求线段的长度专项练习

合集下载

数线段 练习题

数线段 练习题

数线段练习题数线段练习题在数学中,线段是指两个端点之间的连续部分。

它是几何学中的基本概念,广泛应用于各个领域。

今天,我们来通过一些练习题来加深对线段的理解和运用。

1. 给定线段AB,长度为5cm,C是AB的中点,求线段AC的长度。

解析:由于C是AB的中点,所以AC的长度等于AB的一半。

即AC = 5cm / 2 = 2.5cm。

2. 线段DE的长度是线段BC长度的3倍,而线段DE的长度是12cm,求线段BC的长度。

解析:设线段BC的长度为x,则线段DE的长度为3x。

根据题目中的信息,我们可以列出方程3x = 12。

解这个方程得到x = 4,所以线段BC的长度为4cm。

3. 线段FG和线段HI的长度之和是10cm,线段FG的长度是线段HI长度的2倍,求线段FG和线段HI的长度。

解析:设线段HI的长度为x,则线段FG的长度为2x。

根据题目中的信息,我们可以列出方程2x + x = 10。

解这个方程得到x = 2,所以线段FG的长度为4cm,线段HI的长度为6cm。

4. 线段JK和线段LM的长度之比是2:3,线段JK的长度是6cm,求线段LM的长度。

解析:设线段LM的长度为x,则线段JK的长度为2x。

根据题目中的信息,我们可以列出方程2x = 6。

解这个方程得到x = 3,所以线段LM的长度为9cm。

5. 线段NO的长度是线段PQ长度的1/4,线段PQ的长度是线段RS长度的2倍,线段RS的长度是10cm,求线段NO的长度。

解析:设线段PQ的长度为x,则线段RS的长度为2x。

根据题目中的信息,我们可以列出方程2x = 10。

解这个方程得到x = 5,所以线段PQ的长度为5cm,线段NO的长度为5cm / 4 = 1.25cm。

通过以上的练习题,我们可以发现线段之间的关系可以通过方程来表示和求解。

在实际应用中,线段的长度和比例关系经常出现,因此掌握线段的相关知识和运用方法对我们的数学学习和实际问题解决都有很大的帮助。

二年级数学下册五分米和毫米核心素养专项练求线段的长度习题课件苏教版

二年级数学下册五分米和毫米核心素养专项练求线段的长度习题课件苏教版
第五单元 分米和毫米 核心素养专项练 求线段的长度
1.一根细绳绕一个粗细均匀的笔筒 3 圈后余 5 厘米 4 毫米,绕 4 圈还差3 厘米 6 毫米。这根细绳有多长? 5 厘米 4 毫米 +3 厘米 6 毫米 =9 厘米 9×3=27(厘米) 27 厘米 +5 厘米 4 毫米 =32 厘米 4 毫米 答: 这,即 20 厘米,绕两圈后余 下 2 厘米,因为多绕了一圈,余下的丝带短了 20-2= 18(厘米),即绕瓶子一圈的长度是 18 厘米。用绕一圈的 长度加上绕一圈余下的 2 分米或用绕两圈的长度加上绕 两圈余下的 2 厘米就可以求出这条丝带的长度。
4.典典用一根彩带绕一个粗细均匀的瓶子 3 圈后余 1 分米,绕这个瓶子4 圈后余 1 厘米,这根彩带长 多少厘米?
点拨:根据题意,画出如下示意图:
由图可知,绕 3 圈余下的长度 + 绕 4 圈还差的长度 = 细绳绕笔筒 1 圈的长度。再用绕 3圈的长度加上余下的 长度或用绕 4 圈的长度减去还差的长度就可以求出这根 细绳的长度。
2.李阿姨用彩绳做中国结,如果做 7 个就会多 2 分米,做 8 个就会少 1 分米。做一个中国结要 用多长的彩绳?李阿姨用的彩绳有多长?
1 分米 =10 厘米 10-1=9(厘米) 9×4+1=37(厘米) 答: 这根彩带长 37 厘米。
2+1=3(分米) 7×3+2=23(分米) 答: 做一个中国结要用 3 分米彩绳, 李阿姨用的彩绳有 23 分米长。
3.聪聪用一条丝带绕粗细均匀的瓶子一圈后余下 2 分米,绕瓶子两圈后余下 2 厘米。这条丝带长 多少厘米?
2 分米 =20 厘米 20-2=18(厘米) 18+20=38(厘米) 答: 这条丝带长 38 厘米。

小学一年级数学用线段解题练习题

小学一年级数学用线段解题练习题

小学一年级数学用线段解题练习题一、线段的概念在我们的日常生活中,线段是非常常见的几何概念。

线段是由两个端点及它们之间的点组成的,可以用直线段来表示。

下面是一些关于线段的解题练习题,帮助小学一年级的孩子更好地理解和应用线段。

二、线段加法1. 问题:小明家有一根长10厘米的线段,小红家有一根长5厘米的线段,两个线段相连后有多长?答案:两个线段相连后的总长度为10厘米+5厘米=15厘米。

解析:线段的加法就是将两个线段的长度求和。

2. 问题:图中有一根长度为7厘米的线段A,再加上一根长度为8厘米的线段B,两个线段相连后有多长?答案:线段A的长度为7厘米,线段B的长度为8厘米,所以相连后的总长度为7厘米+8厘米=15厘米。

解析:在求线段的加法时,我们将两个线段的长度相加即可。

三、线段减法1. 问题:小华有一根长15厘米的线段,他用掉了8厘米,还剩下多长?答案:小华用掉的线段长度为8厘米,所以剩下的长度为15厘米-8厘米=7厘米。

解析:线段的减法即是用总长度减去被用掉的长度。

2. 问题:图中有一根长度为12厘米的线段A,小明用掉了长度为6厘米的线段B,剩下了多长?答案:线段A的长度为12厘米,线段B的长度为6厘米,所以剩下的长度为12厘米-6厘米=6厘米。

解析:在求线段的减法时,我们将被用掉的线段的长度从总长度中减去即可。

四、线段的比较1. 问题:小华有一根长度为16厘米的线段,小明有一根长度为10厘米的线段,两个线段谁更长?答案:小华的线段长度为16厘米,小明的线段长度为10厘米,所以小华的线段更长。

解析:线段的比较即是比较两个线段的长度大小。

2. 问题:图中有一根长度为9厘米的线段A,还有一根长度为5厘米的线段B,哪个线段更长?答案:线段A的长度为9厘米,线段B的长度为5厘米,所以线段A更长。

解析:在比较线段的长度时,我们将两个线段的长度进行对比,找出更长的那个。

五、解决实际问题1. 问题:小华乘坐公交车从家到学校的总长度为8千米,公交车行驶了4千米后,小华下车,这段路的长度有多长?答案:公交车行驶了4千米后,小华下车,所以这段路的长度为总长度8千米-行驶了的距离4千米=4千米。

初三奥数专题训练:图形中线段长度的求解问题(含提示、解析)

初三奥数专题训练:图形中线段长度的求解问题(含提示、解析)

图形中线段长度的求解问题(含提示、解析)1、如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是BC 边的中点,EF ⊥AD 于点F ,CG ⊥AD 于点G ,若tan ∠CAD=43,AB =20,求线段EF 的长.2、如图,在△ABC 中,tan ∠ACB=3,点D 、E 在BC 边上,∠DAE =21∠BAC ,∠ACB=∠DAE +∠B ,点F 在线段AE 的延长线上,AF =AD ,若CD =4,CF =2,求AC边的长.A G FB E DC A F BDE C3、如图在△ABC 中,∠A=30°,点D 、E 分别在AB 、AC 边上,BD=CE=BC ,点F 在BC 边上,DF 与BE 交于点G 。

若BG=1,∠BDF=21∠ACB ,求EG 的长.4、如图,在△ABC 中,∠A =60°,角平分线BD 、CE 交于点F ,若BC =3CD ,BF =2,求BC 边的长.C A E BF DCA DB FEG5、如图,在Rt △ABC 中,∠BAC =90°,AC =6,点D 是AB 的中点,DE//BC ,点F 为BC 上一动点,连接AF 交DG 于E ,∠AEC 恰好为90°,连接CE ,当DE =2时,求线段AB 的长.6、如图,△ABC 中,∠ACB =90°,CD 是AB 边上的中线,点F 在线段 AD 上,点F 在CD 延长线上,AE =DF ,连接CE 、BF ,若∠AEC =∠DFB ,AC =23,DF =3-1,求线段CE 的长.CA E D BA B F C G D E7、如图,在等边△ABC 中,D 为AB 边上一点,连接CD ,在CD 上取一点E ,连接BE ,∠BED =60°,若CE =5,△ACD 的面积为4335,求线段DB 的长.8、如图,四边形ABCD 中,AD ∥BC ,∠B +∠C =120°,AB =10,CD =6.M 为 BC 中点,N 为AD 中点,求MN 的长.AB CFDEB MC A N D思路提示及解析:1、如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是BC 边的中点,EF ⊥AD 于点F ,CG ⊥AD 于点G ,若tan ∠CAD=43,AB =20,求线段EF 的长.思路提示:要求线段EF 的长,就要利用条件得到的EF 与CG 的平行关系。

线段的长度练习题

线段的长度练习题

线段的长度练习题1. 练习题一:已知线段AB的两个端点A(2, 3)和B(5, 7),求线段AB的长度。

解析:根据两点间距离公式,线段AB的长度可以计算如下:AB = √((x2 - x1)^2 + (y2 - y1)^2)= √((5 - 2)^2 + (7 - 3)^2)= √(3^2 + 4^2)= √(9 + 16)= √25= 5因此,线段AB的长度为5。

2. 练习题二:点A(4, -1)和点B(-2, 6)分别是线段CD的两个端点,若线段CD的长度为10,求线段AB的长度。

解析:设线段AB的长度为x,则根据两点间距离公式:x = √((x2 - x1)^2 + (y2 - y1)^2)其中,x1 = 4, y1 = -1,x2 = -2, y2 = 6。

根据已知条件,线段CD的长度为10,则根据两点间距离公式:10 = √((x2 - x1)^2 + (y2 - y1)^2)= √(((-2) - 4)^2 + (6 - (-1))^2)= √((-6)^2 + 7^2)= √(36 + 49)= √85因此,线段AB的长度为√85。

3. 练习题三:已知线段EF的两个端点E(-3, 2)和F(1, 5),线段EF 与x轴的夹角为30度,求线段EF的长度。

解析:首先,根据线段EF的两个端点E(-3, 2)和F(1, 5)可以计算斜率。

斜率k = (y2 - y1)/(x2 - x1)= (5 - 2)/(1 - (-3))= 3/4由于线段EF与x轴的夹角为30度,而直线的斜率k与角度θ之间有如下关系:k = tanθ因此,tanθ = 3/4,则角度θ为arctan(3/4)。

根据三角函数的性质,sinθ = y/线段EF的长度,cosθ = x/线段EF 的长度,其中x = EF的长度,y = EF的长度* sinθ。

将上述关系代入线段EF的斜率公式,得到:tan(arctan(3/4)) = (EF的长度 * sin(arctan(3/4)))/EF的长度3/4 = (EF的长度 * 3/5)/EF的长度解上述方程,得到:1 = EF的长度 * 3/5EF的长度 = 5/3因此,线段EF的长度为5/3。

