n me m e m e mE f ∞→∞→∞=====∞=由积分的绝对连续性,对任意的0ε>,必存在正整数N ,使||4NN e N me f dx ε⋅<<⎰.令N N B E e =-,在N B 上由Lusin 定理,存在闭集N N F B ⊂和R 上的连续函数()x ϕ,使得(1)()4N N m B F Nε-<;(2)当N x F ∈时,()()f x x ϕ=,且sup |()|sup |()|NRF x f x N ϕ=≤.所以|()()||()()||()()|NNb ae Bf x x dx f x x dx f x x dx ϕϕϕ-=-+-⎰⎰⎰|()||()||()()|NNN Ne e B Ff x dx x dx f x x dxϕϕ-≤++-⎰⎰⎰|()()|NF f x x dx ϕ+-⎰2044N N me N Nεε≤+⋅+⋅+442εεε<++ε=.§5.3 Lebesgue 积分的极限定理本节讨论如下的问题,假设{}n f 是集E 上的一个函数序列,按某种意义收敛到f ,如果每个n f 在某种意义下都有积分,()f x 是否有积分?如果()f x 也有积分,n f 的积分之极限是否等于()f x 的积分?也就是极限与积分是否可以交换顺序的问题.我们会看到这个问题在Lebesgue 积分范围内得到比在Riemann 积分范围内更为完满的解决,这也正是Lebesgue 积分的最大成功之处.定理5.3.1(Lebesgue 控制收敛定理) 设{()}n f x 是E 上的可测函数列,()F x 是可积的控制函数,即|()|()..n f x F x a e ≤于(1,2,)E n = ,且()F x 在E 上可积,如果()()mn f x f x −−→,则()f x 在E 上是可积的,并且lim ()()n n EEf x dx f x dx →∞=⎰⎰.证明 若0mE =,结论显然成立,因此不妨设0mE >.由于mn f f −−→,由F·Riesz 定理,存在{()}n f x 的子列{()}i n f x ,使 lim ()()..i n i f x f x a e →∞=于E ,由|()|()..i n f x F x a e ≤于E 知|()|()..f x F x a e ≤ 于E . 因为()F x 在E 上可积,所以()f x 在E 上可积.往证lim()()n n EEf x f x dx →∞=⎰⎰.(1)mE <∞因为()F x 在E 上可积,由积分的绝对连续性,对任意的0ε>,存在0δ>,使当e E ⊂且me δ<时,有()4eF x dx ε<⎰.又因为m n f f −−→,所以存在N N +∈,使当n N ≥时,有[||]2n n mE mE f f mEεδ=-≥<,所以当n N ≥时,()4nE F x dx ε<⎰,因此|()()|n EEf x dx f x dx -=⎰⎰|(()())|n Ef x f x dx -⎰|()()|n Ef x f x dx ≤-⎰|()()||()()|nnn n E E E f x f x dx f x f x dx -=-+-⎰⎰2()()2nnE F x d x m EE mEε≤+⋅-⎰22εεε<+=.因此,lim()()n n EEf x f x dx →∞=⎰⎰.(2)设mE =∞因为()F x 在E 上可积,对任意的0ε>,取,k m 充分大,使()[]()4km EE F x dx F x dx ε-<⎰⎰,所以()()()kkE E EE F x dx F x dx F x dx -=-⎰⎰⎰()[]()4km EE F x dx F x dx ε≤-<⎰⎰另一方面,在k E 上可测函数列{||}n f f -满足:||2..n f f Fa e -≤于,1,2,k E n = ,||0mn f f -−−→,k mE <∞.因此,由(1)的结果,存在正整数N ,使当n N ≥时||2kn E f f dx ε-<⎰.所以|()()|n EEf x dx f x dx -⎰⎰|()()|n Ef x f x dx ≤-⎰|()()||()()|kkn n E E E f x f x dx f x f x dx -=-+-⎰⎰ 2()2kE EF x dx ε-≤+⎰.242εεε<⋅+=因此lim ()()n n EEf x dx f x dx →∞=⎰⎰.综上定理得证.