中考专题训练 找规律题型.

合集下载

初三找规律练习题

初三找规律练习题

初三找规律练习题
在初三数学学习中,找规律是一个非常基础且重要的内容。

通过找规律,可以提高解题的速度和准确性,也有助于培养逻辑思维和问题解决能力。

本文将为大家提供一些初三找规律练习题,帮助同学们巩固和提高这方面的能力。

1. 数列规律题
(1) 2,4,8,16,32,... 下一个数是多少?
(2) 1,3,6,10,15,... 下一个数是多少?
(3) 1,4,9,16,25,... 下一个数是多少?
2. 图形规律题
(1) 下面的图形中,哪个是不同的?
□ □ □ □
□ □ □ ■
■ □ ■ □
□ □ □ □
(2) 下面的图形中,第几个是和其他不同的?
▲ ▲
▲▲ ▲▲
▲▲▲ ▲▲▲
▲▲▲▲ ▲▲▲▲
(3) 继续下面的图形,形成一个规律:

★★
★★★
★★★★
★★★★★
3. 数字逻辑题
(1) 请写出下面数字序列的规律: 2,4,8,16,32,64
(2) 请写出下面数字序列的规律: 1,4,9,16,25,36
(3) 请写出下面阴影图案的规律并填写问号处的数字:
■■■
■■■
■?■
■■■
以上是一些初三找规律练习题,同学们可以根据自己的理解和思考,分析规律,并给出答案。

通过反复练习,可以提高自己的观察力和发
现规律的能力。

希望同学们能够善于思考,积极解题,提高数学能力。

祝愿大家在数学学习中取得好成绩!。

中考规律探索型问题及答案

中考规律探索型问题及答案

规律探索型问题1. 如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此 规律,图A 6比图A 2多出“树枝”D. 124答案C2. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有 个小圆. 用含 n 的代数式表示答案(1)4n n ++或24n n ++3. 观察下列算式:① 1 × 3 - 22= 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1③ 3 × 5 - 42= 15 - 16 = -1 ④ ……1请你按以上规律写出第4个算式; 2把这个规律用含字母的式子表示出来;3你认为2中所写出的式子一定成立吗并说明理由.答案解:⑴246524251⨯-=-=-;⑵答案不唯一.如()()2211n n n +-+=-;⑶()()221n n n +-+ ()22221n n n n =+-++22221n n n n =+--- 1=-.第1个图形第 2 个图形第3个图形 第 4 个图形4. 观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个;答案155. 先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 答案110066. 观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题: 1若n 为正整数,请你猜想)1(1+n n = ;2证明你猜想的结论; 3求和:211⨯+321⨯+431⨯+…+201020091⨯ .答案 1111n n -+ 2证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n .3原式=1-12+12-31+31-41+…+20091-20101 =12009120102010-=. 7. 设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设12...n S S S S =+++,则S=_________ 用含n 的代数式表示,其中n 为正整数.答案122++n nn .22111(1)n S n n =+++=21111[]2(1)(1)n n n n +-+⨯++=2111[]2(1)(1)n n n n ++⨯++ =21[1](1)n n ++∴S=1(1)12+⨯+1(1)23+⨯+1(1)34+⨯+…+1(1)(1)n n ++122++=n n n .接下去利用拆项法111(1)1n n n n =-++即可求和.8. 如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.1表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;2用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;3求第n 行各数之和.解164,8,15;22(1)1n -+,2n ,21n -;3第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n 行各数之和等于2(21)(1)n n n --+=322331n n n -+-.9.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为A .52012﹣1 B .52013﹣1 C . D .解析设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013,因此,5S ﹣S=52013﹣1,S=答案选C .10.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 . 答案122+k k11. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________ 答案-201212.在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形;答案100.13、如图,第1个图有2个相同的小正方形,第1个图有2个相同的小正方形,第2个图有6个相同的小正方形,第3个图有12个相同的小正方形,第4个图有20个相同的小正方形,……,按此规律,那么第n 个图有 个相同的小正方形;(1) 2 3 4 解析:因为()()()()1445420,1334312,122326,111212+⨯=⨯=+⨯=⨯=+⨯=⨯=+⨯=⨯=,故第n 个图有n n +2个小正方形 .答案n n +2或nn+114.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .故答案为:4n ﹣2或2+4n ﹣1 答案4n ﹣2或2+4n ﹣115.在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 11,1,A 223,27,那么点nA 的纵坐标是_ _____.答案123-⎪⎭⎫⎝⎛n 16.观察下列等式: 第1个等式:a 1==21×1﹣31; 第2个等式:a 2==21×31﹣51; 第3个等式:a 3==21× 51﹣71; 第4个等式:a 4==21×71﹣91; …请解答下列问题:1按以上规律列出第5个等式:a 5= = ;2用含有n 的代数式表示第n 个等式:a n = = n 为正整数; 3求a 1+a 2+a 3+a 4+…+a 100的值. 解答: 解:根据观察知答案分别为:1; ;2;;3.y xy=kx+bOB 3B 2 B 1 A 3 A 2A 117.右图中每一个小方格的面积为1,则可根据面积计算得到如下算式: ()127531-+⋅⋅⋅++++n = .()是正整数表示,用n n解答:当2=n 时:()224122131==-⨯+=+当3=n 时:()23913231531==-⨯++=++当4=n 时:()24161425317531==-⨯+++=+++猜想:()127531-+⋅⋅⋅++++n =2n18.一组数据为:234,2,4,8,x x x x --观察其规律,推断第n 个数据应为 .答案11(1)2n n n x +--19. 小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其颗数3,6,9,12,···成为三角形数,类似地,图2中的4,8,12,16,···称为正方形数.下列数中既是三角形数又是正方形数的是答案:D20.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为解析:都是轴对称图形,每一排的个数都是偶数,分别是2,4,6,…6,4,2,故第六个图形五角星个数可列式为:2+4+6+8+10+12+10+8+6+4+2=72.答案D21.根据排列规律,在横线上填上合适的代数式:x,-3x2,5x3, -7x4 ,9x5,… ,表示第n代数式.22.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑩个图形中平行四边形的个数是解析图形①中1=1×1+0,图形②中5=2×2+1,图形③中11=3×3+2,……,依次类推,∴第⑩个图形中平行四边形的个数是10×10+9=109解答D.23.如图12,已知A1,A2,A3,…A n,…是x轴上的点,且OA1=A1A2=A2A3=…=A n-1A n…=1,分别过点A1,A2,A3,…A n,…作x轴的垂线交反比例函数y=1xx>0的图象于点B1,B2,B3,…B n,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2……,记△B1P1B2的面积为S1,△B2P2B3的面积为S2……,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=.解析由OA1=A1A2=A2A3=…=A n-1A n…=1,可得P1B2=P2B3=P3B4=…=P n B n+1=1,以及B11,1,B22,12,B33,13,…,B n n,1n,B n+1n+1,11n+,所以S1+S2+S3+…+S n=12B1P1·P1B2+1 2B2P2·P2B3+…12B n P n·P n B n+1=12B1P1+B2P2+…B n P n=121-12+12-13+…+1n-11n+=1 2 1-11n+=2(1)nn+.答案2(1)nn+yx O A1A2A3B1B2B3P1P2图1210题图24. 同样大小的黑色棋子按如图所示的规律摆放:① 第5个图形有多少颗黑色棋子 ② 第几个图形有2013颗棋子说明理由;解析第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n 个图需棋子3n+1枚. 答案118;2第670个图形25、如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上 A .1 B .2 C .3 D .5 答案:D26、将1、错误!、错误!、错误!按右侧方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则4,2与21,2表示的两数之积是 . A .1 B .2 C .2错误! D .6答案:D27、下列图形都是由同样大小的正方形按一定的规律组成,其中,第①个图形中一共有1个正方形,第②个图形中一共有5个正方形,第③个图形中一共有14个正方形,……则第⑦个图形中正方形的个数为A 、49B 、 100C 、140D 、91 答案:C第1个第2个 第3个 第4个134111122663263323第1排第2排第3排第4排第5排……28、如图,已知直线l :y =x ,过点A 0,1作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为A 、0,64B 、0,128C 、0,256D 、0,512答案: C29、如图,直线x y 33=,点1A 坐标为1,0,过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行 下去,点n A 的横坐标为A .1)332(-n B .23()3n C .32()3n D .132()3n答案:A第29题图30.如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,S 2012=A .201023 B .201223 C .402423 D.402523答案:D31.观察下列图形:若图形1中阴影部分的面积为1,图形2中阴影部分的面积为43,图形3中阴影部分的面积为169,图形4中阴影部分的面积为6427,…,则第n 个图形中阴影部分的面积用字母表示为⑷⑶⑵⑴A .n 43B .n)43(C .1)43(-nD .1)43(+n答案:CA1第7题图第31题32.下列图形都是由同样大小的等边三角形按一定的规律组成,其中,第①个图形中一共有3根小棒,第②个图形中一共有9根小棒,第③个图形中一共有18根小棒,……,则第⑥个图形中小棒的根数为① ② ③A .60B .63C .69D .72 答案B33.已知a ≠0,12S a =,212S S =,322S S =,…,201220112S S =, 则2012S = 用含a 的代数式表示. 答案:1a34、如图,n +1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n +1的面积记为S n ,则S n = ▲答案:33121n n ++ 35、设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++,若12...n S S S S =则S =_________ 用含n 的代数式表示,其中n 为正整数. 答案: )1()2(2++n n n……36、如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2……,按此规律继续下去,可得到△A 5B 5C 5,则其面积为S 5=_________. 第n 次操作得到△A n B n C n ,则△A n B n C n 的面积S n = .答案:195 19n37、在∠A 0°<∠A <90°的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如图所示,从点A 1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A 1A 2为第1条线段.设AA 1=A 1A 2=A 2A 3=1,则∠A = ;若记线段A 2n-1A 2n 的长度为a n n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,则此时a 2= ,a n = 用含n 的式子表示.答案:22.5;12+1(12)n -+38. 下图中的实心点个数1,5,12,22,…,被称为五角形数,若按此规律继续下去,则第5个五角形数是 .答案:35第38题 5 12 1 22第39题 D 2D 3E 2E 3E 1D 1A BC 39.如图,已知Rt △ABC ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E n ,分别记△BCE 1、△BCE 2、△BCE 3···△BCE n 的面积为S 1、S 2、S 3、…S n . 则S n = S △ABC 用含n 的代数式表示.答案:40. 一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 .用含字母n 的代数式表示,n 为正整数.答案:8,())1(2111+-++n n41、人们经常利用图形的规律来计算一些数的和、如在边长为1的网格图1中,从左下角开始,相邻的黑折线围成的面积分别是1,3,5,7,9,11,13,15,17…,它们有下面的规律:1+3=22;1+3+5=32;1+3+5+7=42;1+3+5+7+9=52;…第1题1请你按照上述规律,计算1+3+5+7+9+11+13的值,并在图1中画出能表示该算式的图形;2请你按照上述规律,计算第n条黑折线与第n﹣1条黑折线所围成的图形面积;3请你在边长为1的网格图2中画出下列算式所表示的图形1+8=32;1+8+16=52;1+8+16+24=72;1+8+16+24+32=92.解答:解:11+3+5+7+9+11+13=72.算式表示的意义如图1.2第n条黑折线与第n﹣1条黑折线所围成的图形面积为2n﹣1.3算式表示的意义如图2,3等.。

