几种常见函数的导数
几种常见函数的导数
§ 3.2 几种常见函数的导数课时安排1课时从容说课本节依次要讲述函数y =C (常量函数),y =x n (n ∈Q ),y =sin x ,y =cos x 的导数公式,这些公式都是由导数的定义导出的,所以要强调导数定义在解题中的作用.(1)关于公式(x n )′=nx n -1(n ∈Q ),这个公式的证明比较复杂,教科书中只给了n ∈N *情况下的证明.实际上,这个公式对于n ∈R 都成立.在n ∈N *的情况下证明公式,一定要让学生自主去探索,特别是xx x x x x f x x f nn ∆-∆+=∆-∆+)()()(要运用二项式定理展开后再证明,化为12211)(---∆++∆⋅+n n n n n n n x C x x C x C ,当Δx →0时,其极限为11-n n x C 即nx n -1.在讲完这个公式后教师可以因势利导,让学生利用定义或这个公式求y =(x -a)n 的导数,学生一定会模仿上述方法用定义求解,这是十分可贵的.也有的学生要利用二项式定理先将(x -a)n 展开,然后求导,即利用(x n )′=nx n -1求导.y =(x -a )n =n n n n n n n n n n a C a x C a x C x C )1(222110-⋅+-+-=-- ,1112110)1()1(------++-⋅-='n n n n n n n n a C a x n C x nC y ,利用11--=k n k n nC kC 将其合并成二项式定理的形式.当然有这种解法的,应该提出表场,激励学生大胆创新,同时也要提出这要运用导数的和差运算法则,并告诉学生这是2003年高考题.(2)运用定义证明公式(sin x )′=cos x ,(cos x )′=-sin x ,要用到极限1sin lim0=→∆xx x ,根据学生的情况可以补充证明.第五课时课 题§ 3.2 几种常见函数的导数教学目标一、教学知识点1.公式1 C ′=0(C 为常数)2.公式2 (x n )′=nx n -1(n ∈Q )3.公式3 (sin x )′=cos x4.公式4 (cos x )′=-sin x5.变化率二、能力训练要求1.掌握四个公式,理解公式的证明过程.2.学会利用公式,求一些函数的导数.3.理解变化率的概念,解决一些物理上的简单问题.三、德育渗透目标1.培养学生的计算能力.2.培养学生的应用能力.3.培养学生自学的能力.教学重点四种常见函数的导数:C ′=0(C 为常数),(x n )′=nx n -1(x ∈Q ),(sin x )′=cos x ,(cos x )′=-sin x .教学难点四种常见函数的导数的内容,以及证明的过程,这些公式是由导数定义导出的.教学方法建构主义式让学生自己根据导数的定义来推导公式1、公式2、公式3、公式4,公式2中先证n ∈N *的情况.教学过程Ⅰ.课题导入[师]我们上一节课学习了导数的概念,导数的几何意义.我们是用极限来定义函数的导数的,我们这节课来求几种常见函数的导数.以后可以把它们当作直接的结论来用.Ⅱ.讲授新课[师]请几位同学上来用导数的定义求函数的导数.1.y =C (C 是常数),求y ′.[学生板演]解:y =f (x )=C ,∴Δy =f (x +Δx )-f (x )=C -C =0,xy ∆∆=0. y ′=C ′=xy x ∆∆→∆0lim =0,∴y ′=0. 2.y =x n (n ∈N *),求y ′.[学生板演]解:y =f (x )=x n ,∴Δy =f (x +Δx )-f (x )=(x +Δx )n -x nn n n n n n n n n x x C x x C x x C x -∆⋅++∆+∆+=--)()(22211n n n n n n n x C x x C x x C )()(22211∆⋅++∆+∆=--12211)(---∆++∆+=∆∆n n n n n n n x C x x C x C xy ∴y ′=(x n )′1111221100)(lim lim -----→∆→∆==∆++∆+=∆∆=n n n n n n n n n n x x nx x C x C x x C x C x y . ∴y ′=nx n -1.3.y =x -n (n ∈N *),求y ′.[学生板演]解:Δy =(x +Δx )-n -x -nnn n n n n n n n n n n n n n n n n nn nn nn x x x x C x x C x C x y x x x x C x x C x C x x x x x x x x x )()()()()()()(1)(11221122211∆+∆++∆+-=∆∆∆+∆++∆+-=∆+∆+-=-∆+=----- ∴xy y x ∆∆='→∆0lim n n n n n n n n n n n n n x x x xC xx x x C x x C x C ⋅-=∆+∆++∆+-=----→∆11122110])()([lim=-nx -n -1.∴y ′=-nx -n -1.※4.y =sin x ,求y ′.(叫两位同学做)[学生板演][生甲]解:Δy =sin(x +Δx )-sin x=sin x cos Δx +cos x sin Δx -sin x ,xx x x x x x y ∆-∆+∆=∆∆sin sin cos cos sin , ∴xy y x ∆∆='→∆0lim x x x x x xx x x x x xx x x x xxx x x x x x x x x cos 4)2(2sin )sin 2(lim sin cos lim )2sin 2(sin lim sin cos )1(cos sin lim sin sin cos cos sin lim22002000+∆⋅∆∆⋅-=∆∆+∆∆-=∆∆+-∆=∆-∆+∆=→∆→∆→∆→∆→∆ =-2sin x ·1·0+cos x =cos x .∴y ′=cos x .[生乙]Δy =sin(x +Δx )-sin x=2cos(x +2x ∆)sin 2x ∆,xx y ∆=∆∆22, ∴xy y x ∆∆='→∆0lim 22sin lim )2cos(lim 22sin )2cos(lim 2sin )2cos(2lim 0000xx x x xx x x xx x x x x x x ∆∆∆+=∆∆∆+=∆∆∆+=→∆→∆→∆→∆ =cos x .∴y ′=cos x .(如果叫两位同学上去做没有得到两种方法,老师可把另一种方法介绍一下)※5.y =cos x ,求y ′.(也叫两位同学一起做)[生甲]解:Δy =cos(x +Δx )-cos x=cos x cos Δx -sin x sin Δx -cos x ,x x x x x x x yy x x ∆-∆-∆=∆∆='→∆→∆cos sin sin cos cos lim lim00 1sin 4)2(2sin )cos 2(lim sin sin lim )2sin 2(cos lim sin sin )1(cos cos lim2200200⋅-∆⋅∆∆-=∆∆-∆∆-=∆∆--∆=→∆→∆→∆→∆x x x x x xx x x x x xxx x x x x x x =-2cos x ·1·0-sin x =-sin x ,∴y ′=-sin x .[生乙]解:x x x x x ∆-∆+→∆cos )cos(lim22sin )2sin(lim 22lim 00xx x x xx x ∆∆∆+-=∆=→∆→∆ =-sin x ,∴y ′=-sin x .[师]由4、5两道题我们可以比较一下,第二种方法比较简便,所以求三角函数的极限时,选择哪一种公式进行三角函数的转化,要根据具体情况而定,选择好的公式,可以简化计算过程.上面的第2题和第3题中,只证明了n ∈N *的情况,实际上它对于全体实数都成立.我们把上面四种函数的导数作为四个公式,以后可以直接用.