18[1].1勾股定理第二课时精品PPT课件
合集下载
《勾股定理》PPT课件(第2课时)
上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,
沿着台阶面爬到B点,最短线路是多少?
A
A
B
解:台阶的展开图如图,连接AB.
在Rt△ABC中,根据勾股定理得
C
AB2=BC2+AC2=552+482=5329, ∴AB=73cm.
B
6.如图,一个牧童在小河的南4km的A处牧马,而他正位于他
的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,
能通过,所以只能考虑斜着.观察可以发现 AC
的长度是斜着能通过的最大长度,所以只要
AC的长大于木板的宽就能通过.
A
B
1m
解:连接AC,在Rt△ABC中,根据勾股定理,
D
C
A
B
2m
得AC2=AB2+BC2=12+22=5,
所以AC 5 2.24 .
因为AC的长大于木板的宽2.2m,
所以木板能从门框内通过.
资料下载:/ziliao/
试卷下载:/shiti /
手抄报:/shouc haobao/
语文课件:/keji an/yuwen/
英语课件:/keji an/ying yu/
科学课件:/keji an/kexue/
第 十七章 勾股定理
第十七章
17.1
勾股定理
勾股定理
第二课时
学习目标
1
会运用勾股定理求线段长及解决简单的实际问题. (重点)
2
能从实际问题中抽象出勾股定理的数学模型,并能利用
勾股定理建立已知边与未知边长度之间的联系,进一步
求出未知边长. (难点)
新课导入
知识回顾
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
沿着台阶面爬到B点,最短线路是多少?
A
A
B
解:台阶的展开图如图,连接AB.
在Rt△ABC中,根据勾股定理得
C
AB2=BC2+AC2=552+482=5329, ∴AB=73cm.
B
6.如图,一个牧童在小河的南4km的A处牧马,而他正位于他
的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,
能通过,所以只能考虑斜着.观察可以发现 AC
的长度是斜着能通过的最大长度,所以只要
AC的长大于木板的宽就能通过.
A
B
1m
解:连接AC,在Rt△ABC中,根据勾股定理,
D
C
A
B
2m
得AC2=AB2+BC2=12+22=5,
所以AC 5 2.24 .
因为AC的长大于木板的宽2.2m,
所以木板能从门框内通过.
资料下载:/ziliao/
试卷下载:/shiti /
手抄报:/shouc haobao/
语文课件:/keji an/yuwen/
英语课件:/keji an/ying yu/
科学课件:/keji an/kexue/
第 十七章 勾股定理
第十七章
17.1
勾股定理
勾股定理
第二课时
学习目标
1
会运用勾股定理求线段长及解决简单的实际问题. (重点)
2
能从实际问题中抽象出勾股定理的数学模型,并能利用
勾股定理建立已知边与未知边长度之间的联系,进一步
求出未知边长. (难点)
新课导入
知识回顾
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)
13.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5 和11,则b的面积为( C)
A.4 B.6 C.16 D.55
14.如图,隔湖有两点A,B,从与BA方向成直角的BC方向 上的点C,测得CA=50米,CB=40米,求:
(1)A,B两点间的距离; (2)点B到直线AC的距离.
解:作BD⊥AC于点D.(1)由勾股定理得AB=30米 (2)由面积 法: 12 AB×BC= 12 AC×BD,得BD=24(米).答:A,B两点间的距离 是30米,B点到直线AC的距离是24米
A.0.7米 B.0.8米 C.0.9米 D.1.0米
9.如图所示是一段楼梯,高BC=3 cm,斜边AB是5 m,如果 在楼梯上铺地毯,那么至少需要地毯( C )
A.5米 B.6米 C.7米 D.8米
10.如图,一个透明的圆柱形状的玻璃杯,由内部测得其底面 半径为3 cm,高为8 cm,今有一支12 cm的吸管任意斜放于杯中, 若不考虑吸管的粗细,吸管露出杯口长度最少为____cm2.