定理5.3.1' 设{()}n f x 是E 上的可测函数列,()F x 是可积的控制函数,若lim ()()..n n f x dx f x a e →∞= 于E ,则()f x 在E 上可积且lim ()()n n Ef x dx f x dx →∞=⎰.定理5.3.1''(勒贝格有界收敛定理) 设mE <∞,{()}n f x 是可测集E 上的可测函数列且测度收敛于()f x ,如果{()}n f x 一致有界,即存在常数M ,使得对任意的x E ∈和对任意的正整数n ,有|()|n f x M ≤,则()f x 在E 上可积,且有()lim ()n En Ef x dx f x dx →∞=⎰⎰.定理5.3.1''对于Riemann 积分不适用.例1 设12{,,,,}n r r r 是[0,1]中的全体有理数. 作如下函数列:1111,;()0,[0,1]{}.x r f x x r =⎧=⎨∈-⎩ 122121,,;()0,[0,1]{,}.x r r f x x r r =⎧=⎨∈-⎩ … … … … … … … …12121,,,,;()0,[0,1]{,,,}.n n n x r r r f x x r r r =⎧=⎨∈-⎩… … … … … … … …那么{()}n f x 在[0,1]上一致有界,|()|1,[0,1],1,2,n f x x n ≤∈= . 而且1,()()0,n f x D x ⎧→=⎨⎩因为每个()n f x 在[0,1]上只有有限个不连续点,因而Riemann 可积,然而()D x 在[0,1]上不是Riemann 可积的.定理5.3.2(勒维Levi ,1875-1961,意大利数学家) 设 (i ){()}n f x 是E 上非负可测函数列; (ii )1()()n n f x f x +≤ (,1,2,)x E n ∈= ; (iii )()lim ()n n f x f x →∞=,则()lim ()n En Ef x dx f x dx →∞=⎰⎰.证明 先设()Ef x dx <∞⎰,对任意的0ε>,取正整数,k m ,使[]()()2k m E E f x dx f x dx ε>-⎰⎰.此处k k E E =K ,12{(,,,)k n x x x K = :||,1,2,,}i x k i n ≤= .注意到k mE <∞,且在k E 上[]()lim[]()m n m n f x f x →∞=,由Egoroff 定理知,存在k E E ε⊂,使4mE mεε<,且在k E E ε-上[]()n m f x 一致收敛到[]()m f x .设正整0n 使0n n ≥时,对一切k x E E ε∈-,都有x 为[0,1]上的有理数;x 为[0,1]上的无理数.0[]()[]()4(1)m n m k f x f x mE ε≤-<+则当0n n ≥时,()[]()[]()4k k n n m m EE E E E f x dx f x dx f x dx εεε--≥≥-⎰⎰⎰,而[]()[]()[]()kk m m m E E E E f x dx f x dx f x dx εε-=+⎰⎰⎰[]()4k m E E f xdx εε-<+⎰,所以当0n n ≥时,()[]()4k n m EE E f x dx f x dx εε->-⎰⎰[]()44km E f xdx εε>--⎰()Ef x dx ε>-⎰.因此lim()()n n EEf x dx f x dx ε→∞≥-⎰⎰,由0ε>是任意的,有lim ()()n n EEf x dx f x dx →∞≥⎰⎰.另一方面,对任意的n ,显然有()()n f x f x ≤()x E ∈,所以()()n EEf x dx f x dx ≤⎰⎰,从而lim()()n n EEf x dx f x dx →∞≤⎰⎰.综上得lim ()()n n EEf x dx f x dx →∞=⎰⎰.当()Ef x dx =∞⎰时,由积分定义,对任意的0M >.存在,k m 使得[]()km E f x dx M ≥⎰,由[]()[]()n m m f x f x →()n →∞与[]()km E f x dx <∞⎰及上面的证明,知lim []()[]()kkn m m n E E f x dx f x dx M →∞=≥⎰⎰.于是lim ()lim []()n n m n En Ef x dx f x dx →∞→∞≥⎰⎰lim []()kn m n E f x dx →∞≥⎰M ≥.由0M >是任意的,有lim ()()n n EEf x dx f x dx →∞=∞=⎰⎰.