[板书](一)公式1 C ′=0(C 是常数)公式2 (x n )′=nx n -1(n ∈R)公式3 (sin x )′=cos x公式4 (cos x )′=-sin x(二)课本例题[师]下面我们来看几个函数的导数,运用公式求:(1)(x 3)′;(2)(21x )′;(3)(x )′. [学生板演](1)解:(x 3)′=3x 3-1=3x 2.(2)解:3122222)()1(----=-='='x x x x. (3)解:xx x x x 212121)()(2112121==='='--. (还可以叫两个同学同做一道题,一个用极限即定义来求,一个用公式来求,比较一下)(三)变化率举例[师]我们知道在物理上求瞬时速度时,可以用求导的方法来求.知道运动方程s=s(t ),瞬时速度v =s′(t ).[板书]物体按s=s(t )作直线运动,则物体在时刻t 0的瞬时速度v 0=s′(t 0).v 0=s′(t 0)叫做位移s 在时刻t 0对时间t 的变化率.[师]我们引入了变化率的概念,函数f (x )在点x 0的导数也可以叫做函数f (x )在点x 0对自变量x 的变化率.很多物理量都是用变化率定义的,除了瞬时速度外,还有什么?[板书]函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.[生]例如角速度、电流等.[师]它们是分别对哪些量的变化率呢?[生]角速度是角度(作为时间的函数)对时间的变化率;电流是电量(作为时间的函数)对时间的变化率.[师]下面来看两道例题.[例1]已知物质所吸收的热量Q =Q (T )(热量Q 的单位是J ,绝对温度T 的单位是K),求热量对温度的变化率C (即热容量).[学生分析]由变化率的含义,热量是温度的函数,所以热量对温度的变化率就是热量函数Q (T )对T 求导.解:C =Q ′(T ),即热容量为Q ′(T )J/K.[师]单位质量物质的热容量叫做比热容,那么上例中,如果物质的质量是v kg,那么比热容怎么表示?[生]比热容是v1Q ′(T ) J/(kg·K).图3-9[例2]如图3-9,质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.[学生分析]要求时刻t 时M 点的速度,首先要求出在y 轴的运动方程,是关于t 的函数,再对t 求导,就能得到M 点的速度了.解:时刻t 时,∵角速度为1 rad/s,∴∠POA=1·t =t rad.∴∠MPO =∠POA =t rad.∴OM =OP ·sin ∠MPO =10·sin t .∴点M 的运动方程为y =10sin t .∴v =y ′=(10sin t )′=10cos t ,即时刻t 时,点P 在y 轴上的射影点M 的速度为10cos t cm/s.[师]我们学习了有关导数的知识,对于一些物理问题,就可以利用导数知识轻而易举地解决了.求导时,系数可提出来.Ⅲ.课堂练习1.(口答)求下列函数的导数.(1)y =x 5;(2)y =x 6;(3)x =sin t ;(4)u =cos φ. [生](1)y ′=(x 5)′=5x 4.[生](2)y ′=(x 6)′=6x 5.[生](3)x ′=(sin t )′=cos t .[生](4)u ′=(cos φ)′=-sin φ.2.求下列函数的导数.(1)31xy =;(2)3x y =. (1)解:y ′=(31x )′=(x -3)′=-3x -3-1=-3x -4. (2)解:321313133131)()(--==''='x x x x y . 3.质点的运动方程是s=t 3(s 单位:m ,t 单位:s),求质点在t =3时的速度.解:v =s′=(t 3)′=3t 3-1=3t 2,当t =3时,v =3×32=27(m/s),∴质点在t =3时的速度为27 m/s.4.物体自由落体的运动方程是s =s (t )=221gt (s 单位:m ,t 单位:s,g =9.8 m/s 2),求t =3时的速度.解:gt t g gt t s v =⋅==='=-122221)21()(, 当t =3时,v =g·3=9.8×3=29.4(m/s),∴t =3时的速度为29.4 m/s.[师]该题也用到求导时系数可提出来,根据[Cf (x )]′=Cf ′(x )(C 是常数).这由极限的知识可以证得.xx f x x f C x x Cf x x Cf x Cf x x ∆-∆+=∆-∆+='→∆→∆)()(lim )()(lim ])([00=Cf ′(x ). 5.求曲线y =x 4在点P (2,16)处的切线方程.解:y ′=(x 4)′=4x 4-1=4x 3.∴y ′|x =2=4×23=32.∴点P (2,16)处的切线方程为y -16=32(x -2),即32x -y -48=0.Ⅳ.课时小结[学生总结]这节课主要学习了四个公式(①C ′=0(C 是常数),②(x n )′=nx n -1(n ∈R),③(sin x )′=cos x ,④(cos x )′=-sin x )以及变化率的概念:v 0=s ′(t 0)叫做位移s 在时刻t 0对时间t 的变化率,函数y =f (x )在点x 0的导数f ′(x 0)叫做函数f (x )在点x 0对自变量x 的变化率.Ⅴ.课后作业(一)课本P 116习题3.2 2,4,5.(二)1.预习内容:课本P 118~119和(或差)、积的导数.2.预习提纲:(1)和(或差)的导数公式、证明过程.(2)积的导数 公式、证明过程.(3)预习例1、例2、例3,如何运用法则1、法则2.板书设计§ 3.2 几种常见函数的导数公式1C ′=0(C 为常数)公式2(x n )′=nx n -1(n ∈R)公式3(sin x )′=cos x公式4(cos x )′=-sin xv 0=s ′(t 0)是位移s 在t 0对时间t 的变化率.函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.1.y =C (C 是常数),求y ′.2.y =x n (n ∈N *),求y ′.3.y =x -n (n ∈N *),求y ′.4.y =sin x ,求y ′.(两种方法)5.y =cos x ,求y ′.(两种方法) 课本例题(1)(x 3)′;(2)(21x)′;(3)(x )′. 例1.已知物质所吸收的热量Q =Q (T )(Q 单位:J ,T 单位:K),求热量对温度的变化率C (热容量).例2.质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.课堂练习1.(口答)(1)(x 5)′;(2)(x 6)′;(3)(sin t )′;(4)(cos φ)′.2.(1) )1(3'x;(2)(3x )′. 3.质点运动方程是s=t 3,求t =3时的速度.4.221gt s =,求t =3时的速度. 5.求曲线y =x 4在P (2,16)处的切线方程.课后作业。
求导数的方法
求导数的方法(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。
(2)几种常见函数的导数公式:①C'=0(C为常数);②(x^n)'=nx^(n-1) (n∈Q);③(sinx)'=cosx;④(cosx)'=-sinx;⑤(e^x)'=e^x;⑥(a^x)'=a^xIna (ln为自然对数)⑦(Inx)'=1/x(ln为自然对数)(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v^2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱!导数公式及证明[编辑本段] 这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)y=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
几种常见函数的导数
(3) y 1 x1 y' 1 x11 x2
(4)
x1
y x x2
y
(
x
1 2
)
1
x
1 2
1
1
2 2x
2.已知y x3,求y x2
解: y (x3 ) 3x31 3x2 y x2 3(2)2 12
同理可证,公式4: (cos x) sin x.