17.为了丰富少年儿童的业余文化生活,某社区要在如图的 AB所在的直线上建一图书阅览室.该社区有两所学校,所在 的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B.已知AB =25 km,CA=15 km,DB=10 km.试问:阅览室E建在距点A 多少千米处,才能使它到C,D两所学校的距离相等.
11.如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请你帮他计算 阳光透过的最大面积.
解:在直角三角形中,由勾股定理可得,直角三角形的斜边长 为5 m,所以长方形塑料薄膜的面积是5×20=100(m2)即阳光 透过的最大面积是100 m2
(课件1)18.1勾股定理
图1-1
图1-2
勾股定理(1)
看 一 看
发们 映 友 现, 直 家 什我 角 作 相 么们 三 客 传 ? 也 角 , 25 来 形 发 00 观三现年 察边朋前 下的友, 面某家一 的种用次 图数砖毕 案量铺达 ,关成哥 看系的拉 看,地斯 你同面去 能学反朋
(1)观察图2-1
C A B 图2-1 A B
比 一 比 看 看 谁 算 得 快 !
5 7 25
x
20
16
x
12
x
方法小结: 可用勾股定理建立方程.
1、如图,一个高3 米,宽4 米的大门,需在相 对角的顶点间加一个加固木条,则木条的长 为 ( C )
A.3 米 B.4 米 C.5米 D.6米
3 4
2、湖的两端有A、B两点,从与BA方向成直 角的BC方向上的点C测得CA=130米,CB=120米, 则AB为 ( A ) A.50米 B.120米 C.100米 D.130米
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
C A B 图2-1 A B
S正方形c
C
1 62 2
(单位面积) 18
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
C A B 图2-1 A B
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。早在三千多年前 《周髀算经》中。
《勾股定理的逆定理》PPT免费课件(第2课时)
田的面积为( A )
A.7.5平方千米
B.15平方千米
C.75平方千米
D.750平方千米
课堂检测 基础巩固题
B
1.五根小木棒,其长度分别为7,15,20,24,25,现将他 们摆成两个直角三角形,其中摆放方法正确的是 ( D )
A.
B.
B
C.
D.
课堂检测
2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东 25°的方向,且到医院的距离为300 m,公园到医院的距离为 400 m,若公园到超市的距离为500 m,则公园在医院的 ( B ) A.北偏东75°的方向上 B.北偏东65°的方向上 C.北偏东55°的方向上 D.无法确定
课堂检测
3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,
同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,
2h后同时停下来,这时A,B两组相距30km.此时,A,B两组
行进的方向成直角吗?请说明理由.
解:∵出发2小时,A组行了12×2=24(km),
A
B组行了9×2=18(km),
Байду номын сангаас
巩固练习
解:由题意得,OB=12×1.5=18海里, OA=16×1.5=24海里, 又∵AB=30海里, ∴182+242=302,即OB2+OA2=AB2, ∴∠AOB=90°. ∵∠DOA=40°, ∴∠BOD=50°. 则另一艘舰艇的航行方向是北偏西50°.
探究新知
知识点 2 利用勾股定理的逆定理解答面积问题
应用 方法
航海问题
与勾股定理结合解决不规 则图形等问题
认真审题,画出符合题意的图 形,熟练运用勾股定理及其逆 定理来解决问题
勾股定理 PPT课件 10 人教版
练习: 1、求下列图中字母所表示的正方形的面积
A =625
225
400
81
B =144
225
2、求出下列直角三角形中未知边的长度
x 6
8
x
5 13
解:由勾股定理得:
x2=62+82 x2 =36+64 x2 =100 ∵x>0 ∴ x=10
∵ x2+52=132 ∴ x2=132-52
x2 =169-25 x2 =144 ∵x>0
•
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
相传二千多年前,希腊的毕达哥拉斯学派首先证明了
勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯 定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了 一枚纪念邮票。
试
我们用下面方法来说明勾股定理是正确的
一
c
c
c
c
试
a
a
a
a
b
b
b
b
(a+b)2= 4 ab C2 2
c2 = a2+ b2
•
36、每临大事,心必静心,静则神明,豁然冰释。
•
37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。
•
38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
•
39、人的价值,在遭受诱惑的一瞬间被决定。
•
40、事虽微,不为不成;道虽迩,不行不至。
•
41、好好扮演自己的角色,做自己该做的事。
•
2、从善如登,从恶如崩。
•
3、现在决定未来,知识改变命运。
沪科版八年级下册数学-18.1勾股定理1——两点之间的距离公式-课件(共19张PPT)
x
平面内有一点A(3,4),如何求O,A之间的距 离|OA|?