七年级上学期求线段长度的方法、练习、巩固提高解析

七年级上学期求线段长度的方法、练习、巩固提高解析

求线段长度的几种常用方法:1.利用几何的直观性,寻找所求量与已知量的关系例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11所以又因为CD=10cm,所以AB=96cm2.利用线段中点性质,进行线段长度变换例2.如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA的长。

解:因为N是PB的中点,NB=14所以PB=2NB=2×14=28又因为AP=AB-PB,AB=80所以AP=80-28=52(cm)说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3. 根据图形及已知条件,利用解方程的方法求解例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?解:因为C为AD的中点,所以因为,即又由<1>、<2>可得:即BC=3AB例4. 如图4,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。

解:若设AC=2x,则于是有那么即解得:4. 分类讨论图形的多样性,注意所求结果的完整性例5. 已知线段AB=8cm,在直线AB上画线段BC=3cm,求AC的长。

分析:线段AB是固定不变的,而直线上线段BC的位置与C点的位置有关,C点可在线段AB上,也可在线段AB的延长线上,如图5。

图5解:因为AB=8cm,BC=3cm所以或综上所述,线段的计算,除选择适当的方法外,观察图形是关键,同时还要注意规范书写格式,注意几何图形的多样性等。

练习1、已知C是线段AB上任意一点,M是AC的中点,N是BC的中点,求证MN=AB.2、已知A、B、C在同一直线上AC=AB,已知BC=12cm,求AB的长度。

3、已知C是线段AB的中点,D是CB上的点,DA=6,DB=4,求CD的长。

线段的练习题

线段的练习题

线段的练习题一、选择题1. 线段AB的长度为10厘米,点C在线段AB上,且AC=6厘米,那么BC的长度是多少厘米?A. 2厘米B. 4厘米C. 6厘米D. 10厘米2. 线段MN与线段OP平行,且MN=8厘米,OP=12厘米,那么线段MN 与OP之间的距离是多少厘米?A. 2厘米B. 4厘米C. 6厘米D. 8厘米3. 如果线段XY被点Z平分,那么XZ+ZY等于多少?A. XYB. 2XYC. XY/2D. 2XY/34. 线段AB和线段CD相交于点E,如果AE=2BE,CE=3DE,那么线段AB 与线段CD的比例是多少?A. 1:2B. 2:1B. 1:3D. 3:15. 线段PQ和线段RS相交于点T,如果PT=3厘米,QT=2厘米,RT=4厘米,那么ST的长度是多少厘米?A. 1厘米B. 2厘米C. 3厘米D. 4厘米二、填空题6. 如果线段AB的长度为15厘米,点C将线段AB分成两段,且AC:CB 的比例为2:3,那么AC的长度是________厘米。

7. 在直角三角形ABC中,如果斜边AB的长度为13厘米,且角C是直角,AC的长度为12厘米,那么BC的长度是________厘米。

8. 线段DE和线段FG平行,且DE的长度为20厘米,FG的长度为30厘米,如果DE和FG之间的距离为5厘米,那么线段DE和FG的中心线之间的距离是________厘米。

9. 如果线段MN被点O平分,且MO=NO,那么MN的长度是________倍的MO。

10. 在平行四边形PQRS中,如果线段PQ的长度为14厘米,线段PS 的长度为10厘米,那么线段RS的长度是________厘米。

三、简答题11. 解释什么是线段的中点,并给出一个例子说明如何找到线段的中点。

12. 如果线段AB和线段CD相交于点E,并且AE=EB,CE=ED,那么线段AB和线段CD是否相等?为什么?13. 给出一个线段的两个端点的坐标,如何计算这两个点之间的距离?14. 如果线段XY被点Z平分,且XZ的长度为5厘米,ZY的长度也为5厘米,那么线段XY的长度是多少?15. 在一个平面直角坐标系中,如果给定线段AB的两个端点A(2,3)和B(6,7),请计算线段AB的长度。

初一难点突破“线段的计算”50道(含详细解析)

初一难点突破“线段的计算”50道(含详细解析)