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习:找规律1.以下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又最大数与最小数的积为192,所以设最大数为x,那么最小数为x-16。

∴x〔x-16〕=192,解得x=24或x=-8〔负数舍去〕。

∴最大数为24,最小数为8。

∴圈出的9个数为8,9,10,15,16,17,22,23,24。

和为144。

应选D。

2.某单位要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排10场比赛,那么参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打〔x-1〕场球,第二个球队和其他球队打〔x-2〕场,以此类推可以知道共打〔1+2+3+…+x-1〕= x(x1)2-场球,根据方案安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4〔不合题意,舍去〕。

应选C。

3.观察以下一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。

【考点】分类归纳〔数字的变化类〕。

【分析】根据得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k 个数分子是2k ,分母是2k +1。

∴这一组数的第k 个数是2k2k+1。

4. 填在以下各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .【答案】900。

中考找规律专题

中考找规律专题

专题一:找规律1、(159中20.铁二17).观察一下几组勾股数,并寻找规律:① 3, 4, 5; ② 5,12,13; ③ 7,24,25;④ 9,40,41;……请你写出有以上规律的第⑤组勾股数:补1:一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 .(用含字母n 的代数式表示,n 为正整数).2、(214中20) 观察下列各式:11111112,23,34, (334455)+=+=+=请你找出其中规律,并将第n (n ≥1)个等式写出来 .3、(延庆)将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积 是4、(大兴).如图所示的10-三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,第3次全行的数都为1的是第 行,… ,第n 次全行的数都为1的是第 行.第1行 第2行第3行 第4行第5行…………………………………… 5、(石景山12)一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍) 则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .第1行 1第2行 3 5第3行 7 9 11 13 … …111122663263323第1排第2排第3排第4排第5排6、(35中10)如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b+错误!未找到引用源。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

中考数学专题训练:规律探索——数式规律(附参考答案)

中考数学专题训练:规律探索——数式规律(附参考答案)

中考数学专题训练:规律探索——数式规律(附参考答案)1.按一定规律排列的单项式:a,√2a2,√3a3,√4a4,√5a5,…,第n个单项式是( ) A.√n B.√n−1a n-1C.√n a n D.√n a n-12.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 0223.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2 025 B.2 023C.2 021 D.2 0194.根据图中数字的规律,若第n个图中的q=143,则p的值为( )A.100 B.121C.144 D.1695.按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( ) A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n6.根据图中数字的排列规律,在第⑦个图中,a-b-c的值是( )A.62 B.64C.-66 D.-1907.将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是______________.8.根据图中数字的规律,则x+y的值是_______..例9.对于正整数a,我们规定:若a为奇数,则f(a)=3a+1;若a为偶数,则f(a)=a2=5.若a1=8,a2=f(a1),a3=f(a2),a4=f(a3),…,如f(15)=3×15+1=46,f(10)=102依此规律进行下去,得到一列数a1,a2,a3,a4,…,a n,…,(n为正整数),a1+a2+a3+…+a2 022=__________.参考答案1.C 2.A 3.B 4.B 5.A 6.A 7.(10,18) 8.593 9.4 725。

中考数学真题《规律探究题》专项测试卷(附答案)

中考数学真题《规律探究题》专项测试卷(附答案)