|OB|=3 |AB|=4 |OA|=5
两点间距离公式及应用(授新)
y
5
4
3
A(1,2)
2
1
B(5,5) C (5,,2)
-2 -1 0 1 2 3 4 5
x
B1
平面上两点A(1,2),B(5,5),如何计算这两点之间的距离|AB|?
|AC|=|xA-xC|=|1-5|=4
两点之间的距离公式
两点间距离公式及应用(复习导入)
A
B
-2 -1 0 1 2 3
|AB|=|-2-3|=|-5|=5
两点间距离公式及应用(复习导入)
C
D
x1
-2 -1 0 1 2 3
x2
|CD|=|x1-x2|
两点间距离公式及应用(授新)
y
5
|AB|=|5-1|=4
4
3
A(1,2)
2
1
B(5,2)
|BC|= |yB-yC|=|5-2|=3
|AB|=5
两点间距离公式及应用(授新)
平面上任意两点A(x1,y1)和B(x2,y2),如何计算AB两点之间的距离|AB|
y
A(x1,y1)
|BC|=|x2-x1|
C(x1,y2)
B(x2,y2)
0
A1
x
平面直角坐标系中两点之间的距离公式:
|AC|=|y2-y1|
两点间距离公式及应用(作业)
1、P62思考 2、P63.3
两点间距离公式及应用(拓展延伸)
1、在平面内,已知A(1,-1),B(b,3),且AB=5,求b 2、已知A(1,1),B(3,-1),C(3,y),且△ABC为等腰三角形, 求y
勾股定理第二课时课件
总结
总结勾股定理的概念、证明和应用
我们将回顾本课的重点信息,以帮助您更好地理解和应 用勾股定理。
强化勾股定理的记忆方式
我们将分享一些强化学习和记忆勾股定理的方法和技巧, 帮助您更好地掌握这个重要的数学定理。
参考书目
• 《数学之美》 • 《勾股定理辅导书》 • 《数学分级教学丛书》
怎样寻找更多的勾股数
我们将介绍寻找勾股数的方法,以及为什么有些勾股数更难找。
勾股数的性质
我们将展示有关勾股数的一些常见性质,例如它们在三角形中如何分布。
习题讲解
1
不同难度的习题讲解
我们将提供一些挑战性习题,并展示如何使用勾股定理解决这些问题。
2
提高对勾股定理的掌握程度
我们将讨论如何通过分析习题解决方法,来提高对勾股定理的理解和掌握程度。
勾股定理的证明
1
对直角三角形进行分析
我们将研究如何对一个直角三角形进行大小分析,为证明勾股定理打下基础。
2
利用各边长的平方和展开式进行证明
我们将展示如何利用各边长的平方和解决这个问题,以证明勾股定理。
3
用几何证明法证明勾股定理
我们将探讨如何通过建立几何辅助图形来证明勾股定理。
勾股定理的应用
解决实际问题中的直角三角形
我们将探究如何将勾股定理应用于解决建筑、测量和 工程等实际问题。
利用勾股定理计算未知边长
从已知边长开始,我们将展示如何利用勾股定理计算 直角三角形的第三个边长。
应用勾股定理求直角三角形的面积
从已知边长开始,我们将证明如何使用勾股定理求出
常见勾股数
3、4、5和5、1 2 、1 3 这样的勾股数
我们将介绍三个常见的勾股数,并解释它们的来源和性质。
《勾股定理的逆定理》勾股定理PPT课件(第2课时)
13
4
12
┐
3
探究新知
解:连接BD 在Rt△ABD中
∵AB=3,AD=4 ∴BD= AB 2 AD 2 =5
在△BCD中 ∵CD=13 , BC=12
∴CD2=BC2+BD2
13
45
12
┐
3
∴△BCD是直角三角形 ∴∠DBC=90°
∴S四边形ABCD=S△ABD+S△BCD = 1×3×4+ 1×5×12=36
此时四边形ABCD 的面积是多少?