试卷第1页,总10页初一难点突破“线段的计算”50道(含详细解析)一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM . (1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.4.已知:点C 在直线AB 上.(1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs .(1)AC= cm ;(2)当x= s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.7.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.已知m,n满足算式(m﹣6)2+|n﹣2|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB 的中点,求线段AQ的长.9.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N 分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.试卷第3页,总10页11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?并说明理由;12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm ,点C 是线段AB 的巧点,则AC= cm ;【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD的中点,BM=9cm ,求CM 和AD 的长15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长.16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 条;(2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来.18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长;(2)取线段AC 的中点D ,若DB=3,求x 的值.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值.(2)在(1)的条件下,求线段CD 的长.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB的试卷第5页,总10页中点.(1)若AB=12cm ,则MN 的长度是 ;(2)若AC=3cm ,CP=1cm ,求线段PN 的长度.23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒.(1)当t=2时,①AB= cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.30.如图,已知点C 为AB 上一点,AC=15cm ,CB=35AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.31.已知如图:线段AB=16cm ,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.32.已知C 为线段AB 的中点,E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长;(3)如图2,若AB=15,AD=2BE ,求线段CE 的长.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8.(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.试卷第7页,总10页34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ,点B 表示的数为(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.37.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.38.如图,已知AB=24cm ,CD=10cm ,E ,F 分别为AC ,BD 的中点,求EF的长.39.如图,已知线段AB 上有两点C 、D ,且AC=BD ,M ,N 分别是线段AC ,AD 的中点,若AB=acm ,AC=BD=bcm ,且a 、b满足(a ﹣10)2+|b 2﹣4|=0.(1)求a 、b 的值;(2)求线段MN 的长度.40.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度).慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|a +6|与(b ﹣18)2互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱到脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA +PC +PB +PD 为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.41.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变,选择一个正确的结论,并求出其值.42.如图,已知直线l 有两条可以左右移动的线段:AB=m ,CD=n ,且m ,n满足|m ﹣4|+(n ﹣8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度试卷第9页,总10页向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在那一个时间段内.43.如图,点C 在线段AB 上,线段AC=8,BC=6,点M 、N 分别是AC 、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC +BC=a ,其它条件不变,你能猜想出MN 的长度吗?(3)若把(1)中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上,且满足AC ﹣BC=b ,你能猜想出MN 的长度吗?写出你的结论,并说明理由.44.如图,已知线段AB=6cm ,延长线段AB 到C ,使BC=2AB ,若点D 是AC上一点,且AD 比DC 短4cm ,点E 是BC 的中点,求线段DE 的长.45.如图,M 是线段AB 的中点,点C 在线段AB 上,且AC=8cm ,N 是AC的中点,MN=6cm ,求线段AB 的长. 46.已知B 是线段AC 上不同于A 或C 的任意一点,M 、N 、P 分别是AB 、BC 、AC 的中点,问:(1)MP=12BC 是否成立?为什么? (2)是否还有与(1)类似的结论?47.如图,已知线段AB 的长为12,点C 在线段AB 上,AC=12BC ,D 是AC 的中点,求线段BD 的长.48.如图,C 是AB 中点,D 是BC 上一点,E 是BD 的中点,AB=20,CD=2,求EB ,CE 的长.49.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a |﹣|b |+|a +b |+|a ﹣b |.(2)如图,若|a |+|b |=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB ﹣15,a=﹣3,若点P为数轴上一点,且PA=23AB ,试求点P 所对应的数为多少?50.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件: ①关于m 、n 的单项式2m 2n a 与﹣3m b n 的和仍为单项式.②当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD=2AC .(1)直接写出:a= ,b= .(2)判断ABAP = ,并说明理由.(3)在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC=2MN ,求此时AB CD的值.1初一难点突破“线段的计算”50道(含详细解析)答案一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.【解答】解:∵点D 是线段BC 的中点,CD=3, ∴BC=2CD=6,∵AC=12AB ,AC +AB=CB ,∴AC=2,AB=4, ∴AD=CD ﹣AC=3﹣2=1, 即线段AD 的长是1.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:如图1所示,∵AP=2PB ,AB=6,∴PB=13AB=13×6=2,AP=23AB=23×6=4;∵点Q 为PB 的中点,∴PQ=QB=12PB=12×2=1;∴AQ=AP +PQ=4+1=5.如图2所示,∵AP=2PB ,AB=6, ∴AB=BP=6,∵点Q 为PB 的中点, ∴BQ=3,∴AQ=AB +BQ=6+3=9. 故AQ 的长度为5或9.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM .(1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点. 【解答】解:(1)如图所示:(2)∵MN=3cm ,AN=12MN ,∴AN=1.5cm , ∵BN=3BM ,∴BM=12MN=1.5cm ,∴AB=BM +MN +AN=6cm ;(3)∵点P 在线段MN 上,PM=PN , ∴点P 是线段MN 的中点, ∵BM=AN=1.5cm ,PM=PN=1.5cm , ∴BP=AP=3cm ,∴点P 是线段AB 的中点. 4.已知:点C 在直线AB 上. (1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)【解答】解:(1)若C 在A 的左边,则 BC=AB +AC=5; 若C 在A 的右边,则 BC=AC ﹣AB=1. 故BC 的长为5或1; (2)如图所示:∵点C 在射线AB 上,且BC=2AB ,D 是AC 的中点,∴AD=32AB ,∴BD=12AB ,3∵线段BD 的长为1.5, ∴线段AB 的长为3.5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.【解答】解:∵AC=16cm ,AB=13BC ,∴AB=14AC=4cm ,BC=16cm ﹣4cm=12cm ,∵点C 是BD 的中点, ∴CD=BC=12cm ,∴AD=AB +BC +CD=4cm +12cm +12cm=28cm .6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs . (1)AC= 12 cm ;(2)当x= 203s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.【解答】解:(1)AC=AB ﹣BC=20﹣8=12(cm ),(2)20÷(2+1)=203(s ).故当x=203s 时,P 、Q 重合;(3)存在,①C 是线段PQ 的中点,得 2x +20﹣x=2×12,解得x=4; ②P 为线段CQ 的中点,得12+20﹣x=2×2x ,解得x=325;③Q 为线段PC 的中点,得 2x +10=2×(20﹣x ),解得x=7;综上所述:x=4或x=325或x=7. 故答案为:12;203.7.如图,线段AC=20cm ,BC=3AB ,N 线段BC 的中点,M 是线段BN 上的一点,且BM :MN=2:3.求线段MN 的长度.【解答】解:∵AC=20cm ,BC=3AB ,∴BC=34×20=15cm ,∴AB=5cm , ∵N 为BC 的中点, ∴BN=CN=7.5cm , ∵BM :MN=2:3,∴MN=35×7.5=4.5cm .8.已知m ,n 满足算式(m ﹣6)2+|n ﹣2|=0. (1)求m ,n 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:(1)由条件可得(m ﹣6)2=0,|n ﹣2|=0, 所以m=6,n=2.(2)当点P 在线段AB 之间时,AP=2PB , 所以AP=4,PB=2,而Q 为PB 的中点, 所以PQ=1,故AQ=AP +PQ=5. 当点P 在线段AB 的延长线上时, AP ﹣PB=AB , 即2PB ﹣PB=6, 所以PB=6, 而Q 为PB 的中点,所以BQ=3,AQ=AB +BQ=6+3=9. 故线段AQ 的长为5或9.9.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.5(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC +BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM +CN=8厘米;(2)∵点M ,N 分别是AC ,BC 的中点,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12a ;(3)①当0<t ≤5时,C 是线段PQ 的中点,得 10﹣2t=6﹣t ,解得t=4;②当5<t ≤163时,P 为线段CQ 的中点,2t ﹣10=16﹣3t ,解得t=265;③当163<t ≤6时,Q 为线段PC 的中点,6﹣t=3t ﹣16,解得t=112;④当6<t ≤8时,C 为线段PQ 的中点,2t ﹣10=t ﹣6,解得t=4(舍),综上所述:t=4或265或112.10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB=2:1,则点C 是线段AB 的一个三等分点,显然,一条线段的三等分点有两个. (1)已知:如图2,DE=15cm ,点P 是DE 的三等分点,求DP 的长. (2)已知,线段AB=15cm ,如图3,点P 从点A 出发以每秒1cm 的速度在射线AB 上向点B 方向运动;点Q 从点B 出发,先向点A 方向运动,当与点P 重合后立马改变方向与点P 同向而行且速度始终为每秒2cm ,设运动时间为t 秒.①若点P 点Q 同时出发,且当点P 与点Q 重合时,求t 的值.②若点P 点Q 同时出发,且当点P 是线段AQ 的三等分点时,求t 的值.【解答】解:(1)当DP=2PE 时,DP=23DE=10cm ;当2DP=PE 时,DP=13DE=5cm .综上所述:DP 的长为5cm 或10cm . (2)①根据题意得:(1+2)t=15, 解得:t=5.答:当t=5秒时,点P 与点Q 重合. ②(I )点P 、Q 重合前: 当2AP=PQ 时,有t +2t +2t=15, 解得:t=3;当AP=2PQ 时,有t +12t +2t=15,解得:t=307;(II )点P 、Q 重合后,当AP=2PQ 时,有t=2(t ﹣5), 解得:t=10;当2AP=PQ 时,有2t=(t ﹣5), 解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、307秒或10秒时,点P 是线段AQ 的三等分点.11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、7BC 的中点,你能猜想MN 的长度吗?并说明理由;【解答】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,CB=6cm ,∴CM=12AC=4cm ,CN=12BC=3cm ,∴MN=CM +CN=4+3=7cm , 即线段MN 的长是7cm ;(2)∵点M 、N 分别是AC 、BC 的中点,AC +CB=acm ,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12(AC +BC )=12acm ,即线段MN 的长是12acm ;(3)如图:MN=12b ,理由是:∵点M 、N 分别是AC 、BC 的中点,AC ﹣CB=bcm ,∴CM=12AC ,CN=12BC ,∴MN=CM ﹣CN=12AC ﹣12BC=12(AC ﹣BC )=12bcm ,即线段MN 的长是12bcm .12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点 是 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm ,点C 是线段AB 的巧点,则AC= 4或6或8 cm ; 【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解答】解:(1)∵线段的长是线段中线长度的2倍, ∴线段的中点是这条线段的“巧点”. 故答案为:是;(2)∵AB=12cm ,点C 是线段AB 的巧点,∴AC=12×13=4cm 或AC=12×12=6cm 或AC=12×23=8cm ;故答案为:4或6或8;(3)t 秒后,AP=2t ,AQ=12﹣t (0≤t ≤6)①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除. ②当P 为A 、Q 的巧点时,Ⅰ.AP=13AQ ,即2t =13(12−t),解得t =127s ;Ⅱ.AP=12AQ ,即2t =12(12−t),解得t =125s ;Ⅲ.AP=23AQ ,即2t =23(12−t),解得t=3s ;③当Q 为A 、P 的巧点时,Ⅰ.AQ=13AP ,即(12−t)=2t ×13,解得t =365s (舍去);Ⅱ.AQ=12AP ,即(12−t)=2t ×12,解得t=6s ;Ⅲ.AQ=23AP ,即(12−t)=2t ×23,解得t =367s .13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.【解答】解:∵点C 是线段AB 的中点,AC=6, ∴AB=2AC=12,①如图,若点D 在线段AC 上,∵AD=12BD ,∴AD=13AB=4,9∴CD=AC ﹣AD=6﹣4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD=12BD ,∴AD=AB=12,∴CD=AC +AD=6+12=18.综上所述,CD 的长为2或18.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD 的中点,BM=9cm ,求CM 和AD 的长【解答】解:设AB=3xcm ,BC=5xcm ,CD=4xcm , ∴AD=AB +BC +CD=12xcm , ∵M 是AD 的中点,∴AM=MD=12AD=6xcm ,∴BM=AM ﹣AB=6x ﹣3x=3xcm , ∵BM=9 cm , ∴3x=9, 解得,x=3,∴CM=MD ﹣CD=6x ﹣4x=2x=2×3=6(cm ), AD=12x=12×3=36(cm ).15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长. 【解答】解:分两种情况:①如图1,当点C 在线段 AB 上时,AC=AB ﹣BC=10﹣4=6cm . ∵点D 是AC 的中点,∴AD=12AC=3cm .②如图2,当点C 在线段 AB 的延长线上时,AC=AB +BC=10+4=14cm . ∵点D 是AC 的中点,∴AD=12AC=7cm .16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.【解答】解:设BC=x ,则AB=4x , ∵D 为AC 中点, ∴AD=CD=2.5x , ∵BD=CD ﹣BC=6cm , ∴2.5x ﹣x=6, 解得x=4, ∴AB=16cm .17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 10 条; (2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来. 【解答】解:(1)图中共有线段1+2+3+4=10条; 故答案为:10;(2)∵AB=6,点M 是线段AB 的中点,∴BM=12AB=3,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣3=4,∴BN=BC ﹣NC=4﹣3.5=0.5;(3)∵AB=a ,点M 是线段AB 的中点,11∴BM=12AB=12a ,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣12a ,∴BN=BC ﹣NC=7﹣12a ﹣3.5=3.5﹣12a .18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB .(1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB=3,求x 的值.【解答】解:(1)∵AB=x ,BC=12AB ,∴BC=12x ,∵AC=AB +BC ,∴AC=x +12x=32x .(2)∵AD=DC=12AC ,AC=32x ,∴DC=34x ,∵DB=3,BC=12x ,∵DB=DC ﹣BC ,∴3=34x ﹣12x ,∴x=12.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.【解答】解:设EA=xcm ,则AB=2xcm ,BF=3xcm ,EF=6xcm . ∵点M ,N 分别是线段EA ,BF 的中点,∴EM=MA=12xcm ,BN=NF=32xcm .∵AB=2xcm ,∴MN=MA +AB +BN=4xcm . ∵EF=18cm ,∴6x=18, 解得:x=3, ∴MN=4x=12cm .20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.【解答】解:设BD=x ,则AB=3x ,CD=4x . ∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x ,CF=12CD=2x ,AC=AB +CD ﹣BD=3x +4x ﹣x=6x .∴EF=AC ﹣AE ﹣CF=6x ﹣1.5x ﹣2x=2.5x . ∵EF=20, ∴2.5x=20, 解得:x=8.∴AB=3x=24,CD=4x=32.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值. (2)在(1)的条件下,求线段CD 的长.【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,13∴CD=DE ﹣CE=6﹣4.5=1.5.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.(1)若AB=12cm ,则MN 的长度是 6cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长度.【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∴MN=MC +CN=12AC +12BC=12(AC +BC )=12AB=6cm .故答案为6cm ;(2)∵AC=3cm ,CP=1cm , ∴AP=AC +CP=4cm , ∵P 是线段AB 的中点, ∴AB=2AP=8cm . ∴CB=AB ﹣AC=5cm ,∵N 是线段CB 的中点,CN=12CB=2.5cm ,∴PN=CN ﹣CP=1.5cm .23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒. (1)当t=2时,①AB= 4 cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动, ∴当t=2时,AB=2×2=4cm . 故答案为:4;②∵AD=10cm ,AB=4cm , ∴BD=10﹣4=6cm , ∵C 是线段BD 的中点,∴CD=12BD=12×6=3cm ;(2)不变;∵AB 中点为E ,C 是线段BD 的中点,∴EB=12AB ,BC=12BD ,∴EC=EB +BC=12(AB +BD )=12AD=12×10=5cm . 24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∵MN=MC +CN ,AB=AC +BC ,∴MN=12AB=7cm ;(2)MN=a2,∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,又∵MN=MC +CN ,AB=AC +BC ,∴MN=12(AC +BC )=a2;15(3)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,NC=12BC ,又∵AB=AC ﹣BC ,NM=MC ﹣NC ,∴MN=12(AC ﹣BC )=b2;(4)如图,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.【解答】解:(1)∵AC=6cm ,M 是AC 的中点,∴AM=MC=12AC=3cm ,∵MB=10cm , ∴BC=MB ﹣MC=7cm , ∵N 为BC 的中点,∴CN=12BC=3.5cm ,∴MN=MC +CN=6.5cm ;(2)如图,∵M 是AC 中点,N 是BC 中点,∴MC=12AC ,NC=12BC ,∵AC ﹣BC=bcm , ∴MN=MC ﹣NC=12AC ﹣12BC =12(AC ﹣BC )=12×6 =3(cm ).26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.【解答】解:(1)①当点C 在线段AB 上时,∵AB=8cm ,BC=4cm , ∴AC=AB ﹣BC=8﹣4=4cm , ∵M 是AC 中点,∴AM=12AC=2cm .②当点C 在线段AB 的延长线上时,∵AB=8cm ,BC=4cm , ∴AC=AB +BC=8+4=12cm , ∵M 是AC 中点,∴AM=12AC=6cm .(2)∵BE=15AC=2cm ,∴AC=10cm , ∵E 是BC 中点, ∴BC=2BE=4cm ,∴AB=AC ﹣BC=10﹣4=6cm ,∵AD=12BD ,AD +BD=AB ,∴12BD +BD=AB=6cm ,17∴BD=4cm ,∴DE=BD +BE=4+2=6cm .27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.【解答】解:∵D 为AC 的中点,DC=3cm , ∴AC=2DC=6cm ,∵BC=12AB ,∴BC=13AC=2cm ,∴BD=CD ﹣BC=1cm .28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.【解答】解:(1)∵AB=5cm ,BC=3cm , ∴AC=AB +BC=8cm ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=4cm ,NC=12BC=1.5cm ,∴MN=MC ﹣NC=4cm ﹣1.5cm=2.5cm ;(2)∵AB=a ,BC=b , ∴AC=AB +BC=a +b ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=12(a +b ),NC=12BC=12b ,∴MN=MC ﹣NC=12(a +b )﹣12b=12a ;规律是:MN=12AB .29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).30.如图,已知点C为AB上一点,AC=15cm,CB=35AC,D,E分别为AC,AB的中点,求DE的长.【解答】解:∵AC=15cm,CB=35 AC,∴CB=35×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=BE=12AB=12cm,DC=AD=12AC=7.5cm,∴DE=AE﹣AD=12﹣7.5=4.5cm.31.已知如图:线段AB=16cm,点C是AB的中点,点D在AC的中点,求线段BD的长.【解答】解:∵AB=16cm,点C是AB的中点,∴AC=BC=16÷2=8(cm);∵点D在AC的中点,∴CD=8÷2=4(cm),∴BD=BC+CD=8+4=12(cm).32.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.19(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长; (3)如图2,若AB=15,AD=2BE ,求线段CE 的长. 【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,(3)设EB=x ,则AD=2BE=2x , ∵点D 为线段AE 的中点, ∴AD=DE=2x , ∵AB=15, ∴AD +DE +BE=15, ∴x +2x +2x=15,解方程得:x=3,即BE=3, ∵AB=15,C 为AB 中点,∴BC=12AB=7.5,∴CE=BC ﹣BE=7.5﹣3=4.5.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8. (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【解答】解:(1)∵A ,B 两点所表示的数分别为﹣2和8, ∴OA=2,OB=8, ∴AB=OA +OB=10.(2)如图,线段MN 的长度不发生变化,其值为5.理由如下: ∵M 为PA 的中点,N 为PB 的中点,∴NP=12BP ,MP=12AP ,∴MN =NP −MP =12BP −12AP =12AB=5.34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ﹣8 ,点B 表示的数为 4(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.【解答】解:(1)∵在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,a 、b 满足|a +8|+|b ﹣4|=0, ∴a +8=0,b ﹣4=0, 解得:a=﹣8,b=4,则点A 表示的数为:﹣8,点B 表示的数为:4;(2)设x 秒时两点相遇, 则3x +x=4﹣(﹣8),21解得:x=3,即3秒时,两点相遇,此时点C 所表示的数为:﹣8+3×3=1;(3)当两点相遇前的距离为2个单位长度时, 3x +x=10,解得:x=52,此时此时点Q 所表示的数为:4﹣1×52=1.5;当两点相遇后的距离为2个单位长度时, 3x +x=14,解得:x=72,此时此时点Q 所表示的数为:4﹣1×72=0.5;综上所述:点Q 表示的数为:1.5或0.5.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.【解答】解:∵AB=16cm ,AM :BM=1:3, ∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm ,∴PQ=AQ ﹣AP=6cm .36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.【解答】解:因为BC=2AB ,且AB=60cm , 所以BC=120cm .所以AC=AB +BC=120+60=180cm . 因为D 为AC 中点,所以 AD=12AC=90cm .。

