泰勒中值定理在一类极限计算中的应用
泰勒定理的应用
泰勒定理的应用泰勒定理是微积分中一个重要的定理,它在数学和物理学中有广泛的应用。
本文将介绍泰勒定理的基本概念和应用,并探讨其在实际问题中的作用。
泰勒定理是由英国数学家布鲁克·泰勒于18世纪提出的。
它是一个关于函数在某一点附近的近似表示定理。
简而言之,泰勒定理告诉我们,任何一个光滑的函数可以在某一点附近用一个多项式来近似表示,而且这个多项式的系数与函数在该点的各阶导数有关。
泰勒定理的应用非常广泛。
首先,它可以用来计算函数在某一点的近似值。
通过计算函数在该点的各阶导数,并代入泰勒展开式中,我们可以得到函数在该点附近的近似值。
这对于计算复杂函数的值是非常有用的。
例如,在物理学中,我们经常需要计算函数的值,而泰勒定理可以帮助我们在没有计算器或计算机的情况下进行近似计算。
泰勒定理还可以用来证明函数的性质。
通过将函数在某一点展开成泰勒级数,并观察级数的性质,我们可以得到函数在该点的一些重要性质。
例如,通过观察泰勒级数的收敛性,我们可以证明函数的连续性和可导性。
这在数学分析中是非常重要的。
泰勒定理还可以用来求解方程和优化问题。
通过将函数在某一点展开成泰勒级数,并将级数截断到一定阶数,我们可以得到一个多项式方程。
然后,我们可以通过求解这个多项式方程来求解原来的函数方程。
这在工程和科学研究中经常使用。
泰勒定理还可以用来证明其他数学定理。
许多重要的数学定理都可以通过应用泰勒定理来证明。
例如,利用泰勒定理可以证明极限存在的柯西收敛准则、微分中值定理、波利亚不等式等。
泰勒定理是微积分中一个非常重要的定理,它在数学和物理学中有广泛的应用。
通过泰勒定理,我们可以计算函数的近似值,证明函数的性质,求解方程和优化问题,证明其他数学定理等。
因此,掌握泰勒定理对于理解和应用微积分是非常重要的。
无论是在学术研究还是实际应用中,泰勒定理都发挥着重要的作用。
探究考研数学中Taylor公式的极限计算技巧
知识文库 第12期104探究考研数学中Taylor 公式的极限计算技巧杨静颖 汪硕婷1、引言Taylor 公式是微积分中的重要理论,也是求解微积分问题的重要工具. 可是我们在微积分教学中往往只粗略介绍Taylor 公式和麦克劳林公式,对其在解题中的应用讲解很少. 实际上,Taylor 公式在求极限、求积分、求高阶导数的值、判定级数敛散性、证明不等式或恒等式、解微分方程等方面都有应用价值.对于极限计算的技巧,我们常用的方法是等价无穷小的替换和洛必达法则. 但是等价无穷小的替换在加减法替换时有诸多限制,而洛必达法则也经常因多次求导的导数过于复杂,而无法继续降阶. 此时,我们可以选用Taylor 公式来计算极限,同时也很大程度上降低了运算的复杂度.2、预备知识Taylor 中值定理:若函数()f x 在含有0x 的开区间(,)a b 内具有直到1n +阶导数,则当(,)x a b ∈时,有()20000()()()()()()()()2!!()nn n f x f x f x f x f x x x x x x x R n x ''=+-+-+++- .(1)其中,()n R x 称为Taylor 公式(1)的余项.当00x =时,(1)称为麦克劳林公式. 若0(,)x x ξ∈,(1)10()()()(1)!n n n R x fx x n ξ++=-+,则称为拉格朗日余项.若0()()n n R x o x x =-,则称为皮亚诺余项.下面我们介绍常用初等函数的麦克劳林公式. 0(),!inxn i x e o x i ==+∑ 11ln(1)(1)(),ini n i x x o x i -=+=-+∑21210sin (1)(),(21)!i nin i x x o x i ++==-++∑220cos (1)().(2)!inin i x x o x i ==-+∑3、利用Taylor 公式计算极限在利用Taylor 公式计算极限时,首先应确定Taylor 展开的阶数. 如果分母(或分子)是n 阶,那么只需将分子(或分母)展开成n 阶麦克劳林公式.如果分子、分母都需要展开,那么将它们展开到同阶无穷小的阶数. 其次,我们也经常使用泰勒公式与等价无穷小替换相结合的方式,来尽可能的简化极限,直至多项式之比的极限,便可容易的计算出结果.例1(2016数三考研题)求极限41lim(cos 22sin )x x x x x →+.解:首先利用重要极限的性质, 原式[]44cos22sin 11cos22sin 1limcos22sin 10=lim 1+(cos 22sin 1)x x x x x x x x x x x x x x x x e→+-+-⋅+-→+-=然后,因为当0x→时指数部分分母4x 是4阶无穷小,所以分子cos 2,2sin x x x 只需展开至4阶麦克劳林公式,即()()244244222cos 21()12(),2!4!3x x x o x x x o x =-++=-++3324412s i n 2()2(),3!3x x x x x o x xx o x ⎛⎫=-+=-+ ⎪⎝⎭所以,指数部分极限为242444444000211(12)(2)1()cos22sin 11333lim lim lim .3x x x x x x x o x x x x x x x x→→→-++--++-===故,原式4cos 22sin 11lim3x x x x xe e→+-==.例2(2015数三考研题)设函数3()ln(1)sin ,()f x x a x bx x g x kx =+++=,若()f x 与()g x 在0x →时为等价无穷小,求,,a b k 的值.解:由()f x 与()g x 在0x →时为等价无穷小得,30()ln(1)sin limlim 1()x x f x x a x bx xg x kx →→+++== (2).其中,因为分母是3阶无穷小,所以只需ln(1),sin x x +展开至3阶麦克劳林公式,即233ln(1)(),23x x x x o x +=-++33sin ().3!x x x o x =-+那么,由(2)式可得2333330234330(())(())233!1lim (1)()()236lim x x x x x x a x o x bx x o x kxa a ba xb x x x o x kx→→+-+++-+=++-+-+= 故由待定系数法得,1,12,13a b k =-=-=-.4、结束语在利用Taylor 公式求极限时,我们在熟记常见的Taylor 公式展开的基础上,要针对具体问题进行灵活运用. 具体问题具体分析,不要形成定势思维,要积极拓展自己的思维方式,融入如Taylor 公式般灵活多变的解题方式.巧妙利用Taylor 公式进行极限计算,可以简便快捷的解决复杂的极限问题. 在考研教学以及日常微积分教学中,渗透Taylor 公式的应用思想不仅可以提高教师的教学水平,而且可以扩宽学生解题思路,提升学生独立解决问题的能力,这对学习和教学都有很大裨益.(作者单位:四川大学锦江学院). All Rights Reserved.。
无穷小的泰勒中值定理
无穷小的泰勒中值定理无穷小是微积分中的一个重要概念,而泰勒中值定理是无穷小的应用之一。
今天我们就来一起探讨一下无穷小的泰勒中值定理。
一、无穷小的定义无穷小是指当自变量趋近于某一点时,其函数值趋近于零的函数。
换句话说,就是说函数在某一点附近的取值与零非常接近。
它可以用极限的语言来表达:如果对于$\forall\ \varepsilon > 0$,都存在一个正实数$\delta$,使得当 $0 < |x-a| < \delta$ 时,恒有 $|f(x)| < \varepsilon$,那么我们就称 $f(x)$ 为 $x\to a$ 时的无穷小。
其中,$a$ 是自变量 $x$ 的极限,$f(x)$ 与 $0$ 的距离不能超过 $\varepsilon$。
二、泰勒公式下面我们来看一下泰勒公式:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中,$f^{(n)}(a)$ 表示 $f(x)$ 在 $a$ 处的 $n$ 次导数。
泰勒公式是一个很强大的工具,在计算函数的近似值时有很大的作用。
我们只需要求出自变量所处的位置,再把这个值代入泰勒公式中,就可以得到函数在那个位置的近似值。
三、泰勒中值定理泰勒中值定理就是在泰勒公式的基础上,将其展开到前$n$ 项,然后再加上一个无穷小。
$$f(x)=\sum_{k=0}^{n-1}\frac{f^{(k)}(a)}{k!}(x-a)^k+\frac{f^{(n)}(c)}{n!}(x-a)^n$$其中,$c$ 是 $a$ 和 $x$ 之间的某个值。
根据泰勒中值定理,我们可以用函数在某个位置的前 $n$ 项式子加上一个无穷小来近似地表示函数在另一个位置的值。
这里的无穷小可以很小,可以小到足以忽略不计。
四、无穷小的泰勒中值定理的应用无穷小的泰勒中值定理在微积分中有很多应用,下面列举几个:1、用泰勒中值定理来证明不等式。
泰勒公式在考研数学的常见应用
泰勒公式在考研数学的常见应用泰勒公式是高等数学的重要公式,也是考研数学的重要考点,在求极限,中值定理的证明题等方面有着广泛的应用,熟练掌握泰勒公式的几种常见应用对于考研复习是至关重要的,本人结合多年教学经验和考研数学的研究,系统总结了泰勒公式的一些常见应用和解题技巧。
泰勒中值定理:若f(x)在含有x0的某个开区间(a,b)内具有n+1阶导数,则对任一x∈(a,b),有f(x)=f(x0)+f′(x0)(x-x0)+f″(x0)(x-x0)2+…+f(n)(x0)(x-x0)n+f(n+1)(ξ)(x-x0)n+1(1)这里ξ是x0与x之间的某个值。
公式(1)称为f(x)的带有拉格朗日余项的n阶泰勒公式。
若f(x)在x0具有n阶导数,则对任一x∈U(x0,δ),有(2)公式(2)称为f(x)的带有佩亚诺余项的n阶泰勒公式。
泰勒中值定理是讨论函数和各级高阶导数之间关系的中值定理,带有拉格朗日余项的泰勒公式具有区间的性质,因此一般用于证明等式或者不等式,带有佩亚诺余项的泰勒公式具有局部的性质,一般用于求极限。
1 利用泰勒公式求极限若分子、分母是多个同阶无穷小量的代数和,且洛必达法则求解过程复杂时,用泰勒公式求极限。
解题方法和步骤:①展开分母各项,直到合并同类项首次出现不为零的项。
②将分子的各项展开至分母的最低阶次。
③代入后求极限。
例1:计算分析:“”用洛必达法则计算复杂,考虑用泰勒公式求解。
解:由于原式2 利用泰勒公式证明等式或不等式利用泰勒公式证明问题要全力分析三个问题:(1)展开几阶泰勒公式。
由泰勒公式知,条件给出n+1阶可导,展开至n阶。
(2)在何处展开(展开点x0)。
展开点x0通常选取导数为零的点,区间的中点,函数的极值点。
(3)展开后x取何值。
通常选取x为区间的端点。
例2:设函数f(x)在闭区间[-1,1]上具有三阶连续的导数,且f(-1)=0,f(1)=1。
f′(0)=0,证明在(-1,1)内至少存在一点[-1,1],使得f″(ξ)=3。
泰勒公式及其在解题中的应用
本科生毕业设计(论文)(2014届)设计(论文)题目泰勒公式及其在解题中应用作者周立泉分院理工分院用数学1001班指导教师(职称)徐华(讲师)专业班级数学与应用数学)论文字数8000论文完成时间2014年4月3日杭州师范大学钱江学院教学部制泰勒公式及其在解题中应用数学与应用数学1001班周立泉指导教师徐华摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用.关键词:泰勒公式;数学分析;导数Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHuaAbstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications.Keyword:Taylor's formula;Mathematical analysis; derivative.目录1引言 (1)2泰勒公式 (1)3泰勒公式在解题中的应用 (2)3.1利用泰勒公式求近似值 (2)3.2利用泰勒公式求极限 (4)3.3泰勒公式在判断级数和广义积分敛散性的应用 (7)3.3.1判断级数的敛散性 (7)3.3.2判断广义积分的敛散性 (9)3.4利用泰勒公式证明等式与不等式 (10)4结论及展望 (10)参考文献 (11)致谢 (12)泰勒公式及其在解题中应用数学与应用数学1001班周立泉 指导教师徐华1引言泰勒公式在数值微积分中起着非常重要的作用,泰勒公式“化繁为简”的功能在数学研究方面也发挥了极大的作用.关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如证明不等式、求极限、判断函数凹凸性和敛散性、判别函数的极值、判断函数凹凸性及拐点、求渐近线、界的估计和近似值的计算等等.事实上,由于许多函数都能用泰勒公式来表示,并且研究函数近似值式和判断级数收敛性的问题又要借助于泰勒公式.因此泰勒公式在数学实际应用中也是一种非常重要的应用工具,我们必须掌握它,以便更好更方便的研究一些复杂的函数、解决更多实际的数学问题.虽然泰勒公式应用到各个数学领域很多,但同样也还有很多方面学者很少提及,因此在泰勒公式及其在解题中的应用方面我们有研究的必要,并且有着相当大的空间.2泰勒公式泰勒公式按不同的余项可以分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项为佩亚诺余项))((0n x x o -,仅表示余项是nx x )(0-,即当)(0x x →时高阶的无穷小.定量的余项是拉格朗日型余项10)1()()!1()(++-+n n x x n f ξ(ξ也可以写成)(00x x x -+θ10<<θ),定量的余项一般用于对逼近误差进行具体的计算或者估计.定理1(泰勒定理):设)(x f 在0x 处有n 阶导数,则存在0x 的一个领域,对于领域中的任一点x ,成立)()(!)()(!2)())(()()(00)(200''00'0x r x x n x f x x x f x x x f x f x f n n n +-++-+-+= (1)其中余项)(x r n 满足)1(0)1()()!1()()(++-+=n n n x x n f x r ξ,ξ在x 与0x 之间. 上述公式(1)称为)(x f 在0x x =处的带拉格朗日型余项的泰勒公式.余项10)1()()!1()()(++-+=n n n x x n f x r ξ(ξ在x 与0x 之间)称为拉格朗日余项.若不需要余项的精确表达式时,余项)(x r n 也可也成))(()(0n n x x o x r -=.此时,上述公式(1)则称为)(x f 在0x x =处的带有佩亚诺余项的泰勒公式.它的前1+n 项组成的多项式:''()'20000000()()()()()()()()2!!n n n f x f x p x f x f x x x x x x x n =+-+-++-称为)(x f 的在0x x =处的n 次泰勒多项式.当00=x 时,上式记为nn x n f x f x f x f f x f !)0(!3)0(!2)0()0()0()()(3'''2'''+++++= 该式称为麦克劳林公式,是泰勒公式的特殊形式带拉格朗日余项的泰勒公式对函数)(x f 的展开要求比较高,形式也相对复杂,但因为(2)对)(0x U x ∈∀均能成立(当x 不同时,ξ的取值可能不同),因此这反映出函数)(x f 在邻域)(0x U 内的全局性.带佩亚诺余项的泰勒公式对函数()x f 的展开要求较低,它只要求()x f 在点0x 处n 阶可导,展开形式也较为简单.