与圆有关的计算
和圆有关的知识
和圆有关的知识圆是几何学中的基本概念之一,它在数学、物理、工程等领域都有着广泛的应用。
下面我将介绍一些与圆有关的知识。
一、圆的定义和性质1. 定义:圆是由平面上与一个固定点的距离等于常数的所有点组成的图形。
2. 圆心和半径:圆心是固定点,半径是圆心到圆上任一点的距离。
3. 直径:通过圆心的两个点构成的线段叫做直径,直径是半径的两倍。
4. 弦:圆上任意两点之间的线段叫做弦。
5. 弧:圆上两点之间的弧是圆心所在的圆周的一部分。
6. 切线:与圆只有一个公共点的直线叫做切线。
7. 弦切角定理:一个圆的弦切角等于其所对的弧的一半。
二、圆的计算公式1. 圆的面积:圆的面积等于半径的平方乘以π(圆周率),即S=πr²。
2. 圆的周长:圆的周长等于直径乘以π,即C=2πr。
三、圆的应用1. 圆在几何学中的应用:a. 圆的相交关系:两个圆相交于两个交点,相交关系可以分为外离、外切、内切、内含和相交五种情况。
b. 圆的切线:圆与切线的切点构成的线段与切线垂直。
c. 圆的垂径定理:垂直于弦的直径经过弦的中点。
d. 圆的切线定理:切线与半径垂直。
e. 圆的切线长度定理:切线与圆心连线构成的直角三角形中,切线长度的平方等于切点到圆心距离的平方减去半径的平方。
2. 圆在物理学中的应用:a. 圆的运动:物体在圆周上做匀速圆周运动时,其速度大小不变,但方向不断改变。
b. 圆的加速度:物体在圆周运动时,由于方向改变而产生的速度变化叫做加速度,大小等于速度大小的平方除以半径。
3. 圆在工程中的应用:a. 圆锥曲线:圆的截面在垂直于圆轴线方向上的投影是圆锥曲线,如圆锥、圆柱等。
b. 圆环结构:圆环是由圆形截面所构成的结构,常用于桥梁、建筑等工程中。
四、著名的圆相关问题1. 蒙哥马利问题:给定一个圆和一根切线,求切线上的一点,使得从该点到圆上任意一点的距离之和最小。
2. 圆的三等分:如何利用直尺和圆规将一个给定的圆分成三等份。
《与圆有关的计算》教案设计
第三部分第十八节《与圆有关的计算》教案设计本节课主要复习:1.用弧长计算公式及扇形面积计算公式解决问题。
2.了解圆锥的侧面展开图,并会计算其侧面积和全面积。
一、知识扫描1.将一个弧长为12cm,半径为10cm的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为_______________cm。
2.(2006年常州市)已知扇形的圆心角为120°,半径为2,则扇形的弧长是_________cm,扇形的面积是__________cm2。
3.(2006年南充市)如图,PA切圆O于A,OP交圆O于B,且PB=1,PA=3,则阴影部分的面积S=______________。
二、重点剖析1.(2006年河南省)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C 按顺时针方向旋转到A′B′C′的位置,若BC的长为15cm,那么顶点A开始到结束所经过的路线长为()A.10лcm B.103лcmC.15лcm D.20лcm2.(2006年攀枝花市)如图,圆锥的底面半径r=3cm,高h=4cm,求这个圆锥的表面积(取3.14)。
3.(2006年临汾市)如图,网格中每个小正方形的边长均为1,在AB的左侧,分别以ABC的三边为直径作三个半圆围成图中的阴影部分。
(1)图中ABC是什么特殊三角形?(2)求图中阴影部分的面积。
4.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为________m(边缘部分的厚度忽略不计,结果保留整数)剖析:1.弧长的计算往往结合旋转以选择、填空形式出现;2.求阴影部分面积,除直接计算外,注意割补法的运用;3.注意在生活背景下的计算应考虑实际情况。
三、实战中考1.(2006年枣庄市)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是()A.cm210лB.cm320лC.cm325лD.cm350л2.(2006年南宁市)已知圆上一段弧长为5лcm,它所牟的圆心角为100°,则该圆的半径为()A.6 B.9 C.12 D.183.Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是()A.3лB.32лC.лD.34л4.如图,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm,底面圆的直径为10cm,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是()A.150°B.200°C.180°D.240°5.如图,在纸上剪下一个圆形和扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于120°,则r与R之间的关系是()A.R=2r B.R=3rC.R=3r D.R=4r6.如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积(结果用含л的式子表示)。
《与圆有关的计算》教学设计
《与圆有关的计算》教学设计一、教材分析圆是一个看来简单,实际上很美妙的图形,对于初中生来说了解圆未必理解圆,往往一提到圆大多望而生畏,因为圆是初中阶段几何教学中涉及的第一个曲线形图形,有许多性质都是有异于直线型图形的,如果不是从圆的本质进行教学并挖掘圆的美妙,学生的认识是有障碍和抵触的。
由认识平面的直线图形到认识平面上的曲线图形,是学生认识发展的一次飞跃。
而且中考复习中圆的解答题也是一道综合性极强的题目,需要有极其熟练的三角形、四边形的知识做铺垫,是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
二、教学目标:(一)知识目标:1、梳理圆的相关性质及判定定理,加深定理的图形语言、符号语言的再认识2、体会怎样依据题目的条件、图形、及结论联想到圆中相关定理来解决较简单的数学问题;体会圆中条件在寻找解题思路中的重要作用(二)能力目标:体会圆中定理和其他几何知识有机结合解决较复杂数学问题的思路,渗透数形结合、转化化归与方程思想,进一步提高学生的分析问题与解决问题的能力。
(三)情感目标:通过动手操作、观察比较、合作交流,激发学生的学习兴趣,让学生增强学习信心,体验探索与创造的快乐。
三、教学重点:依据基本图形构建方程解决圆中的计算问题四、教学难点:(一)如何添加辅助线构建基本图形(二)与圆中几何知识有机结合解决较复杂数学问题五、教学用具:PPT课件电子白板,希沃多媒体授课助手六、教学过程:.72.ABC AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两与⊙O相切,当BC=4,AB=6+垂径定理(提供中点)B O FD勾股定理双垂图三角函数OM A字型”相似。
圆的判定和相关计算
圆的判定和相关计算一、圆的定义与特性1.圆是平面上所有与给定点(圆心)距离相等的点的集合。
2.圆心:圆的中心点,用符号“O”表示。
3.半径:从圆心到圆上任意一点的距离,用符号“r”表示。
4.直径:通过圆心,并且两端点都在圆上的线段,用符号“d”表示。
5.圆周:圆的边界,即圆上所有点的集合。
6.圆弧:圆上任意两点间的部分。
7.圆周率(π):圆的周长与其直径的比值,约等于3.14159。
二、圆的判定1.定理1:如果一个多边形的所有边都相等,那么这个多边形是圆。
2.定理2:到定点的距离等于到定直线的距离的点轨迹是圆。
3.定理3:圆心角相等的两条弧所对的圆周角相等。
4.定理4:同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半。
三、圆的计算1.圆的周长(C):圆的周长等于圆周率乘以直径,即C = πd。
2.圆的面积(A):圆的面积等于圆周率乘以半径的平方,即A = πr²。
3.圆弧的长度(l):圆弧的长度等于圆周率乘以圆心角(以弧度为单位)再乘以半径,即l = θr(θ为圆心角的弧度数)。
4.圆的内接多边形面积:圆的内接正多边形面积可以通过半径和边长计算得出,公式为A = (s² * n) / (4 * tan(π/n)),其中s为边长,n为边数。