专项34利用垂径定理求线段长度(原卷版)

专项34利用垂径定理求线段长度(原卷版)

专项34 利用垂径定理求线段长度考点1 垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.符号语言:∵CD为⊙O的直径,AB为⊙O的弦,且CD⊥AB,垂足为E,∴AE=BE,推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.∵CD为⊙O的直径,AB为⊙O的弦(不是直径),且AE=BE.弦心距:圆心到弦的距离(垂线段OE)常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点2垂径定理的应用经常为未知数,结合方程于勾股定理解答【典例1】(2022秋•甘井子区校级期末)如图,在⊙O中,弦AB的长为8cm,圆心到AB的距离为3cm,则⊙O的半径为()A.4B.5C.3D.【变式11】(2022秋•潼南区期末)如图,AB是⊙O的直径,B是劣弧的中点,AB和CD相交于点E,AB=10,OE=4BE,则CD的长为()A.4B.6C.4D.8【变式12】(2022秋•海港区期末)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的直径为4,则弦AB的长为()A.4B.C.D.2【变式13】(2022秋•南关区校级期末)如图,半径为5的⊙A与y轴交于点B (0,2)、C(0,10),则点A的横坐标为()A.﹣3B.3C.4D.6【典例2】(2022秋•丰满区校级期末)图1是吉林市的彩虹桥图片.图2是彩虹桥示意图,桥拱(ADB)可以近似看作半径为25m的圆弧,桥拱(弧AB)和路面(弦AB)之间用九根钢索相连,钢索垂直路面(弦AB),路面(弦AB)长度为40m,若这九根钢索将路面(弦AB)十等分,求最长钢索CD的长度.【变式21】(2022秋•蔡甸区期末)如图,在⊙O中半径OC与弦AB垂直于点D,且AB=16,OC=10,则CD的长是()A.2B.3C.4D.5【变式22】(2022秋•河西区校级期末)如图,M是CD的中点,EM⊥CD,若CD=4,EM=6,则弧CED所在圆的半径为()A.B.4C.5D.【变式23】(2022秋•泰兴市期末)如图是一座圆弧型拱桥的截面示意图,若桥面跨度AB=48米,拱高CD=16米(C为AB的中点,D为弧AB的中点).则桥拱所在圆的半径为米.【典例3】(2021秋•恩施市校级期末)如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过这座圆弧形拱桥并说明理由.【变式31】(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【变式32】(2022秋•铁西区月考)如图,某地有一座圆弧形拱桥其圆心为O,桥下水面宽度AB为7.2m,拱高CD为2.4m.(1)求拱桥的半径;(2)夏季雨季来临时,当水面离桥顶C距离为1m时,就要禁止通行,某天暴雨后桥下水面宽度EF为3m,请通过计算说明是否要禁止通行.1.(2022秋•河西区校级期末)高速公路的隧道和桥梁最多,如图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=8米,净高CD=8米,则此圆的半径OA=()A.5米B.米C.6米D.米2.(2022秋•门头沟区期末)石拱桥是中国传统桥梁四大基本形式之一,它的主桥拱是圆弧形.如图,已知某公园石拱桥的跨度AB=16米,拱高CD=4米,那么桥拱所在圆的半径OA=米.3.(2021秋•任城区校级期末)在直径为20m的圆柱形油槽内注入一些油后,截面如图所示,液面宽AB=12m,如果继续向油槽内注油,使液面宽为16m,那么液面上升了m.4.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是cm.5.(2022秋•孝南区期末)小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径.小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=4cm,AB=16cm,很快求得圆形瓦片所在圆的半径为cm.6.(2022秋•越秀区校级期末)嘉兴南湖不仅是党的诞生地,它优美的风光还吸引全国各地的旅客前来观赏.如图是南湖的一座三孔桥,某天测得最大桥拱的水面宽AB为6m,桥顶C到水面AB的距离为2m,则这座桥桥拱半径为m.7.(2022秋•利通区期末)如图,在平面直角坐标系中,过格点A、B、C作以圆弧,则圆心的坐标是.8.(2022秋•河北区校级期末)蔬菜基地圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则高度CD为m.9.(2022秋•凤凰县期末)如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,拱高CD=7米,则此圆的半径OA=.10.(2022•防城区校级模拟)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,CD⊥AB且CD=10m,则这段弯路所在圆的半径为.11.(2022秋•南开区校级期末)如图所示,在平面直角坐标系中,已知一圆弧过正方形网格的格点A,B,C,已知A点的坐标为(﹣3,5),B点的坐标为(1,5),C点的坐标为(4,2),则该圆弧所在圆的圆心坐标为.12.(2022秋•江都区月考)将一个篮球放在高为18cm的长方体纸盒内,发现篮球的一部分露出纸盒,其截面如图所示,若测得AB=24cm,则该篮球的半径为cm.13.(2022秋•咸宁月考)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是寸.(1尺=10寸)14.(2020秋•禅城区校级期中)如图,某隧道的截面是一个半径为3.4米的半圆形,一辆宽3.2米的厢式卡车(截面是长方形)恰好能通过该隧道,则这辆卡车的高为多少米?15.(2020秋•亭湖区校级期中)如图,一条公路的转弯处是一段圆弧,点O 是的圆心,E为上一点,OE⊥CD,垂足为F.已知CD=300m,EF=50m,求这段弯路的半径.16.(2022秋•新昌县期中)市区古城门外有一水门(也可以说是一种特殊的拱桥),已知水门的跨径(水门桥拱圆弧所对的弦的长)为18.2m,拱高(水门桥拱圆弧的中点到弦的距离)为6.2m.求此水门的桥拱圆弧的半径(精确到0.1m).17.(2022秋•余杭区校级月考)如图,某地欲搭建圆弧形拱桥,设计要求跨度AB=32米,拱高CD=8米(1)求该圆弧所在圆的半径;(2)在距离桥的一端4米处欲立一桥墩EF支撑,求桥墩EF高度.18.(2022秋•海淀区校级月考)如图是一个半圆形桥洞的截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,AB=10米,OE⊥CD于点E,此时测得OE:CD=3:8.(1)求CD的长;(2)如果水位以0.4米/小时的速度上升,则经过多长时间桥洞会刚刚被灌满?19.(2022秋•湖口县期中)如图是某隧道入口的截面示意图,其上方是一个半圆,下方是一个长方形,现有一辆满载货物的卡车,宽3米,高4米,请判断这辆卡车能否通过该隧道.20.(2022•开福区一模)如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.21.(2022秋•红安县期中)如图,一圆弧形桥拱的圆心为E,拱桥的水面跨度AB=80米,桥拱到水面的最大高度DF为20米.求:(1)桥拱的半径;(2)现水面上涨后水面跨度为60米,求水面上涨的高度为米.。