例1 求下列函数的导数:
(1) y x4 (2) y x3
(4) y x (5) y sin 450
(3) y 1 x
(6)u cos v
解:
(1) y (x4 ) 4x41 4x3
(2) y (x3) 3x31 3x4
2cos(x x )sin x ,
2
2
y x
2cos(x x )sin x
2
2
x
cos(x
x 2
)
s
in x 2
x
,
f
( x)
(sin
x)
lim
y
lim
cos(x
x
)
2
lim
sin
x 2
x x0
x0
2 x0 x
2
cos x 1 cos x.
C1n
x n 1x
C
2 n
xn2
(x)2
...
C
n n
(x)n
y x
C1n x n1
高二数学几种常见函数的导数
(1)y′=-2x
x
-3
(3)y=2
x
(4)y=log2x
1 2 (2)y′= x- 3 3 1 (4)y′= xln2
(3)y′= 2 ln2
例2.已知y
x,1)求y;
x 解:1)y x x x x x x y 1 1 y lim lim . x 0 x x 0 x x x 2 x
2)求曲线在点( 11 , )处的切线方程.
1 1 1 2) 切线方程 : y 1 ( x 1).即:y= x 2 2 2
• [点评] 求函数在某点处的导数的步骤是 先求导函数,再代入变量的值求导数.
1 练习:已知 f(x)= ,且 f′(1)=- 3,求 n. n x 1
n=3
补充练习:
公式1: C 0 (C为常数) .
请同学们求下列函数的导数:
2) y f ( x) x, y ' 1
2
表示y=x图象上每一点处的切线 斜率都为1
3) y f ( x) x , y ' 2 x 这又说明什么? 1 1 4) y f ( x) , y ' 2 x x
n n 1 ( x ) nx (n Q ) . 公式2:
2.能结合其几何意义解决一些与切点、切线斜率 有关的较为综合性问题.
软文发布 软文发布
wpf04xsz
了撇嘴。不行,他们两个在那里不停地唧唧歪歪,鬼知道什么时候会说完。我必须想办法让那个撩妹的家伙赶快离开,不然我 迟早是饿死的料。“据我所知,会试历来是由礼部主持。”慕容凌娢生硬的插嘴道,“所以……不管你怎么说,都是改变不了 这个事实的。”“这位是……”那人在此时才注意到了慕容凌娢。原来你刚才根本就没有正眼看我啊?现在才发现我的存在, 也太不尊重人了吧……慕容凌娢平复了一下自己的情绪,仔细想想,这也不能怪他啊,毕竟自己在这里如坐针毡的等了半天, 都没有敢发表一下自己的意建,他没注意也是可以理解的。“这是我的远房表妹,初次来京城。没见过世面,也不懂礼数,还 请公子恕罪。”百蝶一边介绍一边用眼神示意慕容凌娢别在多说,“白绫,还不快给韩公子赔罪!”为什么要我给他赔罪?我 说的明明就是实话啊。慕容凌娢看了他一眼,并没有要道歉的意思。那人没有等到慕容凌娢的道歉,倒是产生了一丝惊奇。 “原来如此,我说怎么没见过,原来不是醉影楼的人啊。”他饶有兴趣的看了一眼慕容凌娢,继续说到,“这醉影楼里,还从 未有人敢反驳我。”“没有人反驳不代表你是正确的,而且大多数客观存在的事情即是不用反驳,也是事实。”“你的大道理 还真有意思。”他起身便准备离去,“别被你所相信的真理给骗了。”“韩公子……莺凝,去送送韩公子。”百蝶对站在走廊 上的一个女子说道。可算是走了,慕容凌娢心里高兴的不能行,可偏偏还要装出什么都不知道的样子。可是……为什么感觉现 在的气氛那么奇怪呢……沉闷的气氛持续了好一会儿,百蝶才幽幽的开口。“凌娢,你是不是故意的啊……”她危险的眯起了 眼睛,“我可是在帮你套科举考试的信息啊,现在可好,我刚刚的努力都白费了!”“啊?不是,百蝶姐姐我……”慕容凌娢 的大脑仿佛进行了一次弯道超越,差点因为没刹住车而飞出悬崖,“你跟那个人好像很久之前就认识吧?他是谁啊?”“他 啊……晴国的六皇子,韩皓泽。”“那我现在狗带还来得及吗?”(古风一言)那时,谁渡江湖雨漂泊。而今,征战沙场千里外。 (注:筱玦的这部小说属于架空穿越,但大多数情况下都是仿照明朝的制度来写的。也包括科举制度。会试:通过乡试以后, 第二年春天在京城礼部,由礼部侍郎主持的考试,或由皇帝特派正、副总裁主考官主持。辰、戌、丑、未年会试,为正科;也 有恩科,叫会试因科。因为在春天考试,所以又称「春试」、「春闱」。考中的当「贡士」,第一名叫「会元」。)第021章 少女的名字叫茉莉“凌娢,你是不是故意的?”百蝶危险的眯起了眼睛,“我可是在帮你套科举考试的信息啊,现在可好,我 刚刚的努力都白费了!”“啊?不是,百蝶姐
基本初等函数的导数公式及导数的运算法则
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
3
y 3x cos x sin x
2
x x 2 (1) (2) y 2 sin cos 2 x 1 2 2
y cos x 4 x
(3) y ( x 1)(x 2)
y 2 x 3
例3:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x;
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。
高中数学 同步学案 几个常用函数的导数和基本初等函数的导数公式
导数的计算第一课时 几个常用函数的导数和基本初等函数的导数公式预习课本P81~83,思考并完成以下问题1.函数y =c,y =x,y =x -1,y =x 2,y =x 的导数分别是什么?能否得出y =x n的导数公式?2.正余弦函数的导数公式、指数函数、对数函数的导数公式是什么?[新知初探]1.几种常用函数的导数函数导数 f(x)=c(c 为常数)f′(x)=0 f(x)=x f′(x)=1 f(x)=x 2f′(x)=2x f(x)=1xf′(x)=-1x 2f(x)=xf′(x)=12x[点睛] 对几种常用函数的导数的两点说明(1)以上几个常用函数的导数是求解其他函数的导数的基础,都是通过导数的定义求得的,都属于幂函数的导数.(2)以上几个常见的导数公式需记牢,在求导数时,可直接应用,不必再用定义去求导. 2.基本初等函数的导数公式原函数 导函数 f(x)=c(c 为常数) f′(x)=0 f(x)=x α(α∈Q *) f′(x)=αxα-1f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x f(x)=a x(a>0且a≠1)f′(x)=a xln_a f(x)=e xf′(x)=e x f(x)=log a x(a>0且a≠1)f′(x)=1xln af(x)=ln xf′(x)=1x[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)若y =2,则y′=12×2=1( )(2)若f′(x)=sin x,则f(x)=cos x( ) (3)f(x)=1x 3,则f′(x)=-3x 4( )答案:(1)× (2)× (3)√ 2.下列结论不正确的是( )A .若y =0,则y′=0B .若y =5x,则y′=5C .若y =x -1,则y′=-x -2D .若y =x 12,则y′=12x 12答案:D3.若y =cos 2π3,则y′=( )A .-32B .-12C .0 D.12答案:C4.曲线y =e x在点(0,1)处的切线方程为________. 答案:y =x +1利用导数公式求函数导数[典例] 求下列函数的导数.(1)y =x 12;(2)y =1x 4;(3)y =5x 3;(4)y =3x;(5)y =log 5x.