中考数学真题《规律探究题》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(26题)一 、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .542.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案 其中第①个图案中有2个圆圈 第①个图案中有5个圆圈 第①个图案中有8个圆圈 第①个图案中有11个圆圈 … 按此规律排列下去,则第①个图案中圆圈的个数为( )A .14B .20C .23D .263.(2023·云南·统考中考真题)按一定规律排列的单项式:23452345,a a a a a 第n 个单项式是( )A nB 11n n a --C n naD 1n na -4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中 每个网格小正方形的边长均为1个单位长度 以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,05.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .26.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004C .2022D .20238.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .2029.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a =以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 .11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为点2023A 的坐标为 .18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .25.(2023·四川广安·统考中考真题)在平面直角坐标系中 点1234A A A A 、、、在x 轴的正半轴上 点123B B B 、、在直线()0y x =≥上 若点1A 的坐标为()2,0 且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为 .26.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .参考答案一 单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .54【答案】B【分析】根据各图形中木棍的根数发现计算的规律 由此即可得到答案. 【详解】解:第①个图案用了459+=根木棍 第①个图案用了45214+⨯=根木棍 第①个图案用了45319+⨯=根木棍 第①个图案用了45424+⨯=根木棍 ……第①个图案用的木棍根数是45844+⨯=根 故选:B .【点睛】此题考查了图形类规律的探究正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案其中第①个图案中有2个圆圈第①个图案中有5个圆圈第①个图案中有8个圆圈第①个图案中有11个圆圈… 按此规律排列下去,则第①个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律即可求解.=⨯-【详解】解:因为第①个图案中有2个圆圈2311=⨯-第①个图案中有5个圆圈5321=⨯-第①个图案中有8个圆圈8331=⨯-第①个图案中有11个圆圈11341…⨯-=所以第①个图案中圆圈的个数为37120故选:B.n-是解题的【点睛】本题考查了图形类规律探究根据前四个图案圆圈的个数找到第n个图案的规律为31关键.3.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a第n个单项式是()B1n-C n D1n-A【答案】C字母为a指数为1开始的自然数据此即可求解.【分析】根据单项式的规律可得【详解】解:按一定规律排列的单项式:2345,a第n n故选:C.【点睛】本题考查了单项式规律题找到单项式的变化规律是解题的关键.4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中每个网格小正方形的边长均为1个单位长度以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,0【答案】A【分析】根据图象可得移动3次完成一个循环 从而可得出点坐标的规律()323n A n n --,.【详解】解:①()121A -, ()412A -, ()703A , ()1014A ,①()323n A n n --,①1003342=⨯-,则34n =①()1003134A , 故选:A .【点睛】本题考查了点的规律变化 解答本题的关键是仔细观察图象 得到点的变化规律. 5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =- 413a = 52a =…… 由此可得规律求解.【详解】解:①12a =①212312a +==-- 3131132a -==-+ 411121312a -==+51132113a +==- ……. 由此可得规律为按2 3- 12- 13四个数字一循环①20234505.....3÷= ①2023312a a ==- 故选A .【点睛】本题主要考查数字规律 解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π【答案】A【分析】曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+ 得到1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+ 得出半径 再计算弧长即可.【详解】解:由图可知 曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+∴112AD AA ==111BA BB == 1132CB CC == 112DC DD ==12122AD AA ==+2221BA BB ==+ 22322CB CC ==+ 2222DC DD ==+ ⋯⋯1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+故20232023A B 的半径为()202320231420231140452BA BB ==⨯⨯-+=∴20232023A B 的弧长90404540451802ππ=⨯=. 故选A【点睛】此题主要考查了弧长的计算 弧长的计算公式:180n rl π= 找到每段弧的半径变化规律是解题关键. 7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果. 【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ 122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ …2100200(100)1100101f ⨯==+ 1212100()11001011100f ⨯==+1(100)()2100f f += 11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+ 201=故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则 找到数字变化规律是解本题的关键. 9.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 . 【答案】 15 45【分析】根据新定义 列举出前几个智慧优数 找到规律 进而即可求解.【详解】解:依题意 当3m = 1n =,则第1个一个智慧优数为22318-= 当4m = 2n =,则第2个智慧优数为224214-= 当4m = 1n =,则第3个智慧优数为224115-= 当5m = 3n =,则第5个智慧优数为225316-= 当5m = 2n =,则第6个智慧优数为225221-= 当5m = 1n =,则第7个智慧优数为225324-= ……6m =时有4个智慧优数 同理7m =时有5个 8m =时有6个12345621+++++=第22个智慧优数 当9m =时 7n = 第22个智慧优数为2297814932-=-= 第23个智慧优数为9,6m n ==时 2296813645-=-= 故答案为:15 45.【点睛】本题考查了新定义 平方差公式的应用 找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .【答案】1226C H【分析】根据碳原子的个数 氢原子的个数 找到规律 即可求解. 【详解】解:甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H ……碳原子的个数为序数 氢原子的个数为碳原子个数的2倍多2个十二烷的化学式为1226C H 故答案为:1226C H .【点睛】本题考查了规律题 找到规律是解题的关键. 12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数 等式的右边为这个数乘以这个数减1 即可求解. 【详解】解:①21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …①第n (n 为正整数)个等式是()21n n n n -=-故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律 找到规律是解题的关键.13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏. 【答案】10【分析】灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮” 确定1-100中 各个数因数的个数 完全平方数的因数为奇数个 从而求解.【详解】所有灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮”因数的个数为奇数的自然数只有完全平方数 1-100中 完全平方数为1 4 9 16 25 36 49 64 81 100 有10个数 故有10盏灯被按奇数次 为“亮”的状态 故答案为:10.【点睛】本题考查因数分解 完全平方数 理解因数的意义 完全平方数的概念是解题的关键. 14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).【答案】66n +/66n +【分析】当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根计算即可.【详解】解:当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根故第n 个图案需要火柴棍的根数为66n +. 故答案为:66n +.【点睛】本题考查了整式的加减的数字规律问题 熟练掌握规律的探索方法是解题的关键.15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯ ⋯ 可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯⋯①第(1)n n >个图案中有()22n +个白色圆片. 故答案为:()22n +.【点睛】此题考查图形的变化规律 通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素 然后推广到一般情况.解题关键是总结归纳出图形的变化规律. 16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为 点2023A 的坐标为 .【答案】 20232 ()202220222,2【分析】根据旋转角度为60︒ 可知每旋转6次后点A 又回到x 轴的正半轴上 故点2023A 在第四象限 且202320232OA = 即可求解.【详解】解:①AOB 为等边三角形 点A 的坐标为()1,0 ①1OA =①每次旋转角度为60︒ ①6次旋转360︒第一次旋转后 1A 在第四象限 12OA =第二次旋转后 2A 在第三象限 222OA =第三次旋转后 3A 在x 轴负半轴 332OA =第四次旋转后 4A 在第二象限 442OA =第五次旋转后 5A 在第一象限 552OA =第六次旋转后 6A 在x 轴正半轴 662OA =……如此循环 每旋转6次 点A 的对应点又回到x 轴正半轴①202363371÷=点2023A 在第四象限 且202320232OA =如图,过点2023A 作2023A H x ⊥轴于H在2023Rt OHA 中 202360HOA ∠=︒①202320232022202320231cos 2cos60222OH OA HOA =⋅∠=⨯︒=⨯=202320222023202320233sin 232A H OA HOA =⋅∠= ①点2023A 的坐标为()202220222,32.故答案为:20232 ()202220222,32.【点睛】本题考查图形的旋转 解直角三角形的应用.熟练掌握图形旋转的性质 根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =. 【答案】()()111n n -++【分析】根据已有的式子 抽象出相应的数字规律 进行作答即可. 【详解】解:①21312⨯+= 22413⨯+=23514⨯+=……①()()2211n n n ++=+①()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律. 19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标 从而可计算出1234,,,S S S S …的高 进而求出1234,,,S S S S … 从而得出123n S S S S +++⋯+的值.【详解】当1x =时 1P 的纵坐标为8 当2x =时 2P 的纵坐标为4 当3x =时 3P 的纵坐标为83当4x =时 4P 的纵坐标为2当5x =时 5P 的纵坐标为85…则11(84)84S =⨯-=- 2881(4)433S =⨯-=-3881(2)233S =⨯-=-481(2)2558S =⨯-=- (881)n S n n =-+ 1238888888844228335111n n S S S S n n n n +++⋯+=-+-+-+-++-=-=+++ ①12320238202320242532023S S S S ⨯+++⋯+==. 故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用 解题的关键是求出881n S n n =-+. 20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究 可发现第n 个数对的第一个数为:()11n n ++ 第n 个数对的第二个位:()211n ++ 即可求解.【详解】解:每个数对的第一个数分别为3 7 13 21 31 … 即:121⨯+ 231⨯+ 341⨯+ 451⨯+ 561⨯+ … 则第n 个数对的第一个数为:()2111n n n n ++=++ 每个数对的第二个数分别为5 10 17 26 37 … 即:221+ 231+ 241+ 251+ 261+… 则第n 个数对的第二个位:()221122n n n ++=++①第n 个数对为:()221,22n n n n ++++ 故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律 找出数字之间的排列规律 利用拐弯出数字的差的规律解决问题. 21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .【答案】20221⎛ ⎝⎭【分析】分别求出点点1B 的横坐标是1 点2B 的横坐标是1 点3B 2413⎛+= ⎝⎭找到规律 得到答案见即可.【详解】解:当0y = 0= 解得1x = ①点()11,0A ,①111A B C O 是正方形 ①11111OA A B OC === ①点()11,1B ①点1B 的横坐标是1当1y =时 1 解得1x =+①点21A ⎛⎫⎪ ⎪⎝⎭①2221A B C C 是正方形①2212211A B C C A C ===①点212B ⎛ ⎝⎭即点2B 的横坐标是1当2y =时 2= 解得)223x =①点34,23A ⎝⎭①3332A B C C 是正方形①33233243A B C C A C ===①点3B 2413⎛= ⎝⎭……以此类推,则点2023B 的横坐标是202231⎛ ⎝⎭故答案为:202231⎛ ⎝⎭【点睛】此题是点的坐标规律题 考查了二次函数的图象和性质 正方形的性质等知识 数形结合是是解题的关键.23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .【答案】 1024 202422024-+【分析】通过观察第一行数的规律为(2)n - 第二行数的规律为(2)1n n -++ 代入数据即可. 【详解】第一行数的规律为(2)n - ①第①行数的第10个数为10(2)1024-= 第二行数的规律为(2)1n n -++①第①行数的第2023个数为2023(2)- 第①行数的第2023个数为2023(2)2024-+ ①202422024-+故答案为:1024 202422024-+.【点睛】本题主要考查数字的变化 找其中的规律 是今年考试中常见的题型. 24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .。

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道)以下是为大家整理的初中数学中考复习专题:找规律专项练习及答案解析(50道)的相关范文,本文关键词为初中,数学,中考,复习,专题,规律,专项,练习,答案,解析,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。