四、圆与直线的关系1.定理5:直线与圆相交,当且仅当直线的距离小于圆的半径。
2.定理6:直线与圆相切,当且仅当直线的距离等于圆的半径。
3.定理7:直线与圆相离,当且仅当直线的距离大于圆的半径。
五、圆的位置关系1.外切:两个圆的外部边界相切。
2.内切:两个圆的内部边界相切。
3.相离:两个圆的边界没有交点。
4.相交:两个圆的边界有交点。
5.包含:一个圆完全包含在另一个圆内部。
六、圆的特殊性质1.等圆:半径相等的两个圆。
2.同心圆:圆心重合的两个或多个圆。
3.直角圆周角定理:圆周角等于其所对圆心角的一半。
4.四边形内切圆:一个四边形的四个顶点都在圆上,这个圆称为四边形的内切圆。
有关圆的所有计算公式
有关圆的所有计算公式S圆=π×R的平方; C圆=2πR或πD扇形弧长l=nπr/180 扇形面积S=(nπr^2)/360=lr/2 圆锥侧面积S=πrl 圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长) 圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0(其中D^2+E^2-4F>0)。
其中和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。
该圆圆心坐标为(-D/2,-E/2),半径r=0.5√D^2+E^2-4F。
圆的参数方程:以点O(a,b)为圆心,以r 为半径的圆的参数方程是x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数) 圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0 圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2 在圆(x^2+y^2=r^2)外一点M (a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0*x+b0*y=r^2平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
圆有关的计算公式
圆有关的计算公式圆是一个非常重要的几何形状,有着广泛的应用。
在数学中,使用圆的特性和计算公式可以解决许多与圆相关的问题。
本文将介绍与圆有关的一些常见公式,包括圆的面积、周长、弧长、扇形面积、以及圆锥、圆柱和圆球的体积等。
1.圆的面积计算公式:圆的面积公式是圆的半径r的平方乘以π(pi)。
即:A = πr^2 2.圆的周长计算公式:圆的周长公式是圆的直径d乘以π。
即:C=πd也可以使用半径r来计算周长,公式为:C=2πr其中,C表示圆的周长,d表示圆的直径。
3.圆的弧长计算公式:圆的弧长是圆周上两个点之间的弧所对应的圆心角所对应的弧长。
计算圆的弧长公式为:L=s=rθ其中,L表示弧长,s表示弧所对应的弧长,r表示圆的半径,θ表示圆心角的度数(以弧度制表示)。
4.扇形面积计算公式:扇形是圆上由圆心引出的两条半径所夹的角所对应的区域。
计算扇形面积的公式为:S=0.5r^2θ其中,S表示扇形的面积,r表示圆的半径,θ表示圆心角的度数(以弧度制表示)。
5.圆锥的体积计算公式:圆锥是一个以圆为底面,顶点位于圆心上方并与底面相连的三维几何体。
计算圆锥的体积的公式为:V=1/3πr^2h其中,V表示圆锥的体积,r表示圆的半径,h表示圆锥的高。
6.圆柱的体积计算公式:圆柱是一个由两个平行的圆底面和它们之间的侧面组成的三维几何体。
计算圆柱的体积的公式为:V=πr^2h其中,V表示圆柱的体积,r表示圆底面的半径,h表示圆柱的高。
7.圆球的体积计算公式:圆球是一个由所有到圆心距离相等于半径的点组成的三维几何体。
计算圆球的体积的公式为:V=4/3πr^3其中,V表示圆球的体积,r表示圆球的半径。
除了以上介绍的公式,还有许多与圆相关的计算公式,如圆的切线与半径的关系、圆锥的侧面积计算公式、圆柱的侧面积计算公式等。
这些公式在解决具体问题时会有所应用。
总结:圆是一个基本的几何形状,在数学和实际应用中都有着广泛的用途。
使用与圆有关的计算公式,可以准确计算圆的面积、周长、弧长,以及与圆相关的三维几何体(如圆锥、圆柱和圆球)的体积。
圆的直径与周长计算
圆的直径与周长计算圆是几何中的基本图形之一,具有许多特殊的性质。
其中,直径和周长是圆的重要属性,它们可以用于计算和描述圆的大小和形状。
本文将介绍如何计算圆的直径和周长,并提供相应的计算公式和实例。
一、圆的直径在圆的内部,可以连接任意两个点,这条连接两点的线段称为圆的直径。
直径是经过圆心且两端点均在圆上的线段,同时也是圆的最长的一条线段。
要计算圆的直径,我们只需知道圆的半径或圆的周长,并利用以下公式进行计算:直径 = 2 ×半径实际上,直径的长度始终是半径长度的两倍。
例如,假设一个圆的半径为5厘米,我们可以通过以下计算得到其直径:直径 = 2 × 5厘米 = 10厘米因此,该圆的直径为10厘米。
二、圆的周长圆的周长是指围绕圆的边缘一周的长度,也称为圆周长或圆的周长。
在计算圆的周长时,我们需知道圆的直径或半径,并利用以下公式进行计算:周长= π × 直径其中,π是一个数学常数,约等于3.14159,它代表圆的周长与直径的比值。
以下是一个实例,演示如何通过圆的直径来计算圆的周长:假设一个圆的直径为8米,我们可以通过以下计算得到其周长:周长 = 3.14159 × 8米≈ 25.13272米(四舍五入到小数点后五位)因此,该圆的周长约为25.13272米。
三、综合实例现在,让我们通过一个综合实例来进一步理解如何计算圆的直径和周长。
假设一个圆的直径为12厘米,我们首先可以计算出圆的半径:半径 = 直径 / 2 = 12厘米 / 2 = 6厘米接下来,我们可以利用半径计算出圆的周长:周长 = 3.14159 × (2 × 6厘米) ≈ 37.69908厘米(四舍五入到小数点后五位)最后,我们可以将结果进行四舍五入,得到最接近的数值:半径≈ 37.69908厘米因此,该圆的周长约为37.69908厘米。
总结:本文详细介绍了如何计算圆的直径和周长。
直径是连接圆上任意两点并通过圆心的线段,其长度始终是半径长度的两倍。
与圆有关的计算公式
与圆有关的计算公式圆是数学中一个非常重要的几何图形,它具有许多特殊的性质和规律。
在学习圆的相关知识时,我们经常会接触到一些与圆有关的计算公式。
这些公式可以帮助我们计算圆的周长、面积、弧长等重要参数,对于解决实际问题和理解圆的性质都具有重要的意义。
在本文中,我们将介绍一些与圆有关的常用计算公式,并且解释它们的应用场景和推导过程。
1. 圆的周长和面积。
圆的周长和面积是最基本的参数,它们可以帮助我们了解圆的大小和形状。
对于半径为r的圆来说,其周长C和面积S的计算公式如下:周长C = 2πr。
面积S = πr²。
其中,π是一个无理数,约等于3.14159。
通过这两个公式,我们可以很容易地计算出任意圆的周长和面积。
比如,如果给定一个圆的半径为5cm,那么它的周长就是2π5=10π≈31.42cm,面积就是π5²=25π≈78.54平方厘米。
2. 圆心角和弧长。
圆心角是指圆心的两条半径所夹的角度,它和圆的弧长之间有着特殊的关系。
对于半径为r的圆来说,圆心角θ和弧长l的计算公式如下:弧长l = rθ。
圆心角θ = l/r。
其中,弧长l表示圆上的一段弧的长度,θ表示对应的圆心角。
这两个公式可以帮助我们在已知圆的半径和圆心角的情况下,计算出弧长和圆心角的具体数值。
比如,如果给定一个圆的半径为10cm,圆心角为60°,那么它的弧长就是1060°=600cm,圆心角就是600/10=60°。
3. 圆锥、圆柱和圆环的体积。
除了平面上的圆,我们还可以将圆应用到三维空间中,从而得到一些特殊的几何体。
比如,圆锥、圆柱和圆环就是由圆衍生而来的三维几何体,它们具有一些特殊的性质和计算公式。
对于半径为r、高度为h的圆锥来说,其体积V的计算公式如下:圆锥体积V = 1/3πr²h。
对于半径为r、高度为h的圆柱来说,其体积V的计算公式如下:圆柱体积V = πr²h。
《与圆有关的计算》教学反思
