《离散数学》试题和答案及解析
离散数学期末考试题及详细答案
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
《离散数学》试题及答案
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。
A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。
答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。
答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。
答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。
答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。
离散数学试题及答案
离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学试题及答案
离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。
A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。
A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。
A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。
A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。
A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。
A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。
A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。
A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。
A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。
A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。
离散数学试题及解答
离散数学2^m*n一、选择题(2*10)1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。
(A)P→⌝Q (B)P∨⌝Q(C)P∧Q (D)P∧⌝Q2.下列命题公式为永真蕴含式的是()。
(A)Q→(P∧Q)(B)P→(P∧Q)(C)(P∧Q)→P (D)(P∨Q)→Q3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定是()。
(A)所有人都不是大学生,有些人不会死(B)所有人不都是大学生,所有人都不会死(C)存在一些人不是大学生,有些人不会死(D)所有人都不是大学生,所有人都不会死4、永真式的否定是()。
(A)永真式(B)永假式(C)可满足式(D)以上均有可能5、以下选项中正确的是()。
(A)0= Ø(B)0 ⊆Ø(C)0∈Ø(D)0∉Ø6、以下哪个不是集合A上的等价关系的性质?()(A)自反性(B)有限性(C)对称性(D)传递性7、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y∈A},则R的性质为()。
(A)自反的(B)对称的(C)传递的,对称的(D)传递的8.设D=<V, E>为有向图,V={a, b, c, d, e, f}, E={<a, b>, <b, c>, <a, d>, <d, e>, <f, e>}是()。
(A)强连通图(B)单向连通图(C)弱连通图(D)不连通图9、具有6个顶点,12条边的连通简单平面图中,每个面都是由()条边围成?(A)2(B)4 (C)3(D)510.连通图G是一棵树,当且仅当G中()。
(A)有些边不是割边(B)每条边都是割边(C)无割边集(D)每条边都不是割边二、填空题(2*10)1、命题“2是偶数或-3是负数”的否定是________。
《离散数学》考试试卷(试卷库14卷)及答案
第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分 考试时限:120 分钟一、选择题(每题2分,共20分)1. 下述命题公式中,是重言式的为( )(A ))()(q p q p ∨→∧ (B )q p ∨))()((p q q p →∨→⇔(C )q q p ∧→⌝)((D )q q p →⌝∧)(2. 对任意集合A,B,C,下列结论正确的是( )(A )若A ⊆B,B ∈C,则A ⊆C ; (B )若A ∈B,B⊆C,则A ⊆C ; (C )若A ⊆B,B ∈C,则A ∈C ; (D )若A ∈B,B ⊆C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,,则由R 产生的S S ⨯上一个划分共有( )个分块。
(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是一棵树当且仅当G 中( )(A )有些边是割边 (B )每条边都是割边(C )所有边都不是割边 (D )图中存在一条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下面命题公式中真值为1的是( )(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=<V,E>中,结点总度数与边数的关系是( )(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公用一个电源,则至少需有五插头的接线板数( )(A )7 (B )8 (C )9 (D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为( )(A )11 (B )14 (C )17(D )15二、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。
《离散数学》题库及答案解析
《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( A )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式∀x A和∃x A中,称x为指导变元,A为量词的辖域。
在∀x A和∃x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和∃z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 (命题必须满足是陈述句,不能是疑问句或者祈使句。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学期末考试试题及答案详解