初中数学中考复习专题:找规律专项练习及答案解析(50道)一、选择题1、连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.观察上述图形并阅读相关文字,思考回答问题:显然四边形对角线有2条;五边形的对角线有5条;对于六边形的对角线条数,光靠“数”数,也能数出来,但已感到较麻烦!需寻找规律!从一个顶点A 出发,显然有3条,同理从b出发也3条,每个顶点出发都是3条,但从c顶点出发,就有重复线段!用此方法算出六边形的对角线条数为a;且能归纳出n边形的对角线条数的计算方法;若一个n边形有35条对角线,则a和n的值分别为()A.12,20b.12,15c.9,10D.9,122、寻找规律计算1-2+3-4+5-6+…+20XX-20XX等于()A.0b.-1c.-1008D.10083、观察下列各式并找规律,再猜想填空:,则______.4、观察一列数:是(),,,,,……根据规律,请你写出第10个数A.c.b.D.共20页,第1页二、填空题5、观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;……请你写出有以上规律的第⑤组勾股数:6、找规律填空:……7、已知察上面的计算过程,寻找规律并计算:=.…,观8、观察分析下列数据,寻找规律:0,据应是_________.,,3,2,……那么第10个数9、找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

①2张桌子拼在一起可坐______人;(1分)3张桌子拼在一起可坐______人;(1分)n张桌子拼在一起可坐______人。

中考规律探索题训练含答案

中考规律探索题训练含答案

规律探索一.选择题1.(2015第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A. 2015πB.3019.5πC.3018πD.3024π考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.解答:解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.2.(2015荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2015第10题3分)在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A.B.C.D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A.B.C.D.考点:正多边形和圆..专题:规律型.分析:连结OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A10B10C10D10E10F10的边长=()9×2,然后化简即可.解答:解:连结OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A10B10C10D10E10F10的边长=()9×2=.故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•日照,第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A. 36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.点:此题考查了完全平方公式,熟练掌握公式是解本题的关键6 , (2015•,第11题3分)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律,第2015个单项式是()(A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015.【答案】C【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n -1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是,所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为. 故选C考点:探索规律7.(2015·,第8题3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是() A .(2014,0)B .(2015,-1)C . (2015,1)D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索.∵半圆的半径r =1,∴半圆长度=π,∴第2015秒点P 运动的路径长为:2π×2015, ∵2π×2015÷π=1007…1,∴点P 位于第1008个半圆的中点上,且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) .图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14 B.15 C.16 D.17考点:规律型:图形的变化类..分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.8. (2015•省市,第7题,3分)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、……、20,阴影部分是由第l个圆和第2个圆,第3个圆和第4个圆,……,第l9个圆和第20个圆形成的所有圆环,则阴影部分的面积为(B)A.231πB.210πC.190πD.171π9. (2015•,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【】A . 201521B . 201421C . 2015211-D . 2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,…∴21111122h =+=-, 32211111222h =++=-, 42331111112222h =+++=-, (20152201420141111112222)h =+++⋅⋅⋅+=-. 故选B二.填空题1.(2015•,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45 ,2016是第63 个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.4. (2015•省江市,第16题,5分)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);n =n 时,根数为:2n (n +1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.(2015·,第15题分)观察下列图形,它们是按一定规律排列的,依照此规律,第56个图形有个太阳。

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道) 初中数学中考复习专题:找规律专项练习及答案解析(50道)一、选择题1、连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.观察上述图形并阅读相关文字,思考回答问题:显然四边形对角线有2条;五边形的对角线有5条;对于六边形的对角线条数,光靠“数”数,也能数出来,但已感到较麻烦!需寻找规律!从一个顶点A出发,显然有3条,同理从B出发也3条,每个顶点出发都是3条,但从C顶点出发,就有重复线段!用此方法算出六边形的对角线条数为a;且能归纳出n边形的对角线条数的计算方法;若一个n边形有35条对角线,则a和n的值分别为()A.12,20 B.12,15C.9,10 D.9,122、寻找规律计算1 - 2+3 - 4+5 - 6+…+2021 - 2021等于 ( ) A.0 B.- 1 C.- 1008 D.10083、观察下列各式并找规律,再猜想填空:,则______ .4、观察一列数:是(),,,,,……根据规律,请你写出第10个数A.C.B. D.共 20 页,第 1 页二、填空题5、观察一下几组勾股数,并寻找规律:① 3, 4, 5;② 5,12,13;③ 7,24,25;④ 9,40,41;……请你写出有以上规律的第⑤组勾股数:6、找规律填空:……7、已知察上面的计算过程,寻找规律并计算:= .…,观8、观察分析下列数据,寻找规律:0,据应是_________.,,3,2,……那么第10个数9、找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

① 2张桌子拼在一起可坐______人;(1分) 3张桌子拼在一起可坐______人;(1分) n张桌子拼在一起可坐______人。

(3分)②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。

(3分)共 20 页,第 2 页10、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:_________________.11、找规律填上合适的数:-2,4,-8,16,,64,……………12、用火柴棒按以下方式搭“小鱼”.…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为.13、观察分析下列数据,寻找规律:0,么第10个数据应是.,,3,2,,3,……,那14、填空找规律(结果保留四位有效数字). (1)利用计算器分别求:=________;(2)由(1)的结果,我们发现所得的结果与被开方数间的规律是________; (3)运用(2)中的规律,直接写出结果:=________,=________.=________,=________,=________,15、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c的值为.共 20 页,第 3 页16、找规律填上合适的数:﹣2,4,﹣8,16,,64,…17、观察下列数据:0,,,,,……,寻找规律,第9个数据应是 .18、观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★.19、观察并分析下列数据,寻找规律: 0,,-,3,-2,,-3,……那么第10个数据是___________ ;第n个数据是_______________ .20、观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;……请你写出有以上规律的第⑤组勾股数:______________________.21、寻找规律,根据规律填空:,,,,,,…,第n个数是 .22、找规律,并按规律填上第五个数:.23、阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x,(1﹣x)(1+x+x)=1﹣x,(1﹣x)(1+x+x+x)=1﹣x….(1)观察上式,并猜想:(1﹣x)(1+x+x+…+x)= .(2)根据你的猜想,计算:1+3+3+3…+3= .(其中n是正整数)23n2n42323共 20 页,第 4 页24、找规律,如图有大小不同的平行四边形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中有个。

中考数学总复习《规律问题》专题训练(附带答案)

中考数学总复习《规律问题》专题训练(附带答案)

中考数学总复习《规律问题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图①中有5个黑色正方形,图①中有8个黑色正方形,图①中有11个黑色正方形……依此规律,图10中黑色正方形的个数是( ) A .32B .27C .28D .292.在-44,-43,-42,…,2021,2022这一串连续的整数中,前100个连续整数的和为( ) A .465B .550C .560D .6063.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点2020A 的坐标是( )A .()10100,B .()10101,C .()10110,D .()10111,4.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第①个图形一共有9颗棋子,第①个图形一共有18颗棋子,…,则第①个图形中棋子的颗数为( )A .84B .108C .135D .1525.观察下列图形,图①中有7个空心点,图①中有11个空心点,图①中有15个空心点,…,按此规律排列下去,第50个图形中有( )个空心点.A .196B .199C .203D .2076.小红在课下用叠的五角星排成如下的形状若按照这种排法,则前10个图形中五角星的总个数为( ) A .145B .155C .165D .1757.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边( )上.A .AB B .BC C .CD D .DA8.根据图中数字的规律,则代数式()x y x --的值是( )A .396-B .398-C .400-D .402-二、填空题9.如图,矩形ABCD 的两边BC CD 、分别在x 轴、y 轴上,点C 与原点重合,点()1,2A -,将矩形ABCD 沿x 轴向右翻滚,经过一次翻滚点A 对应点记为1A ,经过第二次翻滚点A 对应点记为2A …依此类推,经过2022次翻滚后点A 对应点记为2022A 的坐标为 .10.用同样大小的黑色棋子按如图表示的方式摆图形,按照这样的规律摆下去,则第100个图形需棋子 枚.11.如图,已知1AB A B = 112223334AC A A A D A A A E A A ===,,, …以此类推,若20B ∠=︒,则n A ∠= .12.如图,在平面直角坐标系中,菱形OABC 中,已知()4,0A ,120OAB ∠=︒对角线AC BO 、交点D ,将菱形OABC 绕点D 顺时针方向旋转,每次旋转60°,则旋转2次后,点D 的坐标是 ,旋转2022次后,点D 的坐标是 .13.有一列数按如下规律排列:则第2019个数是 .14.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为 .三、解答题17.观察下面三行数,回答下面的问题:﹣2,4,﹣8,16,﹣32,64,……;①0,6,﹣6,18,﹣30,66,……;①5,﹣1,11,﹣13,35,﹣61,……;①(1)第①行的第8个数是,第n个数是;(2)第①行的第8个数是,第n个数是;第①行的第8个数是;(3)取每行数中的第k个数,这三个数的和能否等于﹣507?如果能,请你求出k的值,如果不能,请说明理由;(4)若第①行连续三个数的和恰为﹣183,直接写出这三个数分别为.18.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第5个图中共有___________根火柴;(2)第n个图形中共有___________根火柴(用含n的式子表示);(3)请计算第2021个图形中共有多少根火柴?19.动脑筋、找规律.邱老师给小明出了下面的一道题,如图所示,请根据数字排列的规律,探索下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2020个数是正数还是负数?排在对应于A,B,C,D中的什么位置?20.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,第3个图案中有16根小棒……(1)第8个图案中有根小棒;(2)如果第n个图案中有1011根小棒,那么n的值是多少?参考答案:20.(1)41;(2)202。