(1)式说明当0x x →时用右端的泰勒多项式)(x p n 代替)(x f 所产生的误差是n x x )(0-的高阶无穷小,这反映了函数)(x f 在0x x →时的性态,或者说反映了)(x f 在点0x 处的局部性态.3泰勒公式在解题中的应用泰勒公式也被称为泰勒中值定理,是高等数学课程中的一个重要内容,不仅在理论分析方面有重要作用,其应用也非常广泛.但在高等数学课程中没有深入广泛地展开讨论,本文通过几个例子也仅仅说明其中的几个方面的应用,还有很多其他方面的应用,以及二元函数的泰勒公式及其应用等许多内容可以展开进一步的讨论,从而对泰勒公式有一个全面的认识与了解.3.1利用泰勒公式求近似值由于泰勒公式是利用增量法原理进行推导而来,因而在很多近似问题中也有广泛应用.在现今社会,由于计算机和通讯技术的发展,利用计算机进行近似计算已经成为科学研究和工程计算中的一个重要环节.泰勒公式是一个多项式拟合问题,而多项式是一个简单函数,它的研究对我们来说是轻松而又方便的.但必须注意的是泰勒公式是一种局部性质,因此在用它进行近似计算时,x 不能远离0x ,否则效果会比较差.利用泰勒公式可以对函数近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为nn x n f x f x f f x f !)0(!2)0()0()0()()(2'''++++≈例1 求e 的近似值分析 因为e 介于2和3之间,是个无限不循环的数,所以直接得到确定的值比较困难,在这里我们可以利用泰勒公式导出的近似计算式进行近似得到e 的值.解 首先令()xe xf =,则x n e x f x f x f ====)()()('''把0=x 带入,得1)0()0()0()('====n f f f于是得到x e 的近似式!!212n x x x e nx++++≈上式中令1=x ,有!1!31!2111n e +++++≈ 由此可以求出e 的近似值.例2 求dx e x ⎰-12的近似值,精确到510-分析 因为dx e x ⎰-12中的被积函数是不可积的(即不能用初等函数表达),我们可以考虑利用泰勒公式和逐项积分的方法求dx e x ⎰-12的近似值.解 在x e 的展开式中用2x -代替x 得+-+++-=-!)1(!212422n x x x en n x 逐项积分,得() +-+-+-=⎰⎰⎰⎰⎰-dx n x dx x dx x dx dx enn x 1021412101!1!212++⋅-+-⋅+-=121!1)1(51!21311n n n +-+-+-+-=75600193601132912161421101311 上述式子右端是一个收敛的交错级数,由其余项n R 的估计式知000015.07560017<≤R所以746836.093601132012161421101311102≈+-+-+-≈⎰-dx ex我们不妨再看一例,例3 计算积分dx x x⎰10sin 的近似值 分析 因为xxsin 不是初等函数,所以不能直接用牛顿——莱布尼兹公式求值,我们考虑利用泰勒公式求其近似值.解 由泰勒公式可得753!7)27sin(!5!3sin x x x x x x πθ⋅+++-= 所以642!7)27sin(!5!31sin x x x x x x πθ⋅-++-= 因此dx x x x x dx x x ⎰⎰⋅+++-=1064210)!7)27sin(!5!31(sin πθ107537!7)27sin(5!53!3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⋅++⋅+⋅-=x x x x x πθ 7!7)27sin(5!513!311⋅⋅++⋅+⋅-=πθx 由此得到9461.05!513!311sin 10≈⋅+⋅-≈⎰dx x x 3.2利用泰勒公式求极限对于一般待定型的极限问题,我们采用洛必达法则来求.但是对于一些求导比较繁琐,或是要多次使用洛必达法则的情况,运用泰勒公式往往比洛必达法则更为有效.对于函数多项式或有理分式的极限问题的计算是十分简单的, 因此, 对于一些较复杂的函数可以考虑根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或者有理分式的极限问题, 因此满足下列情况时可以考虑用泰勒公式来求极限:(1) 运用洛比达法则时, 次数较多, 且求导及化简过程较繁锁.(2) 分子或分母中有无穷小的差, 且此差不易转化为等价无穷小的替代形式.(3 )所遇到的函数展开为泰勒公式不难.当确定要运用泰勒公式求极限时, 关键是要确定展开的阶数.如果分母( 或分子) 是n 阶, 就将分子( 或分母) 展开为n 阶麦克劳林公式.若分子, 分母都需要展开, 可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数.例4 求4202cos limx e x x x -→-分析 这是一个待定型的极限问题,如果用洛必达法则,则分子分母都需求导4次.但若用泰勒公式计算就简单得多了.解 4202cos limx e x x x -→-44224420)()2(!21)2(1)(!4!21lim x x o x x x o x x x ⎥⎦⎤⎢⎣⎡+-+-+-⎥⎦⎤⎢⎣⎡++-=→ 444)(121limxx o x x +-=→ 121-= 例5 求⎥⎦⎤⎢⎣⎡+-∞→)1ln(lim 2xx x x x 的极限分析 当∞→x 时,此函数是∞-∞型未定式,虽然可以通过变换把它转换成型,再用洛必达法则求解,但计算量较大,现在我们先用泰勒公式将)11ln(x+展开,再求其极限.解 ))1(()1(211)11ln(22xo x x x +-=+ 故⎥⎦⎤⎢⎣⎡+-∞→)1ln(lim 2x x x x x ⎥⎦⎤⎢⎣⎡+--=∞→))1(211(lim 222x o x xx x x 21=在高等数学的学习中利用等价无穷小替换来求解极限问题一直是我们学习的难点,即使在学习了教材后仍然对等价无穷小替换求解极限的运用不够灵活甚至比较吃力,常常犯错. 究其原因主要有两个: 一是平时不够努力,对于常见的等价无穷小没有准确记忆并且对于此类问题缺少练习; 二是对于等价无穷小替换的实质还没有透彻的理解,表现在对一些等价无穷小替换的法则只知其然而不知其所以然. 如做练习时有这样的题目:例6 xxx x 3sin lim0-→分析 由于0→x ,根据无穷小量替换得到,x x →sin ,则03lim 3sin lim 00=-=-→→xx x x x x x x从解答过程中我们可以看到,我们在解这道题时不管条件是否满足而生搬硬套地使用了等价无穷小的替换法则,反映出我们对于无穷小的替换原则并未达到本质的理解,解决问题也缺乏灵活性.下面我们利用泰勒公式来重新理解无穷小替换的法则和原理(假设所有极限问题涉及的自变量过程变化都趋向于零).性质一:)(~ααββαo +=⇔首先来理解)(~ααββαo +=⇔,在最初的学习过程中我们容易产生两个误区: 其一,在学习时容易被左边形式迷惑,潜意识里往往误认为α,β都是单独不相关的一项;其二,对于右边的式子中()αo 我们会觉得比较抽象难以理解.根据这些容易产生的理解上的偏差,我们可以结合泰勒公式来形象直观地理解.以正弦函数的泰勒公式为例:+-+-=753!71!51!31sin x x x x x 如果β取x sin -,那么α可以取x ,也可以取3!31x x -,甚至53!51!31x x x +-也行,相应的)(αo 分别为:,!71!51!31753 +-+-x x x ,!71!5175 +-x x +-7!71x , 这样我们可以知道)(αo 并不是抽象的符号,它代表的是具体的表达式,而且该表达式可以很复杂,比如可以由多个式子组成; 另一方面,由于这些式子中的每一项都是幂函数,我们能非常直观地看出它们分别是)(),(),(642x o x o x o ,那是)!51!31(),!31(),(5332x x x o x x o x o +--接着讨论)(~ααββαo +=⇐,本质上它是等价无穷小的又一个性质——和差取大原则:αβααβ-±⇒=)(o ,取,!71!51!31,753 +-+-==x x x x βα则),(αβo =x x x x x sin !71!51!31753=+-+-=+ βα,可理解成:正弦函数由α与β两部分组成,其中α是函数的主部项,它对函数的大小和变换趋势起主要作用,β是函数的次要项或者剩余项,由()αβo =可知,β实质上是相对于主部项α的小扰动项,对整个函数的数值及变化趋势起次要的作用.具体到求极限的问题中就是极限问题的结果取决于分子分母中多项式的最低次项.性质二(和差代替规则):若''~,~ββαα,并且βα,不等价,则''~βαβα--,并且'''limlim γβαγβα-=- 故对于例4,由于 +-=3!31sin x x x ,从而,61sin 3 +=-x x x 此时,61~sin 3+-x x x 所以0361lim 3sin lim 300==-→→x xxx x x x 对于表面上差异较小的问题但运用等价无穷小替换法则大相径庭,而这样的问题往往能够用泰勒公式统一解决. 说明在求极限问题的解题思路中泰勒公式比等价无穷小替换法则更普遍、更一般,在解决问题时往往倾向接受和使用那些放之四海而皆准的思路和方法,因此利用泰勒公式来理解等价无穷小替换的实质也就更容易被大家理解和掌握.3.3泰勒公式在判断级数和广义积分敛散性的应用 3.3.1判断级数的敛散性在级数敛散性的理论中,要判定一个正项级数∑∞=1n na是否收敛,我们通常找一个较简单的级数∑∑∞=∞==111n pn n nb )0(>p ,再用比较判定法来判定.在实际应用中较困难的问题是如何选取恰当的∑∞=11n p n )0(>p 中的p 值,例如 (1)当2=p ,此时∑∞=121n n 收敛,但+∞=∞→21lim n a n n . (2)当1=p ,此时∑∞=11n n发散,但01lim =∞→na n n . 这里我们无法判定∑∞=1n n a 的敛散性,为了有效地选取∑∞=11n pn中的p 值,可以应用泰勒公式研究通项0→n a )(+∞→n 的阶,据此选择恰当的p 值使l n a pnn =+∞→1lim,并且保证+∞<<l 0,再由比较判定法(极限形式)就可以判定∑∞=1n na的敛散性.下面我们来举例说明:例7 判定级数∑+∞=--+111)2(n nnaa()0>a 的敛散性.解 因)1(ln 121ln 1222ln no a n a x e a xx x+++==, 故)1(ln 1!21ln 112221no a n a n a n+++=)1(ln 1!21ln 112221n o a n a n an++-=-因此)1(ln 1)2(22211no a n a a a nnn +=-+=- 从而有a n a n n 22ln 11lim=∞→,0→n a 是关于)1(n 的2阶.,即 ∑+∞=--+111)2(n nnaa 与∑+∞=121n n 同收敛 评注:当级数的通项表达式是由不同类型的函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便于利用判敛准则.例8 讨论级数∑∞=+-1)1ln 1(n n n n的敛散性分析 直接根据通项去判断该项级数是正项级数还是非正项级数是比较困难的,因而也就无法恰当地选择判敛方法.在上式中我们注意到,)11ln(1lnn n n +=+这个式子中,若将其泰勒展开为n1的幂的形式,开二次方后恰与n1相呼应,会使判敛更容易进行. 解 )11ln(1ln nn n +=+ +-+-=4324131211n n n nn1<∴n n n 11ln<+ ∴01ln 1>+-=n n nu n故该级数是正项级数. 又 )1(312111ln332no n n n n n ++-=+2322332211)211(4111nn n n n n n -=-=+->∴232321)211(11ln 1n nn n n n n u n =--<+-=∑∞=12321n n收敛,由正项级数比较判别法知原级数收敛. 例9判断级数∑∞=-1)1(n n n 的敛散性分析 对于级数∑∞=-1)1(n nn ,运用比较法,柯西判别法,魏尔斯特拉斯判别法难以直接判断其敛散性.因此我们可以考虑先把n n 进行泰勒展开,再运用上述方法进行判别.解 由泰勒公式有)ln 1(ln 1122ln 1n no n n en n nn++==所以)ln 1(ln 1122n n o n n n n +=-,而∑∑∞=∞=≥111ln 1n n n n n 发散,又)(0ln 12322∞→→n n n n 所以n nn 212ln 1∑∞=收敛,故∑∞=-1)1(n n n 发散.3.3.2判断广义积分的敛散性在定积分中,我们总是假定积分区间是有限的,而被积函数(如果可积的话)一定是有界的.但在理论上或实际应用中都有需要去掉这两个限制,把定积分的概念广为(i )无限区间上的积分; (ii )无界函数的积分; 在判定广义积分dx x f a⎰+∞)(的敛散性时,通常选取广义积分)0(1>⎰+∞p dx xap 进行比较,在此通常研究无穷小量)()(+∞→x x f 的阶来有效地选择dx x f a⎰+∞)(中的p 值,从而判定敛散性.(注意到:如果dx x f a⎰+∞)(收敛,则dx x f a⎰+∞)(收敛.)例10 判断广义积分dx x x xx ⎰-10sin sin 的敛散性 分析 我们可以知道dx xx xx ⎰-10sin sin 是属于无界函数广义积分,在)1,0(上运用定积分的知识很判断出该积分是否收敛,那么我们可以考虑是否可以运用泰勒公式将x sin 展开,然后再进行计算.解 ()0sin sin <-=xx xx x f ,(]1,0∈x ,即被积函数在积分区间上不变号. )(61)(611)(!31)(!31sin sin 433224343x o x x o x x x o x x x x o x x x x x x x +⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+--⎥⎦⎤⎢⎣⎡+-=-[])(16)(611)(61)(61132232x o x x o x x o x x o x +⎥⎦⎤⎢⎣⎡+-=++-=)(6x o x+= 故有1)6sin sin (lim 0=-→xx x x x x ,又由于广义积分dx x ⎰106发散,因此用比式判别法知原广义积分收敛. 例11 研究广义积分dx x x x ⎰+∞--++4)233(的敛散性分析 我们可以初步判断dx x x x ⎰+∞--++4)233(属于无限区间上的积分,在区间),4(+∞不易运用定积分的知识进行判断该积分是否收敛.那么同样我们可以考虑运用泰勒公式将其展开再进行讨论.解 我们已经学过()αx +1的泰勒展开式为),(!2)1(1)1(22x o x x x n+-++=+ααα则x x x x f 233)(--++=2)31()31(2121--++=xx x)2)1(1891231()1()1891231(2222-+⋅-⋅-++⋅-⋅+=x o x x x o x x x)1(1492323xo x +⋅-= 因此491)(lim23=+∞→xx f x ,即0)(→x f 是)(1+∞→x x的23阶,而⎰+∞4231dx x 收敛,故dx x f ⎰+∞4)(收敛,从而dx x x x ⎰+∞--++4)233(收敛.3.4利用泰勒公式证明等式与不等式关于在不等式的证明方面,我们已经知道有很多种方法,比如利用函数的凸性来证明不等式,利用拉格朗日中值定理来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法,同样泰勒公式也是不等式证明的一个重要方法.如果函数)(x f 存在二阶及二阶以上的导数并且有界,那么利用泰勒公式去证明这些不等式,一般的证明思路为:(1)写出比最高阶导数低一阶的函数的泰勒展开式; (2)恰当地选择等式两边的x 与0x ;4结论及展望泰勒公式是数学分析中非常重要的内容,也是研究数学各个领域的不可或缺的工具.