《与圆有关的计算》教学反思《与圆有关的计算》教学反思《与圆有关的计算》教学反思1通过本节课的教学,学生对于基础知识点的复习还是掌握的比较好,但在运用知识整合的过程中,部分同学不能独立的完成变式训练中的习题,特别是综合运用学科知识解决问题时,出现的问题比较多。
比如在列方程组求切线长的时候,不能优化方程组的解法;在复习本节课的内容之前,最好先引导学生复习一下平行线分线段成比例的有关知识,在教学的`过程中,多引导学生动手动脑,相互探讨交流,集思广益,收集归纳并整理学生的解题思路,尽可能让学生自己把每一种思路都展现出来。
在变式训练二中,运用面积法求半径,思维跳跃较大,可能学生要思考一会儿。
对于基础比较好的学生不用提示,但如果整班基础较差的话,教师可以在超级画板上提示一下辅助线的画法。
在使用课件的时候,要注意有几个顺次隐藏和显示按钮,在处理完问题一后要隐藏,再展示问题二,后面操作一样。
在动画的过程中,一组习题是按序排列的演示图形变化可以把速度放慢,也可以重复演示,还可以邀请学生演示,这样让学生能清楚直观的感受知识的变化发生的过程。
《与圆有关的计算》教学反思2通过本节课的教学,学生对于基础知识点的复习还是掌握的比较好,但在运用知识整合的过程中,部分同学不能独立的完成变式训练中的习题,特别是综合运用学科知识解决问题时,出现的问题比较多。
比如在列方程组求切线长的时候,不能优化方程组的解法;在变式训练三,求圆的面积的过程中,寻找解题的途径很多,但能很快找出思路的同学不多,而且在运用相似的知识选择比例式的过程中也出现了不同的错误。
因此,在复习课中对于学生综合能力的训练还有待加强。
在运用Z+Z软件演示图形动画的过程中,部分同学不能很清楚的观察到图形的动画过程,主要是因为课件中有几个图形的颜色设置不是很好,投影在屏幕上的时候由于教室内的光线太强,图形看上去就就显得有些模糊。
几点建议:1。
在复习本节课的内容之前,最好先引导学生复习一下平行线分线段成比例的有关知识,在教学的过程中,多引导学生动手动脑,相互探讨交流,集思广益,收集归纳并整理学生的解题思路,尽可能让学生自己把每一种思路都展现出来。
圆的有关计算
圆的有关计算考点一1.如果弧长为l,圆心角为n°,圆的半径为r,那么弧长的计算公式为:l=nπr 180.2.由组成圆心角的两条半径和圆心角所对弧围成的图形叫做扇形.若扇形的圆心角为n°,所在圆半径为r,弧长为l,扇形面积为S,则S=nπr2360,或S=12lr.考点二1.圆柱的侧面展开图是矩形,这个矩形的长等于圆柱的底面周长c,宽是圆柱的母线长l,如果圆柱的底面半径是r,则S圆柱侧=cl=2πrl.2.圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥的底面周长c,半径等于圆锥的母线长l.若圆锥的底面半径为r,这个扇形的圆心角为α,则α=rl·360°,S圆锥侧=12cl=πrl.考点三1.规则图形:按规则图形的面积公式去求.2.不规则图形:采用“转化”的数学思想方法.把不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等转化为规则图形的面积.(1)(2010·昆明)如图,已知圆锥侧面展开图的扇形面积为65π cm2,扇形的弧长为10π cm,则圆锥母线长是()A.5 cm B.10 cm C.12 cm D.13 cm(2)(2010·兰州)现有一个圆心角为90°,半径为8 cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝处忽略不计).该圆锥底面圆的半径为()A.4 cm B.3 cm C.2 cm D.1 cm(3)(2010·哈尔滨)将一个底面半径为5 cm,母线长为12 cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是________度.(4)(2010·龙岩)如图是圆心角为30°,半径分别是1、3、5、7、……的扇形组成的图形,阴影部分的面积依次记为S1、S2、S3、……,则S50=________(结果保留π).例二图(2010·宁波)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF 与半径OB相交于点P,连结EF、EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.举一反三1.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()(结果保留π)(第1题)(第2题)2.如图,在△ABC中,AB=AC,∠A=120°,BC=23,⊙A与BC相切于点D,且交AB、AC于M、N两点,则图中阴影部分的面积是()(结果保留π)3.一个圆锥的侧面展开图是一个半圆,则此圆锥母线长与底面半径之比为()A.2∶1B.1∶2C.3∶1D.1∶34.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型,如图所示.它的底面半径OB=6 cm,高OC=8 cm.则这个圆锥漏斗的侧面积是()A.30 cm2B.30π cm2C.60π cm2D.120 cm2(第4题) (第5题)5.如图,已知菱形ABCD的边长为1.5 cm,B、C两点在扇形AEF的EF上,求BC的长度及扇形ABC的面积.圆的有关计算经典练习弧长的计算公式为:l =nπr 180 .扇形面积为S ,则S =nπr 2360,或S =12lr. S 圆锥侧=12cl =πrl.1.如图,若圆锥底面圆的半径为3,则该圆锥侧面展开图扇形的弧长为( ) A .2π B .4π C .6π D .9π3图4图1图2.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .1 B.34 C.12 D.133.如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( )A .48πB .24πC .12πD .6π 4.△ABC 中,∠A =30°,∠C =90°,作△ABC 的外接圆,如图,若AB 的长为12 cm ,那么AC 的长是( )A .10 cmB .9 cmC .8 cmD .6 cm5图6图7图5.如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是 ( )A .64π-127B .16π-32C .16π-247D .16π-1276.如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四边形ABCD 的周长为10 cm ,则图中阴影部分的面积为 ( )A.32 B.3 C .2 3 D .4 37.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分的包装纸的面积(接缝忽略不计)是( )A .20 cm 2B .40 cm 2C .20π cm 2D .40π cm 28图9图10图8.如图,A 是半径为2的⊙O 外的一点,OA =4,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA ,连结AC ,则图中阴影部分的面积等于( )A.23πB.83π C .π D.23π+ 39.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AMB 的度数等于( ) A .60° B .90° C .120° D .150°10.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB =6 cm ,高OC =8 cm ,则这个圆锥漏斗的侧面积是( )A .30 cm 2B .30π cm 2C .60π cm 2D .120 cm 211.如图,现有30%圆周的一个扇形彩纸片,该扇形的半径为40 cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10 cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( )11图12图A .9°B .18°C .63°D .72° 12.