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题规律探索题类型一数式规律1. (2023鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,…,请你推算22023的个位数字是()A. 8B. 6C. 4D. 22. (2023泰安)将从1开始的连续自然数按以下规律排列:…若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是________.3. (2022怀化)观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m,用含m的代数式表示这组数的和是________.4. (2023张家界)有一组数据:a1=31×2×3,a2=52×3×4,a3=73×4×5,…,a n=2n+1n(n+1)(n+2).记S n=a1+a2+a3+…+a n,则S12=________.5. (2023达州)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,…,S100=1001+a100+1001+b100,则S1+S2+…+S100=________.6. (2023安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2-(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2-(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2-(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2-(5×8)2,…按照以上规律,解决下列问题:(1)写出第5个等式:____________________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.类型二图形规律考向1累加型7. (2023重庆B卷)把菱形按如图所示的规律拼图案,其中第①个图案中有1个菱形,第①个图案中有3个菱形,第①个图案中有5个菱形,…,按此规律排列下去,则第①个图案中菱形的个数为()第7题图A. 15B. 13C. 11D. 98. (2023济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点…按照此规律,第一百幅图中圆点的个数是()第8题图A. 297B. 301C. 303D. 4009. (2023青海省卷)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料________根.第9题图源自人教七上P70第10题10. (2022常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为________.(用含n的代数式表示)第10题图11. (2023遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设下图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为________.第11题图12. (2023德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:第12题图其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,…图①的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图①中第五个正六边形数是________.考向2成倍递变型13. (2023威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,①AOB =①BOC =①COD =…=①LOM =30°.若S ①AOB =1,则图中与①AOB 位似的三角形的面积为( )第13题图A. (43 )3B. (43 )7C. (43 )6D. (34)6 14. (2023荆州)如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n C n D n 的面积是( )A. ab 2nB. ab 2n -1C. ab 2n +1 D. ab22n第14题图15. (2023烟台)如图,正方形ABCD 边长为1,以AC 为边作第2个正方形ACEF ,再以CF 为边作第3个正方形FCGH ,…,按照这样的规律作下去,第6个正方形的边长为( ) A. (22 )5 B. (22 )6 C. (2 )5 D. (2 )6第15题图16. (2023广安)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2…是由多段90°的圆心角所对的弧组成的.其中,弧DA 1的圆心为A ,半径为AD ;弧A 1B 1的圆心为B ,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2023D2023的长是________(结果保留π).第16题图17. (2023绥化)如图,①AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1①OA 交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2①OA交射线OB 于K2,在射线OA上截取P2P3,使P2P3=P2K2;…;按照此规律,线段P2023K2023的长为________.第17题图考向3周期变化型18. (2023玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2023秒钟后,两枚跳棋之间的距离是()A. 4B. 23C. 2D. 0第18题图19. (2023河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O 重合,AB①x轴,交y轴于点P.将①OAP绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A. (3,-1)B. (-1,-3)C. (-3,-1)D. (1,3)第19题图20. (2023毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4);…;按此做法进行下去,则点A10的坐标为________.第20题图类型三与函数图象结合21. (2023龙东地区)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=3x交于点B1,B2,B3,B4…记①OA1B1,①OA2B2,①OA3B3,①OA4B4…的面积分别为S1,S2,S3,S4…则S2023=________.第21题图22. (2022菏泽)如图,一次函数y =x 与反比例函数y =1x(x >0)的图象交于点A ,过点A 作AB ①OA ,交x 轴于点B ;作BA 1①OA ,交反比例函数图象于点A 1;过点A 1作A 1B 1①A 1B 交x 轴于点B 1;再作B 1A 2①BA 1,交反比例函数图象于点A 2,依次进行下去…,则点A 2022的横坐标为________.第22题图23. (2023盐城)《庄子·天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l 1:y =12x +1与y 轴交于点A ,过点A 作x 轴的平行线交直线l 2:y =x 于点O 1,过点O 1作y 轴的平行线交直线l 1于点A 1,以此类推,令OA =a 1,O 1A 1=a 2,…,O n -1A n -1=a n ,若a 1+a 2+…+a n ≤S 对任意大于1的整数n 恒成立,则S 的最小值为________.第23题图类型四 与实际问题结合24. (2022安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图①表示此人行道的地砖排列方式,其中正方形地砖为连续排列.【观察思考】当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图①);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图①);以此类推.第24题图【规律总结】(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加________块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为______(用含n的代数式表示);【问题解决】(3)现有2022块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?参考答案与解析1. C 【解析】21=2,22=4,23=8,24=16,25=32,则2的1,2,3,4次方的个位上的数分别为2,4,8,6,每4个一次循环,而22022中2022÷4=550……2,∴个位上的数为4.2. (10,18) 【解析】按照规律可得每一行的最后一个数为行数的平方,第n 行有(2n -1)个数.∵92=81,102=100,∴99是第10行,第18个数,∴表示99的有序数对是(10,18).3. m 2-m4.201182 【解析】∵a n =2n +1n (n +1)(n +2) =n +n +1n (n +1)(n +2) =n n (n +1)(n +2) +n +1n (n +1)(n +2) =1(n +1)(n +2) +1n (n +2) =1n +1 -1n +2 +12 (1n -1n +2),∴S 12=12 -13 +13 -14 +…+113 -114 +12 ×(1-13 +12 -14 +…+112 -114 )=12 -114 +12 ×(1+12 -113 -114 )=12 +12 +14 -126 -114 -128 =201182. 