2018-2019学年重庆市南开中学七年级(下)期末数学试卷

合集下载

2018-2019学年重庆市南岸区南开(融侨)中学七年级(下)期末数学试卷

2018-2019学年重庆市南岸区南开(融侨)中学七年级(下)期末数学试卷

2018-2019学年重庆市南岸区南开(融侨)中学七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.a2+a3=2a5B.a8÷a4=a2C.a3•a5=a15D.(ab2)2=a2b43.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或174.(3分)下列叙述不正确的是()A.掷一枚骰子,向上的一面出现的点数为4是随机事件B.某种彩票中奖的概率为1%,那么买100张这种彩票一定会中奖C.某兴趣小组14位同学中至少两人的生日在同一月份是必然事件D.在相同条件下,试验的次数足够大时,某一随机事件发生的频率会稳定于某一数值5.(3分)如图,在4×4的方格中随机撒一颗大小忽略不计的沙粒,撒到阴影部分的概率是()A.B.C.D.6.(3分)如图,根据图中的运算程序进行计算,当输入x=4时,输出的结果y值为()A.2B.4C.9D.117.(3分)如图,直线l1∥l2,AB=BC,CD⊥AB于点D,若∠DCA=20°,则∠1的度数为()A.80°B.70°C.60°D.50°8.(3分)将若干个菱形按如图的规律排列:第1个图形有5个菱形,第2个图形有8个菱形,第3个图形有11个菱形,…,则第10个图形有()个菱形.A.30B.31C.32D.339.(3分)若a﹣b=1,a2+b2=13,则ab等于()A.6B.7C.﹣6D.﹣710.(3分)如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是12,则△BEF 的面积是()A.2B.3C.4D.611.(3分)《九章算术》中有一题:今有二马、一牛价过一万,如半马之价,一马、二牛价不满一万,如半牛之价.问:牛、马价各几个?译文:现有二匹马加一头牛的价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛个多少钱?设一匹马的价钱是x,一头牛的价钱是y,则可建立方程组为()A.B.C.D.12.(3分)如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°二、填空题(本大题共12小题,每小题3分,共36分)13.(3分)2019年1月1日,“学习强国”平台全国上线,截止至2019年6月17日,重庆市党员“学习强国”APP 注册人数约1380000,参学覆盖率达71%,稳居全国前列,将数据1380000用科学记数法表示为.14.(3分)已知a﹣b=2,那么3a÷3b=.15.(3分)如图,D是AB边上的中点,将△ABC沿过点D的直线DE折叠.使点A落在BC边上F处,若∠B=65°,则∠BDF=°.16.(3分)如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为.17.(3分)一个不透明的袋子里装有6个红球和若干个白球,这些球除颜色外完全相同,从袋子中随机摸出一个球,这个球是白色的概率为,那么袋子里白球的个数为.18.(3分)如图,在等腰△ABC中,AB=BC,∠B=120°,线段AB的垂直平分线分别交AB、AC于点D、E,若AC=12,则DE=.19.(3分)若a2+b2﹣2a+6b+10=0,则a+b=.20.(3分)如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=40,DE=4,AC=12,则AB长是.21.(3分)关于x,y的二元一次方程组的解满足x+y=3,则k=.22.(3分)如图,在△ABC和△DEF中,∠ACB=∠EFD=90°,点B、F、C、D在同一直线上,已知AB⊥DE,且AB=DE,AC=6,EF=8,DB=10,则CF的长度为.23.(3分)如图1是一个装有A、B两个阀门的空容器,打开A阀门水将匀速注入甲容器,打开B阀门甲容器的水将匀速注入乙容器(水流动过程的时间忽略不计),小溪先打开A阀门,几分钟后再打开B阀门,甲、乙两容器内水的体积的差值y(升)和小溪打开A阀门的时间x(分钟)之间的关系如图2所示,则图2中转折点P对应的时间是分钟.24.