离散数学期末考试试题及答案详解一、【单项选择题】(本大题共15小题,每题3分,共45分)在每题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,那么AB( )。
[A] 3,8 [B]3 [C]8 [D]3,83、假设X是Y的子集,那么一定有( )。
[A]X不属于Y [B]X∈Y[C]X真包含于 Y [D]X∩Y=X4、以下关系中是等价关系的是( )。
[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,以下表述中错误的选项是( )。
[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的.每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李获得好成绩,命题“除非小李努力学习,否那么他不能获得好成绩”的符号化形式为( )。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},那么A到A的双射共有( )。
[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。
[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,那么命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.那么G 的割(点)集是( )。
离散数学考试题目及答案
离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。
答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。
若命题P和Q等价,则记作P⇔Q。
蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。
若命题P蕴含Q,则记作P→Q。
2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。
答案:设x属于A∩B,即x同时属于A和B。
根据并集的定义,若元素属于A或B,则它属于A∪B。
因此,x属于A∪B。
由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。
3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。
在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。
4. 描述有限自动机的组成部分及其功能。
答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。
输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。
5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。
在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。
确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。
从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。
重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。
离散数学试题及答案解析
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学考试题详细答案分析
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(⌝P⇄Q)∧(P⇄R∨S)b)我今天进城,除非下雨。
设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:⌝Q→P或⌝P→Qc)仅当你走,我将留下。
设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P2.用谓词逻辑把下列命题符号化a)有些实数不是有理数设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:∃x(R(x) ∧⌝Q(x)) 或⌝∀x(R(x) →Q(x))b)对于所有非零实数x,总存在y使得xy=1。
设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为:∀x(R(x) ∧⌝E(x,0) →∃y(R(y) ∧E(f(x,y),1))))c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)⇄∀a(A(a)→∃b(B(b) ∧ E(f(a),b) ∧∀c(S(c) ∧ E(f(a),c) →E(a,b))))二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)(P→(Q→R))↔(R→(Q→P))⇔(⌝P∨⌝Q∨R)↔(P∨⌝Q∨⌝R)⇔((⌝P∨⌝Q∨R)→(P∨⌝Q∨⌝R)) ∧ ((P∨⌝Q∨⌝R) →(⌝P∨⌝Q∨R)).⇔((P∧Q∧⌝R)∨ (P∨⌝Q∨⌝R)) ∧ ((⌝P∧Q∧R) ∨(⌝P∨⌝Q∨R))⇔(P∨⌝Q∨⌝R) ∧(⌝P∨⌝Q∨R) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧R)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)a) T b) F3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。
离散数学习题答案解析
离散数学习题答案习题一及答案:(P14-15) 14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解:p=1,q=1,r=0,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔ ()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型: (2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。
(完整word版)离散数学试卷及参考答案()
一、填空题:(每空1分,本大题共15分)1.给定命题公式A 、B ,若 ,则称A 和B 是逻辑相等的。
2.命题公式)(Q P →⌝的主析取范式为 ,主合取范式的编码表示为 。
3.设E 为全集, ,称为A 的绝对补,记作~A ,且~(~A )= ,~E = ,~Φ= 。