定理得证.定理 5.3.3(Lebesgue 基本定理) 设{()}n f x 是可测集E 上的非负可测函数列,1()()n n f x f x ∞==∑,则1()()n EEn f x dx f x dx ∞==∑⎰⎰.证明 设1()(),1,2,nn i i g x f x n ===∑ ,则{()}ngx 是E 上非负可测函数列,且1()()(,1,2,)n n g x g x x E n +≤∈= ,1lim ()()n n n n g x f x ∞→∞==∑()f x =.由Levi 定理有1lim ()(())()n i n EEEi g x dx f x dx f x dx ∞→∞===∑⎰⎰⎰,而1lim ()lim (())nn i n En Ei g x dx f x dx →∞→∞==∑⎰⎰1lim ()ni n Ei f x dx →∞==∑⎰1()i Ei f x dx ∞==∑⎰.所以1()()n EEn f x dx f x dx ∞==∑⎰⎰.定理5.3.4(积分对区域的可数可加性) 若,1,2,i E i = 是E 的互不相交的可测子集列,1i i E E ∞== ,当()f x 在E 上有积分值时,则()f x 在每一个i E 上都有积分值,且1()()iEE i f x dx f x dx ∞==∑⎰⎰.。
Lebesgue积分
lim
n→∞
fn (x)
) = lim d
n→∞ dx
fn (x) 。
一致收敛条件是进行极限运算与求和运算,求导运算交换顺序的充
分条件,但不是必要条件。
在 L 积分中,类似的问题不考虑一致收敛性,而找到可积的控制函
数,得到积分运算与极限运算可交换顺序。L-控制收敛定理:
①{fn }可 E 可测;
方法定义 L 积分,将 R 积分中的定积分、重积分、常义积分、广义积分 熔为一个整体,从高度的抽象中达到了高度的统一。
L-积分“三步”转化的主要思想如下。
L-积分研究的是可测函数的积分,根据可测函数的特性转化过程是:
①一般可测函数 f (x) ;
② f (x) 用非负可测函数表示: f (x) = f + (x) − f − (x)
4、掌握有界变差函数和绝对连续函数的概念,了解它们在微分与积 分关系中的地位和作用。
5、了解为什么说勒贝格积分是黎曼积分的推广及二者的关系。对 L 积分的计算最终还是转化为黎曼积分来完成。能准确地表述 R 可积的充 分必要条件。
131
二、主要的数学思想与方法
1、 由“三步”转换定义 L 积分的思想与方法:
fn (x)
=
lim lim
n→∞ x→x0
f
(x)
(极限交换顺序)
135
②
f
(x)
于
I
可积,且
lim
n→∞
∫ab
fn (x)dx
=
∫ab
lim
n→∞
fn (x)dx
(极限与积分交换顺序)
⑵若 1° fn (x) 收敛于 f (x) ;
2°
勒贝格 曲面积分
勒贝格曲面积分勒贝格曲面积分是微积分中的一种积分形式,用于计算曲面上的某个向量场的流量。
它是对曲面上每个微小面元的贡献进行求和,然后对所有面元的贡献进行积分。
具体来说,勒贝格曲面积分可以表示为:∬_SF·dA其中,S表示曲面,F表示向量场,在曲面上的每个点上都有一个与之对应的向量F,dA表示曲面上的微小面元。
勒贝格曲面积分可以按照曲面的参数方程进行计算。
假设曲面S由参数方程x(u,v),y(u,v),z(u,v)定义,其中(u,v)属于某个参数区域D。
那么在曲面上的某个点上,曲面元素dA可以表示为:dA=|r_u×r_v|dudv其中,r_u和r_v分别表示参数方程x(u,v),y(u,v),z(u,v)对u和v的偏导数,×表示向量的叉乘。
将参数方程代入勒贝格曲面积分的公式中,可以得到积分的具体计算形式:∬_SF·dA=∬_DF(x(u,v),y(u,v),z(u,v))·|r_u×r_v|dudv在实际计算中,可以使用数值计算方法或者符号计算方法来进行勒贝格曲面积分的计算。
通过将参数区域D在u和v的取值范围上进行划分,然后对每个小矩形区域进行计算,最后将所有小矩形区域的结果相加,就可以得到曲面上向量场的流量。
勒贝格曲面积分在物理学、工程学等领域具有广泛的应用。
例如,在流体力学中,可以利用勒贝格曲面积分来计算液体通过某个曲面的流量;在电磁学中,可以利用勒贝格曲面积分计算电场通过某个闭合曲面的电通量等等。
总而言之,勒贝格曲面积分是一种用于计算曲面上向量场流量的重要工具,通过对曲面上微小面元的贡献进行积分求和,可以得到曲面上向量场的整体特征。