综合题中的求线段长度问题

综合题中的求线段长度问题

2017年08月11日风的初中数学组卷一.解答题(共21小题)1.如图,抛物线y=x2+x+c和x轴的负半轴交于点A,和y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC和y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ和直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).2.如图1,抛物线y=ax2+bx+2和x轴交于A,B两点,和y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的分析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l和m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.3.如图,抛物线y=x2+bx+c和x轴交于A、B两点,和y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的分析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.4.如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的分析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不和A,B重合),过点E 作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,直线y=﹣3x﹣3和x轴交于点A,和y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且和x轴交于另一点B(点B在点A右侧).(1)求抛物线的分析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.6.如图,直线y=x+2和抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的分析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.7.如图已知二次函数图象的顶点为原点,直线的图象和该二次函数的图象交于A点(8,8),直线和x轴的交点为C,和y轴的交点为B.(1)求这个二次函数的分析式和B点坐标;(2)P为线段AB上的一个动点(点P和A,B不重合),过P作x轴的垂线和这个二次函数的图象交于D点,和x轴交于点E.设线段PD的长为h,点P的横坐标为t,求h和t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形和△BOC相似?若存在,请求出P点的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n和x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.(1)求抛物线的分析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d和t之间的函数关系式,并写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2﹣(m+3)y+(5m2﹣2m+13)=0(m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.9.在平面直角坐标系中,抛物线y=ax2﹣5ax+4a和x轴交于A、B(A点在B点的左侧)和y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的分析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.10.如图,直线AB分别交y轴、x轴于A、B两点,OA=2,tan∠ABO=,抛物线y=﹣x2+bx+c过A、B两点.(1)求直线AB和这个抛物线的分析式;(2)设抛物线的顶点为D,求△ABD的面积;(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN的长度l有最大值?最大值是多少?11.如图,抛物线y=﹣x 2+bx +c 经过A (﹣1,0),C (0,4)两点,和x 轴交于另一点B ,(1)求抛物线的分析式;(2)求P 在第一象限的抛物线上,P 点的横坐标为t ,过点P 向x 轴做垂线交直线BC 于点Q ,设线段PQ 的长为m ,求m 和t 之间的函数关系式并求出m 的最大值;(3)在(2)的条件下,抛物线上一点D 的纵坐标为m 的最大值,连接BD ,在抛物线是否存在点E (不和点A ,B ,C 重合)使得∠DBE=45°?若不存在.请说明理由;若存在请求E 点的坐标.12.已知抛物线l :y=(x ﹣h )2﹣4(h 为常数)(1)如图1,当抛物线l 恰好经过点P (1,﹣4)时,l 和x 轴从左到右的交点为A 、B ,和y 轴交于点C .①求l 的分析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D ,使S △ABD =S △ABC ,若存在,请求出D 点坐标,若不存在,请说明理由.③点M 是l 上任意一点,过点M 做ME 垂直y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l和双曲线y=有个交点横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围.13.二次函数y=(x﹣1)2+k分别和x轴、y轴交于A、B、C三点,点A在点B 的左侧,直线y=﹣x+2经过点B,且和y轴交于点D.(1)如图1,求k的值;(2)如图2,在第一象限的抛物线上有一动点P,连接AP,过P作PE⊥x轴于点E,过E作EF⊥AP于点F,过点D作平行于x轴的直线分别和直线FE、PE交于点G、H,设点P的横坐标为t,线段GH的长为d,求d和t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,过点G作平行于y轴的直线分别交AP、x轴和抛物线于点M、T和N,tan∠MEA=,点K为第四象限抛物线上一点,且在对称轴左侧,连接KA,在射线KA上取一点R,连接RM,过点K作KQ⊥AK交PE的延长线于Q,连接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ和△HKQ的面积相等,求点R的坐标.14.如图所示,二次函数y=ax2﹣x+c的图象经过点A(0,1),B(﹣3,),A点在y轴上,过点B作BC⊥x轴,垂足为点C.(1)求直线AB的分析式和二次函数的分析式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)点N是二次函数图象上一点(点N在AB上方),是否存在点N,使得BM 和NC相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.15.如图1,直线l:y=x+和x轴负半轴、y轴正半轴分别相交于A、C两点,抛物线y=﹣x2+bx+c经过点B(1,0)和点C.(1)求抛物线的分析式;(2)已知点Q是抛物线y=﹣x2+bx+c在第二象限内的一个动点.①如图1,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S和t的函数关系式,并求出S的最大值;②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时点Q的坐标.16.如图,抛物线y=﹣x2+bx+c和x轴交于A(﹣1,0)、B两点,和y轴交于点C(0,2),抛物线的对称轴交x轴于点D.(1)求抛物线的分析式;(2)求sin∠ABC的值;(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线和抛物线相交于点F,当点E运动到什么位置时线段EF最长?求出此时E点的坐标.17.如图,抛物线y=﹣x2+bx+c和x轴交于A、B两点(A左B右),交y轴于点C,直线y=x分别交抛物线于D、E,连接BD,且OD=4,OB=4(1)求抛物线的分析式;(2)点P为线段BD上方抛物线上一点,过点P作y轴的平行线交直线DE于N.设P点的横坐标为m,线段PN的长为d,求d和m的函数关系式;(3)在(2)的条件下,过点B作BG⊥DE,垂足为G,过点P作PH⊥BD,垂足为H,若GH=GP.求点点P的坐标.18.如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,和y轴交于点C(1)求抛物线的分析式;(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m和t之间的函数关系式,并求出m的最大值;(3)当PQ的长度取最大值时,PQ和x轴交点记为D,在x轴上是否存在点E,使以点B,C,E为顶点的三角形和△BQD相似?如果存在,直接写出E点坐标;如果不存在,请说明理由.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于点A(﹣2,0)和B(B在A右),交y轴于点C,直线y=2kx﹣12k经过点B,交y轴于点D,CD=OD.(1)求抛物线的分析式;(2)若P是第一象限抛物线上的一点,过P点作PH⊥BD于H,设P点的横坐标是t,求当PH的长最大时P点坐标;(3)在(2)的条件下,将射线PH绕着点P顺时针方向旋转45°交抛物线于点Q,求Q点关于直线PH的对称点E的坐标.20.如图,直线y=x+1和y轴交于A点,过点A的抛物线y=﹣x2+bx+c和直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)直接写出抛物线的分析式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P 作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s和t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P和点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t值,平行四边形BCMN是否菱形?请说明理由.21.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A 的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=,c=,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.2017年08月11日风的初中数学组卷参考答案和试题分析一.解答题(共21小题)1.(2017•宁波)如图,抛物线y=x2+x+c和x轴的负半轴交于点A,和y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC和y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ和直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).【分析】(1)把C点坐标代入抛物线分析式可求得c的值,令y=0可求得A点坐标,利用待定系数法可求得直线AC的函数表达式;(2)①在Rt△AOB和Rt△AOD中可求得∠OAB=∠OAD,在Rt△OPQ中可求得MP=MO,可求得∠MPO=∠MOP=∠AON,则可证得△APM∽△AON;②过M作ME⊥x轴于点E,用m可表示出AE和AP,进一步可表示出AM,利用△APM∽△AON可表示出AN.【解答】解:(1)把C点坐标代入抛物线分析式可得=9++c,解得c=﹣3,∴抛物线分析式为y=x2+x﹣3,令y=0可得x2+x﹣3=0,解得x=﹣4或x=3,∴A(﹣4,0),设直线AC的函数表达式为y=kx+b(k≠0),把A、C坐标代入可得,解得,∴直线AC的函数表达式为y=x+3;(2)①∵在Rt△AOB中,tan∠OAB==,在RtAOD中,tan∠OAD==,∴∠OAB=∠OAD,∵在Rt△POQ中,M为PQ的中点,∴OM=MP,∴∠MOP=∠MPO,且∠MOP=∠AON,∴∠APM=∠AON,∴△APM∽△AON;②如图,过点M作ME⊥x轴于点E,则OE=EP,∵点M的横坐标为m,∴AE=m+4,AP=2m+4,∵tan∠OAD=,∴cos∠EAM=cos∠OAD=,∴=,∴AM=AE=,∵△APM∽△AON,∴=,即=,∴AN=.【点评】本题为二次函数的综合使用,涉及待定系数法、三角函数的定义、相似三角形的判定和性质、等腰三角形的性质、直角三角形的性质及方程思想等知识.在(1)中注意函数图象上的点的坐标满足函数分析式,以及待定系数法的使用,在(2)①中确定出两对对应角相等是解题的关键,在(2)②中用m表示出AP的长是解题的关键,注意利用相似三角形的性质.本题考查知识点较多,综合性较强,难度较大.2.(2017•烟台)如图1,抛物线y=ax2+bx+2和x轴交于A,B两点,和y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的分析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l和m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【分析】(1)由条件可求得A、B的坐标,利用待定系数法可求得抛物线分析式;(2)可先求得E点坐标,从而可求得直线OE分析式,可知∠PGH=45°,用m可表示出PG的长,从而可表示出l的长,再利用二次函数的性质可求得其最大值;(3)分AC为边和AC为对角线,当AC为边时,过M作对称轴的垂线,垂足为F,则可证得△MFN≌△AOC,可求得M到对称轴的距离,从而可求得M点的横坐标,可求得M点的坐标;当AC为对角线时,设AC的中点为K,可求得K的横坐标,从而可求得M的横坐标,代入抛物线分析式可求得M点坐标.