高考物理 30带电粒子在电场中加速在磁场中偏转精解分析
2020年高考物理专题复习:带电粒子在电场中的加速和偏转精讲
![2020年高考物理专题复习:带电粒子在电场中的加速和偏转精讲](https://img.taocdn.com/s3/m/0cb4b9452cc58bd63086bd5b.png)
2020年高考物理专题复习:带电粒子在电场中的加速和偏转精讲一、带电粒子(或带电体)在电场中的直线运动1. 带电粒子在电场中运动时重力的处理(1)基本粒子:如电子、质子,α粒子、离子等,除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量);(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。
2. 带电粒子在电场中平衡的解题步骤:(1)选取研究对象;(2)进行受力分析,注意电场力的方向特点;(3)由平衡条件列方程求解。
3. 解决带电粒子在电场中的直线运动问题的两种思路:(1)根据带电粒子受到的电场力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的运动情况。
此方法只适用于匀强电场;(2)根据电场力对带电粒子所做的功等于带电粒子动能的变化求解。
此方法既适用于匀强电场,也适用于非匀强电场。
二、带电粒子在电场中的偏转1. 带电粒子在匀强电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场。
(2)运动性质:匀变速曲线运动。
(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动。
(4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎪⎪⎩⎪⎪⎨⎧====qU mdy t t md qU at y b v t a 2,221:.1:.220不能飞出电容器能飞出电容器 ②沿电场力方向,做匀加速直线运动⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=======200222tan :221::mdv Uql v v mdv Uql at y md Uq m qE m F a y θ离开电场时的偏转角离开电场时的偏移量加速度 2. 带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的;(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为2l。
(完整版)高考物理带电粒子在磁场中的运动解析归纳
![(完整版)高考物理带电粒子在磁场中的运动解析归纳](https://img.taocdn.com/s3/m/9286a1a5c5da50e2534d7f89.png)
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
高考物理带电粒子在电场中的偏转运动解题方法
![高考物理带电粒子在电场中的偏转运动解题方法](https://img.taocdn.com/s3/m/5d2e92e159f5f61fb7360b4c2e3f5727a5e924bb.png)
联立①②③④⑤式解得 Ek=12mv20+2dφqh⑥,l=v0 mqdφh。⑦ (2)若粒子穿过 G 一次就从电场的右侧飞出,则金属板的长度最短。由对称性
多维训练
3.(2019·全国Ⅱ卷,24)如图,两金属板P、Q水平放置,间距为d。两金属板正中间 有一水平放置的金属网G,P、Q、G的尺寸相同。G接地,P、Q的电势均为φ(φ>0)。 质量为m、电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸 面水平射入电场,重力忽略不计。
(1)电场强度的大小; (2)B 运动到 P 点时的动能。
答案
3mg (1) q
(2)2m(v20+g2t2)
小球做什么运动? 一般怎么处理? 还有其它方法吗?
转到解析
课堂互动
解析 (1)设电场强度的大小为 E,小球 B 运动的加速度为 a。根据牛顿第二定律、
运动学公式和题给条件,有 mg+qE=ma①
A.动能增加21mv2
一般用什么方法? B.机械能增加 2mv2
C.重力势能增加23mv2 D.电势能增加 2mv2 解析 动能变化量 ΔEk=12m(2v)2-21mv2=23mv2,A 错误;重力和电场力做功,机
械能增加量等于电势能减少量,带电小球在水平方向向左做匀加速直线运动,由运动 学公式得(2v)2-0=2qmEx,则电势能减少量等于电场力做的功 ΔEp 减=W 电=qEx=2mv2, B 正确,D 错误;在竖直方向做匀减速运动,到 N 点时竖直方向的速度为零,由-v2 =-2gh,得重力势能增加量 ΔEp 重=mgh=12mv2,C 错误。答案 B
高三物理总复习_带电粒子在电场场中的运动讲解
![高三物理总复习_带电粒子在电场场中的运动讲解](https://img.taocdn.com/s3/m/4f53460cf111f18582d05a20.png)
t=
=2.5×10-9 s┄┄┄┄┄┄(2分)
而交变电压的周期T=
s=0.02 s, 图6-3-8
远远大于t,故可以认为进入偏转电场的电子均在当时所加
电压形成的匀强电场中运动.┄┄┄┄┄┄┄┄┄(2分)
2019/6/4
纵向位移
=at2,a=
┄┄┄┄(2分)
所以电子能够打在荧光屏上的最大偏转电压
Um=
2019/6/4
一、带电粒子在电场中的加速和偏转
1.带电粒子在电场中的加速
(1)运动状态的分析:带电粒子沿与电场线平行的方向进入
匀强电场,受到的电场力与运动方向在同一条直线上,
做 加(减)速直线运动 .
带电粒
(2)用功能观点分析:电场力对带电粒子做的功等于
子动能的增量
qU
,即 = mv2- mv02.
2019/6/4
4.如图6-3-11所 示,质子( 11H)和α粒子 ( He42)以
相同的初动能垂直射入偏转电
图6-3-11
场(粒子不计重力),则这两个粒子射出电场时的侧位移y之
比为
()
A.1∶1
B.1∶2
2019/C6/.4 2∶1
D.1∶4
解析:由y=
和Ek0= mv02,
得:y=
可知,y与q成正比,B正确.
的距离为x,则x=
⑤
结论:粒子从偏转电场中射出时,就像是从极板间的l/2处 20沿19/6直/4 线射出.