5. 5050 【解析】∵a =5-12 ,b =5+12 ,∴ab =1,∵S 1=11+a +11+b =2+a +b 1+a +b +ab =2+a +b 2+a +b =1,S 2=21+a 2 +21+b 2 =2(2+a 2+b 2)1+a 2+b 2+a 2b 2 =2(2+a 2+b 2)2+a 2+b 2=2,…,S 100=1001+a 100 +1001+b 100 =100(2+a 100+b 100)1+a 100+b 100+a 100b 100 =100(2+a 100+b 100)2+a 100+b 100=100,∴S 1+S 2+…+S 100=1+2+…+100=100×(100+1)2=5050. 6. 解:(1)(2×5+1)2=(6×10+1)2-(6×10)2;(2)(2n +1)2=[2n (n +1)+1]2-[2n (n +1)]2.证明:等式左边=4n 2+4n +1,等式右边=4n 2(n +1)2+1+4n (n +1)-4n 2(n +1)2=4n (n +1)+1=4n 2+4n +1,∴左边=右边,∴等式成立.7. C 【解析】经分析可得,第个图案的菱形个数为2n -1,∴第⑥个图案中菱形个数为2×6-1=11(个).8. B 【解析】第一幅图中圆点的个数是4=1×3+1;第二幅图中圆点的个数是7=2×3+1;第三幅图中圆点的个数是10=3×3+1;第四幅图中圆点的个数是13=4×3+1;…;按照此规律,第n 幅图中圆点的个数是3n +1,∴第一百幅图中圆点的个数是3×100+1=301.9. n (n +1)2【解析】∵第1个图中有木料1根,第2个图中有木料1+2=3根,第3个图中有木料1+2+3=6根,第4个图中有木料1+2+3+4=10根,…,∴第n 个图中有木料1+2+3+4+…+n =n (n +1)2根. 10. 2n 2+2n 【解析】观察图形可知:第一个图形由1个小正方形组成,所有线段的和为4×1=2×2×1, 第二个图形由4个小正方形组成,所有线段的和为6×2=2×3×2, 第三个图形由9个小正方形组成,所有线段的和为8×3=2×4×3, 第4个图形由16个小正方形组成,所有线段的和为10×4=2×5×4,…由此发现规律是:第n 个图形由n 2个小正方形组成,所有线段的和为2(n +1)·n =2n 2+2n .11. 127 【解析】第一代勾股树中正方形个数=20+21;第二代勾股树中正方形个数=20+21+22;第三代勾股树中正方形个数=20+21+22+23;第四代勾股树中正方形个数=20+21+22+23+24,…,∴第六代勾股树中正方形个数=20+21+22+23+24+25+26=127.12. 45 【解析】由题图可知,题图④前三层点数分别是:1=4×1-3,5=4×2-3,9=4×3-3,…,∴第n 层的点数是4n -3,∴第n 个正六边形数是1+5+9+…+4n -3=4×1-3+4×2-3+4×3-3+…+4n -3=2n 2-n ,∴题图④中第五个正六边形数是2×52-5=45.13. C 【解析】在Rt △AOB 中,∠AOB =30°,∵cos ∠AOB =OA OB ,∴OB =23OA .同理可得OC =23 OB ,∴OC =(23 )2OA ,…,∴OG =(23)6OA ,由题图可知△GOH 与△AOB 位似且位似比为(23 )6.∵S △AOB =1,∴S △GOH =[(23 )6]2=(43 )6. 14. A 【解析】第一次操作后S 四边形A 1B 1C 1D 1=12 S 矩形ABCD =12ab ,第二次操作后S 四边形A 2B 2C 2D 2=12 S 四边形A 1B 1C 1D 1=12 ×12 ab =ab 22 ,第三次操作后S 四边形A 3B 3C 3D 3=12S 四边形A 2B 2C 2D 2=ab 23 ,…,第n 次操作后S 四边形A n B n C n D n =ab 2n . 15. C 【解析】∵正方形ABCD 边长为1,∴AB =BC =1,∴AC =2 ,∴以AC 为边作第2个正方形ACEF 的边长为2 ;∵CF 是正方形ACEF 的对角线,∴CF =2 ×2 =(2 )2=2,∴以CF 为边作第3个正方形FCGH 的边长为2;又∵GF 是正方形FCGH 的对角线,∴GF =2 ×2 ×2 =(2 )3=22 ,以GF 为边作第4个正方形FGMN 的边长为22 ,…∴依此规律可知下一个正方形的边长是原来正方形边长的2 倍,即第n 个正方形的边长为(2 )n -1,∴第6个正方形的边长为(2 )5.16. 2022π 【解析】由题图可知,题图中由一段90°的弧组成的,弧所在圆的半径每次增加12 ,则弧C 1D 1的半径=12 ×4=12 ×4×1,弧C 2D 2的半径=12 ×8=12×4×2,弧C 3D 3的半径=12 ×12=12 ×4×3…,弧C 2022D 2022的半径=12×4×2022=4044,∴弧C 2022D 2022的长=90π180×4044=2022π. 17. 3 (1+3 )2022 【解析】∵∠AOB =60°,OP 1=1,∴P 1K 1=3 OP 1=3 ,∴P 1P 2=P 1K 1=3 ,∴OP 2=1+3 .∵P 2K 2=3 OP 2,∴P 2K 2=3 (1+3 ),∴OP 3=(1+3 )2,∴P 3K 3=3 OP 3=3 (1+3 )2,…,∴依此规律可得P 2023K 2023=3 (1+3 )2022.18. B 【解析】根据两枚跳棋跳动规则可知,红跳棋每过6秒钟跳动回顶点A ,黑跳棋每过18秒钟跳动回顶点A ,∵2022÷6=337,∴经过2022秒后,红跳棋在顶点A 处;∵2022÷18=112……6,6÷3=2,∴经过2022秒钟后,黑跳棋在顶点E 处.如解图,连接AE ,过点F 作FG ⊥AE 于点G ,∵六边形ABCDEF 是边长为2的正六边形,∴∠AFE =120°,FE =AF ,∴∠F AE =30°,∴AG =EG =AF ·cos 30°=2×32 =3 ,∴AE =23 ,即两枚跳棋之间的距离是23 .第18题解图19. B 【解析】如解图,连接OB ,∵AB ∥x 轴,∴AB ⊥y 轴,∵六边形ABCDEF 是正六边形,点O 是中心,∴OB =OA ,∠AOB =60°,∴∠AOP =30°,AP =12AB =1,∴OP =3 ,∴点A (1,3 ),将△AOP 绕点O 顺时针每次旋转90°,则第1次结束点A 的坐标为(3 ,-1),第2次结束点A 的坐标为(-1,-3 ),第3次结束点A 的坐标为(-3 ,1),第4次结束点A 的坐标为(1,3 ),…,∴每4次一个循环,∵2022=4×505+2,∴第2022次旋转结束时,相当于第2次结束,∴点A 的坐标为(-1,-3 ).第19题解图20. (-1,11) 【解析】由图象可知,A 5(5,1),将点A 5向左平移6个单位,再向上平移6个单位,可得A 6(-1,7),将点A 6向左平移7个单位,再向下平移7个单位,可得A 7(-8,0),将点A 7向右平移8个单位,再向下平移8个单位,可得A 8(0,-8),将点A 8向右平移9个单位,再向上平移9个单位,可得A 9(9,1),将点A 9向左平移10个单位,再向上平移10个单位,可得A 10(-1,11).21. 240433 【解析】∵S 1=1×32 = 20×32 ,S 2=2×232 = 22×32,… ,依此规律可得S n = 22(n -1)×32 ,∴S 2023= 22×(2023-1)×32= 240433 . 22. 2021 +2022 【解析】∵点A 是函数y =x 与y =1x的图象在第一象限的交点,∴点A 的坐标为(1,1),又∵AB 垂直于直线y =x ,∴点B 坐标为(2,0),又∵BA 1∥OA ,∴BA 1的解析式为y =x -2,与y =1x 联立,解得x =1+2 (负值已舍),即点A 1的横坐标为1+2 ;同理可得B 1的横坐标为22 ,∵B 1A 2∥BA 1,∴B 1A 2的解析式为y =x -22 ,与y =1x 联立,解得A 2的横坐标为2 +3 (负值已舍);…;依此按规律可得A 2021的横坐标为2021 +2022 .23. 2 【解析】由题可得a 1=OA =1,而y =x 与y 轴的正方向的夹角是45°,O 1A ⊥y 轴,∴O 1A =OA =1,∴ 点O 1的横坐标是1,对于y =12 x +1,当x =1时,y =32,∴a 2=O 1A 1=12 ,∴tan ∠A 1AO 1=O 1A 1O 1A =12 ,依次得出A 1O 2=A 1O 1=12 ,a 3=A 2O 2=12 A 1O 2=(12)2,…,可以得出A n -1O n -1=(12 )n -1,∴a 1+a 2+…+a n -1+a n =1+12 +…+(12 )n -2+(12)n -1①,①×2得2×(a 1+a 2+…+a n -1+a n )=2+1+12 +…+(12 )n -3+(12)n -2②,②-①得a 1+a 2+…+a n -1+a n =2-(12 )n -1,∴S ≥2-(12)n -1,∴S 的最小值是2. 24. 解:(1)2;【解法提示】观察题图②与题图③,每增加1块正方形地砖,则增加2块等腰直角三角形地砖.(2)2n +4;【解法提示】在题图②中,正方形地砖1块,等腰直角三角形地砖(4+2)块;在题图③中,正方形地砖2块,等腰直角三角形地砖(4+2×2)块;正方形地砖若有3块,则等腰直角三角形地砖(4+2×3)块;…;依此按规律可得正方形地砖若有n 块,则等腰直角三角形地砖有(4+2n )块.(3)设需要正方形地砖n块,∴2n+4≤2021,解得n≤1008.5,∵n为正整数,∴n最大取1008,答:需要正方形地砖1008块.。