本文章是在大量查阅有关泰勒公式的资料的基础上作出的初步整理,这篇文章主要对泰勒公式在近似值计算、求极限、判断级数和广义积分的敛散性以及证明等式与不等式等方面做了简单系统的介绍和分析,从而体现了泰勒公式在微分学应用中的重要的地位,通过以上几个方面的探讨,充分利用其解题技巧在解题时可以起到事半功倍的效果.值得一提的是,虽然泰勒公式应用到各个数学领域很多,但同样也还有很多方面很少被提及,需要不断地探索.本文通过几个例子也仅仅说明其中的几方面的应用,还有很多其他方面的应用,以及二元函数的泰勒公式及其应用等很多内容可以展开进一步的总结讨论,从而对泰勒公式有一个全面的认识与了解.而泰勒公式在数学实际应用中又是一种非常重要的应用工具,只有掌握了这些知识,并且在此基础上加强训练、不断地进行总结,才能熟练的应用它,灵活的从不同角度找出解题的途径,探索新的解题方法,以便更好更方便的研究一些复杂的函数,解决更多实际的数学问题.参考文献[1]胡格吉乐吐.对泰勒公式的理解及泰勒公式的应用[J].内蒙古科技与经济,2009(24):73.[2]刘鹏.浅谈泰勒公式及其应用.科技信息[J],2011(09):521-522.[3]齐成辉.泰勒公式的应用.陕西师范大学学报,2003,31(09):24-25.[4]费德霖.泰勒公式的应用及技巧.皖西学院学报,2001,17(04):84-86.[5]潘劲松.泰勒公式的证明及应用.廊坊师范学院学报,2010,10(02):16-21.[6]董斌斌.泰勒公式及其在解题中的应用.科技信息,2010,(31):243.[7]冯平、石永廷.泰勒公式在求解高等数学问题中的应用.新疆职业大学学报,2003,11(04):64-66.[8]陈妙琴.泰勒公式在证明不等式中的应用.宁德师专学报(自然科学报),2007,19(02):155-156.[9]刘萍、王文锦.谈泰勒公式在微分有关证明题中的应用.科技信息,2009(11):235.[10]/faculty/kaliakin/appendix_Taylor.pdf[11]/~robbin/221dir/taylor.pdf[12]/wiki/Taylor_series[13]/wiki/Taylor's_theore致谢四年的大学生活即将在这个季节画上一个句号,而于我的人生只是一个逗号,我将面对又一次征程的开始.时光匆匆如流水,转眼便是大学毕业时节,离校的日期已日趋临近,毕业论文的完成也随之进入尾声.在本文即将完成之时,谨此向我的导师徐华讲师致以衷心的感谢和崇高的敬意.本文的顺利完成离不开徐华老师的悉心指导,老师以她敏锐的洞察力,渊博的知识,严谨的治学态度,精益求精的工作作风给我留下了深刻的印象,使我获益匪浅.我还要真诚地感谢我的室友张天闻同学,他不仅在学术上给我指引,而且在生活中也给予我帮助,从他身上我学到了很多.我还要感谢我的母校杭州师范大学钱江学院,这里严谨的学风,优美的校园环境使我的大学四年过得很充实也很愉快.最后我要感谢我的父母,当自己怀着忐忑的心情完成这篇论文的时候,自己也从当年一个刚走进大城市的懵懂少年变成了一个成熟的青年.十几年的求学之路,虽然只是一个本科毕业,但也实属不易.首先,从小学到大学的生活费及学费就不是个小数目,这当然要感谢我的爸爸妈妈,他们都是农民,没有他们的勤勤恳恳和细心安排,没有他们的支持和鼓励,我是无论如何也完成不了我的大学生活.书到用时方恨少,在这篇论文的写作过程中,我深感自己的水平还非常的欠缺.生命不息,学习不止,人生就是一个不断学习和完善的过程,敢问路在何方?路在脚下!。
利用泰勒公式求极限
题 目决 定 .一 般 来 说 。先 用 低 阶 麦 克 劳 林 公 式 表 示 ,如 果 计 算
不 了 ,再 增加 阶数 ,总 是 可 以算 出来 的.
下 面 我 们 举 两 个 例 子 说 明 如 何 应 用 麦 克 劳 林 公 式 求
极 限.
例 1:求 极 限 lim.Slnx-xcosx
劳林 公 式是 泰勒 公式 的 一 个 特 例 .我 们 可 应 用 麦 克 劳 林 公 式
求 极 限. 利 用 麦 克 劳 林 公 式 求 极 限 的思 路 是 将 其 他 函数 表 示 为 的
幂 函 数 再 进 行 计 算 .至 于 用 几 阶麦 克 劳 林 公 式 表 示 ,根 据 具 体
— .
sபைடு நூலகம்n x
x
3
对 于 例 l,也 可 以 应 用 罗 比 达 法 则 来 求 极 限 ,可 以说 更 简 单 .
1ir a sinx-xcosx lim —siIlx- xcosx :lim —xsinx lim—sinx 1
—
—
—
=_
=
—
—
—
—
~
_=
—
=
—
= ——
.
sin x
n !
(1)式 称 为 f(x)在 x。处 的 带 有 佩 亚 诺 型 余 项 的n阶 泰 勒
公 式 . 在 泰 勒 公 式 (1)中 ,如 果 取 x。=0,那 么公 式 (1)为
f(x)=f(0) 0)x+
2+.._+
“+o( “) (2)
Z !
n !
公 式 (2)称 为 带 有 佩 亚 诺 型余 项 的 阶 麦 克 劳 林 公 式 .麦 克
(完整版)泰勒公式及其应用(数学考研)
第2章 预备知识前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的.给定一个函数)(x f 在点0x 处可微,则有:)()()()(000x x x f x f x x f ∆+∆'+=∆+ο这样当1<<∆x 时可得近似公式x x f x f x x f ∆'+≈∆+)()()(000或))(()()(000x x x f x f x f -'+=,10<<-x x即在0x 点附近,可以用一个x 的线形函数(一次多项式)去逼近函数f ,但这时有两个问题没有解决:(1) 近似的程度不好,精确度不高.因为我们只是用一个简单的函数—一次多项式去替代可能是十分复杂的函数f .(2)近似所产生的误差不能具体估计,只知道舍掉的是一个高阶无穷小量)(0x x -ο,如果要求误差不得超过410-,用))(()(000x x x f x f -'+去替代)(x f 行吗?因此就需要用新的逼近方法去替代函数.在下面这一节我们就来设法解决这两个问题.2.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,我们可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令n n x x a x x a a x f )(...)()(0010-++-+= (2.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线)(x f y =在点))(,(00x f x 的切线)去替代)(x f y =,而是想用一条n 次抛物线n n x x a x x a a x f )(...)()(0010-++-+=去替代它.我们猜想在点))(,(00x f x 附近这两条曲线可能会拟合的更好些.那么系数0a ,1a …n a 如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有n n x x a x x a a x f )(...)()(0010-++-+=于是得:)(00x f a =第2章 预备知识2求一次导数可得:)(01x f a '= 又求一次导数可得:!2)(02x f a ''= 这样进行下去可得:!3)(03x f a '''=,!4)(0)4(4x f a =,… ,!)(0)(n x f a n n = 因此当f 是一个n 次多项式时,它就可以表成:k nk k nn x x k x f x x n x fx x x f x f x f )(!)()(!)(...))(()()(000)(00)(000-=-++-'+=∑= (2.2) 即0x 附近的点x 处的函数值)(x f 可以通过0x 点的函数值和各级导数值去计算.通过这个特殊的情形,我们得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式n n n x x n x f x x x f x x x f x f x T )(!)(...)(!2)())(()()(00)(200000-++-''+-'+=称为函数)(x f 在点0x 处的泰勒多项式,)(x T n 的各项系数!)(0)(k x fk ),...,3,2,1(n k = ,称为泰勒系数.因而n 次多项式的n 次泰勒多项式就是它本身.2.2 Taylor 公式的各种余项对于一般的函数,其n 次Taylor 多项式与函数本身又有什么关系呢?函数在某点0x 附近能近似地用它在0x 点的n 次泰勒多项式去替代吗?如果可以,那怎样估计误差呢?下面的Taylor 定理就是回答这个问题的.定理1]10[ (带拉格朗日型余项的Taylor 公式)假设函数)(x f 在h x x ≤-||0上存在直至1+n 阶的连续导函数,则对任一],[00h x h x x +-∈,泰勒公式的余项为10)1()()!1()()(++-+=n n n x x n f x R ξ其中)(00x x x -+=θξ为0x 与x 间的一个值.即有10)1(00)(000)()!1()()(!)(...))(()()(++-++-++-'+=n n nn x x n f x x n x fx x x f x f x f ξ (2.3) 推论1]10[ 当0=n ,(2.3)式即为拉格朗日中值公式:))(()()(00x x f x f x f -'=-ξ所以,泰勒定理也可以看作是拉格朗日中值定理的推广. 推论2]10[ 在定理1中,若令)0()()1(!)()(101)1(>--⋅=+-++p x x n p fx R n p n n n θξ则称)(x R n 为一般形式的余项公式, 其中0x x x --=ξθ.在上式中,1+=n p 即为拉格朗日型余项.若令1=p ,则得)0()()1(!)()(10)1(>--=++p x x n f x R n n n n θξ,此式称为柯西余项公式.当00=x ,得到泰勒公式:11)(2)!1()(!)0(...!2)0()0()0()(++++++''+'+=n n n n x n x f x n f x f x f f x f θ)(,)10(<<θ (2.4)则(2.4)式称为带有拉格朗日型余项的麦克劳林公式.定理2]10[ (带皮亚诺型的余项的Taylor 公式) 若函数f 在点0x 处存在直至n 阶导数,则有∑=-=nk k k n x x k x fx P 000)()(!)()(, )()()(x P x f x R n n -=.则当0x x →时,))(()(0n n x x x R -=ο.即有))(()(!)(...))(()()(000)(000n n n x x x x n x f x x x f x f x f -+-++-'+=ο (2.5)定理3所证的(2.5)公式称为函数)(x f 在点0x 处的泰勒公式,)()()(x P x f x R n n -=, 称为泰勒公式的余项的,形如))((0n x x -ο的余项称为皮亚诺型余项,所以(2.5)式又称为带有皮亚诺型余项的泰勒公式当(2.5)式中00=x 时,可得到)(!)0(...!2)0()0()0()()(2n nn x x n f x f x f f x f ο+++''+'+= (2.6)(2.6)式称为带有皮亚诺型余项的麦克劳林公式,此展开式在一些求极限的题目中有重要应用.由于))(()(0n n x x x R -=ο,函数的各阶泰勒公式事实上是函数无穷小的一种精细分析,也是在无穷小领域将超越运算转化为整幂运算的手段.这一手段使得我们可能将无理的或超越函数的极限,转化为有理式的极限,从而使得由超越函数所带来的极限式的奇性或不定性,得以有效的约除,这就极大的简化了极限的运算.这在后面的应用中给以介绍.第2章 预备知识4定理3 设0>h ,函数)(x f 在);(0h x U 内具有2+n 阶连续导数,且0)(0)2(≠+x f n ,)(x f 在);(0h x U 内的泰勒公式为10,)!1()(!)(...)()()(10)1(0)(000<<+++++'+=+++θθn n n n h n h x fh n x fh x f x f h x f (2.7)则21lim 0+=→n h θ. 证明:)(x f 在);(0h x U 内的带皮亚诺型余项的泰勒公式:)()!2()()!1()(!)(...)()()(220)2(10)1(0)(000++++++++++++'+=+n n n n n n n h h n x f h n x f h n x f h x f x f h x f ο将上式与(2.7)式两边分别相减,可得出)()!2()()!1()(-)(220)2(10)1(0)1(++++++++=++n n n n n n h h n x fhn x fh x fοθ,从而220)2(0)1(0)1()()!2()()()()!1(+++++++=-+⋅+n n n n n h h n x f h x f h x fn οθθθ,令0→h ,得)!2()()(lim )!1(10)2(0)2(0+=⋅⋅+++→n x fx f n n n h θ,故21lim 0+=→n h θ. 由上面的证明我们可以看得出,当n 趋近于无穷大时,泰勒公式的近似效果越好,拟合程度也越好.第3章 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数)(0x f 及n 阶导数值:)(0x f ',)(0x f '',…,)(0)(x fn ,以及用这些值表示动点x 处的函数值)(x f ,本章研究泰勒公式的具体应用,比如近似计算,证明中值公式,求极限等中的应用.3.1 应用Taylor 公式证明等式例3.1.1 设)(x f 在[]b a ,上三次可导,试证: ),(b a c ∈∃,使得3))((241))(2()()(a b c f a b b a f a f b f -'''+-+'+= 证明: (利用待定系数法)设k 为使下列式子成立的实数:0)(241))(2()()(3=---+'--a b k a b b a f a f b f (3.1) 这时,我们的问题归为证明:),(b a c ∈∃,使得:)(c f k '''=令3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--=,则0)()(==b g a g . 根据罗尔定理,),(b a ∈∃ξ,使得0)(='ξg ,即:0)(82)()2()2()(2=---+''-+'-'a k a a f a f f ξξξξξ 这是关于k 的方程,注意到)(ξf '在点2ξ+a 处的泰勒公式:2))((812)()2()2()(a c f a a f a f f -'''+-+''++'='ξξξξξ 其中),(b a c ∈∃,比较可得原命题成立.例3.1.2 设)(x f 在[]b a ,上有二阶导数,试证:),(b a c ∈∃,使得3))((241)2()()(a b c f b a f a b dx x f ba-''++-=⎰. (3.2) 证明:记20ba x +=,则)(x f 在0x 处泰勒公式展开式为: 20000)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ (3.3)对(3.3)式两端同时取[]b a ,上的积分,注意右端第二项积分为0,对于第三项的积分,由于导数有介值性,第一积分中值定理成立:),(b a c ∈∃,使得第3章 泰勒公式的应用632020))((121)()())((a b c f dx x x c f dx x x f baba-''=-''=-''⎰⎰ξ 因此原命题式成立.