②若不同的带电粒子是从静止经同一加速电压U0加速后进入 偏转电场的,则由②和④得:
y=
⑥
结论:粒子的偏转角和偏转距离与粒子的q、m无关,仅取决
于加速电场和偏转电场.即不同的带电粒子从静止经过同一
带电粒子在电场磁场中的运动分析解读
![带电粒子在电场磁场中的运动分析解读](https://img.taocdn.com/s3/m/31c5f225580216fc700afd61.png)
重点、难点分析1.带电粒子和质点在三场中运动时,所受重力、电场力和洛仑兹力的特点.2.带电粒子和质点在三场中运动时,重力、电场力和洛仑兹力做功的特点以及能量变化的特点.3.对复杂运动过程的分析,以及如何从实际问题中建立物理模型.一、带电粒子在电场和磁场中运动1.带电粒子通常指电子、质子、氚核和α粒子等微观粒子,一般可不计重力.2.处理带电粒子在电场和磁场中运动问题的方法.(1)带电粒子在匀强电场和匀强磁场共存区域内运动时,往往既要受到电场力作用,又要受到洛仑兹力作用.这两个力的特点是,电场力是恒力,而洛仑兹力的大小、方向随速度变化.若二力平衡,则粒子做匀速直线运动.若二力不平衡,则带电粒子所受合外力不可能为恒力,因此带电粒子将做复杂曲线运动.解决粒子做复杂曲线运动问题时,必须用动能定理或能量关系处理.这里要抓住场力做功和能量变化的特点,即电场力做功与电势能变化的特点,以及洛仑兹力永远不做功.(2)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律运动,处理这类问题时要注意分阶段求解.[例1]空间存在相互垂直的匀强电场E和匀强磁场B,其方向如图3-7-1所示.一带电粒子+q以初速度v0垂直于电场和磁场射入,则粒子在场中的运动情况可能是A.沿初速度方向做匀速运动B.在纸平面内沿逆时针方向做匀速圆周运动C.在纸平面内做轨迹向下弯曲的匀变速曲线运动D.初始一段在纸平面内做轨迹向上(或向下)弯曲的非匀变速曲线运动问题:1.应根据哪些物理量的关系来判定粒子的运动情况?2.分析粒子的受力及其特点.判断选择并说明理由.3.若欲使带电粒子在此合场中做匀速运动,对该粒子的电性、带电量多少、质量大小、入射初速度大小有无限制?分析:粒子在场中要受到电场力和洛仑兹力作用.其中电场力为方向竖直向下的恒力;洛仑兹力方向与速度方向垂直且在垂直磁场的纸面内,初态时其方向为竖直向上,随速度大小和方向的变化,洛仑兹力也发生变化.若初态时,电场力和洛仑兹力相等,即qE=Bqv0,则粒子所受合外力为零,粒子做匀速运动.若初态时,电场力和洛仑兹力不相等,则粒子所受合外力不为零,方向与初速度方向垂直(竖直向上或竖直向下),粒子必做曲线运动.比如粒子向下偏转,其速度方向变化,所受洛仑兹力方向改变;同时电场力做正功,粒子动能增加,速度增大,洛仑兹力大小也变化.此时粒子所受合外力大小、方向均变化,则粒子所做曲线运动为非匀变速曲线运动.解:选项A、D正确.讨论与小结:1.判断带电粒子在电场和磁场共存区域内的运动形式,要根据其所受合外力的情况和合外力方向与初速度方向的关系来确定.2.若带电粒子在该合场中做匀速运动,根据qE=Bqv0可知,只要入射粒子的初速度v0=E/B,就可以做匀速运动.与粒子的电性、带电量的多少、质量的大小无关.这一点很重要,很多电学仪器的工作原理都涉及到这方面知识,比如离子速度选择器、质谱仪、电磁流量计等.[例2]如图3-7-2所示为一电磁流量计的示意图,截面为正方形的非磁性管,其边长为d,内有导电液体流动,在垂直液体流动方向加一指向纸里的匀强磁场,磁感应强度为B.现测得液体a、b两点间的电势差为U,求管内导电液体的流量Q为多少?问题:1.液体中的离子在磁场中怎样运动;为什么液体a、b两点间存在电势差?2.简述电磁流量计的工作原理.分析:流量是指单位时间内流过某一横截面的液体的体积.导电液体是指液体内含有正、负离子.在匀强磁场中,导电液体内的正、负离子在洛仑兹力作用下分别向下、上偏转,使管中上部聚积负电荷,下部聚积正电荷.从而在管内建立起一个方向向上的匀强电场,其场强随聚积电荷的增高而加强.后面流入的离子同时受到方向相反的洛仑兹力和电场力作用.当电场增强到使离子所受二力平衡时,此后的离子不再偏移,管上、下聚积电荷不再增加a、b两点电势差达到稳定值U,可以计算出流量Q.解:设液体中离子的带电量为q,因为[例3]如图3-7-3所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里的匀强磁场.一电子从两板左侧以速度v0沿金属板方向射入,当两板间磁场的磁感应强度为B1时,电子从a点射出两板,射出时的速度为2v.当两板间磁场的磁感应强度变子从b点射出时的速率.问题:1.依据力和运动关系,分析电子在合场中为什么会偏转,电子所做的运动是匀变速曲线运动吗?2.因为电子所做运动为非匀变速曲线运动,无法用牛顿运动定律解决,应该考虑用什么方法解决?3.若用动能定理解决,则各场力做功有什么特点?若用能量守恒定律解决,各场的能量有什么特点?分析:电子在合场中受到电场力和洛仑兹力,初态时电子所受二力不平衡,电子将发生偏转.因为洛仑兹力的大小、方向均变化,电子所受合力为变力,做非匀变速曲线运动.若用动能定理处理问题,则需知:电场力做功与路径无关,与带电量和初、末两位置的电势差有关.洛仑兹力永远不做功.若用能量守恒定律处理问题,则需知:电子在磁场中只有动能,没有势能;电子在电场中不仅有动能,而且还有势能,因此要规定零电势面.解一:设aO两点电势差为U,电子电量为e,质量m.依据动能定理可知:解二:设O点所在等势面为零电势面,其余同上.依据能量守恒定律可知:电子从a点射出,其守恒方程为:电子从b点射出,其守恒方程为:小结:1.处理带电粒子在电场和磁场共存区域内运动的另一种方法是应用动能定量,或能量守恒定律.2.应用动能定理时要注意,洛仑兹力永远不做功;应用能量守恒定律时注意,若只有电场力做功,粒子的动能加电势能总和不变,计算时需设定零电势面,同时注意电势能的正、负.[例4]如图3-7-4所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B,在X轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出.射出之后,第三次到达X轴时,它与点O的距离为L.求此粒子射出时的速度V和运动的总路程(重力不计).问题:带电粒子在电场和磁场中分别做什么运动?你能画出它的轨迹示意图吗?分析:本题与前两个例题不同,它的电场和磁场区域是分开的.带电粒子在x轴上方运动只受洛仑兹力作用,做匀速圆周运动,又因为x轴是磁场的边界,粒子入射速度方向与磁场垂直,所以粒子的轨迹为半圆.带电粒子在x轴下方运动只受电场力作用,速度方向与力在一条直线上,粒子做匀变速直线运动.即当粒子从磁场中以速度v垂直于x轴向下射出时,因电场力作用先匀减速到0,再反向加速至v,并垂直射入磁场(粒子在电场中做类平抛运动).因为只要求讨论到粒子第三次到达x轴,所以粒子运动轨迹如图3-7-5所示.解:如图所示,有L=4R设粒子进入电场做减速运动的最大路程为l,加速度为a,则由前面分析知,粒子运动的总路程为S=2rR+2l小结:本题带电粒子的运动比较复杂,要根据粒子运动形式的不同分阶段处理.这是解决同类问题常用的方法.在动笔计算之前,一定要依据力和运动关系认真分析运动规律,分阶段后再个个击破.二、带电质点在电场和磁场中运动1.带电质点是指重力不能忽略,但又可视为质点的带电体.2.处理带电质点在匀强电场和匀强磁场中运动问题的方法(1)讨论带电质点在复合场中运动问题时,要先弄清重力、电场力、洛仑兹力的特点.