完整)初中数学找规律专项练习题(有答案)

完整)初中数学找规律专项练习题(有答案)

完整)初中数学找规律专项练习题(有答案)1、观察规律:1=1;1+3=4;1+3+5=9;1+3+5+7=16;…,则2+6+10+14+…+2014的值是多少?2、用四舍五入法对取近似数,并精确到千位,用科学计数法表示为多少?3、观察下面的一列数:-1,2,-3,4,-5,6…请找出其中排列的规律,并按此规律填空。

(1)第10个数是多少?第21个数是多少?(2)-40是第几个数?26是第几个数?4、一组按规律排列的数:1,3,6,10,15…请推断第9个数是多少?5、计算:(-100)+(-101)=多少?(-2)+(-2)=多少?6、若。

则等于多少?7、大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成多少个?8、猜数字游戏中,XXX写出如下一组数:1,3,5,7,9…n个数是…,XXX猜想出第六个数字是多少?根据此规律,第9、10个数字分别是多少?9、若。

与|b+5|的值互为相反数,则等于多少?10、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制二进制 1 1 2 10 3 11 4 100 5 101 6 110 …… 请将二进位制xxxxxxxx(二)写成十进位制数为多少?11、为求。

值,可令S=。

则2S=。

因此所以。

仿照以上推理计算出的值是多少?二、选择题13、的值是多少?【】A.-2 B.-1 C.0 D.114、已知8.62=73.96,若x=0.7396,则x的值等于()A.86.2B.862C.±0.862D.±86215、计算:(-2)+(-2)的值是多少?A.2B.-1C.-2D.-416、计算等于多少?A. B. C. D.17、已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么的值是多少?A.3 B.2 C.1 D.018、若。

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道,后附答案)一:数式问题1.已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a ab b+=⨯(a 、b 为正整数)则a b +=.2.有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于()A.2010B.2009C.401D.3343.有一组单项式:a 2,-a 32,a 43,-a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为.4.有一列数1234251017--,,,…,那么第7个数是.5.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.6.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第行第列.第1列第2列第3列第4列第1行123第2行654第3行789第4行121110……7.将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n=;②第i行第j列的数为(用i,j表示).第1列第2列第3列…第n列第1行123…n第2行1+n2+n3+n…n2第3行12+n22+n32+n…n3………………二:定义运算问题8、有一列数1a,2a,3a, ,n a,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a=,则2007a为()A.2007B.2C.12D.1-三:剪纸问题9.如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是()10题图四:数形结合问题10、已知,A、B、C、D、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)11、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为.12、如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为.四:图形问题13.如图所示,已知:点(00)A ,,3B ,,(01)C ,在ABC △内依次作yxO P 1P 2P 3P4P 5A 1A 2A 3A 4A 5(第12题图)2y x=第14题图C 2D 2C 1D 1CD AB等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于()14.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为.15.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).16.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角O yx(A )A 1C112B A 2A 3B 3B 2B 1第13题图BCAE 1E 2E 3D 4D 1D 2D 3(第15题)(第16题)形,则第n个图案中正三角形的个数为(用含n 的代数式表示).17.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.18.观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有个.19.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有个★.五:对称问题20.在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A ,.一只电子蛙位于坐标原点处,第1次电子蛙由原点第1个图第2个图第3个图第4个图(第18题图)第17题图图案1图案2图案3……跳到以A为对称中心的对称点1P,第2次电子蛙由1P点跳到以2A为对1称中心的对称点P,第3次电子蛙由2P点跳到以3A为对称中心的对称2点P,…,按此规律,电子蛙分别以1A、2A、3A为对称中心继续跳下3去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P(_______,2009_______).参考答案1、8+63=712、D3、-a11104、-7505、(1)n×=n-;(2)证明见解析.【解析】试题分析:(1)等号左边第一个因数为整数,与第二个因数的分子相同,第二个因数的分母比分子多1;等号右边为等号左边的第一个数式-第二个因数,即n×=n-;(2)把左边进行整式乘法,右边进行通分.试题解析:(1)猜想:n×=n-;(2)证:右边==左边,即n×=n-考点:规律型:数字的变化类.6、670,第三列7、1010(i-1)+j8、D 9、C 10、13π-2611、1012、1/513、14、15、16、2n+217、30218、19、4920、(2,2)。

中考规律探索题及答案

中考规律探索题及答案

精心整理探索规律题类型一数字规律1、下面是按一定规律排列的一列数:??,那么第n个数??、观察下列等式:,,,,,,猜想,的个位数字是__观察等式:,,,,,可得,位数字是,次方的个位数字是,,,次方的个位数字是,个位数字的变化是以、、、为周期,即周期为又因为,所以的个位数字相同为故本题正确答案为律性,若把第一个三角形数记为,第二个三角形数记为,第n个三角形数记为,则.答案解:,═,,═,═,…,则,:,,,,,即、,然后计算可得、按一定规律排列的一列数:,,,,,察,按照此规律对应的数字应为解析将中间两个化为分数之后为:,,,,,,,,观察可知分子是从开始不断递增的奇数,分母是从开始不断递增的质数,那么根据这个规律即可得到。

故本题正确答案为。

考点规律探索。

5、如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的?,一般地,用含有m,n的代数式表示y,即?.?,,,?,:63;右上数字(,,,,,,它们是按一定规律排列的,依照此规律,第个数据是由数据,,,,,数个数据为正数,所以数据中带有这个因式,将化成,则这组数据变成,,,母的平方再加,所以这组数据中第个分数为,将代入可得出分数。

故本题正确答案为。

7、“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示示()A.C n H2n+2B.C n H2nC.C n H2n-2D.C n H n+3答案此题答案为:A.解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,“①,③,④(2)由(1)可以猜测与?(n为正整数)的大小关系:当n时,;当n时,;????(3)根据上面的猜想,可以知道:(填“”、“”或“=”).答案<<>>≤2≥3>解:(1)①,,故;③,,④,,①②④当时,当时,.:;.(3),.由,1、(11·曲靖)将一列整式按某种规律排成x,-2x2,4x3,-8x4,16x 5…则排在第六个位置的整式为________.答案-32解析符号的规律:n为奇数时,单项式为正号,n为偶数时,符号为负号;系数的绝对值的规律:第n个对应的系数的绝对值是2n-1.指数的规律:第n个对应的指数是n.解:根据分析的规律,得:第六个位置的整式为:-25x6=-32x6.故答案为:-32x6.、已知,,,,(为正整数,且,),则,,可以整除,所以。