5、 已知a、b、c为△ABC的三边,且 满足 a2+b2+c2+338=10a+24b+26c. 试判断△ABC的形状.
思维训练
6、△ABC三边a,b,c为边向外作 正方形,正三角形,以三边为 直则径作是半直圆角,三若角S形1+吗S2=?S3成立,
C
S2
A
b
ca
能替工人师傅想办法完成任务吗?
9.三个半圆的面积分别为S1=3π, S2=4π,S3=7π,把三个半圆拼成如 右图所示的图形,则△ABC一定是
直角三角形吗?
B
C
D
B'
A'
A
B
勾股定理:
如果直角三角形的两直角边为a,b, 斜边长为c ,那么a2+b2=c2.
B
反过来,如果一个 a
c
三角形的三边长a、b、
(C)1:2:4; (D)1:3:5.
3. 三角形的三边分别是a、b、c, 且满足
(a+b)2-c2=2ab, 则此三角形是:( )
A. 直角三角形;
B. 是锐角三角形;
勾股定理2优质课件PPT
图,你能用两种方法表示
大正方形的面积吗?
c
大正方形的面积可以表 b
示为 ————(—a+—b—)—²——
a
又可以表示为:—c—2——12—a——b4
cb
c a
b
对比两种表示方法,你得到勾股定理了吗?
2021/02/01
9
证法(二) 弦图
赵爽
东汉末至三国时代 吴国人
为《周髀算经》作 注,并著有《勾股 圆方图说》。
方法 小结
(3) 已知:c=13,b=5,求a; (4) 已知: a:b=3:4, c=15,求a、b.
2021/02/01
(1)在直角三角形中,已知两边,可求第三边; (2)可用勾股定理建立方程.
13
例2:如图将长为5.41米的梯子AC斜靠在墙上,BC长
为2.16米,求梯子上端A到墙的底端B的距离AB(精确
2021/02/01
10
c2 = (b a)2 + 1 ab 4 2
= a2 2ab + b2 + 2ab
c
c2= a2 + b2
2021/02/01
11
证法(三) 总统证法
a
伽菲尔德的证明方法.1881年, 伽菲尔德就任美国第二十任总统后, 人们为了纪念他对勾股定理的证明, 就称这一证法称为“总统”证法。
∟
∟
bc
c a
2021/02/01
b
½(a + b)(b + a) = ½c2 + 2(½ab)
½a2 + ab + ½b2 = ½c2 + ab
a2 + b2 = c2
你还有其他证明
勾股定理第2课时课件
什么是勾股定理?