勒贝格积分定义及基本定理
max
1iim
{xi(
m)
xi(m1) }
0,
第18讲 R-积分与L-积分的关系, L-积分的极限定理
记
mi (
m)
,
M
i (m)
分别为
f
在
[xi(m1) , xi(m) ] 下的
下确界和上确界,由Riemann积分的定义知
im
im
lim
m
i1
mi(m) (xi(m)
x(m) i1
)
lim
m
m)
]
xa
第18讲 R-积分与L-积分的关系, L-积分的极限定理
则因 Dm Dm1,故当区间长度缩小时,
上确界不增,下确界不减,所以
1 2 3 m f
1 2 m f
于是
lim
m
m
f
f
,
lim
m
m
f
f,即
f f f.
第18讲 R-积分与L-积分的关系, L-积分的极限定理
与极限交换顺序的条件?
第18讲 R-积分与L-积分的关系, L-积分的极限定理
(1) Levi定理 问题3:从定理的条件,函数序列的极
限与函数序列可否比较大小? 问题4:定理中并未假定集合的测度有
限,也未假定函数序列有界, 如何克服这一困难?
第18讲 R-积分与L-积分的关系, L-积分的极限定理
注意到 f , f 都是有界可测的,所以
f f 是非负Lebesgue可积函数,从而
( f f )dx f dx f dx 0.
[a,b]
[a,b]
[ a ,b ]
第18讲 R-积分与L-积分的关系, L-积分的极限定理
专题五 勒贝格积分(tou )1
E
f ( x) dm [ f ( x) f ( x)]dm f ( x)dm f ( x)dm
E E E
E
f ( x)dm , f ( x)dm
E
|f (x)|在E上可积 “” 设|f (x)|在E上可积, 0f+(x)|f(x)|,0f-(x)|f(x)| [f+ (x)]n[|f(x)|]n, [f-(x)]n[|f(x)|]n, (n=1,2,…) E f+ (x) dmE |f(x)|dm<+, Ef-(x)dm E|f(x)|dm<+ E f(x)dm E f+ (x) dm- Ef-(x)dm<+ f(x)在E上可积, |E f(x)dm| E f+ (x) dm+Ef-(x)dm =E|f(x)dm|&t;+ , {f(x)}(I)是E上的可测函数族,如果E上满足: (1) lim f ( x) f ( x)( a.e.)( 0是I的一个极限点)
0
(2) 存在L可积函数g(x), 使得
则f(x)在E上L可积,且
f ( x) g( x)(a.e.)( I )
E
线性 性质
3) m( E ) 0
E
f ( x)dm 0
零测集上的积分性质
E
4) f ( x) g ( x)( a.e.) 5) f ( x) 0
E
E
f ( x)dm g ( x)dm
m(E(fg))=0
f ( x)dm 0
6) f ( x) m( E )
lim f n ( x) f ( x)(a.e.)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[4]
由函数乘积的导数公式,有
(u ( x )v ( x )) ' u ' ( x )v ( x ) u ( x )v ' ( x )
2.2
b a
b b (u ( x )v ( x )) ' dx a d (u ( x )v ( x )) u ( x )v (v ) a ,
第 3 页 (共 11 页)
勒贝格积分的变量替换公式是由以下三个引理[2]推导出来的, 引理 1 设 ( x ) 是 , 上的绝对连续函数, E , 是零测度集,则 ( E ) 也 是零测度集。 引理 2 设 ( x ) 是 , 上的绝对连续函数, E , 为可测集,则 ( E ) 也是 可测集。 引理 3 设 ( x ) 是 , 上严格单调增的绝对连续函数, E , 是可测集, 则
n
法无关,即 0, 0 , T : l (T ) , k ,有 f ( k )x k I ,则称
k 1
f x 在 a, b 可 积 , I 是 函 数 f x 在 a, b 的 定 积 分 , 亦 称 黎 曼 积 分 [4] , 记 为
t 时,有 a (t ) b ,又 ( ) a, ( ) b,
b f ( x)dx f (t ) ' (t )dt 。 则 a
实变函数引入勒贝格积分是为了弥补黎曼积分的不足,扩大可积函数类,降 低逐项积分与交换积分顺序的条件。那么勒贝格积分是否也能进行分部积分和变 量替换呢?