[解] (1)y′=(x 12)′=12x 11.(2)y′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -5=-4x 5.(3)y′=(5x 3)′=(x 35)′=35x -25.(4)y′=(3x)′=3x ln 3. (5)y′=(log 5x)′=1xln 5.求简单函数的导函数有两种基本方法(1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.[活学活用] 求下列函数的导数:(1)y =lg x ;(2)y =⎝ ⎛⎭⎪⎫12x;(3)y =x x ;(4)y =log 13x.解:(1)y′=(lg x)′=⎝⎛⎭⎪⎫ln x ln 10′=1xln 10.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2.(3)y′=(x x )′=(x 32)′=32x 12=32x.(4)y′=⎝ ⎛⎭⎪⎫log 13x ′=1xln 13=-1xln 3.导数公式的综合应用[典例] (1)曲线y =cos x 在点P ⎝ ⎛⎭⎪⎫π3,12处的切线与y 轴交点的纵坐标是( )A.12-3π9B.12+3π9C.12+3π6D.12-3π6(2)设曲线y =x 在点(2,2)处的切线与直线ax +y +1=0垂直,则a =( ) A.22B.24C .-2 2D .2 2[解析] (1)因为y′=-sin x,切点为P ⎝ ⎛⎭⎪⎫π3,12, 所以切线的斜率k =y′|x=π3=-sin π3=-32, 所以切线方程为y -12=-32⎝ ⎛⎭⎪⎫x -π3,令x =0,得y =12+3π6,故选C.(2)因为y =x =x 12,所以y′=12x -12=12x ,所以切线的斜率k =y′|x =2=122,由已知,得-a =-22,即a =22,故选D. [答案] (1)C (2)D1.利用导数的几何意义解决切线问题的两种情况(1)若已知点是切点,则在该点处的切线斜率就是该点处的导数.(2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤1.曲线y =x 23在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为( )A.53B.89C.2512D.412解析:选C 可求得y′=23x -13,即y′|x =1=23,切线方程为2x -3y +1=0,与x 轴的交点坐标为⎝ ⎛⎭⎪⎫-12,0, 与x =2的交点坐标为⎝ ⎛⎭⎪⎫2,53, 围成三角形面积为12×⎝⎛⎭⎪⎫2+12×53=2512.2.当常数k 为何值时,直线y =x 与曲线y =x 2+k 相切?请求出切点. 解:设切点为A(x 0,x 20+k).∵y′=2x,∴⎩⎪⎨⎪⎧2x 0=1,x 20+k =x 0,∴⎩⎪⎨⎪⎧x 0=12,k =14,故当k =14时,直线y =x 与曲线y =x 2+k 相切,且切点坐标为⎝ ⎛⎭⎪⎫12, 12.层级一 学业水平达标1.若指数函数f(x)=a x(a >0,a≠1)满足f′(1)=ln 27,则f′(-1)=( ) A .2B .ln 3 C.ln 33D .-ln 3解析:选C f′(x)=a x ln a,由f′(1)=aln a =ln 27,解得a =3,则f′(x)=3xln 3,故f′(-1)=ln 33. 2.已知f(x)=x 2·x,则f′(2)=( ) A .4 2B .0 C. 2D .5 2解析:选D 原函数化简得f(x)=x 52,所以f′(x)=52·x 32,所以f′(2)=52×232=5 2.故选D.3.已知f(x)=x α,若f′(-1)=-2,则α的值等于( ) A .2B .-2C .3D .-3解析:选A 若α=2,则f(x)=x 2,∴f′(x)=2x, ∴f′(-1)=2×(-1)=-2适合条件.故应选A.4.若曲线y =x 在点P(a,a)处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是( ) A .4B .2C .16D .8解析:选A ∵y′=12x ,∴切线方程为y -a =12a(x -a).令x =0,得y =a2,令y =0,得x =-a, 由题意知12·a2·a=2,∴a =4.5. 曲线y =13x 3在x =1处切线的倾斜角为( )A .1B .-π4 C.π4 D.5π4解析:选C ∵y′=x 2,∴y′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.6.已知f(x)=1x ,g(x)=mx,且g′(2)=1f′2,则m =________.解析:∵f′(x)=-1x 2,∴f′(2)=-14.又∵g′(x)=m,∴g′(2)=m.由g′(2)=1f′2,得m =-4.答案:-47.曲线y =ln x 在点M(e,1)处的切线的斜率是________,切线方程为____________. 解析:∵y′=(ln x)′=1x ,∴y′|x =e =1e .∴切线方程为y -1=1e (x -e),即x -ey =0.答案:1ex -ey =08.设坐标平面上的抛物线C :y =x 2,过第一象限的点(a,a 2)作抛物线C 的切线l,则直线l 与y 轴的交点Q 的坐标为________.解析:显然点(a,a 2)为抛物线C :y =x 2上的点, ∵y′=2x,∴直线l 的方程为y -a 2=2a(x -a). 令x =0,得y =-a 2,∴直线l 与y 轴的交点的坐标为(0,-a 2). 答案:(0,-a 2) 9.求下列函数的导数:(1)y =x 8;(2)y =4x;(3)y =log 3x ;(4)y =sin ⎝⎛⎭⎪⎫x +π2;(5)y =e 2.解:(1)y′=(x 8)′=8x8-1=8x 7.(2)y′=(4x)′=4x ln 4. (3)y′=(log 3x)′=1xln 3.(4)y′=(cos x)′=-sin x. (5)y′=(e 2)′=0.10.已知P(-1,1),Q(2,4)是曲线y =x 2上的两点, (1)求过点P,Q 的曲线y =x 2的切线方程; (2)求与直线PQ 平行的曲线y =x 2的切线方程.解:(1)因为y′=2x,P(-1,1),Q(2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y′|x =-1=-2, 过Q 点的切线的斜率k 2=y′|x =2=4,过P 点的切线方程:y -1=-2(x +1),即2x +y +1=0. 过Q 点的切线方程:y -4=4(x -2),即4x -y -4=0. (2)因为y′=2x,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y′|x=x 0=2x 0=1, 所以x 0=12,所以切点M ⎝ ⎛⎭⎪⎫12,14, 与PQ 平行的切线方程为: y -14=x -12,即4x -4y -1=0.层级二 应试能力达标1.质点沿直线运动的路程s 与时间t 的关系是s =5t,则质点在t =4时的速度为( )A.12523 B.110523C.25523D.110523解析:选B ∵s′=15t -45.∴当t =4时,s′=15·1544=110523 .2.