因此可以从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式.以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明.证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面我们通过几个例子来说明一下.3.2 应用Taylor 公式证明不等式例3.4设)(x f 在[]b a ,上二次可微,0)(<''x f ,试证:b x x x a n ≤<<≤≤∀...21,0≥i k ,11=∑=n i i k ,∑∑==>ni i i n i i i x f k x k f 11)()(.证明:取∑==ni i i x k x 10,将)(i x f 在0x x =处展开))(()()(2)())(()()(00020000x x x f x f x x f x x x f x f x f i i i i i -'+<-''+-'+=ξ 其中()n i ,...,3,2,1=.以i k 乘此式两端,然后n 个不等式相加,注意11=∑=ni i k()00110=-=-∑∑==x x k x xk ni i i ni ii得:)()()(101∑∑===<ni i i ni i ix k f x f x f k.例3.2.2 设)(x f 在[]1,0上有二阶导数,当10≤≤x 时,1)(≤x f ,2)(<''x f .试证:当10≤≤x 时,3)(≤'x f .证明:)(t f 在x 处的泰勒展开式为:2)(!2)())(()()(x t f x t a f x f t f -''+-'+=ξ 其中将t 分别换为1=t ,0=t 可得:2)1(!2)()1)(()()1(x f x x f x f f -''+-'+=ξ (3.4) 2)(!2)())(()()0(x f x x f x f f -''+-'+=η (3.5)所以(3.4)式减(3.5)式得:22!2)()1(!2)()()0()1(x f x f x f f f ηξ''--''+'=- 从而,312)1(2)(21)1()(21)0()1()(2222=+≤+-+≤''+-''++≤'x x x f x f f f x f ηξ 例3.2.3 设)(x f 在[]b a ,上二阶可导,0)()(='='b f a f ,证明:),(b a ∈∃ξ,有|)()(|)(4|)(|2a fb f a b f --≥''ξ.证明:)(x f 在a x =,b x =处的泰勒展开式分别为:21)(!2)())(()()(a x f a x a f a f x f -''+-'+=ξ,),(1x a ∈ξ 22)(!2)())(()()(b x f b x b f b f x f -''+-'+=ξ,),(2b x ∈ξ令2ba x +=,则有 4)(!2)()()2(21a b f a f b a f -''+=+ξ,)2,(1ba a +∈ξ (3.6)4)(!2)()()2(22a b f b f b a f -''+=+ξ,),2(2b b a +∈ξ (3.7) (3.7)-(3.6)得:[]0)()(8)()()(122=''-''-+-ξξf f a b a f b f 则有[])()(8)()()(8)()()(122122ξξξξf f a b f f a b a f b f ''+''-≤''-''-=- 令{})(,)(max )(21ξξξf f f ''''='',即有|)()(|)(4|)(|2a fb f a b f --≥''ξ. 例3.2.4 设)(x f 二次可微,0)1()0(==f f ,2)(max 10=≤≤x f x ,试证:16)(min 10-≤''≤≤x f x .证明:因)(x f 在[]1,0上连续,故有最大值,最小值.又因2)(max 10=≤≤x f x ,0)1()0(==f f ,故最大值在()1,0内部达到,所以()1,00∈∃x 使得)(max )(100x f x f x ≤≤=于是)(0x f 为极大值,由费马定理有:0)(0='x f ,在0x x =处按Taylor 公式展开:)1,0(,∈∃ηξ使得:第3章 泰勒公式的应用82002)()()0(0x f x f f ξ''+==, (3.8) 200)1(2)()()1(0x f x f f -''+==η. (3.9)因此{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=''''≤''≤≤202010)1(4,4min )(),(min )(min x x f f x f x ηξ 而⎥⎦⎤⎢⎣⎡∈1,210x 时,16)1(4)1(4,4min 202020-≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x , ⎥⎦⎤⎢⎣⎡∈21,00x 时,164)1(4,4min 202020-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x . 所以,16)(min 10-≤''≤≤x f x .由上述几个例题可以看出泰勒公式还可以用来证明不等式,例3.2.1说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例3.2.2说明可以对某些函数在一定范围内的界进行估计,例3.2.3是用泰勒公式证明中值不等式,例3.2.4与例3.2.2很相似,只不过前者是界的估计,后者是对导数的中值估计.证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学习中我们要会灵活应用.但前提是要满足应用的条件,那就是泰勒公式成立的条件.3.3 应用Taylor 公式求极限例3.3.1求422cos limxex x x -→-.解:在这里我们用泰勒公式求解,考虑到极限,用带皮亚诺型余项的麦克劳林公式展开,则有)(2421cos 542x x x x ο++-=)(82154222x x x ex ο++-=-)(12cos 5422x x ex x ο+-=--所以,121)(12lim cos lim4540242-=+-=-→-→xx x xex x x x ο. 像这类函数用泰勒公式求极限就比较简单,因为使用洛毕达法则比较麻烦和复杂.例 3.3.2 设函数)(x ϕ在[)+∞,0上二次连续可微,如果)(lim x x ϕ+∞→存在,且)(x ϕ''在[)+∞,0上有界,试证:0)(lim ='+∞→x x ϕ.证明:要证明0)(lim ='+∞→x x ϕ,即要证明:0>∀ε,0>∃δ.当M x >时()εϕ<'x . 利用Taylor 公式,0>∀h ,2)(21)()()(h h x x h x ξϕϕϕϕ''+'+=+ (3.10)即[]h x h x h x )(21)()(1)(ξϕϕϕϕ''--+=' (3.11) 记)(lim x A x ϕ+∞→=,因)(x ϕ''有界,所以0>∃M ,使得M x ≤'')(ϕ, )0(≥∀x故由(3.11)知[]h x A A h x h x |)(|21)()(1)(ξϕϕϕϕ''+-+-+≤' (3.12) 0>∀ε,首先可取0>h 充分小,使得221ε<Mh , 然后将h 固定,因)(lim x A x ϕ+∞→=, 所以0>∃δ,当δ>x 时[]2)()(1εϕϕ<-+-+x A A h x h 从而由(3.12)式即得:εεεϕ=+<'22)(x .即0)(lim ='+∞→x x ϕ例3.3.3 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程. (1)32)1)(2(+-=x x y ;(2))1(cos 2215x e xx y --=.解:(1)首先设所求的渐近线为 b ax y +=,并令 xu 1=,则有:第3章 泰勒公式的应用100)(1lim )()321)(321(lim )1()21(lim])1)(2([lim 003231032=+--=+--+-=--+-=--+-→→→∞→uu bu a u u bu a u u ubu a u u b ax x x u u u x οο从中解出:1=a ,0=b .所以有渐近线:x y =.(2)设b ax y +=,xu 1=,则有 0)()4221)(2421(lim cos lim ])1(cos [lim 554424205542021522=+--⋅+-+-=---=---→-→-∞→u u bu au u u u u u bu au e u b ax e x x u u u xx ο从中解出:121-=a ,0,1==b a . 所以有渐近线:x y 121-=.从上面的例子中我们可以看得出泰勒公式在判断函数渐近线时的作用,因而我们在判断函数形态时可以考虑这个方法,通过求极限来求函数的渐进线.上述三个例子都是泰勒公式在求极限的题目上的应用,例3.3.1是在具体点或者是特殊点的极限,而第二个例子是求无穷远处的极限,第三个是利用极限来求函数的渐近线,学习了数学分析,我们知道求极限的方法多种多样,但对于有些复杂的题目我们用洛必达法则或其他方法是很难求出,或者是比较复杂的,我们不妨用泰勒公式来解决.3.4 应用Taylor 公式求中值点的极限例3.4.1]4[ 设(1))(x f 在),(00δδ+-x x 内是n 阶连续可微函数,此处0>δ; (2)当)1(,...,3,2-=n k 时,有0)(0)(=x f k ,但是0)(0)(≠x f n ;(3)当δ<≠h 0时有))(()()(000h h x f hx f h x f θ+'=-+. (3.13)其中1)(0<<h θ,证明:101)(lim -→=n h nh θ. 证明:要求出)(h θ的极限必须设法解出)(h θ,因此将(3.13)式左边的)(0h x f +及右端的))((0h h x f θ+'在0x 处展开,注意条件(2),知)1,0(,21∈∃θθ使得())(!)()()(10000h x f n h x f h x f h x f n n θ++'+=+, (3.14) ))(()!1())(()())((20)(1100h h x f n h h x f h h x f n n n θθθθ+-+'=+'--, (3.15)于是(3.13)式变为=++'-)(!)(10)(10h x f n h x f n n θ))(()!1())(()(20)(110h h x f n h h x f n n n θθθ+-+'--从而120)(10)())(()()(-++=n n n h h x nf h x f h θθθθ. 因)1,0()(,,21∈h θθθ,利用)()(x f n 的连续性,由此可得101)(lim -→=n h nh θ. 这个例子可以作为定理来使用,但前提是要满足条件.以后只要遇到相关的题目就可以简单应用.3.5 应用Taylor 公式近似计算由于泰勒公式主要是用一个多项式去逼近函数,因而可用于求某些函数的近似值,或根据误差确定变量范围.特别是计算机编程上的计算.例3.5.1 求:(1)计算e 的值,使其误差不超过610-;(2)用泰勒多项式逼近正弦函数x sin ,要求误差不超过310-,以2=m 的情形讨论x 的取值范围.解:(1) 由于x e 的麦克劳林的泰勒展开式为: 10,)!1(!...!2112<<++++++=+θθn xn x x n e n x x x e 当1=x 时,有)!1(!1...!2111++++++=n e n e θ故)!1(3)!1()1(+<+=n n e R n θ. 当9=n 时,有第3章 泰勒公式的应用 12691036288003!103)1(-<<=R 从而省略)1(9R 而求得e 的近似值为: 718285.2!91...!31!2111≈+++++≈e (2) 当2=m 时, 6sin 3x x x -≈,使其误差满足: 355410!5!5cos )(-<≤=x x x x R θ 只需6543.0<x (弧度),即大约在原点左右37°29′38″范围内,上述三次多项式逼近的误差不超过310-.3.6 应用Taylor 公式求极值定理3.1 ]12[ 设f 在0x 附近有1+n 阶连续导数,且)(0x f ')(0x f ''=0)(...0)(===x f n , 0)(0)1(≠+x f n(1)如果n 为偶数,则0x 不是f 的极值点.(2)如果n 为奇数,则0x 是f 的严格极值点,且当0)(0)1(>+x fn 时,0x 是f 的严格极小值点;当0)(0)1(<+x f n 时,0x 是f 的严格极大值点.证明:将f 在0x 点处作带皮亚诺型余项的Taylor 展开,即:))(()()!1()()()(10100)1(0+++-+-++=n n n x x x x n x f x f x f ο 于是1010100)1(0)()())(()!1()()()(++++-⎥⎦⎤⎢⎣⎡--++=-n n n n x x x x x x n x f x f x f ο 由于)!1()()())(()!1()(lim 0)1(10100)1(0+=⎥⎦⎤⎢⎣⎡--++++++→n x f x x x x n x f n n n n x x ο 故0>∃δ,),(00δδ+-x x 中,10100)1()())(()!1()(+++--++n n n x x x x n x f ο与)!1()(0)1(++n x f n 同号. (1)如果n 为偶数,则由10)(+-n x x 在0x 附近变号知,)()(0x f x f -也变号,故0x 不是f 的极值点.(2)如果n 为奇数,则1+n 为偶数,于是,10)(+-n x x 在0x 附近不变号,故)()(0x f x f -与)!1()(0)1(++n x f n 同号. 若0)(0)1(>+x f n ,则)()(0x f x f >,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极小值点. 若0)(0)1(<+x f n ,则)()(0x f x f <,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极大值点.例3.6.1 试求函数34)1(-x x 的极值.解:设34)1()(-=x x x f ,由于)47()1()(23--='x x x x f ,因此74,1,0=x 是函数的三个稳定点.f 的二阶导数为)287)(1(6)(22+--=''x x x x x f ,由此得,0)1()0(=''=''f f 及0)74(>''f .所以)(x f 在74=x 时取得极小值. 求三阶导数)4306035(6)(23-+-='''x x x x x f ,有0)0(='''f ,0)1(>'''f .由于31=+n ,则2=n 为偶数,由定理3.1知f 在1=x 不取极值.再求f 的四阶导数)1154535(24)(23)4(-+-=x x x x f ,有0)0()4(<f .因为41=+n ,则3=n 为奇数,由定理3.1知f 在0=x 处取得极大值.综上所述,0)0(=f 为极大值,82354369127374)74(34-=-=)()(f 为极小值. 由上面的例题我们可以了解到定理3.1也是判断极值的充分条件.3.7 应用Taylor 公式研究函数图形的局部形态定理3.2]12[ 设R X ∈为任一非空集合,X x ∈0,函数R X f →:在0x 处n 阶可导,且满足条件:)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n .