1 三角形的边和角的基本概念
解释三角形的边和角的基本概念,为学生理解勾股定理做铺垫。
2 勾股定理的几何意义
揭示勾股定理在几何学中的重要作用和意义。
勾股定理的表示方法
1 勾股定理的两种形式
2 勾股定理的证明方法
介绍勾股定理的直角三角形两种表示方 法,加深学生对其理解。
探讨勾股定理的证明方法,培养学生的 证明能力。
勾股定理第2课时ppt课件
这是一份关于勾股定理第2课时的PPT课件。通过本课时,我们将深入了解勾 股定理的几何意义、表示方法、证明方法、性质与判定方法,并探讨其在实 际应用中的使用。
引言
1 上节课回顾
2 本节课概要
回顾上节课学习的内容,为本节课的学 习打下基础。
介绍本节课的学习目标和内容,为学生 提供一个清晰的学习框架。
总结
1 回顾本节课内容
2 下节课预告
总结本节课所学内容,帮助学生巩固知 识。
展望下节课的内容,激发学生的学习兴 趣。
笛卡尔坐标系中的勾股定理
1 直角三角形的边长度的计算
教授如何利用勾股定理在笛卡尔坐标系中计算直角三角形的斜边长度。
2 证明斜边长度公式
引导学生自行证明斜边长度公式,锻炼他们的推理和证明能力。
勾股数的性质与判定方法
1 什么是勾股数
阐述勾股数的定义和特点,帮助学生理解勾股数的概念。
2 勾股数的判定方法
介绍如何判断一个数是否是勾股数,激发学生的思考和分析能力。
3 勾股数的性质
探讨勾股数的一些重要性质和规律,加深学生对勾股定理的理解。
实例分析
1 使用勾股定理解决三角形问题
通过具体的例子,演示如何应用勾股定理解决实际三角形问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设AE= x km, 则 BE=(25-x)km
根据勾股定理,得 AD2+AE2=DE2
D
15
A xE
C
10
B
25-x
BC2+BE2=CE2 又 ∵ DE=CE
∴ AD2+AE2= BC2+BE2 即:152+x2=102+(25-x)2
∴ X=10
答:E站应建在离A站10km处。
例3:在我国古代数学著作《九章算术》中记载了一道有趣的问题
a:b:c=1:√3:2
a= 5 cm时求b=?c=? c= 6 cm时求b=?a=?
(2)在长方形ABCD中,宽AB为1m,长BC为 2m ,求AC长.
A
D
1m
B
2m
C
在Rt△ ABC中,∠B=90°,由勾股定理可知:
AC AB2 BC 2 12 22 5
(3)有一个边长为50dm 的正方形洞口, 想用一个圆盖去盖住这个洞口,圆的直径 至少多长?(结果保留整数)
DC=AC-AD=2.4-0.4=2m
C
BE
在Rt△DCE中,
∵∠DCE=90° ∴ DC2+ CE2=DE2 22+ BC2=2.52
∴CE=1.5m
∴BE=1.5-0.7=0.8m≠0.4m
答;梯子底端B不是外移0.4m
勾股定理的各种表达式:
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C
—2
活动1
勾股定理:直角三角形两直角边的平 方和等于斜边的平方.
如果在Rt△ ABC中,∠C=90°,
那么 a2 b2 c2 .
B
ac
C bA
练习
(1)求出下列直角三角形中未知的边.
B
A
10 6
C
A
8
C
2
30°
回答:
45°
2
①在解决上述问题时,每个直角三角形需知道几个条件? ②直角三角形哪条边最长?
猜一猜,底端也将滑动0.5米吗?
算一算,底端滑动的距离近似值
A
是多少? (结果保留两位小数)
C
O
BD
例2:如图,铁路上A,B两点相距25km,C,D为两庄,
DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,
现在要在铁路AB上建一个土特产品收购站E,使得C,D
两村到E站的距离相等,则E站应建在离A站多少km处?
40
A
90 C
160
B 40
活动3
(1)如图,池塘边有两点A、B,点C是与BA方 向成直角的AC方向上的一点,测得CB= 60m, AC= 20m ,你能求出A、B两点间的距离吗? (结果保留整数)
(2)一个门框尺寸如下图所示. 若有一块长3米,宽0.8米的薄木板,问怎样 从门框通过?