直线y =12x +b 是曲线y =ln x(x >0)的一条切线,则实数b 的值为( )A .2B .ln 2+1C .ln 2-1D .ln 2解析:选C ∵y =ln x 的导数y′=1x ,∴令1x =12,得x =2,∴切点为(2,ln 2).代入直线y =12x +b,得b =ln 2-1.3.在曲线f(x)=1x 上切线的倾斜角为34π的点的坐标为( )A .(1,1)B .(-1,-1)C .(-1,1)D .(1,1)或(-1,-1)解析:选D 因为f(x)=1x ,所以f′(x)=-1x 2,因为切线的倾斜角为34π,所以切线斜率为-1,即f′(x)=-1x 2=-1,所以x =±1,则当x =1时,f(1)=1;当x =-1时,f(1)=-1,则点坐标为(1,1)或(-1,-1). 4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A. 1nB.1n +1C.n n +1D .1解析:选B 对y =xn +1(n ∈N *)求导得y′=(n +1)x n. 令x =1,得在点(1,1)处的切线的斜率k =n +1,∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =n n +1, ∴x 1·x 2·…·x n =12×23×34×…×n -1n ×nn +1=1n +1, 故选B. 5.已知f(x)=a 2(a 为常数),g(x)=ln x,若2x[f ′(x)+1]-g′(x)=1,则x =________. 解析:因为f′(x)=0,g′(x)=1x ,所以2x[f ′(x)+1]-g′(x)=2x -1x =1.解得x =1或x =-12,因为x >0,所以x =1.答案:16.与直线2x -y -4=0平行且与曲线y =ln x 相切的直线方程是________. 解析:∵直线2x -y -4=0的斜率为k =2, 又∵y′=(ln x)′=1x ,∴1x =2,解得x =12.∴切点的坐标为⎝ ⎛⎭⎪⎫12,-ln 2. 故切线方程为y +ln 2=2⎝ ⎛⎭⎪⎫x -12.即2x -y -1-ln 2=0. 答案:2x -y -1-ln 2=07.已知曲线方程为y =f(x)=x 2,求过点B(3,5)且与曲线相切的直线方程. 解:设切点P 的坐标为(x 0,x 20). ∵y =x 2,∴y′=2x,∴k =f′(x 0)=2x 0, ∴切线方程为y -x 20=2x 0(x -x 0).将点B(3,5)代入上式,得5-x 20=2x 0(3-x 0), 即x 20-6x 0+5=0,∴(x 0-1)(x 0-5)=0,∴x 0=1或x 0=5, ∴切点坐标为(1,1)或(5,25),故所求切线方程为y -1=2(x -1)或y -25=10(x -5), 即2x -y -1=0或10x -y -25=0.8.求证:双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数.证明:设P(x 0,y 0)为双曲线xy =a 2上任一点. ∵y′=⎝ ⎛⎭⎪⎫a 2x ′=-a 2x 2. ∴过点P 的切线方程为y -y 0=-a2x 20(x -x 0).令x =0,得y =2a2x 0;令y =0,得x =2x 0.则切线与两坐标轴围成的三角形的面积为 S =12·⎪⎪⎪⎪⎪⎪2a 2x 0·|2x 0|=2a 2. 即双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a 2.。
3.2 几种常见函数的导数
2 -1 解析: 解析:∵对于 y=x3,y′=(x3)′= x 3, = ′ ′ 3 直线 x+y+1=0 的斜率为-1, + + = 的斜率为- , 2 2 -1 8 4 ∴令 x 3=1,得 x= ,代入 y=x3得 y= , , = = = 3 27 9 8 4 即切线的切点坐标为( 即切线的切点坐标为 , ), , 27 9 切线方程为: - + = ∴切线方程为:27x-27y+4=0.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
基础达标
1.下列各式中正确的是( C ) .下列各式中正确的是 (A)(sin a)′=cos a(a 为常数 为常数) ′ (B)(cos x)′=sin x ′ (C)(sin x)′=cos x ′ 1 - - (D)(x 5)′=- x 6 ′ 5
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
3.2 .
几种常见函数的导数
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
首页
上一页
下一页
末页
瞻前顾后
要点突破
典想:
由导数的定义可得下列四种函数的导数公式: 由导数的定义可得下列四种函数的导数公式: 为常数); 1.C′=0(C 为常数 ; . ′ - n 2.(x )′=nxn 1(其中 n∈Q); . ′ 其中 ∈ ; 3.(sin x)′=cos_x; . ′ ; 4.(cos x)′=-sin_x. . ′
三角函数的求导与反函数求导的计算方法
三角函数的求导与反函数求导的计算方法三角函数在数学中起着重要的作用,而求导是研究函数变化率的重要工具。
本文将重点介绍三角函数的求导方法以及反函数求导的计算方法。
一、三角函数的求导方法在求解三角函数的导数时,我们需要掌握以下几个常见的三角函数及其导数:1. 正弦函数sin(x)的导数为cos(x),即 d/dx(sin(x)) = cos(x)。
2. 余弦函数cos(x)的导数为-sin(x),即 d/dx(cos(x)) = -sin(x)。
3. 正切函数tan(x)的导数为sec^2(x),即 d/dx(tan(x)) = sec^2(x)。
4. 余切函数cot(x)的导数为-csc^2(x),即 d/dx(cot(x)) = -csc^2(x)。
5. 正割函数sec(x)的导数为sec(x)*tan(x),即 d/dx(sec(x)) =sec(x)*tan(x)。
6. 余割函数csc(x)的导数为-csc(x)*cot(x),即 d/dx(csc(x)) = -csc(x)*cot(x)。
通过掌握以上导数公式,我们可以轻松地计算出给定函数的导数。
二、反函数的求导计算方法反函数指的是对于函数y = f(x),如果存在另一个函数x = g(y),使得对于f(x)的定义域内的任意x,g(f(x)) = x,且对于g(y)的定义域内的任意y,f(g(y)) = y,那么g(y)就是f(x)的反函数。
在求解反函数的导数时,有一个重要的定理可以应用,即反函数的导数等于原函数的导数的倒数。
即如果y = f(x)和x = g(y)是互为反函数,且f'(x) ≠ 0,则有:d/dy(g(y)) = 1 / (d/dx(f(x)))通过这个定理,我们可以利用三角函数的导数公式来计算反函数的导数。
三、示例分析为了更好地理解三角函数的求导与反函数求导的计算方法,我们来分别计算几个具体的例子。
例1:求解sin(x)的导数。
几种常见函数导数
(1 ) ]
(6 x
2 )( x 3
1) (3 x 2 ( x 3 1) 2
2 x)3x 2
3x4 4x3 6x 2 ( x 3 1) 2
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
10
y x 1 sin x
解: y
x
1
sin x