如图,圆柱的高线长为10 cm ,轴截面的面积为240 cm 2,则圆柱的侧面积是( ) cm 2. A .240 B .240π C .480 D .480π 二、填空题13.已知扇形的面积为12π,半径等于6,则它的圆心角等于________度. 14.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是________.15.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形,O 、A 、B 分别是小正方形的顶点,则扇形OAB 的弧长等于________.(结果保留根号及π)15图16图16.如图,在扇形OAB 中,∠AOB =90°,⊙P 与OA 、OB 分别相切于点F 、E ,并且与弧AB 切于点C ,则扇形OAB 的面积与⊙P 的面积比是________.三、解答题17.(10分)如图,线段AB与⊙O相切于点C,连结OA、OB,OB交⊙O于点D,已知OA=OB=6 cm,AB=6 3 cm.求:(1)⊙O的半径;(2)图中阴影部分的面积.19.(10分)如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC 交⊙O于点D,连结CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5 3 cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)20.(12分)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB =60°,OP与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积.(结果保留π)圆的有关计算例一答案【解答】(1)∵12lr =S 扇形,∴12×10π×r =65π,∴r =13,故选D.(2)∵2πr =90180π×8,∴r =2,故选C.(3)∵nπ360×122=π×5×12,∴n =150(4)设每个扇形大圆半径为R ,小圆半径为r ,则R 1=3,R 2=7,R 3=11,……,R n =4n -1,r 1=1,r 2=5,r 3=9,……,r n =4n -3.则当n =50时,S 50=30360π(R 250-r 250)=π12×[(4×50-1)2-(4×50-3)2]=66π. 例二、【解答】(1)∵直径AB ⊥DE ,∴CE =12DE = 3.∵DE 平分AO ,∴CO =12AO =12OE.又∵∠OCE =90°,∴∠CEO =30°.在Rt △COE 中,OE =CEcos30°= 3 32=2.∴⊙O 的半径为2.(2)连结OF ,如图所示.在Rt △DCP 中,∵∠DPC =45°, ∴∠D =90°-45°=45°, ∴∠EOF =2∠D =90°.∵S 扇形OEF =90360×π×22=π,S △OEF =12×OE ×OF =12×2×2=2.∴S 阴影=S 扇形OEF -S △OEF =π-2. 举一反三答案: 1、52π-4.2、3-π3.3、A 4、C 5、BC 的长为π2 cm ,S 扇形ABC =38π cm 2练习1-12 CCBCD BCACC BB 5、【解析】由题意可知,该图形关于直线AD 成轴对称,所以AD ⊥BC ,BD =DC.因为BC =12,所以BD =6,在Rt △ABD 中,AD =AB 2-BD 2=82-62=27,所以S △ABD =12AD·BD =12×27×6=67.由于阴影部分的面积即为半圆ADB 的面积减去△ABD 面积的2倍,所以S 阴影=2×(12π×42-S △ABD )=2(8π-67)=16π-127.6、【解析】设圆心为O ,由题意得∠B =60°,∠ACB =30°,∴∠BAC =90°.∴BC 为⊙O 的直径,连结OA 、OD ,则S 阴影=S 等边△OAD =34×22= 3. 9、【解析】由圆的轴对称性得,过O 作OC ⊥AB 于C ,连结OA ,则OC =12OA ,∴∠OAB =30°,∴∠AOB=120°,∴AMB 的度数是120°.11、【解析】设剩下的纸片的圆心角为n°,则nπ180×40=2π×10,∴n =90,∴剪去的圆心角为360°×30%-90°=108°-90°=18°.13、【解析】∵nπ×62360=12π,∴n =120.14、【解析】设圆锥的底面圆的半径是r 1,圆锥母线长为l ,则由题意得⎩⎪⎨⎪⎧πrl =18π,2πr =12×2πl.∵r 、l 都是正数,∴r =3,l =6.15、【解析】易知∠AOB =90°,则扇形OAB 的弧长为14圆周长,扇形OAB 的半径r =22+22=2 2.即扇形OAB 的弧长为14×2πr =14×2π×22=2π.16、【解析】设⊙O 半径为R ,则扇形的半径为(1+2)R ,则扇形OAB 的面积与⊙P 的面积比为14π(1+2)2R 2:πR 2=3+224.18、解:(1)连结OC ,则OC ⊥AB ,∵OA =OB ,∴BC =12AB =12×63=3 3 cm.在Rt △OCB 中,OC =OB 2-BC 2=62-(33)2=3,即⊙O 的半径为3 cm.(2)在Rt △OCB 中,sin ∠COB =BC OB =336=32,∴∠COB =60°,∴S 阴影=S △OBC -S 扇形COD =12×OC ×BC -nπr 2360=12×3×33-60π×32360=923-32π.即图中阴影部分的面积为(923-32π)cm 2.19、解:(1)∵AC 与⊙O 相切于点C ,则OC ⊥AC ,∴BD ∥AC ,∴OE ⊥DB ,则EB =12BD =523cm.∵∠CDB =30°,∴∠O =60°,在Rt △OEB 中,sinO =EB OB ,∴OB =EBsinO =523sin60°=5 (cm).即⊙O 的半径长为5 cm.(2)在Rt △OEB 中,OE =OB 2-EB 2=52,∴CE =5-52=52,即CE =OE.又∵∠CED =∠OEB ,ED =EB ,∴△CED ≌△OEB ,∴S 阴影=S 扇形BOC =60π×52360=256π (cm 2).20、解:(1)△ACO ≌△BCO ,△APC ≌△BPC ,△PAO ≌△PBO. (2)∵PA 、PB 为⊙O 的切线,∴PO 平分∠APB ,PA =PB , ∠PAO =90°,∠PBO =90°,PO ⊥AB.于是由圆的对称性可知:S 阴影=S 扇形AOD .∵在Rt △PAO 中,∠APO =12∠APB =12×60°=30°,∴∠AOP =90°-∠APO =90°-30°=60°. ∴S 阴影=S 扇形AOD =60×π×12360=π6.。
第26课 与圆有关的计算
略不计).
图 26-13
【正解】 如解图,将容器的半个侧面展开,作点 A 关于 EF 的对称 点 A′,连结 A′B,则 A′B 即为最短距离.
(典例 1 正解) ∵A′D=12,DE=2,BE=18-4=14, ∴A′B= A′D2+BD2= 122+162 =20(cm). ★ 名师指津 圆柱或圆锥的最短路径问题往往需要把侧面展开成平面图 形,常用“两点之间线段最短”来解决,当两点不在同一平面上时, 需转化到同一平面上.
4.圆锥的侧面积和全面积: 圆锥的侧面展开图是一个扇形,若圆锥的母线长为 l,底面半径 为 r,则这个扇形的半径为 l,扇形的弧长为 2πr. (1)圆锥的侧面积公式:S 圆锥侧=πrl. ((23))圆 圆锥锥的 侧全 面面 展积 开图公式 扇: 形的S 圆圆锥全心=角πr度2+数π的rl.计算公式:θ=rl·360°.
题型二 扇形面积
已知半径、圆心角或半径、弧长都能直接求出扇形面 积,要注意公式的选择.求不规则图形的面积时,通常有 两种思路,一是转化成规则图形面积的和、差,二是进行 图形的割补.
【典例 2】 (2019·张家界)如图 26-6,AB 为⊙O 的直径,且 AB=4 3, ︵
C 是AB上的一动点(不与点 A,B 重合),过点 B 作⊙O 的切线,交 AC 的延长线于点 D,E 是 BD 的中点,连结 EC. (1)求证:EC 是⊙O 的切线. (2)当∠D=30°时,求阴影部分的面积.
的比.
(5)构造方程法.
(6)去重法.