(1)n 为偶数,如果)0(0)(0)(<>x f n ,则曲线)(x f y =在点))(,(00x f x 的邻近位于曲线过此点的切线的上(下)方.(2)n 为奇数,则曲线)(x f y =在点))(,(00x f x 的邻近位于该点切线的两侧,此时称曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.证明:因为f 在0x 处n 阶可导,并且)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n ,所以f 在0x 的开邻域 ),(0δx B 内的n 阶Taylor 公式为第3章 泰勒公式的应用 14))(()(!)())(()()(000)(000n n n x x x x n x f x x x f x f x f -+-+-'+=ο )(0x x → 于是[]⎥⎦⎤⎢⎣⎡--+-=-'+-n n n nx x x x n x f x x x x x f x f x f )())((!)()())(()()(000)(0000ο 由于!)()())((!)(lim 0)(000)(0n x f x x x x n x f n n n n x x =⎥⎦⎤⎢⎣⎡--+→ο 由此可见:0>∃δ,),(0δx B X x ∈∀,有:[]))(()()(000x x x f x f x f -'+-与n n x x n x f )(!)(00)(-同号. (1)当n 为偶数,如果0)(0)(>x f n ,则[]0))(()()(000>-'+-x x x f x f x f ,),(0δx B X x ∈∀这就表明在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上方;如果0)(0)(<x f n ,则有[]0))(()()(000<-'+-x x x f x f x f ,),(0δx B X x ∈∀因此,在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下方.(2)当n 为奇数,这时若)0(0)(0)(<>x f n ,则[])0(0))(()()(000<>-'+-x x x f x f x f , ),(0δx B X x+∈∀ [])0(0))(()()(000><-'+-x x x f x f x f , ),(0δx B X x-∈∀ 由此知,在0x 的右侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上(下)方;而在0x 的左侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下(上)方.因此,曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.3.8 应用Taylor 公式研究线形插值例 3.8.1(线形插值的误差公式) 设R b a f →],[:为实一元函数,l 为两点))(,(a f a 与))(,(b f b 所决定的线形函数,即)()()(b f a b a x a f a b x b x l --+--=,l 称为f 在区间],[b a 上的线形插值.如果f 在区间],[b a 上二阶可导,f 在],[b a 上连续,那么,我们可以对这种插值法带来的误差作出估计.应用带Lagrange 型余项Taylor 公式:),(x a ∈∃ξ,),(b x ∈∃η,使得 [][])(2))(()()(2))(()()(21)()()()(21)()()()()()()()(22ζηξηξf a x x b f a b x b f a b a x a x x b f x b x f x b a b a x f x a x f x a a b x b x f b f ab a x x f a f a b x b x f x l ''--=⎥⎦⎤⎢⎣⎡''--+''----=⎥⎦⎤⎢⎣⎡''-+'---+⎥⎦⎤⎢⎣⎡''-+'---=---+---=-其中,),(b a ∈ζ,最后一个式子是由于0>--a b x b ,0>--ab a x . )}(),(max{)()())}((),(min{)}(),(min{ηξηξηξηξf f f ab x b f a b a x ab x b a b a x f f f f ''''≤''--+''--≤--+--''''='''' 以及Darboux 定理推得.如果M 为)(x f ''的上界(特别当)(x f ''在],[b a 上连续时,根据最值定理,取)(max ],[x f M b a x ''=∈),则误差估计为 M a b f a x x b x f x l 2)(|)(|2))(()()(2-≤''--≤-ζ,],[b a x ∈∀ 这表明,M 愈小线性插值的逼近效果就会愈好,当M 很小时,曲线)(x f y =的切线改变得不剧烈,这也是符合几何直观的.3.9 应用Taylor 公式研究函数表达式例3.9.1]4[ 设在内有连续三阶导数,且满足方程:)()()(h x f h x f h x f θ+'+=+,10<<θ.(θ与h 无关) (3.16)试证:)(x f 是一次或二次函数.证明:要证)(x f 是一次或二次函数,就是要证0)(≡''x f 或0)(≡'''x f .因此要将(3.16)式对h 求导,注意θ与h 无关,我们有)()()(h x f h h x f h x f θθθ+''++'=+' (3.17)从而)()()()()(h x f hh x f x f x f h x f θθθ+''=+'-'+'-+' (3.18) 令0→h ,对(3.17)式两边取极限得:)()()(x f x f x f ''=''-''θθ,即第3章 泰勒公式的应用16 )(2)(x f x f ''=''θ 若21≠θ,由此知0)(≡''x f ,)(x f 为一次函数; 若21=θ,则(3.17)式变成:)21(21)21()(h x f h h x f h x f +''++'=+'.此式两端同时对h 求导,减去)(x f '',除以h ,然后令0→h 取极限,即得0)(≡'''x f ,即)(x f 为二次函数.实际上在一定条件下证明某函数0)(≡x f 的问题,我们称之为归零问题, 因此上例实际上也是)(x f '',)(x f '''的归零。
泰勒中值定理与课程思政
泰勒中值定理与课程思政泰勒中值定理,是微积分中的一种重要定理,由英国数学家泰勒在18世纪提出,它可以用来求解函数的极限,导数和函数的积分,是微积分学中极为重要的工具。
泰勒中值定理的主要思想是,利用函数在某个点附近的导数来描述函数在该点附近的性质。
具体来说,对于一个可导、连续的函数f(x),如果在[a,b]区间内,f(x)的导数在(a,b)内存在且有限,那么就可以利用泰勒中值定理来证明存在一个c,使得f(b)-f(a)=f'(c)(b-a),其中c∈(a,b)。
泰勒中值定理在实际应用中有广泛的用途。
例如,在求解极限中,可以利用该定理将函数变为一定形式,从而方便计算;而在求积分时,也可以通过泰勒中值定理将积分转化为求导数的问题,从而简化计算过程。
除此之外,泰勒中值定理对于课程思政也有很多启示。
从中我们可以看出,秉持着正确的思想和正确的方法,可以解决许多看似困难的问题。
不仅如此,泰勒中值定理还告诉我们,任何问题都不是孤立的,它们都存在着某种联系和联系点,只要我们用正确的方法去寻找,就一定可以找到解决问题的方法。
更进一步地讲,泰勒中值定理作为微积分中的重要定理之一,也启示我们在学习和研究课程思政过程中,要有系统性地学习相关知识,将各个部分联系起来,才能更好地理解和应用课程思政中的知识。
总之,泰勒中值定理虽然是微积分中的一个概念,但它对于课程思政也有很多启示和借鉴意义。
它告诉我们,只要有正确的思想和方法,就一定能够解决任何看似困难的问题。
同时也提示我们,我们需要在不同领域的知识之间进行联系,才能更好地理解和应用这些知识,从而取得更好的成效。
泰勒公式简介
泰勒公式简介泰勒公式是一元函数微分学的重要内容。
在数一数二中对它的要求是理解,属于重点考查的内容,数三中的要求是了解。
但从近几年的试题来看,对泰勒公式的要求数三与数一数二的在逐渐模糊。
这就对数三的考生也提出了更高的要求,要以更高的标准来要求自己。
在考研数学中,泰勒公式主要在计算极限、高阶导数及一些证明题中有重要应用,在下册中无穷级数里也会用到泰勒公式的一些内容。
本文先介绍泰勒公式的主要内容及对考生的基本要求,最后再通过一些简单的例题来演示泰勒公式在具体的解题过程中的应用。
一.定理内容泰勒中值定理:设函数()f x 在含0x 的区间(,)a b 具有1n +阶导数,在[],a b 内有n 阶连续导数,则[],x a b ∀∈有()()()''()2'0000000()()()()()...()2!!n nn f x fx f x f x f x x x x x x x R x n =+-+-++-+其中()()(1)10()()1!n n n f R x x x n ξ++=-+,ξ为x 与0x 间的某一实数,称为拉格朗日余项,式中的ξ也可以写作()00,01x x x ξθθ=+-<<。
把条件减弱为()f x 在0x 处有直到n 阶导数,余项()n R x 也可以写作(){}0()n n R x o x x =-,称之为皮亚诺余项。
麦克劳林公式:00x =的泰勒公式又称为麦克劳林公式。
也即''()'2(0)(0)()(0)(0)...()2!!n nn f ff x f f x x x R x n =+++++()(1)1()()1!n n n f x R x xn θ++=+或()()n n R x o x =。
点评:高数研究的一大课题就是如何用简单的函数来代替复杂的函数。
能够被我们的思维所掌握的最简单的函数就是多项式,泰勒公式实际上就是利用多项式来近似代替复杂函数的理论结果。
泰勒公式与泰勒中值定理的系统理论与使用技巧
泰勒公式与泰勒中值定理的系统理论与使用技巧泰勒公式(Taylor's theorem)和泰勒中值定理(Taylor's theorem with remainder)是微积分中重要的定理,用于用已知函数的其中一点的信息推导出该函数在附近任意点的近似值。
下面将对这两个定理的系统理论和使用技巧进行详细阐述。
1. 泰勒公式(Taylor's theorem):泰勒公式是一个逼近函数的公式,其形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f(x)是要逼近的函数,a是近似点,f'(a)、f''(a)、f'''(a)等是函数在点a的各阶导数。
公式可以继续扩展至更高阶导数。
泰勒公式的推导涉及到多项式的展开,通过使用导数的定义进行求解,存在其中一种程度的复杂性。
然而,在实际应用中,我们通常使用该公式的前几项进行近似计算,而不需要考虑无穷多项的求和。
在使用泰勒公式时,需要满足以下条件:-要求函数f(x)在开区间(a,b)上具有至少n+1阶连续导数;-近似点a必须在开区间(a,b)内;-近似点a必须在函数f(x)在(a,b)范围内的一些点,即a∈(a,b)。
2. 泰勒中值定理(Taylor's theorem with remainder):泰勒中值定理是泰勒公式的一个推广,它包含了一个误差项。
泰勒中值定理的形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x)其中,R_n(x)是余项,它表示在使用泰勒公式展开的前n项进行近似时产生的误差。
余项的具体形式为:R_n(x)=(x-a)^n/(n!)*(f^(n+1)(c))其中,c是a和x之间的一些点。
泰勒中值定理的应用探究
泰勒中值定理的应用探究作者:邹全春来源:《理科爱好者(教育教学版)》2019年第03期【摘要】泰勒中值定理是高等数学中的一个非常重要的定理,其应用极其广泛,但是由于其内容较为复杂,加之授课时少,教师在应用方面讲授的内容不多,遇到这类题学生往往望而生畏。
本文从多个方面就如何应用泰勒中值定理进行了探究,以期起到抛砖引玉的作用。
【关键词】泰勒中值定理;拉格朗日型余项;皮亚诺型余项;麦克劳林公式;应用;探究【中图分类号】G642 【文献标识码】A 【文章编号】1671-8437(2019)16-0014-02泰勒中值定理是高等数学中的一个非常重要的定理,在近似计算、深刻表達函数形态、求极限、理论证明等方面有着十分广泛的应用。
本文从以下多个方面探究如何应用泰勒中值定理。
1 泰勒中值定理内容设函数在含有的开区间(a,b)内具有直到阶导数,则当时有:,其中余项有两种形式:第一种,拉格朗日型余项;第二种,皮亚诺形式余项。
带有皮亚诺型余项的麦克劳林公式为。
2 泰勒中值定理的应用2.1 利用泰勒中值定理拉格朗日型余项求近似值泰勒中值定理在近似计算中可以使函数的近似值更加精确,而且可以进行误差估计。
例1 求精确到0.000001的近似值。
解由泰勒中值定理得的展开式:,令得,从而有,进而得。
为了使现取,即得数的精确到0.000001的近似值为。
2.2 利用泰勒中值定理求极限带有皮亚诺型余项的麦克劳林公式在计算复杂的不定式极限方面十分有效。
例2 计算。
解因为,,所以,从而。
2.3 利用泰勒中值定理求高阶导数当用求导公式求函数的阶导函数较为复杂时,可以根据泰勒展开式的唯一性求。
例3 已知,求及。
解由泰勒中值定理得由得展开式得的展开式从而②比较①②同次幂得系数得:,,,,,,,,……。
由于②式中的偶次幂的系数为零,所以,;当时,,于是,得。
2.4 利用泰勒中值定理证明等式例4 设在上可导,试证:在内至少存在一点ξ,使得。
证明:设,则,由泰勒中值定理带有皮亚诺型余项的麦克劳林公式得:,令,得,即。
泰勒公式及其在解题中的应用毕业设计论文
毕业设计(论文)题目:泰勒公式及其在解题中的应用Title: Taylor formula and its application in solving problems学院:理学院专业:信息与计算科学姓名:罗书云学号:08102209指导教师:蔡奇嵘二零一二年六月摘要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,它集中体现了微积分“逼近法”的精髓,在近似计算方面有着得天独厚的优势,利用它可以将复杂问题简单化,可以将非线性问题化为线性问题,并且能满足相当高的精确度要求。
它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具。
泰勒公式在微积分的各个领域都有着重要的应用,而且泰勒公式“化繁为简”的功能在数学领域的研究方面也起到了很大的作用。
文章除了介绍了带佩亚诺型余项和拉格朗日型余项的泰勒公式在常用的近似计算、求极限、不等式的证明、判断函数极值上作求解证明外,特别地,对泰勒公式在函数凹凸性及拐点判断、级数和广义积分敛散性判断、行列式计算等问题的应用上做了详细系统的介绍,并且本文讨论了一种新的证明泰勒公式的方法,进一步将泰勒公式推广到更一般的形式。