(3分)6月18日晚,苏宁易购发布618全程战报:从6月1日到18日晚6点,苏宁依托线上线下全场景优势,逆势增长.经调查,苏宁易购线上有甲乙两家在销售华为A手机、华为B电脑和华为C耳机.已知每部A手机的利润率为40%,每台B电脑的利润率为60%,每副C耳机的利润率为30%,甲商家售出的B电脑和C耳机的数量都是A手机的数量的一半,获得的总利润率为50%,乙商家售出的A手机的数量是B电脑的数量的一半,售出的C耳机的数量是B电脑的数量的,则乙商家获得的总利润率是.三、计算题:(本大题共4小题,每小题4分,共16分)25.(4分)计算:(﹣1)2019+|2﹣4|﹣(3.14﹣π)0×26.(4分)化简:(x﹣2y)2﹣2x(5x﹣y)+(3x﹣y)(y+3x)27.(4分)解方程组:28.(4分)解方程组:四、解答题(本大题共4小题,29小题8分,其余每小题8分,共38分)29.(8分)如图,直线AB∥CD,∠ACD的平分线CE交AB于点F,∠AFE的平分线交CA延长线于点G.(1)证明:AC=AF;(2)若∠FCD=30°,求∠G的大小.30.(10分)某中学为了调查本校初2021级学生的跳绳水平,抽取了某班60名学生的跳绳成绩(满分为10分,分数均为自然数),绘制如下两幅不完整的统计图.请根据统计图的信息,回答下列问题:(1)在扇形统计图中,a的值是,成绩为10分所在扇形的圆心角是度;(2)补全条形统计图;(3)若从该班男生中随机抽取一人,求这名男生跳绳成绩不是10分的概率.31.(10分)互联网时代,发达的物流业改变了我们的生活.某快递公司的分发中心、菜鸟驿站、快递员公寓依次分布在同一条直线上,快递员甲、乙分别同时从菜鸟驿站和分发中心出发,甲先骑自行车回到分发中心,将自行车归还分发中心后步行经过菜鸟驿站返回公寓(归还自行车的时间忽略不计),乙先从分发中心步行到菜鸟驿站,步行速度与甲的步行速度相同,到达菜鸟驿站后停下来继续完成剩余工作,随后跑步回公寓,最后两人同时到达公寓.甲、乙两人与公寓的距离y(米)与出发的时间x(分钟)之间的关系如图所示.(1)甲骑自行车的速度为米/分,乙跑步的速度为米/分;(2)乙在菜鸟驿站停留的时间为分钟;(3)甲乙第二次相遇后再经过多少分钟他们相距450米?32.(10分)如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE 交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.五、解答题(本大题2个小题,每小题12分,共24分)33.(12分)随着科技的发展,智能制造逐渐成为一种可能的生产方式.重庆某电子零部件生产商原来采用自动化程度较低的传统生产方式,工厂有熟练工人和新工人共100人,熟练工平均每天能生产30个零件,新工人平均每天能生产20个零件,所有工人刚好用30天完成了一项7.2万个零件的生产任务.(1)请问该工厂有熟练工,新工人各多少人?(请列二元一次方程组解题)(2)今年,某自动化技术团队为工厂提供了A、B两种不同型号的机器人,且两种机器人都可以单独完成零件的生产.已知A型机器人的售价为80万元/台,B型机器人的售价为120万元/台.工厂准备试采购价值840万元的机器人设备,两种机器人都至少购买一台,若840万元刚好用完,求出所有可能的购买方案;(3)已知一个零件的毛利润(只扣除了原材料成本)为10元,若选择传统生产方式,熟练工每月基本工资3000元,新工人每月基本工资2000元,在基本工资之上,工厂还需额外支付计件工资5元/件,传统生产方式的设备成本忽略不计.若选择智能制造方式生产,A型机器人每月生产零件1.5万个,B型机器人每月能生产零件2.7万个,1台A型机器人需要8名技术人员操控,一台B型机器人需要12名技术人员操控,技术人员每人工资1万元,实际生产过程中,一台A型机器人平均每月的总成本为6万元(包含所有设备成本和维护成本),一台B 型机器人平均每月的总成本为8万元(包含所有设备成本和维护成本).请你比较传统的生产方式和(2)中的所有购买方案对应的智能生产方式,哪种生产方式每月的总利润最大,最大利润为多少万元?(注:每月均按30天计算)34.