1.(2018·成都)如图 26-1,在▱ ABCD 中,∠B=60°,⊙C
的半径为 3,则图中阴影部分的面积是
()
A. π
B. 2π
C. 3π
圆的体积公式和面积公式
圆的体积公式和面积公式圆是一个几何图形,它是指平面上到一些固定点距离相等的所有点的集合。
圆是几何学中的基本概念,由于它的特殊性质,被广泛应用于数学、物理、工程等领域。
本文将介绍圆的体积公式和面积公式。
一、圆的面积公式圆的面积公式就是计算圆形面积的公式。
设圆的半径为r,则圆的面积S可以通过公式S=πr²来计算,其中π(pi)是一个无理数,近似值为3.14、这个公式也可以写成S=πd²/4,其中d是圆的直径。
圆的面积公式可以通过推导得到。
我们可以将圆按照半径等分成多个扇形,就像把一个圆形的比萨切成多块一样。
如果我们把这些扇形按照半径方向展开,就得到了一个近似的长方形。
当我们越细分这些扇形,得到的近似长方形就越接近圆形,面积也越准确。
通过这个近似长方形,可以得到圆的面积公式。
二、圆的体积公式圆的体积公式主要用于求解与圆相关的立体体积,例如球体的体积。
球体是由一个二维圆绕着一些轴旋转形成的立体图形。
设球体的半径为r,则球体的体积V可以通过公式V=4/3πr³来计算,其中π是一个无理数,近似值为3.14圆的体积公式可以通过对球体进行等分求和得到。
我们将球体等分成多个小球形部分,然后对这些小球形进行求和。
随着小球形的个数越来越多,得到的体积也越接近真实的球体体积。
通过这个等分求和的方式,可以得到圆的体积公式。
三、圆的应用圆的面积和体积公式在数学和工程领域有着广泛的应用。
下面将介绍一些常见的应用。
1.圆的面积公式可以用于计算圆形的面积。
例如,在建筑设计中,需要计算一个圆形花坛的面积,可以利用圆的面积公式直接计算。
另外,在土地测量中,也常用圆的面积公式计算土地面积。
2.圆的体积公式可以用于计算球体的体积。
例如,对于一个容器内装有液体的问题,可以通过球的体积公式计算液体的体积,从而确定容器所能容纳的液体量。
3.圆的面积和体积公式也被广泛应用于科学研究中的计算。
例如,在物理学中,有时需要计算球体的质量密度,可以通过球的质量和体积公式进行计算。
关于初中数学圆方面的计算公式
关于初中数学圆方面的计算公式1.圆的周长C=2πr=πd2.圆的面积S=πr²3.扇形弧长l=nπr/1804.扇形面积S=nπr²/360=rl/25.圆锥侧面积S=πrl6.圆锥的表面积S=πrl+πr²〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
〖圆的相关量〗1、圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.141592653589793238462643383279502884197169399375105820 9749445923078164062862089986280348253421170679...,通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。
2、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3、圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4、内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
〖圆和圆的相关量字母表示方法〗圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S〖圆和其他图形的位置关系〗圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
第30讲 与圆有关的计算 参考答案
第30讲 与圆有关的计算 参考答案二、【课前热身---经典链接】(磨刀不误砍柴功!!!) 得分: 1.D 2.B 3.π2 4.π2 5.π313- 三、【知识要点梳理—知识链接】1. d C π=d π3601 d n π360 180360rn d n l ππ== 2. 2r S π= 23601r S π=360n lr 21 3. 圆柱底面 圆柱 4. 圆锥底面 圆锥母线五、【中考链接一湛江真题】快乐一练! 得分___________1. π 2.π150 3.A 4.B 5. 解:(1)AB 切O ⊙于点B ∴OB AB ⊥,即90B ∠=° 又90DC OA OCD ⊥∴∠= ,° 在Rt COD △与Rt BOD △中 OD OD OB OC == , R tR t ()C O D B O D H L ∴△≌△ CDO BDO ∴∠=∠.(2)在Rt ABO △中,304A OB ∠==°, 8OA ∴=844AC OA OC ∴=-=-=在Rt ACD △中,tan CDA AC∠= 又304A AC ∠==°,tan 30CD AC ∴==·° 132242O C D O C D B S S ∴==⨯⨯=△四边形又3060A BOC ∠=∴∠=°,°. 260π48π3603OBCS ∴==扇形·.8π33OCDB OBC S S S ∴=-=-阴影四边形扇形.六、【中考演练二----2010-2012年中考题】 得分___________1.A 2.C 3.60 4.15.7 5.324 6.5 cm 7.π3 8.π1259.π2 10. 解:(1)在△OCE 中,∵∠CEO=90°,∠EOC=60°,OC=2, ∴OE=21OC=1 ∴CE=23OC=33七、【中考演练三---备考核心演练】 得分___________ 1.4 2. 2r π 3.3000π 4.B 5.C 6.D 7. A 8.(1)∵AB 是⊙O 的直径,点C 在⊙O 上∴∠ACB = 90o∵AB =13,BC =5 135sin ==∠∴AB BC BAC (2)在Rt △AB C 中,621125132222==∴=-=-=AC AD BC AB AC (3)4.3612521213212≈⨯⨯-⎪⎭⎫⎝⎛⨯=π阴影部分S 9.解:(1)答案不唯一,只要合理均可.例如:①BC=BD ;②OF ∥BC ;③∠BCD=∠A ;④⊿BCE ∽⊿OAF ;⑤AB BE BC ∙=2;⑥222BE CE BC +=;⑦⊿ABC 是直角三角形;⑧⊿BCD 是等腰三角形. (2)连结OC ,则OC=OA=OB .∵∠D=300 ,∴∠A=∠D=300,∴∠AOC=1200∵AB 为⊙O 的直径,∴∠ACB=900在Rt ⊿ABC 中,∴∠ACB=900 ∠A=300BC=1, ∴AB=2 ,AC=3 ∵OF ⊥AC ,∴AF=CF又∵OA=OB .∴OF 是⊿ABC 的中位线∴OF=21BC=21 ∴432132121=⨯⨯=∙=∆OF AC S ABC 33601202ππ=⨯=OA S AOC 扇形433-=-=∆πAOC AOC S S S 扇形阴影。
圆的基本概念与计算方法
圆的基本概念与计算方法在数学中,圆是一个基本的几何形状,具有独特的特征和计算方法。
本文将详细介绍圆的基本概念和计算方法,帮助读者更好地理解和运用圆。
一、圆的基本概念圆是一个平面几何图形,它由与一个固定点距离相等的所有点组成。
这个固定点被称为圆心,而与圆心距离相等的长度则称为半径。
通常用字母"O"表示圆心,用字母"r"表示半径。
圆的形状可以由半径完全确定,半径越长,圆的尺寸越大。
二、圆的计算方法1. 圆的周长计算圆的周长即为圆周上所有点到圆心的距离之和。
根据圆的定义,可以得到圆的周长公式为:周长= 2πr其中π是一个无理数,约等于 3.14159,它是圆周长和直径的比值。
根据这个公式,我们可以通过圆的半径计算出其周长。
2. 圆的面积计算圆的面积指的是圆内部的区域面积。
计算圆的面积需要使用圆的半径,公式如下:面积= πr²同样地,通过圆的半径,我们可以计算出其面积。
需要注意的是,圆的面积的单位是平方单位,如平方米、平方厘米等。
3. 相关计算公式除了圆的周长和面积的计算公式,还有一些与圆相关的计算公式:(1)直径与半径的关系:直径是指通过圆心的一条线段,它的长度是圆的两倍。
因此,直径与半径的关系可以表示为:直径 = 2r(2)周长与直径的关系:根据圆的定义,周长是圆周上所有点到圆心的距离之和。
而直径则是通过圆心的一条线段,它是周长的两倍。
因此,周长与直径的关系可以表示为:周长= πd其中d表示圆的直径。
(3)面积与直径的关系:根据面积的计算公式,可以将半径表示为直径的一半,即r = d/2。
代入面积公式可得到:面积= π(d/2)²三、圆的应用举例圆广泛应用于日常生活和各个领域。
以下是一些圆的应用举例:1. 轮胎汽车轮胎是圆形的,其圆形的特性可以提供更好的操控性和平衡性。
2. 农田在农田中,常见的田地形状是圆形或近似圆形。
这样的形状可以最大程度地利用农田的面积,并更容易进行农作物的管理。
关于初中数学圆方面的计算公式
1. 圆的周长C=2 πr= πd2. 圆的面积S= πr23. 扇形弧长l=n πr/1804. 扇形面积S=n πr2/360=rl/25. 圆锥侧面积S= πrl6. 圆锥的表面积S= πrl+ πr2〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
〖圆的相关量〗1、圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.141592653589793238462643383279502884197169399375105820974 9445923078164062862089986280348253421170679... ,通常用π表示,计算中常取 3.14 为它的近似值(但奥数常取 3 或3.1416) 。
2、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3、圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4、内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
〖圆和圆的相关量字母表示方法〗圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S〖圆和其他图形的位置关系〗圆和点的位置关系:以点P 与圆O 的为例(设P 是一点,则PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,PO<r。