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
8
y2xtanx
解: y (2 x tan x )
2( x tan x )
2[( x ) tan x x (tan x )]
2(tan x x sec 2 x )
2 tan x 2 x sec 2 x
(tan
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
6
y x 1 x
解: y ( x 1 )
x
( x ) ( 1 ) x
1
1
( x 2 ) ( x 2 )
1
1 1
x 2 (
1
)x
1 1 2
2
2
1
1
x 2
1
3
x2
2
2
学而不思则罔●▂●思而不学则殆
(1)yx33x1 (3)y(2x21)(x23x4)
3x22x (5)y x31
(2y) x 1 x
(4y) 2xtanx (6y) x1
sinx
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
3
切线方程
学而不思则罔●▂●思而不学则殆
《几种常见函数的导数》教案完美版
《几种常见函数的导数》教案完美版第一章:导数的基本概念1.1 引入导数的定义解释导数的定义:函数在某一点的导数是其在该点的切线斜率。
强调导数的重要性:导数可以用来描述函数在某一点的增减性、极值等性质。
1.2 导数的计算方法讲解导数的计算规则:常数函数的导数为0,幂函数、指数函数、对数函数的导数公式。
示例讲解:计算常见函数在某一点的导数,如f(x) = x^2, f(x) = e^x, f(x) = ln(x)。
第二章:线性函数和多项式函数的导数2.1 线性函数的导数引入线性函数的导数:线性函数的一般形式为f(x) = ax + b,其导数为f'(x) = a。
强调线性函数导数的简洁性:线性函数的导数恒为一个常数。
2.2 多项式函数的导数引入多项式函数的导数:多项式函数的一般形式为f(x) = a_nx^n + a_(n-1)x^(n-1) + + a_1x + a_0,其导数为f'(x) = na_nx^(n-1) + (n-1)a_(n-1)x^(n-2) + + a_1。
示例讲解:计算多项式函数在某一点的导数,如f(x) = x^3 + 2x^2 + 3x + 4。
第三章:指数函数和对数函数的导数3.1 指数函数的导数引入指数函数的导数:指数函数的一般形式为f(x) = a^x,其导数为f'(x) = a^x ln(a)。
强调指数函数导数的性质:指数函数的导数恒为一个正数。
3.2 对数函数的导数引入对数函数的导数:对数函数的一般形式为f(x) = ln(x),其导数为f'(x) = 1/x。
强调对数函数导数的性质:对数函数的导数在定义域内为正数。
第四章:三角函数的导数4.1 正弦函数的导数引入正弦函数的导数:正弦函数的一般形式为f(x) = sin(x),其导数为f'(x) = cos(x)。
强调正弦函数导数的周期性:正弦函数的导数也是一个周期函数。
4.2 余弦函数的导数引入余弦函数的导数:余弦函数的一般形式为f(x) = cos(x),其导数为f'(x) = -sin(x)。
《几种常见函数的导数》教案完美版
《几种常见函数的导数》教案完美版一、教学目标1. 理解导数的定义和几何意义。
2. 掌握几种常见函数的导数公式。
3. 会求函数在某一点的导数。
4. 能够运用导数解决实际问题,如运动物体的瞬时速度、加速度等。
二、教学重难点1. 重点:几种常见函数的导数公式。
2. 难点:导数的应用,如求函数在某一点的导数,解决实际问题。
三、教学方法1. 采用讲解法,引导学生理解导数的定义和几何意义。
2. 运用归纳法,让学生掌握几种常见函数的导数公式。
3. 利用例题讲解法,培养学生求函数在某一点的导数的能力。
4. 采用问题驱动法,激发学生运用导数解决实际问题的兴趣。
四、教学准备1. 课件:几种常见函数的导数公式及例题。
2. 练习题:巩固所学知识。
五、教学过程1. 导入:回顾导数的定义和几何意义。
2. 新课:讲解几种常见函数的导数公式,如常数函数、幂函数、指数函数、对数函数等。
3. 例题:求函数在某一点的导数,如f(x) = x^2,在x=1时的导数。
4. 练习:让学生独立完成练习题,巩固所学知识。
5. 拓展:运用导数解决实际问题,如求运动物体的瞬时速度、加速度等。
6. 小结:总结本节课的主要内容和知识点。
7. 作业:布置作业,让学生进一步巩固所学知识。
8. 课后反思:根据学生的课堂表现和作业情况,对教学进行总结和调整。
六、教学评价1. 评价目标:检查学生对导数定义和几何意义的理解,以及几种常见函数导数的掌握情况。
2. 评价方法:课堂问答、练习题、小组讨论。
3. 评价内容:a. 学生能否准确描述导数的定义和几何意义。
b. 学生是否能熟练运用几种常见函数的导数公式。
c. 学生是否能独立求出给定函数在某一点的导数。
d. 学生是否能运用导数解决实际问题。
七、教学反馈1. 课堂问答:通过提问,了解学生对导数概念和公式的理解程度。
2. 练习题:收集学生作业,分析其解答过程和结果,评估掌握情况。
3. 小组讨论:组织学生进行小组讨论,促进互动交流,提高解决问题的能力。
《几种常见函数的导数》教案完美版
《几种常见函数的导数》教案完美版第一章:导数的基本概念1.1 引入导数的定义解释导数的概念,强调导数表示函数在某点的瞬时变化率。
通过图形和实际例子演示导数的意义。
1.2 导数的几何意义解释导数表示切线的斜率,通过图形展示导数与切线的关系。
强调导数与函数图像的切线有关,而不仅仅是函数值的变化。
1.3 导数的计算法则介绍导数的四则运算法则,包括加减乘除和复合函数的导数。
强调导数的计算法则在求导过程中的应用。
第二章:常数函数和幂函数的导数2.1 常数函数的导数证明常数函数的导数为0,强调常数函数的瞬时变化率为0。
2.2 幂函数的导数引入幂函数的导数公式,解释指数对导数的影响。
通过例子展示不同指数幂函数的导数计算方法。
2.3 指数函数和对数函数的导数引入指数函数的导数公式,解释指数函数的瞬时变化率。
引入对数函数的导数公式,解释对数函数的瞬时变化率。
第三章:三角函数的导数3.1 正弦函数的导数引入正弦函数的导数公式,解释正弦函数的瞬时变化率。
3.2 余弦函数的导数引入余弦函数的导数公式,解释余弦函数的瞬时变化率。
3.3 正切函数的导数引入正切函数的导数公式,解释正切函数的瞬时变化率。
第四章:反三角函数的导数4.1 反正弦函数的导数引入反正弦函数的导数公式,解释反正弦函数的瞬时变化率。
4.2 反余弦函数的导数引入反余弦函数的导数公式,解释反余弦函数的瞬时变化率。
4.3 反正切函数的导数引入反正切函数的导数公式,解释反正切函数的瞬时变化率。
第五章:复合函数的导数5.1 链式法则介绍链式法则,解释复合函数的导数计算方法。
5.2 反函数的导数引入反函数的导数概念,解释反函数的导数与原函数的关系。
5.3 复合函数的导数应用通过例子展示复合函数的导数在实际问题中的应用。
第六章:高阶导数6.1 导数的重复求导解释高阶导数的概念,即函数导数的导数。
演示如何求二阶、三阶等高阶导数。
6.2 求导法则在高阶导数中的应用强调高阶导数求导法则,如链式法则、乘积法则在高阶导数计算中的应用。
高三数学几种常见函数的导数
1 4 t 4
练 习
求曲线y=x2在点(1,1)处的切线与x 轴、直线x=2所围城的三角形的面 积。
; 营销手机 ;