(12分)已知:在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E是BC上一点,连接AE交CD 于点F.(1)如图1,若AE平分∠CAB,CP平分∠BCD,求证:FP=EP;(2)如图2,若CE=CA,过点E作EG⊥CD于点G,点H为AE的中点,连接DH,GH,判断△GDH的形状,并证明;(3)如图3,在(2)的条件下,点K为AE上一点,连接GK,点M为GK的中点,连接MH,过点D作DN⊥MH,交MH的延长线于点N,∠GHA=90°﹣∠GHM,若NH:HM=8:5,△GHK的面积为10,求△GDH 的面积.2018-2019学年重庆市南岸区南开(融侨)中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误.故选:C.2.【解答】解:∵a2+a3≠2a5,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵a3•a5=a8,∴选项C不符合题意;∵(ab2)2=a2b4,∴选项D符合题意.故选:D.3.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.4.【解答】解:A.掷一枚骰子,向上的一面出现的点数为4是随机事件,此选项表述正确;B.某种彩票中奖的概率为1%,那么买100张这种彩票不一定会中奖,此选项表述错误;C.某兴趣小组14位同学中至少两人的生日在同一月份是必然事件,此选项表述正确;D.在相同条件下,试验的次数足够大时,某一随机事件发生的频率会稳定于某一数值,此选项表述正确;故选:B.5.【解答】解:∵此方格网的总面积为16,其中阴影部分的面积为×3×2=3,∴随机撒一颗大小忽略不计的沙粒,撒到阴影部分的概率是,故选:C.6.【解答】解:x=4时,y=﹣2x+10=﹣8+10=2.故选:A.7.【解答】解:∵CD⊥AB,∴∠ADC=90°,∵∠DCA=20°,∴∠BAC=70°,∵AB=BC,∴∠BCA=70°,∵l1∥l2,∴∠1=70°.故选:B.8.【解答】解:设第n个图形有a n个菱形(n为正整数).观察图形,可知:a1=5=3+2,a2=8=3×2+2,a3=11=3×3+2,a4=14=3×4+2,∴a n=3n+2(n为正整数),∴a10=3×10+2=32.故选:C.9.【解答】解:将a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把a2+b2=13代入得:13﹣2ab=1,解得:ab=6.故选:A.10.【解答】解:∵点D、E、F分别为边BC,AD,CE的中点,∴S△ABD=S△ABC、S△BDE=S△ABD、S△CDE=S△ADC、S△BEF=S△BEC,∴S△BEF=S△ABC;∵△ABC的面积是12,∴S△BEF=3.故选:B.11.【解答】解:设一匹马价钱为x元,一头牛价钱为y元,由题意可列方程组.故选:B.12.【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB 于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=(180°﹣α)=∠AOB+∠MQP=20°+(180°﹣β),∴180°﹣α=40°+(180°﹣β),∴β﹣α=40°,故选:C.二、填空题(本大题共12小题,每小题3分,共36分)13.【解答】解:1380000=1.38×106,故答案为:1.38×106.14.【解答】解:∵a﹣b=2,∴3a÷3b=3a﹣b=32=9.故答案为:9.15.【解答】解:∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=65°,∴∠BDF=180°﹣∠B﹣∠BFD=180°﹣65°﹣65°=50°.故答案为:50.16.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.17.【解答】解:设袋子中白球有x个,根据题意知=,解得:x=4,经检验:x=4是原分式方程的解,∴袋子中白球有4个,故答案为:4.18.