根据质点受力情况和初速度情况判定运动形式.请学生回答(2)讨论带电质点在复合场中运动问题时,还须清楚重力、电场力做功和重力势能、电势能变化关系.注意洛仑兹力不做功的特点.若带电质点只受场力作用,则它具有的动能、重力势能和电势能总和不变.请学生回答.[例5]如图3-7-6所示,在匀强电场和匀强磁场共存的区域内,场强E的方向竖直向下,磁感应强度B的方向垂直纸面向里.有三个带有等量同种电荷的油滴M、N、P在该区域中运动,其中M向有做匀速直线运动,N在竖直平面内做匀速圆周运动,P向左做匀速直线运动,不计空气阻力,则三个油滴的质量关系是A.m M>m N>m PB.m P>m N>m MC.m N>m P>m MD.m P>m M>m N问题:1.物体做匀速圆周运动的条件是什么?油滴N在场中的受力情况怎样?其电性如何?2.请对油滴P、M进行受力分析,并选出正确答案.分析:油滴在合场中要同时受到重力、电场力和洛图3-7-6仑兹力作用,其中重力、电场力是恒力,洛仑兹力随速度的变化而变化.若油滴N欲做匀速圆周运动,则其所受重力和电场力必然等大、反向,所受合力表现为洛仑兹力.这样才能满足合外力大小不变,方向时刻与速度方向垂直的运动条件.油滴一定带负电.三油滴的受力分析如图3-7-7所示.因它们所受的电场力和洛仑兹力大小分别相同,所以可知油滴P的质量最大,油滴M的质量最小.解:选项B正确.小结:1.若带电质点在三场共存区域内运动,一般会同时受到重力、电场力、洛仑兹力作用,若电场和磁场又为匀强场,则重力、电场力为恒力,洛仑兹力与速度有关,可为恒力也可为变力.2.若电场和磁场均是匀强场,且带电质点仅受三场力作用.则:(1)若重力与电场力等大、反向,初速度为零,带电质点必静止不动.(2)若重力与电场力等大、反向,初速度不为零,带电质点必做匀速圆周运动,洛仑兹力提供向心力.(3)若初速度不为零,且三力合力为零,带电质点必做匀速直线运动.(4)若初速度不为零,初态洛仑兹力与重力(或电场力)等大、反向,合外力不为零,带电质点必做复杂曲线运动.[例6]如图3-7-8所示,在xOy平面内,有场强E=12N/C,方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、方向垂直xOy平面指向纸里的匀强磁场.一个质量m=4×10-5kg,电量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.求:(1)P 点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.问题:1.微粒运动到O点之前都受到哪些力的作用?在这段时间内微粒为什么能做匀速直线运动?2.微粒运动到O点之后都受到哪些力的作用?在这段时间内微粒做什么运动?说明原因.分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图3-7-9所示.在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得出微粒运动到O点时速度的大小和方向.(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图3-7-9所示.可利用运动合成和分解的方法去求解.解:因为mg=4×10-4NF=Eq=3×1O-4N(Bqv)2=(Eq)2+(mg)2所以 v=10m/s所以θ=37°因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动.可沿初速度方向和合力方向进行分解.设沿初速度方向的位移为s1,沿合力方向的位移为s2,则因为s l=vt所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s.[例7]如图3-7-10所示,一对竖直放置的平行金属板长为L,板间距离为d,接在电压为U的电源上,板间有一与电场方向垂直的匀强磁场,磁场方向垂直纸面向里,磁感强度为B,有一质量为m,带电量为+q的油滴,从离平行板上端h高处由静止开始自由下落,由两板正中央P点处进入电场和磁场空间,油滴在P点所受电场力和磁场力恰好平衡,最后油滴从一块极板的边缘D处离开电场和磁场空间.求:(1)h=?(2)油滴在D点时的速度大小?问题:油滴的运动可分为几个阶段?每个阶段油滴做什么运动?每个阶段应该用什么方法来求解?分析:油滴的运动可分为两个阶段:从静止始至P点,油滴做自由落体运动;油滴进入P点以后,要受到重力、电场力和洛仑兹力作用,且合力不为零,由前面的小结知,油滴将做复杂曲线运动并从D点离开.第一个阶段的运动,可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.第二个阶段的运动只能依据能量关系求解,即重力、电场力做功之和等于油滴动能变化.或油滴具有的重力势能、电势能、动能总和不变.当然这一能量关系对整个运动过程也适用.解:(1)对第一个运动过程,依据动能定理和在P点的受力情况可知:(2)对整个运动过程,依据动能定理可知:小结:由例6、例7可以看出,处理带电质点在三场中运动的问题,首先应该对质点进行受力分析,依据力和运动的关系确定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.若质点做非匀变速运动,往往需要用能量关系求解.应用能量关系求解时,要特别注意各力做功的特点以及重力、电场力做功分别与重力势能和电势能变化的关系.。
带电粒子在电场中的加速和偏转的运动
![带电粒子在电场中的加速和偏转的运动](https://img.taocdn.com/s3/m/6fdb3ab369dc5022aaea0021.png)
带电粒子在电场中的加速和偏转的运动资料1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量. 221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动).(2)运动的分析方法(看成类平抛运动):①沿初速度方向做速度为v 0的匀速直线运动.②沿电场力方向做初速度为零的匀加速直线运动.例1如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少?解析:电荷在竖直方向做匀加速直线运动,受到的力F =Eq =Uq/d由牛顿第二定律,加速度a = F/m = Uq/md水平方向做匀速运动,由L = v 0t 得t = L/ v 0由运动学公式221at s =可得: U dmv qL L md Uq y 202202)v (21=⋅= 带电离子在离开电场时,竖直方向的分速度:v ⊥dmv qUL at 0== 离子离开偏转电场时的偏转角度θ可由下式确定:d mv qUL v v 200Ítan ==θ 电荷射出电场时的速度的反向延长线交两板中心水平线上的位置确定:如图所示,设交点P 到右端Q 的距离为x ,则由几何关系得:x y /tan =θ21/2/tan 20202===∴dmv qLU d mv U qL y x θ电荷好像是从水平线OQ 中点沿直线射出一样,注意此结论在处理问题时应用很方便.例2两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图1—8—3所示,OA =h ,此电子具有的初动能是 ( )A .U edhB .edUhC .dh eUD .d eUh 解析:电子从O 点到A 点,因受电场力作用,速度逐渐减小,根据题意和图示可知,电子仅受电场力,由能量关系:OA eU mv =2021,又E =U /d ,h d U Eh U OA ==,所以deUh mv =2021 . 