接着,他挥出一股申历,要将纪沄国尪转移到手中の绿色珠子之内.鞠言看了看方烙老祖,自是不会阻止.纪沄国尪の情况已是如此,申魂体正在溃散,能够说是必死无疑の境地.现在方烙老祖说有办法延缓纪沄国尪の寿命,鞠言当然想要试一试.当纪沄国尪被转移到绿色珠子之内,方烙老 祖似是轻呼出一口气.“鞠言战申,此物叫做离魂珠,是一件申魂至宝,也算是天然の混元异宝.此物,能帮助修行者提升申魂强度.”方烙老祖对鞠言介绍离魂珠呐件宝物.方烙老祖说得轻松,但当鞠言听其介绍后,便是知道,呐离魂珠の价值,绝对难以想象.“离魂珠内,自有一个空间.纪 沄国尪在离魂珠空间,申魂体应是能暂事稳定.即便仍然会溃散,但至少能争取到不少の事间.鞠言战申,现在俺将离魂珠交给你.”方烙老祖将手中の绿色珠子,递给鞠言.而看到呐绿色珠子,仲零王尪の目光也连续出现变化.仲零王尪,知道呐离魂珠是何物.不仅仅是仲零王尪,还有其他 几个王国の王尪,乃至战申等等人员,他们の目光,都盯在离魂珠之上.虽然尽历の掩饰,但他们の眼申琛处,偶尔闪过の光泽,暴露了他们对离魂珠の极度在乎.“方烙老祖,此恩,俺鞠言记下了.待俺找到办法,治好纪沄陛下,便将此宝物还给你.”鞠言接过离魂珠,对方烙老祖琛琛躬 身.“呐个以后再说吧!鞠言战申,纪沄国尪在俺法辰王国被红叶大王攻击,法辰王国也有一份责任.你,不必如此客气.”方烙老祖摆摆手道.事实上,拿出离魂珠,方烙老祖也是极为心疼.离魂珠,乃是混元空间最为珍贵の宝物之一.混元空间,有一叫做蓝槐の申魂果实.善王级の修行者, 使用此物,都能够显著增强申魂强度.蓝槐果实,是一种价值无比珍贵の东西,寻常事几乎不可能购买到.而呐离魂珠,正是与蓝槐有直接の关系.不过,蓝槐在吞服之后,也只有一次の效果.而离魂珠,却是能长久使用.蓝槐の价值,与离魂珠根本就无法相比.整个混元空间,也找不到几颗离 魂珠.“方烙老祖,竟是将离魂珠都拿出来给鞠言战申使用了.”“呐下子,鞠言战申欠法辰王国の人情可就大了.”“嗯,其他王国,没机会授予鞠言战申名誉大公爵身份了.”“不得不说,方烙老祖也真是果断.如果是俺有离魂珠,那恐怕不会舍得拿出来.”“离魂珠,无价之宝.而且此 物,对任何层次の修行者尽皆有用.便是天庭大王,也能使用离魂珠.”万江王尪、秋阳王尪等人,都低声交谈.方烙老祖拿出离魂珠给鞠言战申使用,令他们有些震惊.“鞠言战申,你万万不要着急.红叶大王,为天庭拾二大王之一,实历之强,琛不可测.以你现在の实历,无法与其对抗.所 以短事间内,你可不能主动去找红叶大王或者是去红叶王国.”方烙老祖又对鞠言道.他虽也心疼离魂珠,但既然已经拿出来交给了鞠言,他便不会再患得患失.“俺明白.老祖放心,没有足够の实历之前,俺不会愚蠢到自身找死.”鞠言点点头说道.“那就好!唉,谁也无法想到,在本届战 申榜排位赛期间,竟会发生呐样の事情.”“那红叶大王,本是高高在上の至尊人物.在以前,俺也曾与其有过接触,不曾发觉,他如此の霸道欺人.”方烙老祖摇摇头,他对红叶大王の所作所为,当然极度の不满意.只是,面对一位大王,他方烙老祖也莫可奈何.“仲零王尪,呐排位赛继续 吧!决赛阶段第三轮挑战,总要完成才是.”方烙老祖又对仲零王尪道.第三零伍三章鞠言の背鞠虽然发生了红叶王国要斩杀鞠言战申,并且有两位天庭大王降临呐等事情,但本届战申榜排位赛尚未全部结束,决赛阶段第三轮挑战自仍要进行.战申榜の排位,总不能就呐么半途而废! “好!”仲零王尪回应了方烙老祖.随后,方烙老祖、仲零王尪二人飞身返回悬空台.方烙老祖,暂事没有离开の意思,他应该是打算留下来等到第三轮挑战结束了.或许,也有担心接下来再出哪个意外之事の原因.“红叶王国,真是够霸道!”万江王尪开口说道.“嗯,段泊王尪在俺们面 前,也是更高の姿态.以前,他给俺感觉还没如此强烈,呐一次俺却是琛琛体会到了.”巴克王国の洛彦王尪点点头说道.“也就是由于红叶大王の存在,如果没有红叶大王,俺才不会忍他!”秋阳王尪咬了咬呀道.几位王尪,都对红叶王国以及段泊王尪表达不满.今日所发生の事情,令他 们几个王国都丢了颜面.就他们个人の想法来说,鞠言战申是否会被斩杀,他们其实也不是太在意.但问题是,不能在呐种场合下杀死鞠言战申,那是打他们几个王国の脸皮.而近日若不是伏束大王到来,那他们几个王国还真是没有任何办法.伏束大王,多多少少也令他们几个王国,保存了 一些颜面.“决赛阶段第三轮挑战,继续进行.下面,俺喊到名字の战申,请登上悬空台.”柳涛公爵收了收心思,再次开口,浑厚の声音响彻大斗场.由于尹红战申已经离开,所以之前确定の需要尹红战申参与の对战,肯定也不能正常进行了.至于呐场对战到底如何评断,接下来还需要几个 王国共同商量.挑战尹红战申の,是战申榜上目前排名第四の安吉战申,他是天轮王国の战申.还有一场对战,就是鞠言与玄秦尪国肖常崆战申の对战.由于鞠言被尹红偷袭击伤,所以呐一战,鞠言准备放弃了.此事逞强与肖常崆对战,没有任何の意义,只会令自身陷入险地.肖常崆战申,是 战申榜上排名第拾の存在,实历极
1.2.1 几种常见函数的导数
1.2.1 几种常见函数的导数一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础.教学难点:灵活运用五种常见函数的导数.三、教学过程:(一)公式1:(C )'=0 (C 为常数).证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0,,0=∆∆x y .0lim ')('0=∆∆==∴→∆x y C x f x 也就是说,常数函数的导数等于0.公式2: 函数x x f y==)(的导数 证明:(略)公式3: 函数2)(x x f y==的导数 公式4: 函数x x f y1)(==的导数 公式5: 函数x x f y==)(的导数 (二)举例分析例1. 求下列函数的导数.⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='⎪⎭⎫ ⎝⎛21x )(2'-x 32--=x 32x -= ⑶=')(x )(21'x 12121-=x 2121-=x .21x =练习求下列函数的导数:⑴ y =x 5; ⑵ y =x 6; (3);13xy = (4).3x y = (5)x x y 2= 例2.求曲线xy 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。
例3.已知曲线2x y=上有两点A (1,1),B (2,2)。
求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率;(3)点A 处的切线的斜率; (4)点A 处的切线方程例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离.(三)课堂小结几种常见函数的导数公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=(四)课后作业《习案》作业四。
3几种常见函数的导数
1 例5:求双曲线 y 与抛物线 y x 交点处切线的夹角. x 1 x 1 y 解:联立方程组 , 故交点为( 1, 1 ) . x , 解得 y 1 y x 1 1 1 双曲线 y , y 2 , k1 y | x 1 1, 故 双 曲 线 y x x x 在交点 (1,1)处 的 切 线 斜 率 为 k1 1;
, )处 的 切 线 斜 率 为 , 3 2 2 2 从而过 P点 且 与 切 线 垂 直 的 直 的 线斜率为 ; 3 1 2 所求的直线方程为 y ( x ), 2 3 3 故曲线在点 P(
2 3 即2 x 3 y 0. 3 2
三、例题选讲
注:满足条件的直线称为曲线在P点的法线.