【解答】解:连接BE,∵AB=BC,∠B=120°,∴∠A=∠C=30°,∵DE是线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠CBE=90°,又∠C=30°,∴BE=EC,∴AE=EC,∴AE=AC=4,在Rt△ADE中,∠A=30°,∴DE=AE=2,故答案为:2.19.【解答】解:由a2+b2﹣2a+6b+10=0,得a2﹣2a+1+b2+6b+9=0,即(a﹣1)2+(b+3)2=0∵(a﹣1)2≥0,(b+3)2≥0∴a﹣1=0,b+3=0即a=1,b=﹣3∴a+b=1﹣3=﹣2.故答案为:﹣2.20.【解答】解:作DF⊥AC于F,如图,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∵S△ABD+S△ADC=S△ABC,∴•4•AB+•12•4=40,∴AB=8.故答案为8.21.【解答】解:①+②得:5x+5y=2k+3,x+y=,∵关于x,y的二元一次方程组的解满足x+y=3,∴=3,解得:k=6,故答案为:6.22.【解答】解:∵∠ACB=∠EFD=90°,AB⊥DE,∴∠B+∠D=90°,∠B+∠A=90°∴∠A=∠D,且∠ACB=∠EFD=90°,AB=DE,∴△ABC≌△DEF(AAS)∴AC=DF=6,EF=BC=8,∴CF=BC+DF﹣BD=423.【解答】解:A阀门的进水速度为300÷3=100升/分,B阀门的进水速度为100×4÷2=200升/分,设图2中转折点P对应的时间为t分钟,则100t=200(t﹣3),解得:t=6,故答案为:624.【解答】解:设A手机的成本价为a,B电脑的成本价为b,C月机的成本价为c,甲商家售出A手机2x部,则售出B电脑x台,C耳机x副,乙商家售出A手机y部,则售出B电脑2y台,C耳机副.由甲商家的总利润率为50%,则有40%•a•2x+60%﹣b•x+30%•c•x=50%(2xa+bx+cx)整理得,b=2a+2c则乙商家的总利润率为=====56%故答案为:56%.三、计算题:(本大题共4小题,每小题4分,共16分)25.【解答】解:原式=﹣1+2﹣1×(﹣8)=﹣1+2+8=9.26.【解答】解:(x﹣2y)2﹣2x(5x﹣y)+(3x﹣y)(y+3x)=x2﹣4xy+4y2﹣10x2+2xy+9x2﹣y2=﹣2xy+3y2.27.【解答】解:,由①得:y=2x﹣1③,把③代入②得:4x﹣5(2x﹣1)=﹣7,解得:x=2,把x=2代入③得:y=3,则方程组的解为.28.【解答】解:方程组整理得:,①×11﹣②×7得:﹣15x=﹣60,解得:x=4,把x=4代入①得:y=2,则方程组的解为.四、解答题(本大题共4小题,29小题8分,其余每小题8分,共38分)29.【解答】(1)证明:∵∠ACD的平分线CE交AB于点F,∴∠ACF=∠DCF,∵AB∥CD,∴∠AFC=∠DCF,∴∠ACF=∠AFC,∴AC=AF;(2)解:∵∠FCD=30°,AB∥CD,∴∠ACD=∠GAF=60°,∠AFC=30°,∵∠AFE的平分线交CA延长线于点G.∴=75°,∴∠G=180°﹣∠GAF﹣∠AFG=180°﹣60°﹣75°=45°.30.【解答】解:(1)∵被调查的学生总人数为60(人),∴a%=×100%=10%,即a=10,成绩为10分所在扇形的圆心角是360°×(1﹣10%﹣10%﹣20%)=216°;故答案为:10、216;(2)∵8分及以下的人数为60×10%=6(人),10分的人数为60×60%=36(人),∴8分及以下中女生人数为6﹣2=4(人),10分中女生人数为36﹣16=20(人),补全图形如下:(3)若从该班男生中随机抽取一人,这名男生跳绳成绩不是10分的概率为==.31.【解答】解:(1)(3000﹣2000)÷4=250米/分,2000÷(34﹣21.5)=160米/分,故答案为:250,160.(2)21.5﹣(1000÷100)=11.5分钟,故答案为:11.5.(3)由题意可知,第二次相遇时间为14分,设甲从配货中心回公寓的y与x的关系式为y=kx+b,将(4,3000),(34,0)代入得,,解得:k=﹣100,b=3400,∴y=﹣100x+3400,(4≤x≤34)同理可求出乙在第二次相遇后的y与x的关系式为:y=,由二人相距450米可得,①2000﹣(﹣100x+3400)=450解得:x=18.5,②﹣160X+5440﹣(﹣100x+3400)=450,解得:x=26.5.