关键词:泰勒公式;佩亚诺型余项;拉格朗日型余项;应用ABSTRACTTaylor's formula is an important part of mathematical analysis, the theory has become an indispensable tool of the research function limits and estimation error, which embodies the essence of calculus "approximation method", It have an unique advantage in the approximate calculation, it also can make complex issues into simplistic, non-linear problem into a linear problem, and can meet the very high accuracy requirements. It is the promotion of the mean value theorem in calculus, is also an important tool for the application of higher order derivatives of the functional state. Taylor formula in the calculus of the various fields have important applications, and the Taylor formula for complex simple "function in the mathematical field of research has played a significant role. This article in addition introdution Peano remainder and Lagrange remainder term of Taylor formula commonly used in approximate calculation, the limit inequality proof to determine the function extremum for solving prove, in particular, A detailed introduction of the Taylor formula in the application of the function bump and the inflection point judgment, the judgment of convergence and divergence of series and generalized integral, determinant calculation, and the article discusses a new method to prove that the Taylor formula, further Taylor formula to the more general form.Keywords: Taylor formula; Peano more than; Lagrange remainder; application东华理工大学毕业设计(论文)目录目录1. 绪论 (1)1.1综述 (1)1.2泰勒公式的研究背景 (2)1.3泰勒公式的研究意义 (2)1.4泰勒公式的研究目的 (2)1.5本论文所做的工作 (3)1.6本论文的基本思路与采用的方法 (3)2. 泰勒公式 (4)2.1泰勒公式的建立 (4)2.2泰勒公式的定义 (6)2.2.1 带有佩亚诺(Peano)型余项的泰勒公式 (6)2.2.2 带有拉格朗日(Lagrange)型余项的泰勒公式 (7)3. 泰勒公式的新证明及其推广 (8)3.1罗尔中值定理的两种推广形式 (8)3.2泰勒公式的新证明 (10)3.3泰勒公式的推广 (11)4. 泰勒公式在解题中的应用 (15)4.1利用泰勒公式求近似值 (15)4.2利用泰勒公式求极限 (16)4.3泰勒公式在判断级数和广义积分的敛散性中的应用 (17)4.3.1 判断级数的敛散性 (17)4.3.2 判断广义积分的敛散性 (18)4.4泰勒公式在判别函数的极值中的应用 (19)4.5泰勒公式在不等式证明中的应用 (20)4.6泰勒公式在判断函数凹凸性及拐点中的应用 (22)4.6.1 判断函数凹凸性 (23)4.6.2 判别函数拐点 (24)4.7泰勒公式在行列式计算方面的应用 (25)结论及展望 (27)致谢 (28)参考文献 (29)东华理工大学毕业设计(论文) 绪论11. 绪 论1.1 综述十七世纪中叶,随着近代微积分的蓬勃发展,极限作为数学中的一个概念也就被明确地提了出来。
泰勒公式的几种证明及应用
泰勒公式的几种证明及应用摘要:泰勒公式是高等数学中的重要公式,它在理论上和使用上都有很重要的作用.本文将运用分析法或数学归纳法对带有佩亚诺型余项、拉格朗日型余项、积分型余项这三种带有不同型余项的泰勒公式进行简单易懂的证明,从而能更好地理解泰勒公式的内容及性质.在深刻理解的基础上,对泰勒公式在高等数学中有关近似计算及误差估计、求极限、研究函数的极值问题、证明等式或不等式和关于界的估计等方面的应用给予一定的介绍,然后分别给出例题.关键词:泰勒公式 佩亚诺型余项 拉格朗日型余项 积分型余项 应用Several Proofs and Applications of Taylor FormulaAbstract: Taylor formula is an important formula in higher mathematics, it plays a very important role intheoretical and methodological. In order to better understand the content and nature of Taylor formula, this article will use the method of analysis or mathematical induction to prove three different kinds of Taylor formula with remainder terms: Peano remainder term, Lagrange remainder term, and Integral remainder term. On the basis of deep understanding, then the article gives some introductions about the applications of Taylor formula in these aspects: approximate calculation and error estimation, work out limit, research problem of function’s extreme value, the proving of equality or inequality, and about boundary estimate, also supported by examples.Keywords: Taylor formula; Peano remainder term; Lagrange remainder term; Integral remainder term;application1. 引言大家都知道,多项式函数是各类函数中结构较简单、计算较方便的一种,用多项式逼近函数是近似计算和理论分析的一个重要内容.可以看到用00()()()f x f x x x '+-这个)(0x x -的一次多项式近似代替)(x f 且求其在0x 附近的函数值是很方便的,但是它的精确度往往并不能满足我们的实际需求,这就要求我们能够找到一个关于)(0x x -的n 次多项式.由此,著名数学家泰勒在1912年7月给其老师梅钦的信中提出了著名的定理——泰勒定理,用泰勒公式可以很好地解决用多项式近似代替某些较复杂函数这类复杂的问题.2.泰勒公式的证明泰勒公式有几种不同的形式,在这里我们将对三种带有不同型余项的泰勒公式给予逻辑严谨、简单易懂的证明. 2.1带有佩亚诺型余项的泰勒公式定理1[1] 若函数f 在点o x 存在直至n 阶导数,则有()()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-证:设()()()()()()()()200000002!!n n n f x f x T f x f x x x x x x x n '''=+-+-++-(1) ()()n n R f x T x =- ()0()nn Q x x x =-现在只要证 ()()0lim0n x x nR x Q x →=由关系式(1)可知()()()()0000n n n n R x R x R x '====并易知()()()()10000,n n n n Q x Q x Q x -'==== ()()0!n n Q x n =因为()()0n f x 存在,所以在点o x 的某邻域()0U x 内f 存在1n -阶导函数.于是,当()0x U x ︒∈且0x x →时,允许接连使用洛必达法则1-n 次,得 到 ()()()()()()()()0011lim lim lim n n n n n x x x x x x n nn R x R x R x Q x Q x Q x --→→→'===' ()()()()()()()()()110000lim12n n n x x f x f x f x x x n n x x --→---=--()()()()()()0110001lim !n n n x x f x f x f x n x x --→⎡⎤-=-⎢⎥-⎢⎥⎣⎦0= 所以有()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-则此式得证.2.2带有拉格朗日型余项的泰勒公式定理2[2] 设函数f 在某个包含0x 的开区间),(b a 中有1到n +1阶的各阶导数,则(),x a b ∀∈,有()()()()()()()()()200000002!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-()()()()1101!n n f x x n ξ+++-+ (2)其中ξ是介于0x 与x 之间的某个点,当0x 固定之后,ξ只与x 有关. 证:(2)式可以改写成()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ⎡⎤'''-+-+-++-⎢⎥⎢⎥⎣⎦()()()()1101!n n f x x n ξ++=-+ 或者()()()()(1)101!n n n R x f n x x ξ++=+-. (3) 为了证明(3)式,我们对于(3)式左端连续运用柯西中值定理(已推出()()()()0000n n n n R x R x R x '====): ()()()()()()()()011100101n n nn n nR x R x R x R x x x x n x ξξ++'-==--+-()()()()()()()1021102011nn nnn R R x R n xn n x ξξξξ-''''-==+-+-()()()()201201nn n R R x n n x ξξ-''''-==+-()()()()0231n n n n R n n x ξξ=⋅+-()()()()()()00231n n n n n n R R x n n x ξξ-=⋅+-()()()11!n n R n ξ+=+ (4)在此推导过程中,1ξ是介于0x 与x 之间的某个点;2ξ是介于0x 与1ξ之间的某个点,,ξ是介于0x 与n ξ之间的点.因而,ξ介于0x 与x 之间. 又注意到 ()()()()11n n n R f ξξ++= ,所以(4)式就可以得到(3)式 ,进而推出(2)式. 即定理得证.在这里定理1和定理2我们都是用分析法来证明的,实际上,我们还可以用递推法或数学归纳法来进行证明,下面的定理3我们就是用数学归纳法来证明的. 2.3带有积分型余项的泰勒公式定理3[3] 设函数()f x 在点0x 的某邻域()0U x 内有n +1阶连续导函数,则()()()()()()()()()200000002!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-()()()011!x nn x f t x t dt n ++-⎰ ,0[,].t x x ∈ (5) 证:从已知条件可知()1,,,n f f f +'在0[,]x x 上是连续的.那么我们有()()()00x x f x f x f t dt '-=⎰ (6) 在(6)中令(),()u f t v x t '==-- 则(),du f t dt dv dt ''==.利用分部积分公式 我们就有()()()()()0||xxx xx x x x x x f t dt uv vdu f t x t x t f t dt ''''=-=--+-⎰⎰⎰(7)结合(6)式和(7)式得到()()()()()()0000x x x t f f x f d x x t x f x t '''=---+⎰这就是1n =时的情形,符合公式(5).我们同理可容易看出2n =时也成立. 假设1n -(此时指的是2n ≥的情形)时仍然可以得到(5)式是成立的, 即是有()()()()()()()()()()1200000002!1!n n f x f x f x f x f x x x x x x x n -'''-=-+-++--()()()()0111!x n n x x t f t dt n -+--⎰ (8) 在(8)式中令()()(),!n n x t u ft v n -==- 则()()()()11,1!n n x t du f t dt dv dt n -+-==-. 利用推广分部积分公式我们就有()()()()011!n xn x x t f t dt n ---⎰()()()()()()01!!xn n nxn x x x t x t f d n t f n t t +--=-+⎰()()()()()()0100!!nxn nn x x t x f x x n dt n f t +--=+⎰(9) 将(9)式代入(8)式得到(5)式,即在n 的情形下(5)式仍然成立. 故证得此泰勒公式成立.定理3运用分部积分法的推广公式结合数学归纳法来证明的,但实际上定理3也是可以用分析法来证明的.经过三个定理的证明我们可以清楚地看到这几种带不同型余项的泰勒公式是可以相互转化的,例如:在定理3中存在),(0x x ∈ξ有由推广的积分第一中值定理得到=)(x R ()()()011!x nn x f x t dt n ξ+-⎰=10)1())(()!1(1++-+n n x x f n ξ.这就转化成了定理2中的余项形式,这就是说带有积分型余项的泰勒公式和带有拉格朗日型余项的泰勒公式是可以相互转化的,经过实际演算我们还可以很容易地得到其它几种型余项的泰勒公式之间的相互转化.那么也可以说只需要知道其中一种余项的泰勒公式的证明,我们就可以轻松证明出其它型余项的泰勒公式,当然这其中也包括很重要的带有柯西型余项的泰勒公式.3.泰勒公式的应用泰勒公式是解决高等数学问题的很重要的工具,但是很多同学仅仅对泰勒公式的展开式比较熟悉,而对泰勒公式的其它应用方法没有深入的了解.实际上,泰勒公式在近似计算及误差估计、求极限、研究函数的极值问题等问题的解决过程中也有很重要的应用.下面举几个例子进行阐述. 3.1近似计算及误差估计例1.=3273=,所以可以设()f x = 先求027x =处()f x 的三阶泰勒公式:因 ()2313f x x -'=,()5329f x x -''=-,()831027f x x -'''=. 所以得(27)3f = , 31(27)3f '= , 72(27)3f ''=- , 1110(27)3f '''= 及 11(4)3480()3fx x -=- ,故23411371243115803(27)(27)(27)(27).3334!3[27(27)]x x x x x θ=+---+---⋅+-其中()0,1θ∈, 又30x =, 于是43114380||(3027)4!3[27(27)]R x θ=-⋅+-454111280103 1.88104!333-<⋅=≈⨯⋅⋅2591153333≈+-+30.1111110.0041150.000254≈+-+ 3.10725=计算时,分数化小数取六位小数,合起来误差不超过50.310,-⨯再加上余项误差,总误差不超过52.210.