中考数学 探索规律分类训练

中考数学 探索规律分类训练

探索规律训练一、等差例1:下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是,第n 个中黑色正方形个数为:练习:1、下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为2、观察下列一组数: ,,,,94735231根据这组数的排列规律,可推出第10个数是_______.二、高斯求和例2:古希腊数学家把数1,3,6,10,15,21,…,叫作三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…,依此类推,那么第9个三角形数是 ,2016是第个三角形数.练习:1、如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第n 个图由个圆组成.2、观察下列砌钢管的横截面图:则第n 个图的钢管数是(用含n 的式子表示)3、如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需火柴根数为4、观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图形中共有10个点,第3个图形共有19个点,…,按此规律第n个图形中共有点的个数5、下面是某一种规律排列的数阵:根据规律,第n(n>3)行,第3个数是三、平方型例3:观察下列各数:,9,4,1,按你发现的规律计算这列数的第n个数为16,练习:1、观察下列各数:15,8,3,按你发现的规律计算这列数的第n个数为,,242、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块块数为例4:下列式子按一定规律排列: ,24,12,6,3753a a a a ,则第2016个式子是________. 练习:1、如图,在第1个△A1BC 中,∠B=30°,A1B=CB ;在边A1B 上任取一点D ,延长CA1到A2,使A1A2=A1D ,得到第2个△A1A2D ;在边A2D 上任取一点E ,延长A1A2到A3,使A2A3=A2E ,得到第3个△A2A3E ,…,按此做法继续下去,则第n 个三角形中以An 为顶点的内角度数是( )A.n⎪⎭⎫⎝⎛21·75° B.1-21n ⎪⎭⎫⎝⎛·65° C.1-21n ⎪⎭⎫⎝⎛·75° D.n⎪⎭⎫⎝⎛21·85°2、在平面直角坐标系中,正方形1111D C B A 、2211B E E D 、2222D C B A 、3432B E E D 、3333D C B A …按如图所示的方式放置,其中点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C …在x 轴上,已知正方形1111D C B A 的边长为1,∠O C B 11=60°,11C B ∥22C B ∥33C B …则正方形2015201520152015D C B A 的边长是( )A .B .C .D .五、周期例5:如图,已知正方形ABCD ,顶点A (1,3),B (1,1),C (3,1),规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2 016次变换后,正方形ABCD 的对角线交点M 的坐标变为 ( )A.(-2 014,2)B.(-2 014,-2)C.(-2 015,-2)D.(-2 015,2)201421)(201521)(201533)(201433)(1、将一组数3,6,3,32,15,…,103,按下面的方法进行排列:3,6,3,32,15; 23,21,62,33,30; …若32的位置记为(1,4),62的位置记为(2,3),则这组数中最大的有理数的位置记为( )2、在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )3、如图,A 点的初始位置位于数轴上的原点,现对A 点做如下移动:第1次从原点向右移动1个单位长度至B 点,第2次从B 点向左移动3个单位长度至C 点,第3次从C 点向右移动6个单位长度至D 点,第4次从D 点向左移动9个单位长度至E 点,…,依此类推,这样至少移动______次后该点到原点的距离不小于41.4、将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b=_______.5、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是( )六、图形的变换例:将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=练习:1、如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11E D 到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕20142014E D 到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为2、下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有七、计算归纳例7:观察下列关于自然数的等式: 32-4×12=5 ① 52-4×22=9 ② 72-4×32=13 ③ …根据上述规律解决下列问题:(1)完成第四个等式:92-4×( )2=( );(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.练习: 1、已知⎪⎭⎫ ⎝⎛-=⨯31121311,⎪⎭⎫ ⎝⎛-=⨯513121531,⎪⎭⎫ ⎝⎛-=⨯715121751,… 依据上述规律,计算201720161751531311⨯++⨯+⨯+⨯ 的结果为_______2、观察下列等式:32-12=8,52-12=24,72-12=48,92-12=80,…,由以上规律可以得出第n 个等式为_________.八、函数例8:如图,△211A B A ,△322A B A ,433A B A ,…,1+∆n n n C B A 都是等腰直角三角形,其中点1A ,2A ,…,n A 在x 轴上,点1B ,2B ,…,n B 在直线y=x 上,已知1OA =1,则2015OA =________.练习:1、如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…An ,….将抛物线y=x2沿直线L :y=x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M1,M2,M3,…Mn ,…都在直线L :y=x 上; ②抛物线依次经过点A1,A2,A3…An ,…. 则顶点M2 016的坐标为(________,________).2、正方形O C B A 111,1222C C B A ,2333C C B A ,…按如图的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x 轴上,则点B6的坐标是__________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练找规律题型1. (2009年淄博市)如图,网格中的每个四边形都是菱形.如果格点三角形ABC 的面积为S ,按照如图所示方式得到的格点三角形A 1B 1C 1的面积是7S ,格点三角形A 2B 2C 2的面积是19S ,那么格点三角形A 3B 3C 3的面积为.2. (2009年娄底)王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n 个“中”字形图案需根火柴棒.3. (2009丽水市)如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3 块纸板的周长为P n ,则P n -P n-1.4. (2009年广州市)如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________…①②③④B 33(第17题)5.(2009年益阳市)图6是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数个图案中由个基础图形组成.-6.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个. 7.(2009年宜宾)如图,菱形ABCD 的对角线长分别为ba 、,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,……,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含b a 、的代数式表示为.第20题图38.(2009年日照)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0 和x 轴上,已知点B 1(1,1 ,B 2(3,2 ,则B n 的坐标是______________.(第17题图)图6(1(2 (3 ……第1个第2个第3个9. (2009年广西梧州)图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s =.(用n 的代数式表示s )10.(2009年湖州如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45DD ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S . 则n S ABC S △(用含n 的代数式表示).11. (2009年广东省)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).12.(2009年山西省)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为.(1)(2)(3)BCAE 1 E 2 E 3D 1……n =1 n =2n =313.(2009 黑龙江大兴安岭)如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为.14.(2009年本溪 16.如图所示,已知:点(00 A ,,B ,(01 C ,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于.15.(2009年抚顺市观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有个.16. 如图,已知MN 是圆柱底面的直径,NP 是圆柱的高,在圆柱的侧面上,过点M ,P 有一副路径最短的金属丝,现将圆柱侧面沿NP 剪开,所得的侧面展开图是()16题图D1(1)(2)(3)………… 第1个图第2个图第3个图第4个图17.如图在ABC ∆中,90C ∠=︒,BC=1,AC=2,把边长分别为123, , , , n x x x x ⋅⋅⋅的n 个正方形放入ABC ∆中:第一个正方形111CM PN 的顶点分别放在ABC ∆的各边上;第二个正方形1222M M P N 的顶点分别放在11Rt APM ∆的各边上,⋅⋅⋅⋅⋅⋅,其它正方形依次放入。

则第三个正方形的边长3x 为________,第n 个正方形的边长n x=______.19. 如图所示,将一张矩形纸片对折,可得到一条折痕(图中的虚线),连续对折,对折时每次折痕与上次折痕保持平行,连续操作三次可以得到7条折痕,那么对折n 次可以得到的折痕条数是_____________________.第一次第二次第三21. 如图,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:(1)第4个图案中有白色纸片__________张。

(2)第n 个图案中有白色纸片__________张。

第1个第2个第3个622. 如图,在半径为R 的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,以此作到第n 个内切圆,它的半径是()A. n RB. 1( 2n RC. 11( 2n R -D.1n R -24. 木材加工厂堆放木料的方式如图所示:依此规律可得出第6堆木料的根数是。

25. 下图是某同学在沙滩上用石于摆成的小房子.726. 观察图形的变化规律,写出第n 个小房子用了下面是按照一定规律画出的一列“树型”图:27. 经观察可以发现:图⑵比图⑴多出2个“树枝”,图⑶比图⑵多出5个“树枝”,图⑷比图⑶多出10个“树枝”,照此规律,图⑺比图⑹多出_________个“树枝”.28. 如图, 已知12345(1,0, (1,1,(1,1, (1, 1, (2,1 A A A A A ----,则点2008A 的坐标为___________.29观察下表中三角形个数变化规律,填表并回答下面问题。

问题:如果图中三角形的个数是102个,则图中应有___________条横截线。

30. 观察下面一列数:2,5,10,x ,26,37,50,65,……,根据规律,其中x 表示的数是。

31 观察数列1,1,2,3,5,8,x,21,y, …, 则2x-y=______________.32 观察下列等式:10122=- 、 31222=- 、 52322=-、73422=- ……用含自然数n 的等式表示这种规律为。

33 已知:3223222⨯=+,8338332⨯=+,154415442⨯=+,…若ba b a ⨯=+21010(a 、……第17题图8b 为正整数),则a +b =。

34. 如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1……的规律报数,那么第2007名学生所报的数是35.数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数是。

10. 观察下列等式:211=2132+= 21353++=……………根据观察可得:13521n ++++-= _________.(n 为正整数)36. 古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。

37. 观察下列等式9-1=816-4=12 25-9=16 36-16=20 …………这些等式反映自然数间的某种规律,设n(n≥1表示自然数,用关于n 的等式表示这个规律为 .38. 观察下列等式:第一行 3=4-1第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____________39.有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2007a 为()A.2007B.2C.12D.1-40.观察下列等式:223941401⨯=-, 224852502⨯=-, 225664604⨯=-, 226575705⨯=-,228397907⨯=-…请你把发现的规律用字母表示出来:m n = .941.观察下列各式: 3211=332123+= 33221236++= 33332123410+++=……猜想:333312310++++= .42.观察下列等式:16-1=15; 25-4=21; 36-9=27; 49-16=33;… …用自然数n (其中1n ≥)表示上面一系列等式所反映出来的规律是。

43. 按一定的规律排列的一列数依次为:111111, , , , , 2310152635┅┅,按此规律排列下去,这列数中的第7个数是 . 44. 观察下列不等式,猜想规律并填空:12+ 22> 2×1×2;(2)2+(21)2> 2×2×21(- 2)2+ 32> 2×(-2)×3;22+ 2 > 2×2(- 4)2+ (-3 2> 2×(-4)×(-3 ; (-2 22> 2×2a +b > _____________(a≠b45..观察下列各式:11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭,111157257⎛⎫=- ⎪⨯⎝⎭,…,根据观察计算:1111133557(21(21n n ++++⨯⨯⨯-+ =n 为正整数) 46.2009年广西南宁)正整数按图8的规律排列.请写出第20行,第21列的数字.第一行第二行第三行第四行第五行第一列第二列第三列第四列第五列1 ... 4 3 ... 9 8 7 ... 16 14 13 (25)23 2221………图81047.(2009年桂林市、百色市)如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 2008BC 与∠A 2008CD 的平分线相交于点A 2009,得∠A 2009 .则∠A 2009=.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行 11第二行12 12 第三行 13 16 13第四行 14 112 112 14第五行 15 120 130120 15… …… ……根据前五行的规律,可以知道第六行的数依次是:.50. 我国宋朝数学家杨辉在他的著作《祥解九章算法》中提出右表,此表揭示了n b a (+(n为非负数)展开式的各项系数的规律。

相关文档
最新文档