f ( x) nx .
n1
例如: ( x ) 3 x
3
31
1 2 2 2 1 3 3 x ; ( x 2 ) ( x ) 2 x 2 x x 3 ;
2
1 1 1 1 1 1 2 2 ( x ) ( x ) x x ; 2 2 2 x
故切点分别为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k1=2x0=2; 当切点为(5,25)时,切线的斜率为k2=2x0=10; 所以所求的切线有两条,方程分别为:y-1=2(x-1)或y25=10(x-5),即y=2x-1或y=10x-25. 练习2:若直线y=3x+1是曲线y=ax3的切线,试求a的值. 解:设直线y=3x+1与曲线y=ax3相切于点P(x0,y0),则有: y0=3x0+1①,y0=ax03②,3ax02=3.③ 由①,②得3x0+1=ax03,由③得ax02=1,代入上式可得: 3x0+1=x0,x0=-1/2. 所以a•(-1/2)3=1,a=4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x
C x
1 n
n 1
C x
2 n
n2
x ... C ( x )
n n
n 1
nx
n 1
例:求下列函数的导数
x
' 3
'
3x
31
3x
2
2 1 2 ' 3 21 x 2 x 2 x 3 2 x x
T
M
o
x0
x
y y 0 f ( x 0 )( x x 0 ).
新课: 几种常见函数的导数 根据导数的定义,可以得出一些常见函数的导数公式 公式一
C’ = 0 (C为常数)
求函数y f ( x) C的导数
证明 : y f ( x ) C y f ( x x ) f ( x ) C C 0 y 0 x
n 1 2 n2 2 n n C1 x x C x ( x ) ... C ( x ) n n n
y f ( x) ( x ) lim x 0 x n 1 2 n2 n n 1 lim [C1 x C x x ... C ( x ) ] n n n
2 2 1 3 解: y ( x ) 2 x 2 x
3
y x 3 2 ( 3)
1 2 2 27 27
小结:
’ C = 0 (C为常数)
(xn)’ =nxn-1 (n∈Q)
(sinx)’=cosx
2.对数函数的导数:
(cosx)’=-sinx
公式3: (sin x ) cos x .
证 : y f ( x ) sinx, y f ( x x ) f ( x ) sin(x x ) sinx
x x x y 2 cos(x 2 ) si n 2 x si n 2 cos(x ) , x x x 2 x 2
1 1 (1) (log a x) ( a 0, a 1). (2) (ln x ) . x ln a x
3.指数函数的导数:
x
(1) ( a ) a ln a ( a 0, a 1). x x (2) (e ) e .
x
例2 求下列函数的导数:
(1) x sin t
北京大峪中学高三数学组
2017年8月26日星期六
1 1 1 ' 1 ' x x x x 2 2 x 2 2
1 2
1 1 2
课本P88
用公式求解3个常用函数导数
公式三
(sinx)’=cosx (cosx)’=-sinx
公式四
si n x m 1. 要证明这个公式,必须用到一个常用极限 lxi 0 x
1 若f ( x) ln x, 则f ( x) x
几种常见函数导数
浅秋明明很抗拒她的那种行为,简宁虽然有感受到,但是并没有做过多的思考,在她的认知里,浅秋永远是一个乖巧又懂事的弟弟。 浅秋在准备开房门的时候的神情很是怪异,似乎在做一种抗争,在门打开的那一瞬间、他终究还是放弃了挣扎。房间很小,不足十个平 方的小房子,简宁打记事以来在现实中还真没有见过那般狭小的蜗居。陈设也很简单,一张不足一米五宽的单人床、一个煤气灶、一个 电饭煲、一个锅,剩下的便是一些干活用的工具之类的,仅那些工具便占了房间一半的面积。 在那种情况下气压一下子降到很低,低到简宁自己都开始觉得有点不自在了起来,她没话找话“哎,浅秋啊,你晚上就跟你爸睡在这个 床上么?”说话的时候她已然坐到了那个看起来相当狭窄的床上。那么狭窄的小床是如何睡下身高已然超过一米八的浅秋还有他的父亲? 浅秋神色越发的僵硬,不自在的指着旁边的高脚蹬“用这个凳子在旁边搭了一些。” 简宁突然很好的感觉到自己有点自讨没趣,讪讪的应了声“哦” 突然又似想到什么般的开口“对了,你大概什么时候要回学校呀,你回去前我请你吃饭。” 浅秋神色总算稍稍好转“下个月中旬吧,还要回去看看我妈。” 没有做过多的逗留简宁便离开了那个越发的让她感到有点不自在的地方,之所以不自在,完全是因为浅秋那总是不自觉地透露出些许的 抗拒她的情愫。
31 4
2 y ( x 2 ) x 2 (4) y x x 2 2 x
2.已知y x , 求y x2
3
解: y ( x ) 3 x
3
3 1
3 x y x2 3 (2) 12
2
2
1 3.已知 y 2 , 求y x 3 x
第三章
导 数
一
导 数
3.2 几种常见函数的导数
由定义求导数(三步法)
步骤:
(1) 求增量 y f ( x x ) f ( x );
y f ( x x ) f ( x ) ( 2) 算比值 ; x x
( 3) 求极限
y y lim . x 0 x
(2) y 2
x 1 5
x
(3) y log
a
已知f(x)=x ,且f(1)=-4,求实数a.
若f ( x) a , 则f ( x) a ln a(a 0)
x x
若f ( x) e , 则f ( x) e
x
x a
x
1 若f ( x) log , 则f ( x) (a 0, a 1) x ln a
说明:上面的方法中把x换x0即为求函数在点x0处的导数.
导数的几何意义
f ( x0 )表示曲线 y f ( x) 在点M ( x0 , f ( x0 ))处的 切线的斜率, 即 f ( x0 ) t an , (为倾角 )
过( x0 , f ( x0 ))的 切线方程为
y
y f ( x)
sin
例1 求下列函数的导数:
(1) y x
解:
4
(2) y x
3
0
(4) y x
(5) y sin45
4 41
1 (3) y x
3
(6)u cos v
(1) y ( x ) 4 x
3
4x
(2) y ( x ) 3x 3x 1 1 y ' 1 x11 x2 (3) y x 1 1 1 x 1 1 1
x x 2 cos(x ) sin , 2 2
y x 2 f ( x ) (sinx ) lim limcos(x ) lim x 0 x x 0 2 x 0 x 2 cos x 1 cos x . 同理可证,公式4: (cos x ) sin x .
y f ( x ) C lim 0 x 0 x
' '
公式二
(xn)’ =nxn-1 (n∈Q)
n
下面我们就n∈N*的情况加以说明。
证明:y f ( x ) x n n y f ( x x ) f ( x ) ( x x ) x
n 1 2 n2 2 n n n x n C1 x x C x ( x ) ... C ( x ) x n n n