因此第二次相遇后再经过:18.5﹣14=4.5分,或26.5﹣14=12.5分,答:甲乙第二次相遇后再经过4.5分钟或12.5分钟时,他们相距450米.32.【解答】证明:(1)∵∠CAB=∠F AE=90°,∴∠CAB﹣∠F AG=∠F AE﹣∠F AG,即∠CAF=∠EAG,∵AC=AE,∴∠ACF=∠AEG,在△AGE和△AFC中,,∴△AGE≌△AFC(ASA);(2)延长AF至点H,使AH=AD,在△CAH和△BAD中,,∴△CAH≌△BAD(SAS)∴CH=BD,∠ACH=∠ABD=90°,∴CH∥AB,∴∠CHA=∠HAG,∵△AGE≌△AFC,∴∠AGE=∠AFC,∴∠AGF=∠AFG,∴∠HCF=∠HFC,∴HC=HF,∴AH=AF+HF=AF+CH,∴AD=AF+BD.五、解答题(本大题2个小题,每小题12分,共24分)33.【解答】解:(1)设该工厂有熟练工x人,新工人y人,依题意,得:,解得:.答:该工厂有熟练工40人,新工人60人.(2)设购买A型机器人m台,购买B型机器人n台,依题意,得:80m+120n=840,∴n=7﹣m.∵m,n均为正整数,∴,,,∴共有3种购买方案,方案1:购买A型机器人3台,B型机器人5台;方案2:购买A型机器人6台,B型机器人3台;方案3:购买A型机器人9台,B型机器人1台.(3)传统生产方式每月的总利润为72000×(10﹣5)﹣40×3000﹣60×2000=120000(元),购买方案1对应的智能生产方式每月的总利润为(3×15000+5×27000)×10﹣(3×8+5×12)×10000﹣3×60000﹣5×80000=380000(元);购买方案2对应的智能生产方式每月的总利润为(6×15000+3×27000)×10﹣(6×8+3×12)×10000﹣6×60000﹣3×80000=270000(元)购买方案3对应的智能生产方式每月的总利润为(9×15000+27000)×10﹣(9×8+12)×10000﹣9×60000﹣80000=160000(元).∵380000>270000>160000>120000,∴购买方案1对应的智能生产方式每月的总利润最大,最大利润为38万元.34.【解答】(1)证明:如图1,∵Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=∠B+∠BCD=90°,∴∠ACD=∠B,∵AE平分∠CAB,∴∠CAF=∠BAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠BAF+∠B,∴∠CFE=∠CEF,∴CF=CE,∵CP平分∠BCD,∴FP=EP;(2)解:△GDH为等腰直角三角形;理由如下:如图2,延长DH交EG于M,∵EG⊥CD,AB⊥CD,∴EG∥AB,∴∠MEH=∠DAH,∵H是AE的中点,∴AH=EH,在△ADH和△EMH中,∵,∴△ADH≌△EMH(ASA),∴AD=EF,DH=MH,∵EG∥AB,∴∠CEG=∠B=∠ACD,在△ACD和△CEG中,,∴△ACD≌△CEG(AAS),∴CD=EG,AD=CG,∴EM=CG,∴CD﹣CG=EG﹣EM,即DG=GM,∴△DGM是等腰直角三角形,∴∠GDM=45°,∵DH=MH,∴DH⊥MD,∴△GDH是等腰直角三角形;(3)解:如图3,延长GH交AB于P,连接KP,过K作KQ⊥PG于Q,∵NH:HM=8:5,设NH=8x,HM=5x,∴AH=EH,∠AHP=∠EHG,∠EGH=∠APH,∴△GHE≌△PHA(SAS),∴GH=PH,∵M是GK的中点,∴PK=2HM=10x,设∠GHM=α,则∠GPK=α,∴∠GHA=90°﹣∠GHM,∴∠GHA=90°﹣α,∵∠DHG=90°,∴∠AHD=α,∠DHN=90°﹣α,∴∠HDN=α=∠GPK,△APK中,∠KAP=90°﹣∠AFD=90°﹣(45°+α)=45°﹣α,∴∠AKP=180°﹣∠KAP﹣∠APK=180°﹣(45°﹣α)﹣(45°+α)=90°﹣α,△AHP中,∠PHK=45°﹣α+45°=90°﹣α=∠AKP,∴PK=PH=DH=10x,∵∠DNH=∠KQP=90°,∴△HDN≌△KPQ(AAS),∴KQ=HN=8x,∵S△GHK=•GH•KQ=10,=10,x2=,∴S△GDH=GH2==.。