4.设},,{c b a A =考虑下列子集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =}}{},{},{{5c b a S =,}},{},{{6c a a S =则A 的覆盖有 ,A 的划分有 。
5.设S 是非空有限集,代数系统<(S ),,>中,(S)对的幺元为 ,零元为 。
(S )对的幺元为 ,零元为 .6.若>=<E V G ,为汉密尔顿图,则对于结点集V 的每个非空子集S ,均有W(G-S) S 成立,其中W (G —S)是 。
二、单项选择题:(每小题1分,本大题共10分)1.下面命题公式( )不是重言式。
A 、)(Q P Q ∨→;B 、P Q P →∧)(;C 、)()(Q P Q P ∨⌝∧⌝∧⌝;D 、)()(Q P Q P ∨⌝↔→。
2.命题“没有不犯错误的人”符号化为( )。
设x x M :)(是人,x x P :)(犯错误。
A 、))()((x P x M x ∧∀; B 、)))()(((x P x M x ⌝→∃⌝;C 、)))()(((x P x M x ∧∃⌝;D 、)))()(((x P x M x ⌝∧∃⌝。
3.设}{Φ=A ,B =((A )),下列各式中哪个是错误的( )。
A 、B ⊆Φ; B 、B ⊆Φ}{,C 、B ∈Φ}}{{;D 、⊆ΦΦ}}{,{(A )。
4.对自然数集合N ,哪种运算不是可结合的,运算定义为任N b a ∈,( ).A 、),min(b a b a =*;B 、b a b a 2+=*;C 、3++=*b a b a ;D 、)3(mod ,b a b a =*。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
《离散数学》试卷及答案精选全文完整版
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
离散数学期末考试题(附答案和含解析3)
一、单项选择题2.设集合A={1,2,3},下列关系R 中不.是等价关系的是( D ) A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式(x ∀)F (x ,y )→(∃ y )G (x ,y )中变元x 是( B )A .自由变元;(前面无∀或∃量词)B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词)D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}⊆A ;C .{{4,5}}⊆A ;D .∅∈A.5.设论域为{l ,2},与公式)()(x A x ∃等价的是( A )A.A (1)∨A (2);B. A (1)→A (2);C.A (1)∧A (2);D. A (2)→A (1).6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13 ;B.14 ;C.16 ;D.17 .//设一度结点数为n,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群。
离散数学考试卷及问题详解
一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) ∪I A∪∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A.∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.(∀ x)(∀y)(∀z)(A(x,y))→A(f(x,z),f(y,z))B.(∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )∨∧┐→┐∨┐Q15.以下命题公式中,为永假式的是( )→(p∨q∨r) B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。
(完全图的边数2)1(-nn,树的边数为n-1)16.设谓词的定义域为{a, b},将表达式∀xR(x)→∃xS(x)中量词消除,写成与之对应的命题公式是_ (R(a)∧R(b))→(S(a)∨S(b)) _.17. 设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
则R ⋅S = {(1, 3),(2, 2)} , R 2= {(1, 1),(1, 2),(1, 3)}.二、选择题1 设集合A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( C )。
(A){2}∈A (B){a}⊆A (C)∅⊆{{a}}⊆B ⊆E (D){{a},1,3,4}⊂B.2 设集合A={1,2,3},A 上的关系R ={(1,1),(2,2),(2,3),(3,2),(3,3)},则R 不具备( D ). (A)自反性 (B)传递性 (C)对称性 (D)反对称性3 设半序集(A,≤)关系≤的哈斯图如下所示,若A 的子集B = {2,3,4,5},则元素6为B 的( B )。
(A)下界 (B)上界 (C)最小上界 (D)以上答案都不对4 下列语句中,( B )是命题。
(A)请把门关上 (B)地球外的星球上也有人(C)x + 5 > 6 (D)下午有会吗? 5 设I 是如下一个解释:D ={a,b},1 0 1b)P(b,a) P(b,b) P(a,),(a a P则在解释I 下取真值为1的公式是( D ).(A)∃x ∀yP(x,y) (B)∀x ∀yP(x,y) (C)∀xP(x,x) (D)∀x ∃yP(x,y).6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( C ). (A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6).7. 设G 、H 是一阶逻辑公式,P 是一个谓词,G =∃xP(x), H =∀xP(x),则一阶逻辑公式G →H 是( C ). (A)恒真的 (B)恒假的 (C)可满足的 (D)前束范式.8 设命题公式G =⌝(P →Q),H =P →(Q →⌝P),则G 与H 的关系是( A )。
(A)G ⇒H (B)H ⇒G (C)G =H (D)以上都不是. 9 设A, B 为集合,当( D )时A -B =B. (A)A =B (B)A ⊆B (C)B ⊆A (D)A =B =∅.10 设集合A = {1,2,3,4}, A 上的关系R ={(1,1),(2,3),(2,4),(3,4)}, 则R 具有( B )。
(A)自反性 (B)传递性 (C)对称性 (D)以上答案都不对 11 下列关于集合的表示中正确的为( B )。