-⨯用多项式逼近函数进行近似计算是泰勒公式的重要应用,且应用高阶导数可以进一步精确地求出近似值,减小误差.本题用已知函数的泰勒公式的值(其项数可根据实际需要取),作为已知函数的近似值,用来进行近似计算,且用泰勒公式的余项来估计所产生的误差.一般如果对我们已经确定的n ,我们先令M x f n ≤+|)(|)1(,则有估计误差110)1()!1()()!1()(||+++-+≤-+=n n n n x x n Mx x n f R ξ.3.2求极限例2:求()2220112lim cos sin x x x x e x→+-- 的极限值.解: 在这里由于22~sin x x ,把其它各项分别展开成带有佩亚诺型余项的泰勒公式,则有)(8121114422x o x x x +-+=+,那么分子变为244111()28x x o x +=+, 分子式4=n ,则分母中可以将括号里展开成2=n 的情形,即有)(211cos 32x o x x +-= , )(1222x o x e x ++= , 则有 )(23cos 222x o x e x x +-=-,所以此求极限的式子可以简化为244220022211()1182lim lim 312(cos )sin ()2x x x x o x x x e x x o x x →→++==-⎡⎤--+⎢⎥⎣⎦. 故所求极限值是121-. 对于求0型的极限问题,常可以用洛必达法则,但对于像此例这种要连求几次导数,运算非常麻烦的情形我们可以考虑用带有佩亚诺型余项的泰勒公式加以解决.由此例可以看出泰勒公式是进行无穷小量分析比较的一个非常精细的工具.有些求极限的问题并非0型的,我们仍然需要用到泰勒公式去求极限,如下例:例3:求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→x x x x 11ln lim 2 的极限值.解:因为⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+221121111ln x o x x x ,)(∞→x ,所以得到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→x x x x 11ln lim 22211lim 12x o x x →∞⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎢⎥=+⎢⎥⎢⎥⎣⎦12=得到极限值是12.3.3研究函数的极值问题在研究函数的极值问题时我们往往也可以应用泰勒公式达到化整为零、快速解题的效果.例4:设f 在0x 的某邻域内存在直到1n -阶导数,在0x 处n 阶可导,且0)(0)(=x f k)1,,2,1(-=n k ,0)(0)(≠x fn ,证明:若n 为偶数,则0x 是)(x f 的极值点;若n 为奇数,则)(x f 在0x 处不取极值.证:由定理1我们知道f 在点0x 处的n 阶泰勒公式即为()()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-又由题目条件可以看到0)()()(0)1(00===''='-x f x f x f n ,则上式可以简化成))(())((!1)()(000)(0n n n x x o x x x f n x f x f -+-+=,因此有n n x x o x f n x f x f )()1()(!1)()(00)(0-⎥⎦⎤⎢⎣⎡+=- (10)又因为0)(≠n f,故存在正数δδ'≤,当);(0δ'∈x U x 时,)(!10)(x f n n 与)1()(!10)(o x f n n +同号.所以, 若n 为偶数,则当0)(0)(<x f n 时(10)式取负号,从而对任意);(0δ'∈x U x 有)()(0x f x f <,则此时f 在0x 处取得极大值;同理0)(0)(>x fn 时f 在0x 处取得极小值. 故若n 为偶数,0x 是)(x f 的极值点.若n 为奇数,则任取),(001δ'+∈x x x ,),(002x x x δ'-∈,且0)(01>-n x x ,0)(02<-n x x 当0)(0)(<x f n 时,有)()()(201x f x f x f << ,在0x 处取不到极值;同理当0)(0)(<x f n 时也在0x 处取不到极值.故若n 为奇数,)(x f 在0x 处不取极值.题目中提到了几阶导数的问题,而我们有时感觉到无从下手,此时我们就应该想到应用泰勒公式,常常能达到意料不到的效果,事半功倍. 3.4证明等式或不等式证明等式或不等式的方法有很多种,但是在含有一阶以上的导数时一般可运用泰勒公式进行证明.3.4.1证明等式问题例5:证明:若()f x 在[,]a b 上有n 阶导数存在,且()()()()()()10n f a f b f b f b f b -'''======,则在(,)a b 内至少存在一点ξ,使得()()0n f ξ=.证:由于()f x 在[,]a b 上有n 阶导数,故可在x b =处展成1-n 阶泰勒公式()()()()()()1112()()()()()().2!(1)!!n n n n f b f f b f x f b f b x b x b x b x b n n ξ--'''=+-+-++-+-- 其中1ξ在x 与b 之间. 又因为()()()()()10,n f b f b f b f b -'''=====故由上式可得()()()()11!nn f x f x b n ξ=-. 当x a =时,有()()()()()1,!nn f a f a b a b n ξξ=-<<.又()()0,0,nf a a b =-≠故知在(),a b 内必有一点,ξ使得()()0.nf ξ=3.4.2证明不等式问题例6:证明:若函数()f x 在[,]a b 上存在二阶导数,且()()0f a f b ''==,则在(),a b 内存在一点c ,使()()()()24||||f c f b f a b a ''≥--.证:将2a b f +⎛⎫⎪⎝⎭分别在点a 和点b 展成泰勒公式,并注意()()0f a f b ''==,有()()211,22!22f a b b a a b f f a a ξξ''+-+⎛⎫⎛⎫=+<< ⎪ ⎪⎝⎭⎝⎭; ()()222,22!22f a b b a a b f f b b ξξ''+-+⎛⎫⎛⎫=+<< ⎪ ⎪⎝⎭⎝⎭. 令 ()()()12||max{||,||}f c f f ξξ''''''=.则 ()()()()||22a b a b f b f a f b f f f a ++⎛⎫⎛⎫-≤-+- ⎪ ⎪⎝⎭⎝⎭()()22212222f f b a b a ξξ''''--⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭()()()()2211||||24b a f f ξξ-⎡⎤''''=+⎢⎥⎣⎦ ()()2||4b a fc -''≤即()()()()24||||f c f b f a b a ''≥--.由例4、例5可以看出用泰勒公式证明问题这类题目中往往涉及函数的高阶导数.应用的关键在于如何选择要展开的函数,在哪一点展开,以及展开的次数(一般比最高阶导数低一阶)等,这些都要根据题设的条件进行具体问题具体分析. 3.5关于界的估计泰勒公式在有关界的估计方面的应用也是非常巧妙的.例7:设函数f 在(,)-∞+∞上有三阶导数,如果()f x 与()f x '''有界,试证()f x '与()f x ''也有界.证: 设 ()0||,f x M ≤ ()3||,()f x M x '''≤-∞<<+∞, 其中03,M M 都是常数.将f 在任意一点x 处展开成带有拉格朗日型余项的二阶泰勒公式 即有()()()()()()()()()()111,26111,26f x f x f x f x f f x f x f x f x f ξη''''''+-=++''''''--=-+-其中()(),1,1,x x x x ξη∈+∈-.以上两式加减分别得到 ()()()112f x f x f x ++--()()()1[],6f x f f ξη''''''''=+-()()()()()1112[],6f x f x f x f f ξη'''''''+--=++ 由以上两式分别得到 ()()()()()()1||112[]6f x f x f x f x f f ξη''''''''=++---- 0314,3M M ≤+ ()()()()()1|2|11[]6f x f x f x f f ξη'''''''=+---+ 03123M M ≤+, 即()f x '与()f x ''在(,)-∞+∞上也有界.4.总结从泰勒公式在微积分的重要地位可以看出对泰勒公式进行证明是非常有必要的,进一步加深了我们对泰勒公式的理解及应用.通过上述证明及应用举例,我们能够知道:①泰勒公式是应用高阶导数研究函数性态的工具,凡是已知函数()f x 的高阶导数研究函数()f x 的性态都要应用泰勒公式;②泰勒公式有两种不同类型的余项:一种是定性的,如佩亚诺型余项;一种是定量的,如拉格朗日型余项等.参考文献:[1] 华东师范大学数学系.数学分析(上)[M].北京:高等教育出版社,2001.134-140页.[2] 韩云端,扈志明. 微积分教程(上)[M].北京:清华大学出版社,1999.188-203页.[3] S.I.Grossmon ,周性伟.微积分及其应用[M].天津:天津科学技术出版社,1988. 51-56页.[4] 蔡光兴,李德宜.微积分(经管类)[M].北京:科学出版社,2004.127页.[5] 王元殿.带不同型余项泰勒公式的证明[J].电大理工,2000,第205期:36-38页.[6] 同济大学数学系.高等数学(上)[M].北京:高等教育出版社,2007.139-145页.[7] 王素芳,陶荣,张永胜.泰勒公式在计算及证明中的应用[N].洛阳工业高等专科学校学报,2003-6-第13卷第2期.[8] 耿晓哲.Taylor公式及其应用[J].潍坊高等职业技术教育,2009,第5卷第3期:45页.[9] 刘云,王阳,崔春红.浅谈泰勒公式的应用[N].和田师范专科学院学报,2008-7-第28卷第1期.[10] 董斌斌.泰勒公式及其在解题中的应用[J].科技信息,2010,第31期:243页.[11] 郭顺生,微积分入门指导(一元函数部分)[M].河北:河北人民出版社,1985.247-266页.[12] 刘红艳.一元泰勒公式在解题中的应用[J].林区教学,2008,第8期:140-141页.[13] 刘玉琏,杨奎元,吕凤. 数学分析讲义学习指导书——附解题方法提要[M].北京:高等教育出版社,1787.225-232页.[14] 潘劲松.泰勒公式的证明及应用[N].廊坊师范学院学报,2010-4-第10卷第2期.。
浅谈泰勒Taylor中值定理的应用1
< ! ( ( ! "& ) " % 7 " " & < 7 ( " $"# ! " & ! # ! " % < < ! ( ( ! "& ) & , 7 7 ( " " " & $ " $!# ! & ! # ! " " % < 所以
" % 7 ( " " " ! . " $ (" # & # # ! !% ")" %)% # " < ! ( 7 ( ! "& ) & $ ". " ! <
( ’ 证明: 设()) 9 : ) 2) / ! ) 0? ’ 让()) 在)点展开, 并取 , 03 3 ) 由于()) ()) 1 % ? ) 2(/ , 3 9 : ) /), 0A 02? 3()) " % ? ) 0(2A 故( ) , ( ) , ( ) 所以有()) ) 0)1) 3 ) 6 0) 0) 0)/ (2A % ? ! ) ’ )/)/ ! ) ’ ( ’ 当 ) ")时, ()) 从而有? 6 9 : ) ")2 ! )6 ") ’ 5 6 5 极限的计算
*
#Hale Waihona Puke 麦考雷 (F ) 利用泰勒展开式的第一项求出该债券 ? G ? 1 ’ ? @ 用平均期限法预计: 利率从 ! 平均期限为 " + < = ! + # A 上升到 债券价格下跌, 即新价格为美元; 而利率从 ! ! ! A, # A 上升到 价格下跌 , 债券价格变为美元+ 因此当利率变化不大时, ! % A, 平均期限法的预计相对准确; 但当利率变化较大时误差较大+ 麦考雷用凸性及凸性的修正值重新估计, 得到了非常满意的结 果+ 凸性 ( 用" 表示) 表示的是泰勒展开式的第二项, 再用! ) & & 进行调整 (" (" , 该债券的凸性用泰勒公 ") +) +为利率变化) 式易算见表& +
浅谈泰勒公式的应用
第 17 卷 第 01 期 Vol.17 No.01
读与写杂志
Read and Write Periodical
浅谈泰勒公式的应用 *
2020 年 1 月 January 2020
张培雨
(安徽工程大学数理学院 安徽 芜湖 241000)
等量关系,而且不等式在极限中的应用可以推导出数量关系,比
如夹逼准则。因此不等式的证明是至关重要的。下面我们主要讨
论泰勒公式在不等式证明中的简单应用。
例 4.证明:当 χ>0时,有不等式 ex-e-x>2χ+ 1 χ3. 3
分析:本题如果直接利用求导的知识,无法给出证明。下面,
我们将利用泰勒公式给出一个非常简便的证明过程。
容,“兴、道、讽、诵、言、语”等诗歌弦诵及写作的内容以及《云门》 《大卷》等歌舞内容。可以看出,西周时期,对于贵族子弟的培养, 是通过学习和掌握“乐”这一审美对象,参与整个审美活动,重点 培养和提高他们对于美的感受力和鉴赏力,不仅使他们具备相 当的艺术修养,形成一定的审美观,建立以中和之美为内容的伦 理观,而且,还要将美的体验逐步内化为自觉的思维与行动,最 终达到统治者理想的育人标准。它的乐教是在“寓教于乐”的传 习教育与活动中进行的,是在习乐者整体素质的培养中实现的。 在“乐教”传统滋养下形成的戏曲艺术更将“寓教于乐”的功能发 挥到了极致。
1 泰勒中值定理
设函数 覼(χ)在含有 χ0 的区间(a,b)内有直到 n+1 阶的
导数,则对任意 χ∈(a,b)有如下 n 阶泰勒公式:
覼(χ)=覼(χ0)+覼′(χ0)(χ-χ0)+…+
覼(n)(χ0) n!
泰勒中值定理
0 1.
(4.3.4)
Rn (x)
f n1 n 1!
x
x0
n1
或
Rn
(x)
f (n1)
x0 (x x0 )
(n 1)!
(x x0 )n1 称 为
拉格朗日余项,式(4.3.3)称为函数 f x 在点 x0 处的带有拉格朗日余项
n 阶泰勒公式,或称为 f x 按 x x0 的幂展开的n 阶泰勒公式.
在式(4.3.7)中,令 x(0 1), 则余项Rn(x)也可以写成
Rn (x)
f (n1) ( x) xn1,0
(n 1)!
1,
(4.3.8)
27-13
多项式 Pn (x)
f (0)
f (0)x
f (0) x2 2!
f (n) (0) xn 称为 f x
n!
的 n 阶马克劳林多项式.以Pn(x) 来近似代替 f x 时的误差估计
2! 4! 6!
(2k)!
(2k 2)!
其中0 1.
27-16
使用上述方法,还可以得到以下几个常见函数的马克劳林公式.
(1) sin x x 1 x3 1 x5 3! 5!
(1)k 1
sin( x 2k 1 )
x2k1
2
x 2 k 1 ;
(2k 1)!