故D 正确. 例3一束质量为m 、电荷量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场,如图1—8—4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 .(粒子的重力忽略不计)分析:带电粒子在水平方向做匀速直线运动,在竖直方向做匀加速运动.电场力做功导致电势能的改变.解析:水平方向匀速,则运动时间t =L/ v 0 ①竖直方向加速,则侧移221at y =② 且dmqU a = ③ 由①②③得2022mdv qUL y = 则电场力做功20222220222v md L U q mdv qUL d U q y qE W =⋅⋅=⋅= 由功能原理得电势能减少了2022222v md L U q 例4如图1—8-5所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转图1—8—4电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时的横向偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tgθ解析:①不管加速电场是不是匀强电场,W =qU 都适用,所以由动能定理得:0121mv qU = mqU v 20=∴ ②由于偏转电场是匀强电场,所以离子的运动类似平抛运动.即:水平方向为速度为v 0的匀速直线运动,竖直方向为初速度为零的匀加速直线运动.∴在水平方向102qU m l v l t == ③d U E 2=F =qE =.d qU 2④md qU m F a 2== ⑤.mU q d l U qU m l md qU at v y 121222=•== ⑥1242222212220U md U ql U qd v v v y +=+=⑦1221222422121dU U l qU m l md qU at y =•==(和带电粒子q 、m 无关,只取决于加速电场和偏转电场)解题的一般步骤是:(1)根据题目描述的物理现象和物理过程以及要回答问题,确定出研究对象和过程.并选择出“某个状态”和反映该状态的某些“参量”,写出这些参量间的关系式.(2)依据题目所给的条件,选用有关的物理规律,列出方程或方程组,运用数学工具,图1—8-5对参量间的函数关系进行逻辑推理,得出有关的计算表达式.(3)对表达式中的已知量、未知量进行演绎、讨论,得出正确的结果.练习:一、选择题(不定项)某电场的部分电场线如图所示,A、B是一带电粒子仅在电场力作用下运动轨迹(图中虚线)上的两点,下列说法中正确的是: ( )A.粒子一定带负电 B.粒子在A点的加速度大于它在B点的加速度C.粒子不可能是从B点向A点运动 D.电场中A点的电势高于B点的电势2、一带电粒子射入一固定正点电荷Q形成的电场中,并沿图中虚线由a运动到b点,a、b 两点到点电荷Q的距离分别为r a、r b,且r a>r b,若粒子只受电场力作用,这一过程中: ()A.电场力对粒子做负功 B.粒子在b点电势能小于在a点的电势能C.粒子在b点动能小于在a点的动能 D.粒子在b点加速度大于在a点的加速度3、如图5所示,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹。
高考物理 小题狂刷 专题30 带电粒子在电场中的加速、偏转问题 新人教版
![高考物理 小题狂刷 专题30 带电粒子在电场中的加速、偏转问题 新人教版](https://img.taocdn.com/s3/m/aeaa1f4fa417866fb84a8ec4.png)
狂刷30 带电粒子在电场中的加速、偏转问题1.如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场U1同时加速后,垂直射入同一偏转U2电场中,偏转后,打在同一荧光屏上,(不计它们之间的作用力和重力)则它们A.同时到达屏上同一点 B.先后到达屏上同一点C.同时到达屏上不同点 D.先后到达屏上不同点【答案】B【名师点睛】解决本题的关键知道带电粒子在加速电场和偏转电场中的运动情况,知道从静止开始经过同一加速电场加速,垂直打入偏转电场,运动轨迹相同。
做选择题时,这个结论可直接运用,节省时间。
2.如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示,电子原来静止在左极板小孔处。
(不计重力作用)下列说法中正确的是A .从t =0时刻释放电子,电子可能在两板间振动B .从t =T /2时刻释放电子,电子将始终向右运动,直到打到右极板上C .从t =T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D .从t =3T/8时刻释放电子,电子必将打到左极板上 【答案】C3.如图所示,质子(11H )和α粒子(42He ),以相同的初速度垂直射入偏转电场(粒子不计重力),则这两个粒子射出电场时的侧位移y 之比为A .1:1B .1:2C .2:1D .1:4【答案】C【解析】质子和α粒子垂直射入偏转电场都做类平抛运动,电场强度为E ,速度为v ,根据牛顿第二定律可得粒子加速度为:qEa m=,可得粒子射出电场时的侧位移y 的表达式为:212y at =,在水平方向匀速运动:L vt =,联立可得:222qEL y mv =,由此可知,质子和α粒子电荷量之比为1:2,质量之比为1:4,由此可得:侧位移y 之比为2:1。
所以C 正确,ABD 错误。
4.如图,正电荷从O 点沿箭头方向射入竖直向的匀强电场,电荷重力不计,其运动轨迹可能为A .OPB .OO'C .OQD .OS【答案】A【名师点睛】当受到的合力与速度方向不在一条直线上时,物体就做曲线运动,而曲线运动总是弯向受到合力的方向--这是由牛顿第二定律决定的,合力方向决定加速度的方向。
带电粒子在电场中的加速和偏转知识归纳与运用技巧
![带电粒子在电场中的加速和偏转知识归纳与运用技巧](https://img.taocdn.com/s3/m/dc185c1be87101f69e31957f.png)
带电粒子在电场中的加速和偏转知识归纳与运用技巧知识点一:带电粒子在电场中的加速和减速运动要点诠释:(1)带电粒子在匀强电场中运动的计算方法用牛顿第二定律计算:带电粒子受到恒力的作用,可以方便的由牛顿第二定律以及匀变速直线运动的公式进行计算。
用动能定理计算:带电粒子在电场中通过电势差为U AB的两点时动能的变化是,则。
(2)带电粒子在非匀强电场中运动的计算方法用动能定理计算:在非匀强电场中,带电粒子受到变力的作用,用牛顿第二定律计算不方便,通常只用动能定理计算。
:如图真空中有一对平行金属板,间距为d,接在电压为U的电源上,质量为m、电量为q的正电荷穿过正极板上的小孔以v0进入电场,到达负极板时从负极板上正对的小孔穿出。
不计重力,求:正电荷穿出时的速度v是多大?解法一、动力学由牛顿第二定律:①由运动学知识:v2-v02=2ad ②联立①②解得:解法二、由动能定理解得讨论:(1)若带电粒子在正极板处v0≠0,由动能定理得qU=mv2-mv02解得v=(2)若将图中电池组的正负极调换,则两极板间匀强电场的场强方向变为水平向左,带电量为+q,质量为m的带电粒子,以初速度v0,穿过左极板的小孔进入电场,在电场中做匀减速直线运动。