人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案

人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案

人教版2018—2019学年度第二学期七年级数学(下)期末考试卷及答案(满分:120分答题时间:100分钟)一、选择题(本大题共10小题,每小题2分,共计20分,请将下列各题中A、B、C、D选项中唯一正确的答案代号填到本题前的表格内)1. 下列调查中,适合采用全面调查(普查)方式的是()A.对觅湖水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查2. 平面直角坐标系中点(-2, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3. 下列各数中是无理数的是()A. 3.14B.√16C.23D.√64. 9的算术平方根是()A. ±√9B.3C.-3D.±3 5. 不等式组{6−3x<0x≤1+23x的解集在数轴上表示为()6.新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86,则这七天空气质量变化情况最适合用哪种统计图描述()A.折线统计图B.扇形统计图C.条形统计图D.以上都不对7. 已知{x=−1y=2是二元一次方程组{3x+2y=mnx−y=1的解,则m-n的值是()A.1B.2C.3D.48.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“一”方向排列,如: P1 (O,0), P2 (O,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),.. 根据这个规律,点P2017 的坐标为()A. (-504,-504)B.(-505,-504)C. (504, -504 )D.(-504,505 )9. 如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围()A.大于b B.小于a C.大于b且小于a D.无法确定10. 通过估算,估计√19的值应在( ) A. 2〜3之间B. 3〜4之间C. 4〜5之间D. 5〜6之间二、填空题(本题共4小题,每小题3分,共12分)11. 在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M 的“影子点”为M’(yx ,- xy ),点P(-3,2)的“影子点”是点P ’,则点P ’的“影子点”P"的坐标为______;12.如图,在3×3的方格内,填写了一些单项式.已知图中各行、各列及对角线上三个单项式之和都相等,则x 的值应为______;13. 高斯符号[x]首次出现是在数学家高斯(CF.Gauss)的数学著作《算术研究》一书中.对于任意实数x,通常用[x]表示不超过x 的最大整数,如[2.9] =2.给出如下结论:① [-3] =-3,②[-2.9] =-2,③[0.9] =0, ④ [x] + [-x] =0. 以上结论中,你认为正确的有____.(填序号) 14. 计算|√2-√3|+2√2=________;三、本大题共两小题,每小题8分,满分16分)15.已知实数a+9的平方根是±5,2b -a 的立方根是-2,求式子√a -√b 的值。

2018-2019学年人教版七年级下册期末数学试卷含答案

2018-2019学年人教版七年级下册期末数学试卷含答案

2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2B.﹣2C.±2D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在x轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=,b=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2B.﹣2C.±2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数x,y,z.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为5.【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.17.点A在x轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在x轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在x轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了x轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1.【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=12,b=8,C=20%,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x﹣1<5x+1,得:x>﹣2,解不等式x﹣2≤5﹣x,得:x≤,则不等式组的解集为﹣2<x≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B(两直线平行,内错角相等)又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行)【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.【分析】把k看做已知数表示出方程组的解,根据x比y的值大1,确定出k的值,进而求出方程组的解即可.【解答】解:,把x=y+1代入①得:2y+1=k③,代入②得:y+1﹣2y=3﹣k④,联立③④,解得:,把y=1代入①得:x=2,则方程组的解为,k的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是x元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是x元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。