(2k 1)!
(2) ln(1 x) x 1 x2 1 x3 2! 3!
f (x) f (0) f (0)x f (0) x2 f (n) (0) xn f (n1) ( ) xn1 , (4.3.7)
2!
n!
(n 1)!
其中 介于 0 与 x 之间.
式(4.3.7)称为函数 f x 的带拉格朗日型余项的 n 阶马克劳林 (Maclaurin)公式, 简称为 f x 的 n 阶马克劳林公式.
泰勒中值定理拉格朗日余项
泰勒中值定理拉格朗日余项泰勒中值定理是微积分中的一个重要定理,也是拉格朗日余项的基础。
本文将从泰勒中值定理的概念、推导以及拉格朗日余项的应用等方面进行阐述。
我们来了解一下泰勒中值定理的概念。
泰勒中值定理是由数学家泰勒在18世纪提出的。
它是一个关于函数在某个区间内的展开式的定理。
简而言之,泰勒中值定理告诉我们,如果一个函数在某个区间内具有无穷阶可导性,那么它可以被一个幂级数展开,并且在某个中间值处取得与原函数相同的函数值。
接下来,我们来推导一下泰勒中值定理的数学表达式。
设函数f(x)在闭区间[a,b]上具有n+1阶连续导数,那么对于[a,b]上的任意一点x,存在介于a和x之间的一点ξ,使得f(x)的泰勒展开式的余项可以表示为:Rn(x) = f(x) - Pn(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}其中Pn(x)表示f(x)的n次泰勒多项式,f^(n+1)(ξ)表示f(x)的n+1阶导数在ξ点处的值。
泰勒中值定理的应用非常广泛,其中一个重要的应用就是求函数在某个点的近似值。
通过泰勒中值定理,我们可以将函数在某一点的值近似表示为泰勒展开式中的有限项。
这对于计算机科学、物理学等领域的数值计算非常重要。
拉格朗日余项是泰勒中值定理的一种特殊情况,它是当泰勒展开式中的ξ点固定在[a,x]之间时的余项。
拉格朗日余项的表达式为:Rn(x) = \frac{f^{(n+1)}(ξ)}{(n+1)!}(x-a)^{n+1}其中ξ是介于a和x之间的某个数。
拉格朗日余项的大小与函数f(x)的(n+1)阶导数f^(n+1)(x)及区间长度(x-a)有关。
当函数的(n+1)阶导数在区间上的最大值有界时,拉格朗日余项也是有界的,这意味着我们可以通过控制区间长度来控制近似误差。
总结一下,泰勒中值定理是微积分中的重要定理,它告诉我们一个函数可以在某个区间内用幂级数展开,并且在展开式中存在一个中间点,使得展开式与原函数在该点处取得相同的值。
浅谈泰勒(Taylor)中值定理的应用
浅谈泰勒(Taylor)中值定理的应用
郑玉仙
【期刊名称】《浙江水利水电专科学校学报》
【年(卷),期】2005(017)001
【摘要】对泰勒中值定理教科书上介绍其应用的不多.根据多年的教学经验,在此介绍了泰勒中值定理在4方面的应用,即在证明不等式、函数极限运算、定积分计算及金融数学债券定价.其中泰勒公式金融数学债券定价中的应用是全新的.
【总页数】3页(P53-55)
【作者】郑玉仙
【作者单位】浙江水利水电专科学校,浙江,杭州,310018
【正文语种】中文
【中图分类】O1
【相关文献】
1.泰勒中值定理在函数凸凹性研究中的应用 [J], 白永强;裴明
2.泰勒中值定理在一类极限计算中的应用 [J], 龚东山;刘岳巍;牛富俊
3.泰勒(Taylor)中值定理的几何机理 [J], 费罗曼;胡誉满
4.泰勒中值定理在不等式证明中的应用 [J], 严永仙
5.关于泰勒(Taylor)中值定理的一个证明 [J], 刘俊英;雪莲
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2预备知识
引理1闭(泰勒中值定理)如果函数八茹)在含有知的某个开区间(口,b)内具有直到n+l阶的有界
导数,则对于Yx∈以(菇口),:6f)(有xo:)+厂,(知)(茗嘞)+...+掣(石嘣。)一+R。(茗)
(1)
其中蹦扯等筹(菇嘞)此0【(糊)"E(X0--X)。
称(1)为以戈)按(x-xo)的幂展开的n阶泰勒公式。 由:Plimh(t)总能通过变量代换石=t-to化为limf(x)(其中八菇)=h(x+to)),为了方便,我们只考虑
收稿日期:2008-08—20 基金项目:国家自然科学基金对外交流与合作项目(40640420072). 作者简介:龚东山(1969一),男,湖北监利人。兰州大学数学与统计学院讲师,博士,研究方向:应用数学。
148
.
万方数据
8i眦暇o,si眦巾詈,siruc-x一詈+击(x-"O时)等。可以肯定的是这些等价的无穷小在计算极限
吼≯是f(x)的等价无穷小的最佳替换。
定理3设厂(茗)和g(茗)在x=0点的某个开区间(口,b)内分别具有直到n+l阶和m+l的有界导数,
若华O(0≤i<J},k∈【1,n】)且啦≠O以及屯=O(0勺司,l∈【1,n1)R bl≠O,则有:
f∞, 后<Z
粤器=悟拓z
(4)
to,k>l
其中啦=气盥(乩”一,n),以=《盟(『=o,1,…’m)。
2008年第10卷第6期 总第93期
巢湖学院学报 Journal of Chaohu College
No.6.,V01.10.2008 General Serial No.93
泰勒中值定理在一类极限计算中的应用
龚东山- 刘岳巍t 牛富俊2
(1兰州大学数学与统计学院,甘肃兰州730000) (2中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃兰州730000)
,l枷im器=姆黼 证明:由定理I知/(菇)=做矿+D(矿)和g@)=6l∥+o(一),于是有:
分k<l、k--I、k>l三种情况讨论,容易得到:
f∞, J|}d
,li卅m错=悟捌。
【0,k>1
定理3给出了一类未定式罟型如善等结构的极限计算公式(4),其中厂。)-at xt,g。)~幻一。
注:在计算,lira。≤笋或者r帕lim吾等时,,@)和g@)分男!表示整个分子与分母。
例3 ll枷ira{l型—C兰OSZ一
解:石---o,由c。麟=,一手+手+。(矿)和1~=·+古【--f-]+击【--f-]z+o(矿)
n--J'矢llf(咖。鲋-e.舌=一吉∥+D(九础)=1_c。蹦=等+o(妁,
于是有
lim
f_.O
一嚣 箬 一 蚜
一毒∥
!∽ :—娶二_:0。 一——;r一一 。 T
x-'O的令情儡形:。掣(i--o,l,…,n),则(1)变成:
以茗)=ao 4-atx 4-…+q矿+D(矿)
(2)
对于本文所讨论的l#i卅mg』‘婴戈(J其中lir,a川以互)=Ji,m川八茗)=o)这类芸u型未定式,当八茗)和g(茗)在x=O
点的某个开区间内分别具有直到n+l和m+l阶的有界导数时,由引理1显然可得:ao=,(O)=0和
当||}:m时,lim』掣:lim』吐童?垒尘:矿;
当五>m时’ ’,ll— —looim』矿矿掣:l#li卅枷m』哇尘矿矿掣:0。证。 毕。~
定理2给出了一类未定式罟型如≤笋结构的极限计算公式(3),其中/(算)~嚷≯(菇一。时)。进
一步,若将at矿+…+al∥(后d≤n)作为/@)的等价无穷小来代人,发现极限值不变。因此可以认定,
利用Tayer中值定理法、利用定积分定义法等[21。在具体的计算过程中,往往还需要先观察函数的结构, 能化简时尽量先化简.再利用其中的一种方法或结合几种方法,使运算简捷。
对于一类未定式昙的计算,即使极限存在,也不能用“商的极限等于极限的商”的极限运算法则闭。
U
最常用的方法是运用洛必塔法则。洛必塔法则是指在一定的条件下通过分子分母分别求导再求极限来
k∈【1,n1)R啦≠O时,一定有:
其中,儡:掣(i--o,1,…,n) 以名)=诹矿+…+an矿+o(矿)=诹矿4-o(矿),V戈∈(口,b) ’ “
证明:由引理l并结合题中条件有:
以戈)=口芦+…+%矿+D(矿)=啦矿+…%矿+o(x4)
和
八戈)=atx 4-…+啦矿+D(矿)=瓯≯+o(矿)
于是,以菇)=诹矿.-I-%矿+D(矿)=陬矿+D(矿)。证毕。
bo=g(0)=0以及
ቤተ መጻሕፍቲ ባይዱ
、
八菇)=atx 4-…+%矿+o(矿)和g(茹)=6乒+…+b。矿+o(矿)。
其中,q:号盟(i--o’l,…,n),幻=《盟㈣,1,…,m)。
3泰勒中值定理在极限计算中应用的几个结果
定理l设f(x)在x=O点的某个开区间(口,b)内具有直到n+l阶的有界导数,当ai=O(0≤i<后,
Key words:Taylor mean-value theorem;limit;equivalent infinitesimal;best replacement
责任编辑:陈风
15l
万方数据
泰勒中值定理在一类极限计算中的应用
作者: 作者单位:
刊名: 英文刊名: 年,卷(期): 被引用次数:
龚东山, 刘岳巍, 牛富俊, GONG Dong-shan, LIU Yue-wei, NIU Fu-jun 龚东山,刘岳巍,GONG Dong-shan,LIU Yue-wei(兰州大学数学与统计学院,甘肃,兰州 ,730000), 牛富俊,NIU Fu-jun(中国科学院寒区旱区环境与工程研究所冻土工程国家重点 实验室,甘肃,兰州,730000)
定理1的结果表明:当八菇)满足泰勒中值定理条件且lim八茗)=O时有以菇)一砚矿(茗一0时)。在极
限计算中可将at矿作为以茗)的替换而不改变极限值。
定理2设f(x)在x=O点的某个开区间(口,b)内具有直到n+l阶有界导数,若棚(0≤i<J},k“1,n】)
且仉≠o,则有:当乃<m时,lim』皇生=∞;当,l≥m时,
Ln们[1'
GONG Dong-shanl LIU Yue—weil
NIU Fu-jun2
(1 School of Mathematics and Statistics,Lanzhou University,I.dlnzIIou Gansu 730000)
Key‰ratory (2 State
of Frozen Soil of Engineering,Cold and Arid Regions Environmental and Engineering Research
泰勒公式是高等数学中的一个重要公式.在此介绍泰勒中值定理在四方面的应用:证明不等式;证明积分等式;求函数的极限;求函数的麦克劳林展开式 .
对泰勒中值定理教科书上介绍其应用的不多.根据多年的教学经验,在此介绍了泰勒中值定理在4方面的应用,即在证明不等式、函数极限运算、定积 分计算及金融数学债券定价.其中泰勒公式金融数学债券定价中的应用是全新的.
2.期刊论文 傅秋桃.FU Qiu-tao 谈谈泰勒公式的几点应用 -郧阳师范高等专科学校学报2006,26(3)
确定未定式值的方法。一般情况下,洛必塔法则是求未定式芸的一种有效方法,但在实际问题的处理
U
中,有时会出现分子或分母的导数形式比求导前更复杂,以致于洛必塔法则不能直接使用的情形,如
lim竺牛一£2。
棚茗
对于这类问题。可采用等价无穷小替换法来解决。但问题是一个无穷小可有多个等价的无穷小,替
换时选用不同的等价无穷小会得到不同的结果,这与极限的唯一性矛盾。如lim竺孚,显然sinx。x,
中若要替换sinx(舻-+O时),至多有一个是正确的。于是就提出两个新问题:在极限计算中,选择怎样的 等价无穷小来替换是合适的?其理论依据是什么?
为了得到^lgim~』x兴J (其中l^im以石)=l^im
g(戈)=o)这类芸型未定式的值,本文试图运用泰勒中值定 u
理来予以解决,并从理论上回答上述问题。
摘 要:运用洛必塔法则和等价无穷小替换是计算未定武0/0值的两种常用方法,但在实际 问题的处理中,常常遇到不能直接使用洛必塔法则和等价无穷小需要选择的情形。可运用泰 勒中值定理,找到最佳替换的等价无穷小,从而弥补了上述两种常用方法的不足,并从理论 上给与了解释。 关键词:泰勒中值定理;极限;等价无穷小;最佳替换 中图分类号:0172.1 文献标识码:A 文章编号:1672—2868(2008)06-0148—04
、
1引言
高等数学是以函数为对象,以微分和积分及其应用为内容,以极限为手段的一门学科,换句话说, 高等数学是用极限来研究函数的微分和积分的理论【l】。由于极限贯穿于整个高等数学,故极限的计算就 显得尤为重要。具体计算方法包括:定义证明法、极限运算法则、利用两个重要极限法、利用判定极限存
在的两个准则法、利用等价无穷小替换法、利用函数的连续性法、利用导数求极限法一洛必塔法则、
加。这验证了at≯作为厂0)的等价无穷小是最佳替换。
2
例2 姆 棚 型茗笋。 L
150
万方数据
解:石一。时,由c。麟=1一手+等+。(∥)和1一手=l+手【一-f-]+矿1【一-f-}z+o(∥)
:蚜掣1 :姆享:一古。 f
可知厂(z)=c。蹦一e-T=一古矿+。(∥),于是有:
lim
r_.0
矿
2
#—’U
丑
f∞,k<m
;J卅im‘笋={∥,.|}=m,其中q=』孚堕(i=o,l,…,n)
(3)
【0,k>m
149
万方数据
证明:由定理1知厂(石)=吼矿+。(矿),于是,l-+ira。≤笋=姆』吐半(j}∈【1,n】)。