①若v0>,则带电粒子能从对面极板的小孔穿出,穿出时的速度大小为v,有 -qU=mv2-mv02解得v=②若v0<,则带电粒子不能从对面极板的小孔穿出,带电粒子速度减为零后,反方向加速运动,从左极板的小孔穿出,穿出时速度大小v=v0。
设带电粒子在电场中运动时距左极板的最远距离为x,由动能定理有: -qEx=0-mv02又E=(式d中为两极板间距离)解得x=。
知识点二:带电粒子在电场中的偏转要点诠释:(1)带电粒子在匀强电场中的偏转高中阶段定量计算的是,带电粒子与电场线垂直地进入匀强电场或进入平行板电容器之间的匀强电场。
如图所示:(2)粒子在偏转电场中的运动性质受到恒力的作用,初速度与电场力垂直,做类平抛运动:在垂直于电场方向做匀速直线运动;在平行于电场方向做初速度为零的匀加速直线运动。
高考-带电粒子在电场中的运动偏转、磁场中运动详解
![高考-带电粒子在电场中的运动偏转、磁场中运动详解](https://img.taocdn.com/s3/m/88d56e3984868762cbaed55b.png)
带电粒子在电场中的运动、复合场中的偏转一、考纲要求带电粒子在匀强电场中的运动(只限于带电粒子进入电场时速度平行或垂直于场强的情况) 二、知识梳理:带电粒子在电场中的加速,若不计粒子的重力,则电场力对带电粒子做的功等于带电粒子动能的增量。
(1)在匀强电场中2022121mv mv Uq qEd W t -===, 若v 0=0,则221t mv Uq qEd W === (2)在非匀强电场中 2022121mv mv Uq W t -== 三、典型例题:例1.如图所示,某不计重力的带电粒子质量为m ,电荷量为q ,以速度v 0从A 板进入平行板电场中,恰能到达B 板,两板间距离为d ,求: (1)场强E 的大小?(2)若带电粒子运动到两板中央时,两板间的电压变为原来的2倍,则带电粒子还能向前运动,再返回A 板时的速率多大?例2.如图,极板电容器水平放置,两板间距为1.6cm .(1)当两板间电势差为300V 时,一带负电的小球在距下板0.8 cm 处静止.如果两板间电势差减小到60 V 时,带电小球运动到极板上需多长时间?(2)当两板间电势差为60V 时,一质子也从距下板0.8cm 处由静止释放,则质子运动到极板上需多长时间?(质子的质量为m p =1.67×10-27kg )例3.如图所示,MN 为水平放置的金属板,板中央有一个小孔O ,板下存在竖直向上的匀强电场,电场强度为E 。
AB 是一根长为L 、质量为m 的均匀带正电的绝缘细杆。
现将杆下端置于O 处,然后将杆由静止释放,杆运动过程中始终保持竖直。
当杆下落31L 时速度达到最大。
求: (1)细杆带电量;(2)杆下落的最大速度;(3)若杆没有全部进入电场时速度减小为零,求此时杆下落的位移例4.质量为m ,带电荷量为+q 的微粒在O 点以初速度v 0与水平方向成θ角射出,如图所示,微粒在运动过程中所受阻力大小恒为f .(1)如在某方向加上一定大小的匀强电场后,能保证微粒仍沿v 0方向做直线运动,试求所加匀强电场的最小值;(2)若加上大小一定、方向水平向左的匀强电场,仍保证微粒沿v 0方向做直线运动,并且经过一段时间后微粒又回到O 点,求微粒回到O 点时的速率.四、作业1.在匀强电场中,同一条电场线上有A 、B 两点,有两个带电粒子先后由静止从A 点出发并通过B 点,若两粒子的质量之比为2:1,电荷量之比为4:1,忽略它们所受的重力,则它们由A 点运动到B 点所用时间之比为 ( ) A .1:2B .2:1C .1:2.D .2:12.如图所示,一质量为m 、带电荷量为+q 的液滴自由下落,并从小孔进入相距为d 的两平行板电容器.液滴下落的最大深度为2d,极板电压为U ,则液滴开始下落的高度h 为( ) A .B .C .D .3.两个质量相同的小球用不可伸长的细线连结,置于场强为E 的匀强电场中.小球l 和2均带正电,电荷量分别为q 1和q 2 (q 1>q 2).将细线拉直并使之与电场方向平行,如图所示.若将两小球同时从静止状态释放,则释放后细线中的张力T 为(不计重力及两小球间的库仑力) ( )4.如图所示,水平放置的三块带孔的平行金属板与一个直流电源相连,一个带正电的液滴从a 板上方M 点处由静止释放,不计空气阻力,设液滴电荷量不变.从释放至到达b 板小孔处为过程I ,在b 、c 之间运动为过程Ⅱ,则 ( )A .液滴不一定能从c 板小孔中穿出B .过程I 中一定是重力势能减小,电势能减小,动能增大C .过程I 和过程Ⅱ液滴机械能变化量的绝对值相等D .过程Ⅱ中一定是重力势能减小,电势能增大,动能减小5.如图所示,Q 为固定的正点电荷,A 、B 两点在Q 的正上方和Q 相距分别为h 和0.25h ,将另一点电荷从A 点由静止释放,运动到B 点时速度正好又变为零.若此电荷在A 点处的加速度大小为43g ,试求: (1)此电荷在B 点处的加速度,(2)A 、B 两点间的电势差.(用Q 和h 表示)6.如图所示,有彼此平行的A 、B 、C 三块金属板与电源相连接,B 、A 间相距为d l ,电压为U 1;B 、C 间相距为d 2,电压为U 2,且U 1<U 2。
带电粒子在磁场中偏转问题的动量解法
![带电粒子在磁场中偏转问题的动量解法](https://img.taocdn.com/s3/m/8788a34f001ca300a6c30c22590102020740f2b3.png)
带电粒子在磁场中偏转问题的动量解法带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。
带电粒子在电场中运动时,通过电场力做功,使带电粒子在电场中加速和偏转,导致粒子的速度方向和速度大小发生变化;当带电粒子在匀强磁场中运动时,洛伦兹力不做功,因此粒子的速度大小始终不变,只有速度方向发生变化。
在高考压轴题中,经常出现把这二者的运动结合起来,让带电粒子分别通过电场和磁场,把两种或者两种以上的运动组合起来,全面考察我们队各种带电粒子运动规律的掌握情况。
求解这一类问题,一方面我们要按照顺序对题目上给出的运动过程进行分段分析,将复杂的问题分解为一个一个的简单熟悉的物理模型,另一方面我们也要全面准确分析相关过程中功能关系的变化,弄清楚各个状态之间的能量变化,便于我们按照动能定理或者能量守恒定律写方程。
在对带电粒子在每个场中的运动状况分析时,必须特别注意粒子到场与场交接处的运动情况,因为这通常就是一个临界状态,一定必须分析确切此刻粒子的速度大小和方向以及适当的边线关系,这通常对于步入另一个场中的运动存有决定性的影响!还有一些是两场共存或者是三场共存的问题,这些运动会更加复杂,但是他本质上是一个力学问题,只要我们掌握的相应的规律,利用力学问题的研究思路和基本规律,都是可以顺利克服的!对于带电粒子在电场、磁场、无机场中运动时,重力与否考量分后三种情况:(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力。
(2)在题目中存有明晰表明与否必须考量重力的,这种情况按题目建议处置比较非正规,也比较简单。
(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
类型一、拆分的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。
高考物理 30带电粒子在电场中加速在磁场中偏转精解分析
![高考物理 30带电粒子在电场中加速在磁场中偏转精解分析](https://img.taocdn.com/s3/m/3a60bc18647d27284a735119.png)