(A){a}∈{a,b,c} (B){a}⊆{a,b,c} (C)∅∈{a,b,c} (D){a,b}∈{a,b,c} 12 命题∀xG(x)取真值1的充分必要条件是( A ).(A) 对任意x ,G(x)都取真值1. (B)有一个x 0,使G(x 0)取真值1. (C)有某些x ,使G(x 0)取真值1. (D)以上答案都不对.13. 设G 是连通平面图,有5个顶点,6个面,则G 的边数是( A ). (A) 9条 (B) 5条 (C) 6条 (D) 11条.14. 设G 是5个顶点的完全图,则从G 中删去( A )条边可以得到树. (A)6 (B)5 (C)10 (D)4.15. 设图G 的相邻矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110110101110110010111110,则G 的顶点数与边数分别为( D ).(A)4, 5(B)5, 6 (C)4, 10 (D)5, 8.三、计算证明题1.设集合A ={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
(1) 画出半序集(A,R)的哈斯图;(2) 写出A 的子集B = {3,6,9,12}的上界,下界,最小上界,最大下界; (3) 写出A 的最大元,最小元,极大元,极小元。
解:(1)124836129(2) B 无上界,也无最小上界。
下界1, 3; 最大下界是3 (3) A 无最大元,最小元是1,极大元8, 12, 9; 极小元是12. 设集合A ={1, 2, 3, 4},A 上的关系R ={(x,y) | x, y ∈A 且 x ≥ y}, 求(1) 画出R 的关系图; (2) 写出R 的关系矩阵.解:(1)(2)1000110011101111R M ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦3. 设R 是实数集合,σ,τ,ϕ是R 上的三个映射,σ(x) = x+3, τ(x) = 2x, ϕ(x) = x/4,试求复合映射σ•τ,σ•σ, σ•ϕ, ϕ•τ,σ•ϕ•τ. 解: (1)σ•τ=σ(τ(x))=τ(x)+3=2x+3=2x+3.(2)σ•σ=σ(σ(x))=σ(x)+3=(x+3)+3=x+6, (3)σ•ϕ=σ(ϕ(x))=ϕ(x)+3=x/4+3, (4)ϕ•τ=ϕ(τ(x))=τ(x)/4=2x/4 = x/2,(5)σ•ϕ•τ=σ•(ϕ•τ)=ϕ•τ+3=2x/4+3=x/2+3.▲4. 设I 是如下一个解释:D = {2, 3},a b f (2) f (3) P (2, 2) P (2, 3) P (3, 2) P (3, 3) 323211试求(1) P(a, f (a))∧P(b, f (b));(2)∀x∃y P (y, x).解:(1) P(a, f (a))∧P(b, f (b)) = P(3, f (3))∧P(2, f (2))= P(3, 2)∧P(2,3)= 1∧0= 0.(2) ∀x∃y P (y, x) = ∀x (P (2, x)∨P (3, x))= (P (2, 2)∨P (3, 2))∧(P (2, 3)∨P (3, 3))= (0∨1)∧(0∨1)= 1∧1= 1.5. 设集合A={1, 2, 4, 6, 8, 12},R为A上整除关系。
(1)画出半序集(A,R)的哈斯图;(2)写出A的最大元,最小元,极大元,极小元;(3)写出A的子集B = {4, 6, 8, 12}的上界,下界,最小上界,最大下界.解:(1) (2)无最大元,最小元1,极大元8, 12; 极小元是1.(3) B无上界,无最小上界。
下界1, 2; 最大下界2.6.设命题公式G = ⌝(P→Q)∨(Q∧(⌝P→R)), 求G的主析取范式。
解:G = ⌝(P→Q)∨(Q∧(⌝P→R))= ⌝(⌝P∨Q)∨(Q∧(P∨R))= (P∧⌝Q)∨(Q∧(P∨R))= (P∧⌝Q)∨(Q∧P)∨(Q∧R)= (P∧⌝Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧Q∧R)∨(P∧Q∧⌝R)∨(P∧Q∧R)∨(⌝P∧Q∧R) = (P∧⌝Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧Q∧R)∨(P∧Q∧⌝R)∨(⌝P∧Q∧R)= m3∨m4∨m5∨m6∨m7 = ∑(3, 4, 5, 6, 7).7.(9分)设一阶逻辑公式:G = (∀xP(x)∨∃yQ(y))→∀xR(x),把G化成前束范式.解:G = (∀xP(x)∨∃yQ(y))→∀xR(x)= ⌝(∀xP(x)∨∃yQ(y))∨∀xR(x)= (⌝∀xP(x)∧⌝∃yQ(y))∨∀xR(x)= (∃x⌝P(x)∧∀y⌝Q(y))∨∀zR(z)= ∃x∀y∀z((⌝P(x)∧⌝Q(y))∨R(z))9. 设R是集合A = {a, b, c, d}. R是A上的二元关系, R = {(a,b), (b,a), (b,c), (c,d)},(1)求出r(R), s(R), t(R);(2)画出r(R), s(R), t(R)的关系图.解:(1)r(R)=R∪I A={(a,b), (b,a), (b,c), (c,d), (a,a), (b,b), (c,c), (d,d)},s(R)=R∪R-1={(a,b), (b,a), (b,c), (c,b) (c,d), (d,c)},t(R)=R∪R2∪R3∪R4={(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,d)};(2)关系图:11. 通过求主析取范式判断下列命题公式是否等价:(1) G = (P∧Q)∨(⌝P∧Q∧R)(2) H = (P∨(Q∧R))∧(Q∨(⌝P∧R))解:G=(P∧Q)∨(⌝P∧Q∧R)=(P ∧Q ∧⌝R)∨(P ∧Q ∧R)∨(⌝P ∧Q ∧R) =m 6∨m 7∨m 3 =∑ (3, 6, 7)H = (P ∨(Q ∧R))∧(Q ∨(⌝P ∧R)) =(P ∧Q)∨(Q ∧R))∨(⌝P ∧Q ∧R)=(P ∧Q ∧⌝R)∨(P ∧Q ∧R)∨(⌝P ∧Q ∧R)∨(P ∧Q ∧R)∨(⌝P ∧Q ∧R) =(P ∧Q ∧⌝R)∨(⌝P ∧Q ∧R)∨(P ∧Q ∧R) =m 6∨m 3∨m 7G ,H 的主析取范式相同,所以G = H.13. 设R 和S 是集合A ={a , b , c , d }上的关系,其中R ={(a , a ),(a , c ),(b , c ),(c , d )},S ={(a , b ),(b , c ),(b , d ),(d , d )}. (1) 试写出R 和S 的关系矩阵; (2) 计算R •S , R ∪S , R -1, S -1•R -1. 解:(1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000100001000101R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000000011000010S M(2)R •S ={(a , b ),(c , d )},R ∪S ={(a , a ),(a , b ),(a , c ),(b , c ),(b , d ),(c , d ),(d , d )}, R -1={(a , a ),(c , a ),(c , b ),(d , c )}, S -1•R -1={(b , a ),(d , c )}. 四、证明题1. 利用形式演绎法证明:{P →Q , R →S , P ∨R }蕴涵Q ∨S 。