【解答】解:(1)∵矩形OBDC的边CD=1,∴OB=1,∵AB=4,∴OA=3,∴A(﹣3,0),B(1,0),把A、B两点坐标代入抛物线分析式可得,解得,∴抛物线分析式为y=﹣x2﹣x+2;(2)在y=﹣x2﹣x+2中,令y=2可得2=﹣x2﹣x+2,解得x=0或x=﹣2,∴E(﹣2,2),∴直线OE分析式为y=﹣x,由题意可得P(m,﹣m2﹣m+2),∵PG∥y轴,∴G(m,﹣m),∵P在直线OE的上方,∴PG=﹣m2﹣m+2﹣(﹣m)=﹣m2﹣m+2=﹣(m+)2+,∵直线OE分析式为y=﹣x,∴∠PGH=∠COE=45°,∴l=PG=[﹣(m+)2+]=﹣(m+)2+,∴当m=﹣时,l有最大值,最大值为;(3)①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,则∠ALF=∠ACO=∠FNM,在△MFN和△AOC中∴△MFN≌△AOC(AAS),∴MF=AO=3,∴点M到对称轴的距离为3,又y=﹣x2﹣x+2,∴抛物线对称轴为x=﹣1,设M点坐标为(x,y),则|x+1|=3,解得x=2或x=﹣4,当x=2时,y=﹣,当x=﹣4时,y=,∴M点坐标为(2,﹣)或(﹣4,﹣);②当AC为对角线时,设AC的中点为K,∵A(﹣3,0),C(0,2),∴K(﹣,1),∵点N在对称轴上,∴点N的横坐标为﹣1,设M点横坐标为x,∴x+(﹣1)=2×(﹣)=﹣3,解得x=﹣2,此时y=2,∴M(﹣2,2);综上可知点M的坐标为(2,﹣)或(﹣4,﹣)或(﹣2,2).【点评】本题为二次函数的综合使用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质、方程思想及分类讨论思想等知识.在(1)中求得A、B的坐标是解题的关键,在(2)中确定出PG和l的关系是解题的关键,在(3)中确定出M的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.3.(2017•咸宁)如图,抛物线y=x2+bx+c和x轴交于A、B两点,和y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的分析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.【分析】(1)由条件可求得B、C坐标,利用待定系数法可求得抛物线分析式,进一步可求得D点坐标;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FAG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)可求得P点坐标,设T为菱形对角线的交点,设出PT的长为n,从而可表示出M点的坐标,代入抛物线分析式可得到n的方程,可求得n的值,从而可求得MN的长.【解答】解:(1)∵OB=OC=6,∴B(6,0),C(0,﹣6),∴,解得,∴抛物线分析式为y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴点D的坐标为(2,﹣8);(2)如图1,过F作FG⊥x轴于点G,设F(x,x2﹣2x﹣6),则FG=|x2﹣2x﹣6|,在y=x2﹣2x﹣6中,令y=0可得x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,∵B(6,0),D(2,﹣8),∴BE=6﹣2=4,DE=8,当∠FAB=∠EDB时,且∠FGA=∠BED,∴△FAG∽△BDE,∴=,即==,当点F在x轴上方时,则有=,解得x=﹣2(舍去)或x=7,此进F 点坐标为(7,);当点F在x轴上方时,则有=﹣,解得x=﹣2(舍去)或x=5,此进F点坐标为(5,﹣);综上可知F点的坐标为(7,)或(5,﹣);(3)∵点P在x轴上,∴由菱形的对称性可知P(2,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=MN,∴MT=2PT,设PT=n,则MT=2n,∴M(2+2n,n),∵M在抛物线上,∴n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=,∴MN=2MT=4n=+1;当MN在x轴下方时,同理可设PT=n,则M(2+2n,﹣n),∴﹣n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=(舍去),∴MN=2MT=4n=﹣1;综上可知菱形对角线MN的长为+1或﹣1.【点评】本题为二次函数的综合使用,涉及待定系数法、相似三角形的判定和性质、菱形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的使用,在(2)中证得△FAG∽△BDE,得到关于F点坐标的方程是解题的关键,注意分F点在x轴上方和下方两种情况,在(3)中用PT的长表示出M点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.4.(2017•贺州)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的分析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不和A,B重合),过点E 作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的分析式求解即可;(2)设直线AB的分析式为y=kx+b,将点A和点B的坐标代入可求得直线AB的分析式,设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线和点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的分析式求得对应的x的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的分析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的分析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的分析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线和点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:x=﹣或x=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:x=﹣1+或x=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合使用,解答本题主要使用了待定系数法求二次函数的分析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.5.(2017•宁津县模拟)如图,在平面直角坐标系中,直线y=﹣3x﹣3和x轴交于点A,和y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且和x轴交于另一点B(点B在点A右侧).(1)求抛物线的分析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.【分析】(1)先根据直线的分析式求出A、C两点的坐标,然后将A、C的坐标代入抛物线中即可求出二次函数的分析式.进而可根据抛物线的分析式求出B 点的坐标.(2)ME的长实际是直线BC的函数值和抛物线的函数值的差,据此可得出一个关于ME的长和F点横坐标的函数关系式,可根据函数的性质来求出ME的最大值.(3)根据(2)的结果可确定出F,M的坐标,要使以M,F,B,P为顶点的四边形是平行四边形,必须满足的条件是MP∥=BF,那么只需将M点的坐标向左或向右平移BF长个单位即可得出P点的坐标,然后将得出的P点坐标代入抛物线的分析式中,即可判断出是否存在符合条件的P点.【解答】解:(1)当y=0时,﹣3x﹣3=0,x=﹣1∴A(﹣1,0)当x=0时,y=﹣3,∴C(0,﹣3),∴∴,抛物线的分析式是:y=x2﹣2x﹣3.当y=0时,x2﹣2x﹣3=0,解得:x1=﹣1,x2=3∴B(3,0).(2)由(1)知B(3,0),C(0,﹣3)直线BC的分析式是:y=x﹣3,设M(x,x﹣3)(0≤x≤3),则E(x,x2﹣2x﹣3)∴ME=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+;∴当x=时,ME的最大值为.(3)答:不存在.由(2)知ME取最大值时ME=,E(,﹣),M(,﹣)∴MF=,BF=OB﹣OF=.设在抛物线x轴下方存在点P,使以P、M、F、B为顶点的四边形是平行四边形,则BP∥MF,BF∥PM.∴P1(0,﹣)或P2(3,﹣)当P1(0,﹣)时,由(1)知y=x2﹣2x﹣3=﹣3≠﹣∴P1不在抛物线上.当P2(3,﹣)时,由(1)知y=x2﹣2x﹣3=0≠﹣∴P2不在抛物线上.综上所述:在x轴下方抛物线上不存在点P,使以P、M、F、B为顶点的四边形是平行四边形.【点评】本题着重考查了待定系数法求二次函数分析式、平行四边形的判定和性质等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.(2)中弄清线段ME长度的函数意义是解题的关键.6.(2017•陕西模拟)如图,直线y=x+2和抛物线y=ax2+bx+6(a≠0)相交于A (,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x 轴于点D,交抛物线于点C.(1)求抛物线的分析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.【分析】(1)将点B坐标代入直线分析式,求出m的值,然后把A、B坐标代入二次函数分析式,求出a、b,即可求得分析式;(2)设动点P的坐标为(n,n+2),点C的坐标为(n,2n2﹣8n+6),表示出PC 的长度,然后利用配方法求出二次函数的最大值,并求出此时n的值.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=6,即B(4,6),∵A(,)和B(4,6)在抛物线y=ax2+bx+6上,∴,解得:,∴抛物线的分析式y=2x2﹣8x+6;(2)存在.设动点P的坐标为(n,n+2),点C的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4=﹣2(n﹣)2+,∵﹣2<0,∴开口向下,有最大值,∴当n=时,线段PC有最大值.【点评】本题考查了二次函数的综合运用,涉及了待定系数法求函数分析式,配方法求最值等知识点,解答本题案的关键是根据分析式设出点P和点C的坐标,列出PC的代数式.7.(2017•邵阳县模拟)如图已知二次函数图象的顶点为原点,直线的图象和该二次函数的图象交于A点(8,8),直线和x轴的交点为C,和y轴的交点为B.(1)求这个二次函数的分析式和B点坐标;(2)P为线段AB上的一个动点(点P和A,B不重合),过P作x轴的垂线和这个二次函数的图象交于D点,和x轴交于点E.设线段PD的长为h,点P的横坐标为t,求h和t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形和△BOC相似?若存在,请求出P点的坐标;若不存在,请说明理由.【分析】(1)先设二次函数的分析式为y=ax2,把A点(8,8)代入y=ax2即可求出这个二次函数的分析式,根据直线和y轴的交点横坐标为0即可求出B点坐标为;(2)设P点在上且横坐标为t,得出P点的坐标为(t,t+4),根据PD ⊥x轴于E,用t表示出D和E的坐标,再根据PD=h,求出h=﹣t2+t+4,最后根据P和AB不重合且在AB上,得出t的取值范围;(3)先过点B作BF⊥PD于F,得出PF=t+4﹣4=t,BF=t,再根据勾股定理得出PB和BC的值,再假设△PBO∽△BOC,得出=,即可求出t1和t2的值,从而求出P点的坐标;【解答】解:(1)设此二次函数的分析式为y=ax2,∵A点(8,8)在二次函数y=ax2上,∴8=a×82,∴a=,∴y=x2,∵直线和y轴的交点为B,∴B点坐标为:(0,4).(2)P点在上且横坐标为t,∴P(t,t+4),∵PD⊥x轴于E,∴D(t,t2),E(t,0),∵PD=h,∴t+4﹣x2=h,∴h=﹣x2+t+4,∵P和AB不重合且在AB上,∴0<t<8.(3)存在,(1)当BD⊥PE时,△PBD∽△BCO,∵=,∴=,∴h=t,∴﹣t2+t+4=t,x=4或x=﹣4(舍去)∴P点的纵坐标是:×4+4=2+4,∴此时P点的坐标是;(4,2+4)(2)当DB⊥PC时,△PBD∽△BCO,过点B作BF⊥PD,则F(t,4),∴PF=t+4﹣4=t,BF=t,根据勾股定理得:PB==t,BC===4假设△PBD∽△BOC,则有=,∴=,解得:t1=﹣8+4,t2=﹣8﹣4(不合题意舍去),∴t+4=×(﹣8+4)+4=2,∴P(﹣8+4,2).【点评】此题考查了二次函数的综合;在解题时要能灵运用二次函数的图象和性质求出二次函数的分析式,利用数形结合思想解题是本题的关键.8.(2017•湘潭模拟)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n和x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.(1)求抛物线的分析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d和t之间的函数关系式,并写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2﹣(m+3)y+(5m2﹣2m+13)=0(m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.【分析】(1)当x=0时代入抛物线y=ax2+bx+3(a≠0)就可以求出y=3而得出C 的坐标,就可以得出直线的分析式,就可以求出B的坐标,在直角三角形AOC 中,由三角形函数值就可以求出OA的值,得出A的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P在线段CB上时,和如图3点P在射线BN上时,就有P点的坐标为(t,﹣t+3),Q点的坐标为(t,﹣t2+2t+3),就可以得出d 和t之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH 的值,延长MP至L,使LP=MP,连接LQ、LH,如图2,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH 是菱形,由菱形的性质就可以求出结论.【解答】解:(1)当x=0,则y=﹣x+n=0+n=n,y=ax2+bx+3=3,∴OC=3=n.当y=0,∴﹣x+3=0,x=3=OB,∴B(3,0).在△AOC中,,∴OA=1,∴A(﹣1,0).将A(﹣1,0),B(3,0)代入y=ax2+bx+3,得,解得:∴抛物线的分析式:y=﹣x2+2x+3;(2)如图1,当点P在线段CB上时.∵P点的横坐标为t且PQ垂直于x轴,∴P点的坐标为(t,﹣t+3),Q点的坐标为(t,﹣t2+2t+3).∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t.。