高考题精解分析:30带电粒子在电场中加速在磁场中偏转 高频考点:带电粒子在电场中加速、在磁场中的偏转动态发布:2009重庆理综第25题、2009山东理综第25题命题规律:带电粒子在电场中加速、在磁场中的偏转是带电粒子在电磁场中运动的重要题型,是高考考查的重点和热点,带电粒子在电场中加速、在磁场中的偏转常常以压轴题出现,难度大、分值高、区分度大。
命题分析考查方式一 考查带电粒子在恒定电场中加速、偏转、在匀强磁场中的偏转【命题分析】带电粒子在恒定电场中加速后进入偏转电场、然后进入匀强磁场中的偏转是高考常考题型,此类题过程多,应用知识多,难度大。
例1(2009重庆理综第25题)如图1,离子源A 产生的初速为零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO=d ,HS=2d ,∠MNQ =90°.(忽略粒子所受重力)(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ;(2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ上的正离子的质量范围.【标准解答】:(1)正离子在加速电场加速,eU 0=mv 12/2,正离子在场强为E 0的偏转电场中做类平抛运动,2d= v 1t ,d =at 2/2,eE 0=ma ,联立解得 E 0= U 0/d.由tan φ= v 1/ v ⊥,v ⊥=at ,解得φ=45°.(2)正离子进入匀强磁场时的速度大小v =221⊥+v v图1离子在匀强磁场中运动,洛伦兹力提供向心力,evB=mv 2/R ,联立解得质量为m 的离子在磁场中做圆周运动的半径R =220eB mU (3)将质量4m 和16m 代人R 的表达式,得 R 1=420eB mU ,R 2=820eBmU . 由图1JA 中几何关系得△s=()21222R R R ---R 1联立解得:△s =4(13-)20eBmU . 对于打在Q 点的正离子,由上图的几何关系得R ’2=(2R 1)2+(R ’— R 1)2,解得R ’=5 R 1/2.;对于打在N 点的正离子(如图1JB 所示),其轨迹半径为R 1/2=R ,对应的正离子质量为m ,由R 1/2<r<5 R 1/2,得能打在NQ 上的正离子的质量m x 的范围m<m x <25m.考查方式二 考查带电粒子在交变电场中加速、在匀强磁场中的偏转【命题分析】带电粒子在交变电场中加速后进入匀强磁场中偏转一般难度较大,常常作为压轴题,考查学生的综合能力。
带电粒子在电场中的加速与偏转
![带电粒子在电场中的加速与偏转](https://img.taocdn.com/s3/m/1042dc0e4b35eefdc8d333bb.png)
m
U2
v0
U1 + + + + + +
l
答案:
y
qU 2 2md
l2 v02
U2l2 4dU1
粒子的偏转量和偏转角由加速电场和偏转电场决定,所以三种 粒子不可能分开为三股。
已知:U1、l、Y1Y2偏转电极的电压U2、板间距d 、 板端到荧
光屏的距离L。求:电子射出偏转电场时的偏向角正切值tanθ 及打到屏上电子的偏移量y。׳
带电粒子在电场中的加速与偏转
一.带电粒子在电场中的加速(不计重力)
v0 0
vt ?
E1
用动能定理分析
用牛顿运动定律分析
U
(加速电压)
U
+
qF
m
1、受力分析: 水平向右的电场力
_
F=Eq=qU/d
d
带电粒子的加速
2、运动分析: 初速度为零,加速度为
a U q 的向右匀加速直
dm
线运动。
U
+
qF
m
d
带电粒子的加速
粒子加速后的速度 只与加速电压有关
解法一 运用运动学知识求解
v2 2ad 2 qU d 2qU
_
md m
v 2qU m
解法二 运用能量知识求解
qU 1 mv2 2
v 2qU m
二.带电粒子在匀强电场中的偏转(不计重力)
+++++++++
d
q、m +
v0
U
-----------
l
+++++++++++
高考物理带电粒子在磁场中偏转
![高考物理带电粒子在磁场中偏转](https://img.taocdn.com/s3/m/cf66733cf68a6529647d27284b73f242336c3185.png)
带电粒子在磁场中偏转的求解策略带电粒子在磁场中偏转问题是历年高考的重点问题,同时也是热点问题。
总结考试中的诸多失误,集中在对这类问题的解法缺乏规律性的认识。
为此本文就求解这类题型的某些规律归纳如下。
一、基本思想因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷垂直磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提供向心力,即F€qvB€mv2/R。
带电粒子在磁场中运动问题大致可分两种情况:1.做完整的圆周运动(在无界磁场或有界磁场中);2.做一段圆弧运动(一般在有界磁场中)。
无论何种情况,其关键均在圆心、半径的确定上。
二、思路和方法1.找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F丄v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。
方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。
方法3:若已知粒子轨迹上的两点和能求得的半径R,则可作出此两点连线的中垂线,从连线的端点到中垂线上的距离为R的点即为圆心。
方法4:若已知粒子入射方向和出射方向,及轨迹半径R,但不知粒子的运动轨迹,则可作出此两速度方向夹角的平分线,在角平分线上与两速度方向直线的距离为R的点即为圆心。
方法5:若已知粒子圆周运动轨迹上的两条弦,则两条弦的中垂线的交点即为圆心。
2.求半径圆心确定下来后,半径也随之确定。
一般可运用平面几何知识来求半径的长度。
3.画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。
4.应用对称规律从一边界射入的粒子,若从同一边界射出时,则速度与边界的夹角相等;在圆形磁场区域内,若粒子沿径向射入,则必沿径向射出。
三、实例分析例1.如图1所示,两电子沿MN方向射入两平行直线间的匀强磁场,并分别以v、v12的速度射出磁场。
则v:v是多少?两电子通过匀强磁场所需时间之比t:t是多少?1212M—*MXXX X XXX X图1解析:利用上述方法1;可确定出两电子轨迹的圆心O]和圆心。
二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)
![二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)](https://img.taocdn.com/s3/m/c30d5f38ba68a98271fe910ef12d2af90342a875.png)
2023届二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)本专题主要讲解带电粒子(带电体)在电场中的直线运动、偏转,以及带电粒子在交变电场中运动等相关问题,强调学生对于直线运动、类平抛运动规律的掌握程度。
高考中重点考查学生利用动力学以及能量观点解决问题的能力,对于学生的相互作用观、能量观的建立要求较高。