直线与圆有3 种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
圆的知识点公式总结
圆的知识点公式总结一、圆的定义和性质圆是平面上到一个固定点距离等于一个常数的所有点的集合。
这个固定点叫做圆心,这个常数叫做圆的半径。
圆的定义非常简单,但却涵盖了许多有趣的性质。
1. 圆心和半径:圆心是圆的中心点,通常表示为O。
圆的半径是指从圆心到圆上任意一点的距离,通常表示为r。
2. 直径:圆上任意两点连线的长度叫做直径,通常表示为d,直径的长度等于半径的两倍,即d=2r。
3. 弧长和圆心角:圆上的一段弧对应于圆心的一个角度,称为圆心角。
圆心角的度数等于弧长所占据的圆周角的度数。
圆周角是360度。
4. 切线和切点:与圆相切的直线称为切线,切点是切线和圆相交的点。
切线与半径的夹角等于90度。
5. 正割线、割线和弦:穿过圆的直线称为割线。
穿过圆的直线的延长线称为正割线。
圆上两点之间的线段称为弦。
6. 垂径定理:如果一个弦上的两个垂直平分线相交于圆心,则这两条垂直平分线互相垂直。
7. 直径定理:如果一个四边形的一条对角线是这个四边形所在的圆的直径,则这个四边形是一个直角四边形。
以上是圆的基本定义和性质,通过这些性质,我们可以推导出一些有用的定理和公式。
二、圆的相关定理1. 圆的面积公式:圆的面积等于π乘以半径的平方,即A=πr²。
2. 圆的周长公式:圆的周长等于直径乘以π,即C=πd=2πr。
3. 圆心角定理:同一个圆内的圆心角所对的弧长是相等的。
4. 正切定理:相切直线与同一条过圆心的直径相交的角相等。
5. 圆的切线定理:切线和半径的夹角是直角,切线的长度等于切点到圆心的距离。
6. 垂径定理:如果两条垂直平分线相交于圆心O,则这两条平行线的公共部分即为弦AB的中点。
这些定理和公式为解决圆相关问题提供了重要的依据和方法。
三、圆的参数方程圆的参数方程通常用来描述一个圆的轨迹。
当圆的圆心在坐标轴上时,圆的参数方程可以表示为:x = r·cosθy = r·sinθ其中r表示圆的半径,(x,y)表示圆上任意一点的坐标,θ表示这个点所在的角度。
圆的直径和半径的计算
圆的直径和半径的计算在数学中,圆是一个非常基础且重要的几何图形。
而要完全描述一个圆,我们需要了解其直径和半径的概念以及计算方法。
本文将详细介绍如何计算圆的直径和半径,并给出相关例题进行演示。
一、直径的定义与计算方法直径是圆的最长的一条线段,且经过圆心。
在几何中,我们可以通过以下两种方式计算直径:1. 通过半径计算直径圆的直径是半径的两倍,即直径 = 2 ×半径。
这是因为直径是连接圆周上任意两点的线段,其中包括了圆心和半径的两个端点。
举例说明,假设一个圆的半径为r,则其直径为2r。
若半径r=5cm,那么直径d=2×5cm=10cm。
2. 通过周长计算直径圆的周长可以通过公式C = π × d进行计算,其中C代表周长,π(pi)是一个数学常数,约等于3.14159,d是直径。
如果已知圆的周长,可以通过周长公式反推计算出直径。
将周长C除以π,即可得到直径d,即d = C / π。
举例说明,假设一个圆的周长为20cm,则直径d = 20cm / 3.14159 ≈ 6.37cm。
二、半径的定义与计算方法半径是连接圆心和圆周上任意一点的线段,且是圆心到圆周的距离。
在几何中,我们可以通过以下两种方式计算半径:1. 通过直径计算半径圆的半径等于其直径的一半,即半径 = 直径 / 2。
这是因为直径将圆分成两等分,半径是直径的一半。
举例说明,假设一个圆的直径为d=12cm,那么半径r=12cm /2=6cm。
2. 通过周长计算半径同样地,我们也可以通过圆的周长计算其半径。
圆的周长公式为C = π × d,将该公式变形可得半径计算公式:r = C / (2 × π)。
举例说明,假设一个圆的周长为C=30cm,半径r = 30cm / (2 ×3.14159) ≈4.77cm。
总结:本文详细介绍了圆的直径和半径的定义与计算方法。
直径是连接圆上任意两点并经过圆心的线段,计算方法包括通过半径或周长计算;半径是连接圆心和圆周上任意一点的线段,计算方法包括通过直径或周长计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆有关的计算典例1如图,已知⊙O的周长等于8π cm,则圆内接正六边形ABCDEF的边心距OM的长为A.2 cm B. cmC.4 cm D. cm【答案】B【解析】如图,连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵⊙O的周长等于8π cm,∴OC=4 cm,∴OM cm),故选B.【点睛】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.1.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是__________.2.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.典例2如图,A 、B 、C 是圆O 上三个不同的点,且//AO BC ,20OAC ∠=,若1OA =,则AB 长是A .118π B .19πC .29πD .718π【答案】C【解析】∵AO ∥BC ,∴∠ACB=∠OAC=20°,由圆周角定理,得:∠AOB=2∠ACB=2×20°=40°.∴AB 的长为401180π⨯⨯=29π,故选C .【名师点睛】本题主要考查了弧长的求解,解题的关键是熟知圆周角定理和平行线的性质. 典例3 如图,一段公路的转弯处是一段圆弧AB ,则AB 的展直长度为A .3πB .6πC .9πD .12π【答案】B【解析】AB 的展直长度为:10810180π⨯=6π(m ).故选B .【名师点睛】此题主要考查了弧长计算,正确掌握弧长公式是解题关键.3.圆心角为240°的扇形的半径为3cm ,则这个扇形的面积是 A .πcm 2 B .3πcm 2C .9πcm 2D .6πcm 24.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为A .22m π B 2mC .2m πD .22m π1.时钟的分针长5cm ,经过15分钟,它的针尖转过的弧长是A .254πcm B .152πcm C .52πcm D .512πcm2.如图,正方形ABCD 内接于⊙O ,AB ,则AB 的长是A .πB .32π C .2π D .12π 3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是 A .90°B .120°C .150°D .180°4.已知半径为5的⊙O 是△ABC 的外接圆.若∠ABC =25°,则劣弧AC 的长为A .25π36 B .125π36C .25π18D .5π365.【河北省秦皇岛市海港区2019–2020学年九年级上学期期末数学试题】如图,正六边形ABCDEF 内接于O ,正六边形的周长是12,则O 的半径是A .3B .2C .D .6.如图,在ABC △中,90ACB ∠=︒,30A ∠=︒,4AB =,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,则CD 的长为A .1π6B .1π3C .2π3D .π37.如图,AB 是圆锥的母线,BC 为底面半径,已知BC =6 cm ,圆锥的侧面积为15π cm 2,则sin ∠ABC 的值为A .34B .35C .45D .538.【山西省2019–2020学年九年级上学期期末数学试题】如图,AB 为O 的直径,C 和D 分别是半圆AB 上的三等分点,连接AC AD BC BD 、、、,若2AB =,则图中阴影部分的面积为A .23π-B .23π-C .3π-D .3π-9.【广东省广州市南沙区2019–2020学年九年级上学期期末数学试题】若一个圆锥的底面积为24cm π,圆锥的高为,则该圆锥的侧面展开图中圆心角的度数为A .40︒B .80︒C .120︒D .150︒10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边,DE 的度数为__________.11.小明用如图所示的扇形纸片折叠成一个圆锥的侧面,已知圆锥的母线长为5cm ,扇形的弧长是6πcm ,那么这个圆锥的高是__________.12.【吉林省长春市长春净月高新技术产业开发区东北师范大学附属中学2019–2020学年九年级第二次月考数学试题】如图,I 是△ABC 的内心,∠B =60°,则∠A I C =__________.13.如图,小明自制一块乒乓球拍,正面是半径为8cm 的⊙O ,AB =90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为__________.14.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为__________(结果保留根号和π).15.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是__________;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是__________.16.如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积(计算结果保留π).17.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE DF =3,求图中阴影部分的面积.18.如图,在ABC ∆中,AB AC =,AO BC ⊥于点O ,OE AB ⊥于点E ,以点O 为圆心,OE为半径作半圆,交AO 于点F . (1)求证:AC 是O 的切线;(2)若点F 是AO 的中点,3OE =,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE PF +取最小值时,直接写出BP 的长.19.【山西省吕梁市汾阳市2019–2020学年九年级上学期期末数学试题】如图,AB 是O 的直径,AC 是O 的切线,切点为A ,BC 交O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与O 的位置关系,并说明理由;(2)若O 的半径为2,50B ∠=,5AC =,求图中阴影部分的周长.20.