人教版九年级数学上册 《圆中的求线段长度的相关计算》必考题型专项分类专题练习

人教版九年级数学上册 《圆中的求线段长度的相关计算》必考题型专项分类专题练习

《圆中的求线段长度的相关计算》必考经典题型专项分类专题练习(专题分类练习+详细解析)题型一:垂径定理中的线段长度计算1. 如图,四边形PAOB是扇形OMN的内接矩形,顶点P在MN⏜上,且不与M,N重合,当P点在MN⏜上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )A.逐渐变大B.逐渐变小C.不变D.不能确定2. 如图,AB是☉O的直径,AB=6,OD⊥AB,弧BC为30°,P是直径AB上的点,则PD+PC的最小值是________.3. ☉O过等边△ABC的各个顶点,且AB=2,则☉O的半径为( )A.1B.√3C.2√33D.√324. 如图,点A,N在半圆O上,四边形ABOC,DNMO均为矩形,BC=a,MD=b,则a,b的关系为( )A.a>bB.a=bC.a<bD.a≤b5. 已知,如图,☉O的弦AB,CD相交于点P,PO平分∠APD.求证:AB=CD.题型二:和圆周角、圆心角相关的线段长度计算1. 如图,在☉O中,弦AC=2√3,点B是圆上一点,且∠ABC=45°,则☉O的半径R=________.2. 如图所示,☉O的两条弦AB,CD交于点P,连接AC,BD,若S△ACP ∶S△DBP=16∶9,则AC∶BD=________.3. 如图,小正方形的边长均为1,则∠1的正切值为( )A.15B.14C.13D.124. 如图,☉O的半径为4,△ABC是☉O的内接三角形,连接OB,OC,若∠BAC和∠BOC互补,则弦BC的长度为( )A.3√3B.4√3C.5√3D.6√35. 正方形ABCD的四个顶点都在☉O上,点E是☉O上的一点.(1)如图①,若点E在AB⏜上,点F是DE上的一点,DF=BE.求证:△ADF≌△ABE.(2)在(1)的条件下,小明还发现线段DE,BE,AE之间满足等量关系:DE-BE=√2AE.请你说明理由.(3)如图②,若点E在AD⏜上.写出线段DE,BE,AE之间的等量关系.(不必证明)题型三:和切线有关的线段长度计算1. 如图,一圆内切于四边形ABCD,且BC=10,AD=7,则四边形的周长为( )A.32B.34C.36D.383.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC,BC相切于点D,E.则AD为( )A.2.5B.1.6C.1.5D.13. 如图,小敏家厨房一墙角处有一自来水管,装修时为了美观,准备用木板从AB 处将水管密封起来,互相垂直的两墙面与水管分别相切于D,E两点,经测量发现AD和BE的长恰是方程x2-25x+150=0的两根(单位:cm),则该自来水管的半径为________cm.4. 如图,已知:射线PO与☉O交于A,B两点,PC,PD分别切☉O于点C,D.(1)请写出两个不同类型的正确结论.(2)若CD=12,tan∠CPO=1,求PO的长.2题型四:扇形、多边形中的线段长度计算1. 已知正六边形的边长为2,则它的内切圆的半径为( )A.1B.√3C.2D.2√32. 粉笔是校园中最常见的必备品.现有一盒刚打开的六角形粉笔,总支数为50支.如图是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为________mm.⏜的中点,连接BM,CM.3. 如图,正方形ABCD内接于☉O,M为AD(1)求证:BM=CM.⏜的长.(2)当☉O的半径为2时,求BM4. 如图,已知等边△ABC内接于☉O,BD为☉O内接正十二边形的一边,CD=5√2cm,求☉O的半径R.《圆中的求线段长度的相关计算》必考经典题型专项分类专题练习(专题分类练习+详细解析)(解析版)题型一:垂径定理中的线段长度计算⏜上,且不与M,N重合, 1. 如图,四边形PAOB是扇形OMN的内接矩形,顶点P在MN⏜上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( ) 当P点在MNA.逐渐变大B.逐渐变小C.不变D.不能确定【解析】选C.连接OP,∵在直角三角形PAB中,AB2=PA2+PB2,又∵在矩形PAOB 中,OP=AB, ∴PA 2+PB 2=AB 2=OP 2.2. 如图,AB 是☉O 的直径,AB=6,OD ⊥AB,弧BC 为30°,P 是直径AB 上的点,则PD+PC 的最小值是________.【解析】作C 点关于AB 的对称点C ′,连接DC ′交AB 于P 点,过D 点作直径DE,连接EC ′,如图, ∴BC⏜=BC′⏜=30°,PC=PC ′, ∴DC ′是PD+PC 的最小值.又∵弧EC ′的度数=90°-30°=60°,∴∠D=30°, 而DE=AB=6,在Rt △DEC ′中,EC ′=12DE=3, DC ′=√3EC ′=3√3.即PD+PC 的最小值是3√3.答案:3√33. ☉O 过等边△ABC 的各个顶点,且AB=2,则☉O 的半径为 ( )A.1B.√3C.2√33D.√32【解析】选C.连接OB,OC,过点O 作OD ⊥BC 于点D. ∵△ABC 为等边三角形, ∴AB=BC=AC,∴AB⏜=BC ⏜=AC ⏜, ∴∠BOC 为120°. 又OD ⊥BC,OB=OC,∴∠COD=60°,∠COD=30°,CD=12BC=1, ∴cos ∠OCD=CDOC , ∴OC=CD cos∠OCD =√32=2√33. 4. 如图,点A,N 在半圆O 上,四边形ABOC,DNMO 均为矩形,BC=a,MD=b,则a,b 的关系为 ( )A.a>bB.a=bC.a<bD.a ≤b【解析】选B.连接ON,OA,如图,∵点A,N在半圆上,∴ON=OA,∵四边形ABOC,DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD,即a=b.5. 已知,如图,☉O的弦AB,CD相交于点P,PO平分∠APD.求证:AB=CD.【证明】过点O作OM⊥AB于点M,ON⊥CD于点N.∵PO平分∠APD,OM⊥AB,ON⊥CD.∴OM=ON,连接OA,OD,在Rt△AOM中,AM=√OA2−OM2,在Rt△DON中,DN=√OD2−ON2,又∵OA=OD,OM=ON,∴AM=DN,∴2AM=2DN,即AB=CD.题型二:和圆周角、圆心角相关的线段长度计算1. 如图,在☉O中,弦AC=2√3,点B是圆上一点,且∠ABC=45°,则☉O的半径R=________.【解析】∵∠ABC=45°,∴∠AOC=90°,∵OA=OC=R,∴R2+R2=(2√3)2,解得R=√6. 答案:√62. 如图所示,☉O的两条弦AB,CD交于点P,连接AC,BD,若S△ACP ∶S△DBP=16∶9,则AC∶BD=________.【解析】由题干图可知∠C=∠B,∠A=∠D, ∴△ACP∽△DBP,∴S△ACPS△DBP =(ACBD)2,即(ACBD)2=169,∴AC∶BD=4∶3.答案:4∶33. 如图,小正方形的边长均为1,则∠1的正切值为( )A.15B.14C.13D.12【解析】选D.如图,∵∠1=∠2,∴tan∠1=tan∠2=12.4. 如图,☉O的半径为4,△ABC是☉O的内接三角形,连接OB,OC,若∠BAC和∠BOC互补,则弦BC的长度为( )A.3√3B.4√3C.5√3D.6√3BC.【解析】选B.过点O作OD⊥BC于点D,则BD=CD=12∠BOC,∵∠BAC+∠BOC=180°,∠BAC=12∴∠BOC=120°,∠BAC=60°,∴∠BOD=60°.在Rt△BOD中,BD=OBsin60°=2√3,∴BC=4√3.5. 正方形ABCD的四个顶点都在☉O上,点E是☉O上的一点.⏜上,点F是DE上的一点,DF=BE.求证:△ADF≌△ABE.(1)如图①,若点E在AB(2)在(1)的条件下,小明还发现线段DE,BE,AE之间满足等量关系:DE-BE=√2AE.请你说明理由.⏜上.写出线段DE,BE,AE之间的等量关系.(不必证明) (3)如图②,若点E在AD【解析】(1)在正方形ABCD中,AB=AD.⏜,∴∠1=∠2,∵∠1和∠2所对的弧都是AE在△ADF和△ABE中,{AD=AB,∠1=∠2, DF=BE,∴△ADF≌△ABE(SAS).(2)由(1)得△ADF≌△ABE,∴AF=AE,∠3=∠4.在正方形ABCD中,∠BAD=90°,∴∠BAF+∠3=90°,∴∠BAF+∠4=90°,∴∠EAF=90°.∴△EAF是等腰直角三角形.∴EF2=AE2+AF2,∴EF2=2AE2.∴EF=√2AE.∵DE-DF=EF,∴DE-BE=√2AE.(3)BE-DE=√2AE.题型三:和切线有关的线段长度计算1. 如图,一圆内切于四边形ABCD,且BC=10,AD=7,则四边形的周长为( )A.32B.34C.36D.38【解析】选B.如图,根据切线长定理可知,AE=AH,BE=BF,CF=CG,DG=DH.所以AE+DG=AH+DH=AD,BE+CG=BF+CF=BC,所以AB+BC+CD+DA=AE+BE+BC+CG+DG+DA=2AD+2BC=2×7+2×10=34.3.如图,Rt △ABC 中,∠ACB=90°,AC=4,BC=6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC,BC 相切于点D,E.则AD 为 ( )A.2.5B.1.6C.1.5D.1【解析】选B.连接OD,OE,OC,设OD=r,∵AC,BC 切☉O 于D,E, ∴∠ODC=∠OEC=90°,OD=OE, ∵S △AOC +S △BOC =S △ABC ,即12OD ·AC+12OE ·BC=12BC ·AC,12r ·4+12r ·6=12×6×4,r=2.4,AD=AC-r=1.6.3. 如图,小敏家厨房一墙角处有一自来水管,装修时为了美观,准备用木板从AB 处将水管密封起来,互相垂直的两墙面与水管分别相切于D,E 两点,经测量发现AD 和BE 的长恰是方程x 2-25x+150=0的两根(单位:cm),则该自来水管的半径为________cm.【解析】连接OD,OE.解方程x2-25x+150=0,得x1=10,x2=15,∴设AD=10,BE=15,半径为r,∴AB=AD+BE=25,∴(AD+r)2+(BE+r)2=AB2,即(10+r)2+(15+r)2=252,解得:r=5.答案:54. 如图,已知:射线PO与☉O交于A,B两点,PC,PD分别切☉O于点C,D.(1)请写出两个不同类型的正确结论.(2)若CD=12,tan∠CPO=12,求PO的长.【解析】(1)不同类型的正确结论有:①PC=PD,②∠CPO=∠DPO,③CD⊥BA,④∠CEP=90°,⑤PC2=PA·PB.(2)连接OC,∵PC,PD分别切☉O于点C,D∴PC=PD,∠CPO=∠DPA,∴CD⊥AB,∵CD=12,∴DE=CE=12CD=6.∵tan∠CPO=12,∴在Rt△EPC中,PE=12,∴由勾股定理得CP=6√5,∵PC切☉O于点C,∴∠OCP=90°.在Rt △OPC 中,∵tan ∠CPO=12, ∴OC PC =12,∴OC=3√5, ∴OP=√OC 2+PC 2=15.题型四:扇形、多边形中的线段长度计算1. 已知正六边形的边长为2,则它的内切圆的半径为 ( ) A.1B.√3C.2D.2√3【解析】选B.如图,由正六边形的性质知,三角形AOB 为等边三角形,所以,OA=OB=AB=2,AC=1,由勾股定理,得内切圆半径OC=√3.2. 粉笔是校园中最常见的必备品.现有一盒刚打开的六角形粉笔,总支数为50支.如图是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD 的周长约为________mm.【解析】作B ′M ′∥C ′D ′,C ′M ′⊥B ′M ′于点M ′.粉笔的半径是6mm.则边长是6mm. ∵∠M ′B ′C ′=60°,∴B ′M ′=B ′C ′·cos60°=6×12=3(mm), C ′M ′=B ′C ′sin60°=6×√32=3√3(mm). 则题干图中,AB=CD=11×3√3=33√3(mm). AD=BC=5×6+5×12+3=93(mm).则周长是:2×33√3+2×93=(66√3+186)mm. 答案:(66√3+186)3. 如图,正方形ABCD 内接于☉O,M 为AD ⏜的中点,连接BM,CM. (1)求证:BM=CM.(2)当☉O 的半径为2时,求BM⏜的长.【解析】(1)∵四边形ABCD 是正方形, ∴AB=CD, ∴AB⏜=CD ⏜, ∵M 为AD ⏜的中点, ∴AM ⏜=DM ⏜,∴AB ⏜+AM ⏜=CD ⏜+DM ⏜,即BM⏜=CM ⏜,∴BM=CM.(2)∵☉O 的半径为2, ∴☉O 的周长为4π, ∴BM⏜的长=38×4π=32π.4. 如图,已知等边△ABC 内接于☉O,BD 为☉O 内接正十二边形的一边,CD=5√2cm,求☉O 的半径R.【解析】连接OB,OC,OD,∵等边△ABC 内接于☉O,BD 为内接正十二边形的一边, ∴∠BOC=13×360°=120°,∠BOD=112×360°=30°, ∴∠COD=∠BOC-∠BOD=90°, ∵OC=OD,∴∠OCD=45°,∴OC=CD ·cos 45°=5√2×√22=5(cm). 即☉O 的半径R=5cm.学海迷津:数学学习十大方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

线段问题练习题

线段问题练习题

线段问题练习题线段问题是数学中的一个重要内容,需要运用线段的性质和相关的定理来解决。

在这篇文章中,我将为大家提供一些线段问题的练习题,通过解答这些问题,帮助大家巩固对线段相关知识的理解。

1.问题一:给定直角坐标系上的两个点A(x1, y1)和B(x2, y2),求线段AB的长度。

解析:根据两点间距离公式可以求得线段AB的长度。

设直角三角形ABC,其中AB为斜边,则根据勾股定理有:AB²=BC²+AC²。

由于直角三角形ACB的坐标可以通过已知点坐标求得,因此可以计算得出线段AB的长度。

2.问题二:已知直角坐标系上的线段AB的长度l和点A(x1, y1)的坐标,求点B(x2, y2)的坐标。

解析:设A(x1, y1)和B(x2, y2),则根据两点间距离公式有:l =√((x2-x1)²+(y2-y1)²)。

由此可以得到一个方程,通过解这个方程可以求解点B的坐标。

3.问题三:已知直角坐标系上的线段AB的中点M的坐标和点A(x1, y1)的坐标,求点B(x2, y2)的坐标。

解析:设A(x1, y1)和B(x2, y2),M的坐标为M(xm, ym)。

由于M是AB的中点,可以得到以下两个方程:(x1+x2)/2 = xm 和 (y1+y2)/2 = ym。

通过解这个方程组,可以求解点B的坐标。

4.问题四:在正方形ABCD中,已知点E为线段AB的中点,求线段CE的长度。

解析:由于E是AB的中点,可以得知CE与AE和BC平行,根据平行线的性质有:CE = AB。

5.问题五:已知线段AB与原点O之间的距离为d,求线段AB的长度。

解析:设线段AB的长度为l,根据两点间距离公式有:l = √(x²+y²)。

由于AB与原点O之间的距离为d,可以得到一个方程:d = √(x²+y²)。

通过解这个方程,可以求解线段AB的长度。

通过以上几个练习题,我们可以加深对线段问题相关知识的理解和掌握。

小学生数学用线段解题练习题

小学生数学用线段解题练习题

小学生数学用线段解题练习题# 小学生数学用线段解题练习题## 一、基础线段问题1. 题目一:画一条线段AB,如果线段AB的长度是8厘米,那么线段AB的中点C到A点的距离是多少厘米?2. 题目二:已知线段CD的长度是10厘米,如果点E是线段CD的中点,求线段CE的长度。