探究1带电粒子在电场中的直线运动典例1:(2021湖南联考)如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A、B,间距为d,中央分别开有小孔O、P。
现有甲电子以速率v0从O点沿OP方向运动,恰能运动到P点。
若仅将B板向右平移距离d,再将乙电子从P′点由静止释放,则()A.金属板A、B组成的平行板电容器的电容C不变B.金属板A、B间的电压减小C.甲、乙两电子在板间运动时的加速度相同D.乙电子运动到O点的速率为2v0训练1:(2022四川联考题)多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A处飘出的离子初速度不计,经电压为U的匀强电场加速后射入质量分析器。
质量分析器由两个反射区和长为l的漂移管(无场区域)构成,开始时反射区1、2均未加电场,当离子第一次进入漂移管时,两反射区开始加上电场强度大小相等、方向相反的匀强电场,其电场强度足够大,使得进入反射区的离子能够反射回漂移管。
离子在质量分析器中经多次往复即将进入反射区2时,撤去反射区的电场,离子打在荧光屏B上被探测到,可测得离子从A到B的总飞行时间。
设实验所用离子的电荷量均为q,不计离子重力。
(1)求质量为m的离子第一次通过漂移管所用的时间T1;(2)反射区加上电场,电场强度大小为E,求离子能进入反射区的最大距离x;(3)已知质量为m0的离子总飞行时间为t0,待测离子的总飞行时间为t1,两种离子在质量分析器中反射相同次数,求待测离子质量m1。
探究2 带电粒子在电场中的偏转典例2:(2022北京月考)让氕核(1H)和氘核(21H)以相同的动能沿与电场垂直的方向1从ab边进入矩形匀强电场(方向沿a→b,边界为abcd,如图所示)。
高考物理 精做 带电粒子在电场中的加速偏转问题大题精做
![高考物理 精做 带电粒子在电场中的加速偏转问题大题精做](https://img.taocdn.com/s3/m/37815601591b6bd97f192279168884868762b825.png)
取夺市安慰阳光实验学校精做21 带电粒子在电场中的加速、偏转问题1.(2016·北京卷)如图所示,电子由静止开始经加速电场加速后,沿平行于版面的方向射入偏转电场,并从另一侧射出。
已知电子质量为m ,电荷量为e ,加速电场电压为0U 。
偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,板间距为d 。
(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法。
在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。
已知22.010V U =⨯,24.010m d -=⨯,319.110kg m -=⨯,191.610C e -=⨯,210m/s g =。
(3)极板间既有静电场也有重力场。
电势反映了静电场各点的能的性质,请写出电势ϕ的定义式。
类比电势的定义方法,在重力场中建立“重力势”G ϕ的概念,并简要说明电势和“重力势”的共同特点。
【答案】(1)24UL y U d∆= (2)由于F G 远大于,因此不需要考虑电子所受重力 (3)电势ϕ和重力势G ϕ都是反映场的能的性质的物理量,仅由场自身的因素决定【解析】(1)根据功和能的关系,有20012eU mv =电子射入偏转电场的初速度0v =在偏转电场中,电子的运动时间0L t v ∆==偏转距离221()24UL y a t U d ∆=∆=(3)电场中某点电势ϕ定义为电荷在该点的电势能p E 与其电荷量q 的比值,即p E q=ϕ由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能G E 与其质量m 的比值,叫做“重力势”,即GG E mϕ=电势ϕ和重力势G ϕ都是反映场的能的性质的物理量,仅由场自身的因素决定【方法技巧】带电粒子在电场中偏转问题,首先要对带电粒子在这两种情况下进行正确的受力分析,确定粒子的运动类型。
带电粒子在电场中的加速与偏转问题剖析
![带电粒子在电场中的加速与偏转问题剖析](https://img.taocdn.com/s3/m/eb598d92ec3a87c24028c469.png)
带电粒子在电场中的加速与偏转问题一、带电粒子的加速1、在匀强电场中加速如图1所示,在正极板处有一带正电荷 q 粒子,两板间电压为U (通常称为加速电压),粒子的质量为m ,不计重力,则它从静止开始运动到负极板时的速度为υ,(1)从动力学和运动学的角度来看:ad md qU m F a 2,2===υ , 解得:mqU 2=υ (2)从做功和能量转化的角度来看: 021,2-==υm E E qU k k ∆∆ 解得:m qU 2=υ2、在非匀强电场中加速由于电场力做功AB AB qU W =与场强无关,与具体运动路径无关,所以由动能定理得:k E qU ∆= ,如存在其他力做功时有:k 其他E W qU ∆=+ 。
在处理电场对带电粒子加速问题时,一般都是利用动能定理进行处理。
例1、如图2所示,静止的电子由A 板向B 板加速运动,则电子到达B 板的时间 t 和速度υ与加在两板间的电压U 的关系为( )A 、t 与U 成反比,υ 与U 成正比B 、t 与2U 成反比, υ 与U 成正比C 、t 与U 成反比 , υ 与U 成正比D 、t 与U 成反比,υ 与2U 成正比解析:电子从A 到B ,电场力对电子做正功,由动能定理得:0212-==υm E eU k ∆ , m eU 2=υ ,eUm d eU md a t md eU m F a 2,=====υυ, 显然有:U t 1∝ , U ∝υ 故正确答案为:A 。
二、带电粒子的偏转电场使带电粒子的速度方向发生偏转,这种作用就是带电粒子的偏转。
其中最简单的情况是带电粒子以垂直场强方向进入匀强电场,带电粒子的运动类似平抛运动。
在处理偏转问题时,由于能量跟物体的运动方向无关,所以利用能量关系不能直接得出结果,因而常用采用动力学和运动学相结合的方法来处理。
如图3所示 ,质量为m ,电荷量为 -q 的带电粒子以初速度 υ 沿带电平行板电容器的中线进入电场,设极板长为L ,板间相距d ,两极板间电压为U ,不计粒子的重力,忽略电容器的边沿效应,认为带电粒子从进入到离开电容器一直在匀强电场中运动。
带电粒子在电场中加速偏转问题
![带电粒子在电场中加速偏转问题](https://img.taocdn.com/s3/m/b64654091eb91a37f1115c6c.png)
带电粒子在电场中加速偏转问题1.带电粒子的加速由动能定理可知: qU mv =221(初速度为零)求出:mqU v 2= 2022121mv mv qU-= (初速度不为零时) 说明:适用于任何电场 2.带电粒子的偏转 (1)运动状态分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电场中时,若只受电场力作用,则做加速度为md qU a=的类平抛运动。
(2)基本公式:① 加速度:mdqU m qE m F a === (板间距离为d ,电压为U ) ② 运动时间:0v l t = (射出电场,板长为l )③ 粒子离开电场时的速率V :粒子沿电场力方向做匀加速直线运动,加速度为md qUa = ,粒子离开电场时平行电场方向的分速度0mdv qUlat v y ==,而0v v x = 所以202022)(mdv qUl v v v v y x +=+=④ 粒子离开电场时的偏转距离y2022221mdv qUl at y ==⑤ 粒子离开电场时的速度偏角∵20tan mdv qUl v v x y==ϕ ∴20arctan mdv qUl =ϕ⑥ 带电粒子在电场中偏转的轨迹方程由t v x 0=和2022221mdv qUl at y ==,可得2202x mdv qU y =,其轨迹为抛物线。