如图,C 、D 是半圆O 上的三等分点,直径AB =4,连接AD 、AC ,DE ⊥AB ,垂足为E ,DE 交AC 于点F .(1)求∠AFE 的度数;(2)求阴影部分的面积(结果保留π和根号).21.如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD1.(2019•长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是A.2πB.4πC.12πD.24π2.(2019•成都)如图,正五边形ABCDE内接于⊙O,P为DE上的一点(点P不与点D重合),则∠CPD的度数为A.30°B.36°C.60°D.72°3.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为A .2BC .32D4.(2019•山西)如图,在Rt△ABC 中,∠ABC =90°,AB BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为A .42π- B .42π+C .-πD .π25.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12 cm ,底面圆半径为3 cm ,则这个冰淇淋外壳的侧面积等于__________cm 2(结果精确到个位).6.(2019•福建)如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是__________.(结果保留π)7.(2019•贵港)如图,在扇形OAB 中,半径OA 与OB 的夹角为120︒,点A 与点B 的距离为若扇形OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为__________.8.(2019•济宁)如图,O 为Rt△ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC ,AC =3.则图中阴影部分的面积是__________.9.(2019•贺州)已知圆锥的底面半径是1,则该圆锥的侧面展开图的圆心角是__________度.AB=,将半圆绕点A顺时针旋转60︒,点B旋10.(2019•十堰)如图,AB为半圆的直径,且6转到点C的位置,则图中阴影部分的面积为__________.11.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥O A.若OA=__________.12.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为__________寸.13.(2019•河南)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.14.(2019•滨州)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)求证:BC2=4CF·AC;(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.15.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA∠=∠.(1)求证:AC是⊙O的切线;(2)若CE AE==1.【答案】C【解析】∵分针经过60分钟,转过360°,∴经过15分钟转过360°×1560=90°,则分针的针尖转过的弧长是l C.2.【解析】(1)连接OB,OC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠P=12∠BOC=45°;(2)过点O作OE⊥BC于点E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE==,∴BC=2BE=2×=.【点睛】垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.3.【答案】D【解析】扇形面积的计算公式为:2π2409S6π360360n rπ⨯⨯===,故选D.4.【答案】A【解析】连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC m,=12π(m2).故选A.【名师点睛】本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.1.【答案】C【解析】∵25B ∠=︒,∴50O ∠=︒,∵//AB CO ,∴50O A ∠=∠=︒,故选C.【名师点睛】本题主要考查了圆周角定理及平行线的性质,熟练运用相关知识点是解决本题的关键. 2.【答案】A【解析】如图,连接OA 、OB ,∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD ,∴AB BC CD DA ===, ∴∠AOB =14×360°=90°, 在Rt△AOB 中,由勾股定理得:2AO 2=(2, 解得:AO =2, ∴AB 的长为90π2180⨯=π,故选A . 3.【答案】D【解析】∵圆锥的主视图与左视图都是边长为4的等边三角形, ∴圆锥的母线长为4,底面圆的直径为4, 则圆锥的侧面展开图扇形的半径为4, 设圆锥的侧面展开图扇形的圆心角是n , 根据题意,得:·π·4180n =4π, 解得:n =180°,故选D . 4.【答案】C【解析】如图,连接AO ,CO ,∵∠ABC =25°,∴∠AOC =50°,∴劣弧AC 的长=50π525π=18018⨯,故选C . 5.【答案】B【解析】如图,连结OA ,OB ,∵ABCDEF 为正六边形,∴∠AOB =360°×16=60°,∴△AOB 是等边三角形, ∵正六边形的周长是12,∴AB =12×16=2,∴AO =BO =AB =2,故选B . 【名师点睛】本题考查了正多边形和圆,以及正六边形的性质,根据题意画出图形,作出辅助线求出∠AOB =60°是解答此题的关键. 6.【答案】C【解析】∵90ACB ∠=︒,4AB =,30A ∠=︒,∴60B ∠=︒,2BC =, ∴CD 的长为60π22π1803⨯=,故选C . 7.【答案】C【解析】设圆锥的母线长为R ,由题意得15π=π×3×R ,解得R =5, ∴圆锥的高为4,∴sin ∠ABC =45.故选C . 8.【答案】B【解析】设AD BC 、相交于点,E C 和D 分别是半圆AB 上的三等分点,AB 为⊙O 的直径30ABC BAD ∴∠=∠=︒.90ACB BDA ∠=∠=︒.2AB =,1,AC BD ∴==32ABC ABDBC AD SS==∴==,如图,连接OE ,则OE AB ⊥,1,3AO BO OE ==∴=,12233ABES∴=⨯=,2222323ABC ABES S S Sππ∴=-+=-⨯+=-阴影半圆, 故选B .【名师点睛】此题主要考查了半圆的面积、圆的相关性质及在直角三角形中,30°角所对应的边等于斜边的一半,关键记得加上△ABE 的面积是解题的关键. 9.【答案】C【解析】∵圆锥的底面积为4πcm 2,∴圆锥的底面半径为2cm ,∴底面周长为4π,圆锥的高为cm , ∴由勾股定理得圆锥的母线长为6cm , 设侧面展开图的圆心角是n °, 根据题意得:6180n π=4π,解得:n =120.故选C . 【名师点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.11.【答案】4cm【解析】设圆锥的底面半径是r,则2πr=6π,解得:r=3,cm).【点睛】本题主要考查圆锥侧面展开图的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.12.【答案】120°.【解析】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的内切圆的圆心是三角形三个角的平分线的交点,∴∠I AC=12∠BAC,∠I CA=12∠BCA,∴∠I AC+∠I CA=12(∠BAC+∠BCA)=60°,∴∠A I C=180°﹣60°=120°,故答案为120°.【名师点睛】此题主要考查利用三角形的内切圆的圆心是三角形三个角的平分线的交点性质进行角度求解,熟练掌握,即可解题.13.【答案】(32+48π)cm2【解析】如图,连接OA、OB,∵AB=90°,∴∠AOB=90°,∴S△AOB=12×8×8=32(cm2),扇形ACB(阴影部分)=2270π8360⨯⨯=48π(cm2),则弓形ACB胶皮面积为(32+48π)cm2,故答案为:(32+48π)cm2.14.【答案】2-π3 【解析】正六边形的中心为点O ,如图,连接OD 、OE ,作OH ⊥DE 于H ,∴∠DOE =3606︒=60°,∴OD =OE =DE =1,∴OH∴正六边形ABCDEF 的面积=12×1×2×6=2,∠A =(62)1806-⨯︒=120°,∴扇形ABF 的面积=2120π13π603⨯=,∴图中阴影部分的面积=2-π3,故答案为:2-π3. 15.【答案】14;21【解析】图2中的图案外轮廓周长是:8-2+2+8-2=14; 设∠BPC =2x ,∴以∠BPC 为内角的正多边形的边数为:360180180290x x =--,以∠APB 为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x --2+360x -2+360x -2=18090x -+720x-6,根据题意可知:2x 的值只能为60°,90°,120°,144°, 当x 越小时,周长越大,∴当x =30时,周长最大,此时图案定为会标, 则则会标的外轮廓周长是=180720903030+--6=21,故答案为:14;21.16.【解析】(1)连接OB ,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)∵点E是优弧AEB上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积=2120π3360=3π.17.【解析】(1)DE与⊙O相切,理由:如图,连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切.