Lebesgue 积分的分部积分和变量替换
摘
要: 本文通过探讨黎曼积分的分部积分和变量替换的条件, 引出勒贝格积分的分部积
分和变量替换的相关结论及运用,然后给出两类积分对应的分部积分和变量替换的联系与区 别,最后拓展到勒贝格积分的一些实际应用。 关键词:黎曼积分;勒贝格积分;分部积分;变量替换 Abstract : This article through to the division of the integral of Riemann integral and the condition of variable substitution, raises Lebesgue integral division of integral and the relevant conclusions and use variable substitution.Then give two points corresponding to the division and the relationship and difference variable substitution, finally to some practical application of Lebesgue integral. Key words:Riemann integral;Lebesgue integral;Partial integration;Variable substitution
b b b ' u( x)v' ( x)dx u( x)v( x) a a u ( x)v( x)dx 。 则 a
黎曼积分的变量替换
N L 公式求定积分比较复杂,引入一种简单的方法---变量替换,变量替换
是换元法的另一种说法,求积分经常使用的方法,在积分计算中变量替换的问题 有着重要意义,化繁为简,直到能直接运用公式求出。 若 函 数 f ( x ) 在 区 间 a, b 连 续 , 且 函 数 x (t ) 在 , 有 连 续 导 数 , 当
3 勒贝格积分的分部积分和变量替换
定义 2 设 F ( x ) 为 a, b 上的有限函数,如果对 0, 0 ,使对 a, b 中互 不 相 交 的 任 意 有 限 个 开 区 间 (ai , bi ) , i 1,2,..., n , 只 要
(b
i 1
n
i
ai ) 就 有
0
因此 f ( x) f (0) 0x f ' ( x)dx , f ( x ) 是 0,1 上的绝对连续函数。
2 黎曼积分的分部积分与变量替换
定义 1 设函数 f ( x ) 在 a, b 上有定义。任给 a, b 一个分法 T 和一组 k , 有积分和 (T , ) f k x k 。
证明
b a
f ( x)dx f ( (t )) ' (t )dt.
(1)
假定 f ( x ) 是 a, b 上的非负 L 可积函数,令 x (t ) , f (t ) 作为 t 的函
数在 , 也非负可积。 对区间 a, b 进行细分,a x0 x1 ... xn b , 设 f x 在 x k , x k 1 上的最大值 也最小值分别为 M k 与 m k 。现在令 t k = x k ,那么当 t t k , t k 1 时有
x 0
f ' ( x)dx lim x f ' ( x)dx.