C
2m
A
B
的对边分别为a 、b 、c ,则:
B
ac
c22=a22+b22
C bA
c= a2 b2
a2=c2-b2 b2=c2-a2
a= c2 b2 b= c2 a2
结论变形
BБайду номын сангаас
a
c
C
b
A
c2 = a2 + b2
有一种特殊的直角三角形, 已知一边可以求另外两边长
A
A
c a
a
C
45° b
B
C
c
30°
b
B
a:b:c=1:1:√2
AC=6cm,BC=8cm,现将直角边AC沿∠CAB的
角平分线AD折叠,使它落在斜边AB上,且
与AE重合,你能求出CD的长吗?
C
D
B
E
A
.如图,是一个三级台阶,它的每一级的长、宽、
高分别为20dm、3dm、2dm,A和B是这个台阶
两个相对的端点,A点有一只蚂蚁,想到B点去
吃可口的食物,则蚂蚁沿着台阶面爬到B点的最
勾股小常识:勾股数
1、 基本勾股数如:大家一定要熟记
3、4、5 5、12、13
7、24、25
1、1、2 1、3、2
2、如果a,b,c是一组勾股数,则ka、kb、kc(k为正 整数)也是一组勾股数,
如: 6、8、10 ; 9、12、15 10、24、26 ; 15、36、39
应用知识回归生活
4.如图:是一个长方形零件图,根据所给的 尺寸,求两孔中心A、B之间的距离.
D
C 解:∵在Rt△ ABC中,∠B=90°,
AC=BC=50, ∴由勾股定理可知:
AC AB2 BC 2
A 50dm B
502 502 5000 71(dm)
练习:如图,一个3米长的梯子AB,斜着靠在 竖直的墙AO上,这时AO的距离为2.5米.
①求梯子的底端B距墙角O多少米?
②如果梯子的顶端A沿墙角下滑0.5米至C, 请同学们:
在平静的湖面上,有一支红莲,高出水面1米,阵风吹来, 红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距 离为2米,问这里水深是________m。
小明想知道学校旗杆的高,他发现旗杆顶端的绳子 垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,求旗杆的高度。
小东拿着一根长竹竿进一个宽为3米的城门,他 先横着拿不进去,又竖起来拿,结果竹竿比城门 高1米,当他把竹竿斜着时,两端刚好顶着城门 的对角,问竹竿长多少米?
一只蚂蚁从长为4cm、宽为3 cm,高是5 cm的 长方体纸箱的A点沿纸箱爬到B点,那么
它所行的最短路线的长是____________cm。
B
A
如右图将矩形ABCD沿直线AE折叠,顶点
D恰好落在BC边上F处,已知CE=3,AB=8,
则BF=___________。 A
D
E
B
FC
如图,有一个直角三角形纸片,两直直角边
这个问题意思是:有一个水池,水面是一个边长为10尺的正方形,
在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦
苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度
和这根芦苇的长度各是多少?
D
解:设水池的深度AC为X米,
C
B
则芦苇高AD为 (X+1)米.
1m
应用知识回归生活
3.如图,受台风“麦莎”影响,一棵树在 离地面4米处断裂,树的顶部落在离树跟底 部3米处,这棵树折断前有多高?
4米
3米
应用知识回归生活
5.小明妈妈买了一部29英寸(74厘米)的电视 机.小明量了电视机的屏幕,发现屏幕只有58厘米 长和46厘米宽.他觉得一定是售货员搞错了,你同意 他的想法吗?你能解释这是为什么吗?
短路程是_________
A
20
23
B
例1:一个2.5m长的梯子AB斜靠在一竖直的墙
AC上,这时AC的距离为2.4m.如果梯子顶端A
沿墙下滑0.4m,那么梯子底端B也外移0.4m吗?
A
解:在Rt△ABC中,
D
∵∠ACB=90°
∴ AC2+ BC2=AB2
2.42+ BC2=2.52
∴BC=0.7m 由题意得:DE=AB=2.5m