(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE ,∴BD , ∵sin ∠DBF =31=62, ∴∠DBA =30°, ∴∠DOF =60°,∴sin60°=3DF DO DO ==∴DO ,则FO ,132π2-=. 18.【解析】(1)如图,过O 作AC 垂线OM ,垂足为M .∵AB AC =,AO BC ⊥, ∴AO 平分BAC ∠,∵OE AB OM AC ⊥⊥,, ∴OE OM =, ∵OE 为⊙O 的半径, ∴OM 为⊙O 的半径, ∴AC 是⊙O 的切线.(2)∵3OM OE OF ===,且F 是OA 的中点,∴6AO =,AE =∴2AEO S AO AE =⋅÷=△, ∵OE AB ⊥,∴60EOF ∠=︒,即9π603π3602OEF S ⋅︒==︒扇形,∴3π2S =阴影. (3)作B 关于BC 的对称点G ,交BC 于H ,连接FG 交BC 于P ,此时PE PF +最小, 由(2)知60EOF ∠=︒,30EAO ∠=︒, ∴60B ∠=︒, ∵3EO =,∴3EG =,32EH =,BH =, ∵EG BC ⊥,FO BC ⊥, ∴EHP △∽FOP △,∴31322EH HP FO PO ==÷=,即2HP OP =,∵BO HP OP =+=,∴3HP =HP =,∴22BP =+= 19.【解析】(1)直线DE 与⊙O 相切,理由如下:连接OE 、OD ,如图,∵AC 是⊙O 的切线,∴AB ⊥AC ,∴∠OAC =90°,∵点E 是AC 的中点,O 点为AB 的中点, ∴OE ∥BC ,∴∠1=∠B ,∠2=∠3, ∵OB =OD ,∴∠B =∠3,∴∠1=∠2,在△AOE 和△DOE 中,∵OA =OD ,∠1=∠2,OE =OE , ∴△AOE ≌△DOE (SAS ),∴∠ODE =∠OAE =90°, ∴DE ⊥OD ,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线; (2)∵DE 、AE 是⊙O 的切线,∴DE =AE , ∵点E 是AC 的中点,∴DE =AE =12AC =2.5, ∵∠AOD =2∠B =2×50°=100°, ∴阴影部分的周长=1002102.5 2.551809ππ⨯++=+.【名师点睛】本题考查的是切线的判定与性质、全等三角形的判定和性质、三角形的中位线、切线长定理、弧长的计算,掌握切线的性质与判定、弧长公式是解题的关键. 20.【解析】(1)如图,连接OD ,OC ,∵C 、D 是半圆O 上的三等分点,∴AD =CD =BC , ∴∠AOD =∠DOC =∠COB =60°,∴∠CAB =30°,∵DE ⊥AB ,∴∠AEF =90°,∴∠AFE =90°–30°=60°; (2)由(1)知,∠AOD =60°,∵OA =OD ,AB =4,∴△AOD 是等边三角形,OA =2,∵DE ⊥AO ,∴DE∴S 阴影=S 扇形AOD –S △AOD =260π2360⨯–12×223.21.【解析】(1)如图,连接OE 、BE ,∵OB=OE,∴∠OBE=∠OE B.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°.∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE.(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD,∵CF=,∴BC-AD∴BC,在直角△OBC中,tan∠BOC=BCOB,∴∠BOC=60°.在△OEC与△OBC中,OE OB OC OC CE CB=⎧⎪=⎨⎪=⎩,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S阴影部分=S四边形BCEO-S扇形OBE=2×12BC·OB-2120π360OB⋅⋅3π.1.【答案】C【解析】S=2120π6360⨯⨯=12π,故选C.2.【答案】B【解析】如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD=3605︒=72°,∴∠CPD=12∠COD=36°,故选B.3.【答案】D【解析】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB∶CB,∴下面圆锥的侧面积.故选D.4.【答案】A【解析】∵在Rt△ABC中,∠ABC=90°,AB,BC=2,∴tan A=3BCAB==,∴∠A=30°,∴∠DOB=60°,∵OD=12AB DE=32,3222π-=-,故选A.5.【答案】113【解析】这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2).故答案为:113. 6.【答案】π-1【解析】如图,延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O -S 正方形ABCD )=14×(4π-4)=π-1,故答案为:π-1. 7.【答案】43【解析】如图,连接AB ,过O 作OM AB ⊥于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,AM =2OA =, ∵240π22π180r ⨯=,∴43r =,故答案为:43.【名师点睛】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键. 8.【答案】6π【解析】在Rt ABC △中,∵BC =,3AC =.∴AB =,∵BC OC ⊥,∴BC 是圆的切线,∵O 与斜边AB 相切于点D ,∴BD BC =,∴AD AB BD =-==在Rt ABC △中,∵1sin2BC A AB ===,∴30A ∠=︒,∵O 与斜边AB 相切于点D ,∴⊥OD AB ,∴9060AOD A ∠=︒-∠=︒,∵tan tan 30OD AAD ==︒3=,∴1OD =, ∴260π13606πS ⨯==阴影.故答案为:6π.【名师点睛】本题考查了切线的性质定理、切线长定理以及勾股定理、解直角三角形的运用,熟记和圆有关的各种性质定理是解题的关键. 9.【答案】90【解析】设圆锥的母线为a ,根据勾股定理得,a =4, 设圆锥的侧面展开图的圆心角度数为n ︒,根据题意得π42π1180n ⨯⨯=,解得90n =, 即圆锥的侧面展开图的圆心角度数为90︒.故答案为:90.【名师点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 10.【答案】6π【解析】由图可得,图中阴影部分的面积为:22260π6π(62)π(62)6π36022⨯⨯⨯÷⨯÷+-=,故答案为:6π.【名师点睛】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.11π【解析】如图,作OE ⊥AB 于点F ,∵在扇形AOB 中,∠AOB =120°,半径OC 交弦AB 于点D ,且OC ⊥O A .OA = ∴∠AOD =90°,∠BOC =90°,OA =OB ,∴∠OAB =∠OBA =30°,∴OD =OA ·tan30°==2,AD =4,AB =2AF =6,OF ,∴BD =2,∴阴影部分的面积是:S △AOD +S 扇形OBC -S △BDO =2230π2π23602⨯+-=,π. 12.【答案】26【解析】设⊙O 的半径为r .在Rt△ADO 中,AD =5,OD =r -1,OA =r ,则有r 2=52+(r -1)2,解得r =13,∴⊙O 的直径为26寸,故答案为:26.13.【解析】(1)∵BA =BC ,∠ABC =90°,∴∠BAC =45°, ∵AB 是⊙O 的直径, ∴∠ADB =∠AEB =90°,∴∠DAF +∠BGD =∠DBG +∠BGD =90°, ∴∠DAF =∠DBG , ∵∠ABD +∠BAC =90°, ∴∠ABD =∠BAC =45°, ∴AD =BD , ∴△ADF ≌△BDG .(2)①如图2,过F 作FH ⊥AB 于H ,∵点E 是BD 的中点,∴∠BAE =∠DAE , ∵FD ⊥AD ,FH ⊥AB , ∴FH =FD ,∵FH BF =sin ∠ABD =sin45°=2,∴2FD BF =,即BF FD , ∵AB =4,∴BD BF +FD +1)FD ,∴FD,故答案为:. ②连接OH ,EH ,∵点H 是AE 的中点, ∴OH ⊥AE , ∵∠AEB =90°, ∴BE ⊥AE , ∴BE ∥OH ,∵四边形OBEH 为菱形,∴BE =OH =OB =12AB , ∴sin ∠EAB =BE AB =12,∴∠EAB =30°. 故答案为:30°.14.【解析】(1)如图所示,连接OD ,∵AB =AC ,∴∠ABC =∠C ,而OB =OD ,∴∠ODB =∠ABC =∠C , ∵DF ⊥AC ,∴∠CDF +∠C =90°,∴∠CDF +∠ODB =90°, ∴∠ODF =90°,∴直线DF 是⊙O 的切线. (2)连接AD ,则AD ⊥BC ,则AB =AC , 则DB =DC =12BC , ∵∠CDF +∠C =90°,∠C +∠DAC =90°,∴∠CDF =∠DCA , 而∠DFC =∠ADC =90°,∴△CFD ∽△CDA , ∴CD 2=CF ·AC ,即BC 2=4CF ·AC . (3)连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA , ∴∠AOE =120°,S △OAE =12AE ·OE ·sin ∠OEA =12×2×OE ×cos∠OEA ×OE sin ∠OEA =S 阴影部分=S 扇形OAE -S △OAE =120360︒︒×π×42-16π3-15.【解析】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠,∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE ==C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =,∴2πAOE S =扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-【名师点睛】此题主要考查圆的切线与扇形面积的求解,解题的关键是熟知圆的性质及判定定理.。