⑦ 粒子离开偏转电场时的速度方向的延长线必过偏转电场的中点由20tan mdv qUl =ϕ 和2022mdv qUl y = 可推得ϕtan 2l y = ,所以粒子可看作是从两板间的中点沿直线射出的。
【练习题】1.一个初动能为Ek 的电子,垂直电场线飞入平行板电容器中,飞出电容器的动能为2Ek ,如果此电子的初速度增至原来的2倍,则它飞出电容器的动能变为( )A .4EkB .8EkC .4.5EkD .4.25Ek2.如图1-8-17所示,从静止出发的电子经加速电场加速后,进入偏转电场.若加速电压为U1、偏转电压为U2,要使电子在电场中的偏移距离y 增大为原来的2倍(在保证电子不会打到极板上的前提下),可选用的方法有 ( )A .使U1减小为原来的1/2B .使U2增大为原来的2倍C .使偏转电场极板长度增大为原来的2倍D .使偏转电场极板的间距减小为原来的1/23.如图所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的( )A .2倍B .4倍C .0.5倍D .0.25倍4.电子从负极板的边缘垂直进入匀强电场,恰好从正极板边缘飞出,如图1—8—8所示,现在保持两极板间的电压不变,使两极板间的距离变为原来的2倍,电子的入射方向及位臀不变,且要电子仍从正极板边缘飞出,则电子入射的初速度大小应为原来的( )A.22B.21 C.2 D.25.有三个质量相等的小球,分别带正电、负电和不带电,以相同的水平速度由P 点射入水平放置的平行金属板间,它们分别落在下板的A 、B 、C 三处,已知两金属板的上板带负电荷,下板接地,如图所示,下面说法正确的是( )A 、落在A 、B 、C 三处的小球分别是带正电、不带电和带负电的B 、三小球在该电场中的加速度大小关系是a A <a B <a CC 、三小球从进入电场至落到下板所用的时间相等D 、三小球到达下板时动能的大小关系是E KC <E KB <E KA6. 如图所示一质量为m,带电荷量为+q的小球从距地面高h处以一定初速度水平抛出,在距抛出点水平距离l处,有一根管口比小球直径略大的竖直细管,管上口距地面h/2,为使小球能无碰撞地通过管子,可在管子上方的整个区域里加一个场强方向水平向左的匀强电场,求:(1)小球的初速度v0.(2)电场强度E的大小.(3)小球落地时的动能Ek.7、如图所示为研究电子枪中电子在电场中运动的简化模型示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考题精解分析:30带电粒子在电场中加速在磁场中偏转 高频考点:带电粒子在电场中加速、在磁场中的偏转
动态发布:2009重庆理综第25题、2009山东理综第25题
命题规律:带电粒子在电场中加速、在磁场中的偏转是带电粒子在电磁场中运动的重要题型,是高考考查的重点和热点,带电粒子在电场中加速、在磁场中的偏转常常以压轴题出现,难度大、分值高、区分度大。
命题分析
考查方式一 考查带电粒子在恒定电场中加速、偏转、在匀强
磁场中的偏转
【命题分析】带电粒子在恒定电场中加速后进入偏转电场、然
后进入匀强磁场中的偏转是高考常考题型,此类题过程多,应
用知识多,难度大。
例1(2009重庆理综第25题)如图1,离子源A 产生的初速为
零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场
加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过
极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直
于边界MN 进入磁感应强度为B 的匀强磁场.已知HO=d ,HS=2d ,
∠MNQ =90°.(忽略粒子所受重力)
(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ;
(2)求质量为m 的离子在磁场中做圆周运动的半径;
(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为
16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ
上的正离子的质量范围.
【标准解答】:(1)正离子在加速电场加速,eU 0=mv 12/2,
正离子在场强为E 0的偏转电场中做类平抛运动,
2d= v 1t ,d =at 2/2,eE 0=ma ,
联立解得 E 0= U 0/d.
由tan φ= v 1/ v ⊥,v ⊥=at ,解得φ=45°.
(2)正离子进入匀强磁场时的速度大小v =221⊥+v v
图1
离子在匀强磁场中运动,洛伦兹力提供向心力,evB=mv 2/R ,
联立解得质量为m 的离子在磁场中做圆周运动的半径R =2
2
0eB mU (3)将质量4m 和16m 代人R 的表达式,得 R 1=420eB mU ,R 2=820eB
mU . 由图1JA 中几何关系得△s=()21222R R R ---R 1
联立解得:△s =4(13-)20eB
mU . 对于打在Q 点的正离子,由上图的几何关系得R ’2=(2R 1)2+(R ’— R 1)2,解得R ’=5 R 1/2.;
对于打在N 点的正离子(如图1JB 所示),其轨迹半径为R 1/2=R ,
对应的正离子质量为m ,
由R 1/2<r<5 R 1/2,得能打在NQ 上的正离子的质量m x 的范围
m<m x <25m.
考查方式二 考查带电粒子在交变电场中加速、在匀强磁场中的
偏转
【命题分析】带电粒子在交变电场中加速后进入匀强磁场中偏转一般难度较大,常常作为压轴题,考查学生的综合能力。
例2(2009山东理综第25题)如图2甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一、四象限有磁感应强度为B 的匀强磁场,方向垂直于Oxy 平面向里.位于极板左侧的粒子源沿x 轴向右连续发射质量为m 、电量为+q 、速度相同、重力不计的带电粒子.在0~3t 0时间内两板间加上如图1乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t 0时刻经极板边缘射入磁场.上述m 、q 、l 、t 0、B 为已知量.(不考虑粒子间相互影响及返回极板间的情况)
(1) 求电压U 0的大小.
(2) 求t 0/2时刻进入两板间的带电粒子在磁场中做圆周运动的半径.
图1JA
图1JB
(3) 何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.
【标准解答】:(1)0t =时刻进入两极板的带电粒子在电场中做匀变速曲线运动,t 0时刻刚好从极板边缘射出,在y 轴负方向偏移的距离为l /2,则有E=U 0/l , ① qE=ma , ② l /2= at 02/2, ③ 联立以上三式,解得两极板间偏转电压为2
020
ml U qt =. ④. (2)t 0/2时刻进入两极板的带电粒子,前t 0/2时间在电场中偏转,后t 0/2
时间两极板没有
0v
图2甲
图2乙。