3. 题目三:线段EF被点G平分,EF的长度是12厘米,求GF的长度。

4. 题目四:线段HI的长度是15厘米,如果点J是线段HI的三等分点,求HJ和IJ的长度。

5. 题目五:线段KL的长度是20厘米,如果点M和N分别是线段KL的四等分点,求MN的长度。

## 二、线段的和与差6. 题目六:线段MN的长度是6厘米,线段OP的长度是4厘米,求线段MN和OP的和。

7. 题目七:如果线段PQ的长度是9厘米,线段RS的长度是3厘米,求线段PQ比RS长多少厘米。

8. 题目八:线段TU的长度是14厘米,如果从TU上减去线段VW的长度,VW的长度是5厘米,求剩余的长度。

9. 题目九:线段XY的长度是18厘米,线段YZ的长度是12厘米,求线段XY比YZ长多少厘米。

10. 题目十:线段AB的长度是11厘米,线段CD的长度是7厘米,求线段AB比CD长多少厘米。

## 三、线段的倍数关系11. 题目十一:线段EF的长度是2厘米,如果线段GH是EF的3倍,求GH的长度。

12. 题目十二:线段IJ的长度是5厘米,如果线段KL是IJ的一半,求KL的长度。

13. 题目十三:线段MN的长度是8厘米,如果线段OP是MN的1.5倍,求OP的长度。

14. 题目十四:线段PQ的长度是10厘米,如果线段RS是PQ的四分之一,求RS的长度。

15. 题目十五:线段TU的长度是6厘米,如果线段VW是TU的两倍,求VW的长度。

## 四、线段的组合问题16. 题目十六:线段XY的长度是7厘米,线段YZ的长度是3厘米,如果线段XZ是XY和YZ的和,求XZ的长度。

17. 题目十七:线段AB的长度是9厘米,线段BC的长度是6厘米,如果线段AC是AB和BC的差,求AC的长度。

七年级数学线段的练习题

七年级数学线段的练习题

七年级数学线段的练习题七年级数学线段的练习题数学是一门既有趣又实用的学科,它贯穿于我们生活的方方面面。

在七年级数学中,线段是一个重要的概念。

线段是数学中的一种基本几何图形,它由两个端点和连接它们的线段组成。

在本文中,我将为大家介绍一些七年级数学线段的练习题,希望能够帮助大家更好地理解和掌握线段的概念。

1. 给定线段AB,如果线段AB的长度是5cm,那么线段BA的长度是多少?解析:线段AB和线段BA是同一条线段,只是方向相反而已。

所以线段BA的长度也是5cm。

2. 在一个长方形中,两个相邻的边的长度分别是7cm和5cm,求长方形的周长。

解析:长方形的周长等于所有边的长度之和。

根据题意,长方形的周长等于2× (7cm + 5cm) = 24cm。

3. 如果一个线段的长度是8cm,将它分成3等分,每一段的长度是多少?解析:将线段分成3等分,意味着将线段分成3个相等的部分。

所以每一段的长度等于8cm ÷ 3 ≈ 2.67cm。

4. 在一个正方形中,对角线的长度是10cm,求正方形的边长。

解析:正方形的对角线将正方形分成两个等边直角三角形。

根据勾股定理,对角线的长度等于边长的平方根乘以√2。

所以边长等于10cm ÷ √2 ≈ 7.07cm。

5. 在一个等边三角形中,每条边的长度是6cm,求三角形的周长。

解析:等边三角形的三条边的长度相等,所以三角形的周长等于3 × 6cm =18cm。

通过以上几个练习题,我们可以看到线段在几何图形中的应用。

线段的长度可以通过计算两个端点的距离来确定,而在其他图形中,线段的长度也可以通过其他已知条件来计算。

通过练习这些题目,我们可以更好地理解线段的概念,提高我们的数学解题能力。

除了以上的练习题,还有许多其他与线段相关的问题可以练习。

比如,给定两个点的坐标,求它们之间的距离;给定一个线段和一个点,判断这个点是否在线段上等等。

这些问题都可以通过线段的性质和几何知识来解决,对我们的数学学习和思维能力的培养都有很大的帮助。

求线段的长度专项练习

求线段的长度专项练习

求线段的长度的专项练习第一组:1、如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。

2、如图,C 为线段AB 上任一点,E 、F 分别为AC 、BC 的中点,EF=12cm ,求AB 的长。

F E A B C3、如图9,AD=12BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长.4. 如图1所示,点C 分线段AB 为5:7,点D 分线段AB 为5:11,若CD =10cm ,求AB 。

5.已知如图,AB =10,点C 为线段AB 上一点,点D 、E 分别为线段AB 、AC 的中点,ED =1,求线段AC 的长。

E D C B A6.如右图,已知:C ,D 是AB 上两点,且AB=20cm,CD=6cm,M 是AD 的中点,N 是BC 的中点,求线段MN 的长7.线段AB 和CD 的公共部分为BD ,且BD=31AB=51CD ,线段AB 、CD 的中点E 、F 的距离为6cm ,求AB 、CD 的长.A CB D E F8.直线上顺次截取AB=BC ,CD=3AB ,若AB 的中点M 与CD 的中点N 之间的距离是5cm ,求AB 、CD 的长。

9.如图,B 、C 两点把线段AD 分成2:3:4图9 A D C B E N M A D B C三部分,E是线段AD的中点,CD=24cm,求(1)CE的长;(2)求AB:BE的值。

B CA DE第二组:1.如果线段AB=5cm,BC=3cm,且A,B,C三点在同一条直线上,那么A,C两点之间的距离是.2.已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别为线段OA、OB的中点,则线段EF的长度为cm.3.若线段AB=10cm,在直线AB上有一个点C,且BC=4cm,M是线段AC的中点,则AM= cm.4.若线段MN=10cm,Q是直线MN上一点,且线段NQ=5cm,则线段MQ长是cm.5.在直线l上取A,B,C三点,使得AB=4cm,BC=3cm.如果点O是线段A C的中点,那么线段OB的长度是多少?6.自己画图并完成计算:A,B,M,P四点在同一直线上,M为AB的中点,N为AP的中点,若15cmAB=,求AP的长.MN=,40cm7、如图,点C在线段AB上,AC = 8厘米,CB = 6厘米,点M、N分别是AC、BC的中点。

小学数线段数角数学练习题

小学数线段数角数学练习题

小学数线段数角数学练习题在小学数学中,线段和角是基础概念之一。

通过练习题,可以加深对线段和角的理解和应用。

本文将为您提供一些小学数学练习题,帮助您巩固线段和角的知识。

练习一:线段相关题目1. 请画出以下线段的示意图,并标明每个线段的长度:a) AB = 5cmb) CD = 3cmc) EF = 7cmd) GH = 9cm解答:a) 请画出AB长度为5cm的线段示意图,并用标尺测量出长度。

b) 请画出CD长度为3cm的线段示意图,并用标尺测量出长度。

c) 请画出EF长度为7cm的线段示意图,并用标尺测量出长度。

d) 请画出GH长度为9cm的线段示意图,并用标尺测量出长度。

2. 下面是一些线段的长度,请你判断哪些线段是相等的:a) AB = 5cm, CD = 5cmb) EF = 3cm, GH = 6cmc) IJ = 8cm, KL = 4cmd) MN = 2cm, OP = 2cm解答:a) AB = 5cm, CD = 5cm - 这两个线段的长度是相等的。

b) EF = 3cm, GH = 6cm - 这两个线段的长度不相等。

c) IJ = 8cm, KL = 4cm - 这两个线段的长度不相等。

d) MN = 2cm, OP = 2cm - 这两个线段的长度是相等的。

练习二:角相关题目1. 请画出以下角的示意图,并标明每个角的类型:a) 直角b) 锐角c) 钝角解答:a) 请画出一个直角示意图,并标明角的类型。

b) 请画出一个锐角示意图,并标明角的类型。

c) 请画出一个钝角示意图,并标明角的类型。

2. 下面是一些角的度数,请你判断哪些角是锐角、直角或钝角:a) 30°b) 90°c) 120°d) 45°解答:a) 30° - 这个角是锐角。

b) 90° - 这个角是直角。

c) 120° - 这个角是钝角。

d) 45° - 这个角是锐角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求线段的长度的专项练习
第一组:
1、如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。

2、如图,C 为线段AB 上任一点,E 、F 分别为AC 、BC 的中点,EF=12cm ,求AB 的长。

F E A B C
3、如图9,AD=
12BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长.
4. 如图1所示,点C 分线段AB 为5:7,点D 分线段AB 为5:11,若CD =10cm ,求AB 。

5.已知如图,AB =10,点C 为线段AB 上一点,点D 、E 分别为线段AB 、AC 的中点,ED =1,求线段AC 的长。

E D C B A
6.如右图,已知:C ,D 是AB 上两点,且AB=20cm,CD=6cm,M 是AD 的中点,N 是BC 的中点,求线段MN 的长
7.线段AB 和CD 的公共部分为BD ,且BD=31AB=5
1CD ,线段AB 、CD 的中点E 、F 的距离为6cm ,求AB 、CD 的长.
A C
B D E F
8.直线上顺次截取AB=BC ,CD=3AB ,若AB 的中点M 与CD 的中点N 之间的距离是5cm ,求AB 、CD 的长。

9.如图,B 、C 两点把线段AD 分成2:3:4
图9 A D C B E N M A D B C
三部分,E是线段AD的中点,CD=24cm,求(1)CE的长;(2)求AB:BE的值。

B C
A D
E
第二组:
1.如果线段AB=5cm,BC=3cm,且A,B,C三点在同一条直线上,那么A,C两点之间的距离是.
2.已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别为线段OA、OB的中点,则线段EF的长度为cm.
3.若线段AB=10cm,在直线AB上有一个点C,且BC=4cm,M是线段AC的中点,则AM= cm.4.若线段MN=10cm,Q是直线MN上一点,且线段NQ=5cm,则线段MQ长是cm.
5.在直线l上取A,B,C三点,使得AB=4cm,BC=3cm.如果点O是线段A C的中点,那么线段OB的长度是多少?
6.自己画图并完成计算:A,B,M,P四点在同一直线上,M为AB的中点,N为AP的中点,若15cm
AB=,求AP的长.
MN=,40cm
7、如图,点C在线段AB上,AC = 8厘米,CB = 6厘米,点M、N分别是AC、BC的中点。

M N
C
A B
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC + CB = a厘米,其它条件不变,你能猜想MN的长度吗?并说明理由。

(3)若C在线段AB的延长线上,且满足AC-BC = b厘米,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。

相关文档
最新文档