〖汇总3套试卷〗重庆市2018年七年级下学期数学期末达标测试试题

〖汇总3套试卷〗重庆市2018年七年级下学期数学期末达标测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若关于x 的方程223242ax x x x +=--+有增根,则a 的值为( ) A .4B .6C .6或-4D .6或4【答案】C【解析】本题考点是分式方程的增根,知道何时分式方程有增根是解题关键;首先将分式方程通分,求出最简公分母,将分式方程化整式方程2(x+2)+ax=3(x-2),再根据分式方程有增根,令最简公分母为0,求出x 的值,最后带入整式方程中即可求出答案。

【详解】方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)。

因为原方程有增根,所以最简公分母(x+2)(x-2)=0,解得x=-2或2当x=-2,-2a=-12,a=6当x=2,a=-4,故a 的值是6或-4【点睛】学生们掌握增根,在分式方程化为整式方程的过程中,分式方程解的条件是使原方程分母不为零。

若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。

根据增根的定义求出a 值。

2.两个三角板按如图方式叠放,∠1=( )A .30B .45C .60D .75【答案】D 【解析】由∠ABD+∠CDB=90°可知AB ∥CD ,据此得∠ABE=∠C=30°,根据∠1=∠A+∠ABC 可得答案.【详解】解:如图,∵∠ABD+∠CDB=90°,∴∠ABD+∠CDB=180°,∴AB ∥CD ,∴∠ABE=∠C=30°,则∠1=∠A+∠ABC=75°,故选:D .【点睛】本题考查了三角形外角性质、平行线的判定和性质,解题的关键是先证明AB∥CD.3.下列A、B、C、D;四幅图案中,能通过平移左图案得到的是()A.B.C.D.【答案】A【解析】试题分析:依题意知,平移的概念是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,不改变图像大小与形状.故A图笑脸为原图以一定方向平移所得,不改变形状与大小.选A.考点:平移点评:本题难度较低,主要考查学生对平移知识点的掌握.根据平移的性质判定即可.4.下列各式计算结果正确的是()A.B.C.D.【答案】B【解析】根据幂的乘方,同底数幂的乘法、除法,合并同类项,对每个选项进行判断即可.【详解】A、,所以本项错误;B、,所以本项正确;C、,所以本项错误;D、,所以本项错误.故选择:B.【点睛】本题考查了幂的乘方,同底数幂的乘法、除法,合并同类项,解题的关键是熟练掌握它们的运算法则. 5.如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°【答案】C【解析】根据平行线的性质可知∠B与∠2互补,再根据对顶角的性质可知∠2=∠1=70°,据此即可得答案.【详解】解:如图,∵DE//BC,∴∠2+∠B=180°,∵∠2=∠1=70°,∴∠B=180°-70°=110°,故选C.【点睛】本题考查了平行线的性质、对顶角的性质,熟练掌握平行线的性质是解题的关键. 6.9的倒数等于( )A.3 B.-3 C.-13D.13【答案】D【解析】先求出9,再根据倒数的定义解答.【详解】解:∵9=3,3的倒数等于1 3 .∴9的倒数等于13.故选:D.【点睛】本题考查实数的性质,解题关键是倒数的定义和算术平方根的定义.7.方程组的解为,则被遮盖的两个数分别为()A.5,1 B.1,3 C.2,3 D.2,4【答案】A【解析】将x=2代入x+y=3中,即可求得y=1的值,再将代入到2x+y中即可得到另一个遮盖的数.【详解】解:根据题意,得2+y=3,解,得y=1.则2x+y=4+1=2.则第一个被遮盖的数是2,第二个被遮盖的数是1.故选:A.【点睛】本题主要考查了方程组的解的定义,方程组的解就是能够使方程组中的方程同时成立的未知数的解. 8.直角坐标系中点P(2,2)a a +-不可能所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题可知a 2a 2+>-,所以不可能在第二象限,即可得出答案 【详解】解:A.若点P 在第一象限,所以横纵坐标均为正,即2020a a +>⎧⎨->⎩,解得a>2;所以可以在第一象限;B.若点P 在第二象限,则有2020a a +<⎧⎨->⎩,无解,所以不可能在第二象限; C.若点P 在第三象限,则有2020a a +<⎧⎨-<⎩,解得a<-2,所以可以在第三象限 D. 若点P 在第四象限,则有2020a a +>⎧⎨-<⎩,解得2a 2-<<,所以可以在第四象限 故选B【点睛】此题考查四个象限中点的符号,熟练掌握四个象限中点的坐标正负是解题关键9.