0
x ' f ( x)dx f ( x) f ( ) ,再由 f ( x ) 在 x 0 连 又因为 f ( x ) 在 ,1 上绝对连续,则 0
x ' 续,可以得到 0 f ( x)dx lim( f ( x) f ( )) f ( x) f (0) ,
b a
f ( x )dx lim
l (T ) 0
f (
k 1
n
k
) x k I 。
一般来说求导数比求定积分较易,如果函数存在导数,根据导数运算法则和 公式或者导数定义,按照求导运算程序,总能求出导数。但求函数定积分则不然。 根据定积分运算法则和公式只能求出一小部分比较简单的函数的不定积分,而对
mk f (t ) M k ,
再由不等式 , t 0 与 t k tk1 ' (t )dt x k 1 x k ,得出:
L t t f (t ) ' (t )dt ,其介于 mk ( xk 1 xk ) 与 M k ( xk 1 xk ) 。
m ( E) E ' (t )dt 。
定理 2(勒贝格积分的变量替换)设 f ( x ) 在 a, b 上 L 可积, (t ) 是在 , 上 严格单调增的绝对连续函数,且 ( ) a , ( ) b ,则 f t ' t 作为 t 的函数 在 , 上 L 可积,且
第 1 页 (共 11 页)
更多函数的定积分要因函数不同形式选用不同的方法,化繁为简。下面我们针对 求定积分最基本最常用的分部积分法和变量替换法进行描述。 2.1 黎曼积分的分部积分 分部积分是对于两个不同函数组成的被积函数,不便于进行换元的组合分成 两部份进行积分,其原理是函数四则运算的求导法则的逆用,是积分方法的一种。
b b b ' f ( x) g ' ( x)dx f ( x) g ( x) a a f ( x) g ( x)dx。 即 a
注:勒贝格积分分部积分是由斯蒂尔切斯积分证明的,斯蒂尔切斯积是黎曼积分 的一个很重要的推广。 把绝对连续函数表示成不定积分形式,利用 L 积分的性质和定理是讨论绝对 连续函数的常用方法。 黎曼积分只要满足函数在定义域上有连续的导数就可以,但勒贝格积分需要 函数在定义域上绝对连续,这个条件比较严格。 3.2 勒贝格积分的变量替换法
1 引言
微积分奠基于 16,17 世纪,它的扩张统治了 18 世纪到 19 世纪上半叶,形成 了数学分析这门基础数学分支。19 世纪的微积分学中已经有了许多直观而有用的 积分,例如黎曼积分(简称 R 积分)、黎曼-斯蒂尔杰斯积分(简称 R-S 积分)等。 只要相应的函数性质较好,就可以用这些积分来计算曲边形面积、物体重心、物 理学上的功能等。然而,随着认识的深入,人们愈来愈经常地需要处理复杂的函 数。在讨论它们的可积性、连续性、可微性时,经常遇到积分与极限能否交换顺 序的问题。通常只有在很强的假设下才能对这问题作出肯定的回答。因此,在理 论和应用上都迫切要求建立一种新的积分,它既能保持 R 积分的几何直观和计算 上的有效,又能在积分与极限交换顺序的条件上有较大的改善。1902 年法国数学 家 H.L.勒贝格出色地完成了这一工作, 建立了以后人们称之为勒贝格积分的理论, 接着又综合 R-S 积分思想产生了勒贝格-斯蒂尔杰斯积分(简称 L-S 积分)[1]。 本文首先讨论黎曼积分的分部积分和变量替换的条件,然后给出勒贝格积分
的分部积分和变量替换的一些相关运用[2]。 例 1 设 f ( x ) 是 0,1 上的有界变差函数,并且在点 x 0 连续。若对任 0 1 ,
f ( x ) 在 ,1 上绝对连续,则 f ( x ) 是 0,1 上的绝对连续函数。
证明 因为 f ( x ) 是 0,1 上的有界变差函数,所以 f ' x 在 0,1 上 L 可积。由勒贝 格积分的绝对连续性可以得出
第 2 页 (共 11 页)
F (b ) F (a ) ,则称 F ( x) 为 a, b 上的绝对连续函数。
i 1 i i
n
绝对连续函数是一致连续函数, 一致连续函数一定是连续函数 (其逆不成立) , 该函数可积。满足利普希茨条件[6](若存在常数 K ,使得对定义域 a, b 的任意两个 不同的实数 x1 , x2 均有 : f ( x1 ) f ( x 2 ) K x1 x 2 成立,则称 f ( x ) 在 a, b 上满足利 普希茨条件)的函数是绝对连续函数。 与黎曼积分一样,勒贝格积分也可以进行分部积分和变量替换,但是要在一 定的条件下进行,而这些条件相对于黎曼积分更为苛刻,如绝对连续,严格单调 等。 3.1 勒贝格积分的分部积分法 定理 1(勒贝格积分的分部积分法)若 f ( x ) 和 g ( x) 都在 a, b 上绝对连续,则