已知220192a a -=,则240382a a --的值是( )A .2019B .-2019C .4038D .-4038 【答案】A【解析】由220192a a -=知−a 2−2a=−2019,代入原式=4038+(−a 2−2a)计算可得答案.【详解】∵220192a a -=,∴−a 2−2a=−2019,则原式=4038+(−a 2−2a)=4038−2019,=2019,故选:A .【点睛】此题考查代数式求值,解题关键在于掌握运算法则.10.如图是5×5的正方形网络,以点D ,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A.2个B.4个C.6个D.8个【答案】B【解析】试题分析:观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.根据题意,运用SSS可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点.故选B.考点:本题考查三角形全等的判定方法点评:解答本题的关键是按照顺序分析,要做到不重不漏.二、填空题题11.有三种物品,每件的价格分别是2 元、4 元和6 元.现在用60 元买这三种物品,总共买了16 件,而钱恰好用完,则价格为6 元的物品最多买___ 件.【答案】7【解析】设6元的物品买了x件,4元的y件,2元的z件,根据题意列出方程,得到x,y,z的关系,再根据总共16件确定x的最大值.【详解】设6元的物品买了x件,4元的y件,2元的z件,由题意得6426016x y zx y z++=⎧⎨++=⎩①②由②得y=16-x-z③把③代入①得6x+4(16-x-z)+2z=60得2x-2z=-4,∴x-z=-2,即z=x+2∵x+z≤16,∴x+x+2≤16解得x≤7故价格为 6 元的物品最多买7件,故填:7【点睛】此题主要考查三元一次方程的应用,解题的关键是根据题意列出方程与不等式进行求解.12.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为______.【答案】100°【解析】利用三角形的外角性质列方程计算,再根据三角形内角与外角的关系得到它的最大内角度数.【详解】解:设三角形三个外角的度数分别为2x ,3x ,4x .根据多边形的外角和是360度,列方程得:2x +3x +4x =360°,解得:x =40°,则最小外角为2×40°=80°,则最大内角为:180°−80°=100°.故答案为:100°.【点睛】由多边形的外角和是360°,可求得最大内角的相邻外角是80°.13.将直尺和直角三角板按如图方式摆放,已知125∠=︒,则2∠=________.【答案】65°【解析】根据两角互余先求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:如图,1390,125∠+∠=︒∠=︒,365∴∠=︒,∵直尺的两直角边互相平行,2365∴∠=∠=︒;故答案为:65°.【点睛】本题考查的是平行线的性质、直角的定义,掌握平行线的性质是解决问题的关键,注意直角三角板中90°角的这个条件.14.若x y t 、、满足方程组23532x t y t x=-⎧⎨-=⎩,则x 和y 之间应满足的关系是_____. 【答案】156y x -= 【解析】要想得到x 和y 之间满足的关系,应把t 消去.【详解】解:由235x t =-得:t =325x -, 代入32y t x -=中得:32325x y x --⨯=, 整理得:156y x -=,故答案为:156y x -=.【点睛】本题考查了消元法,解题的关键是消去无关的第三个未知数,得到x 和y 之间满足的关系.15.如图所示,已知∠C=100°,若增加一个条件,使得AB ∥CD ,试写出符合要求的一个条件: .【答案】∠BEC=80°【解析】试题分析:欲证AB ∥CD ,在图中发现AB 、CD 被一直线所截,且已知一同旁内角∠C=100°,故可按同旁内角互补两直线平行补充条件.∵∠1=100°,要使AB ∥CD ,则要∠BEC=180°-100°=80°(同旁内角互补两直线平行).考点:本题考查的是平行线的判定点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.16.某商店老板为了吸引顾客,想设计一个可以自由转动的转盘,并规定凡购物的顾客都可转动一次转盘.如果转盘停止后,指针正好对准阴影区域,则可以获得9折优惠.老板设计了一个如图所示的转盘,则顾客转动一次可以打折的概率为________________.【答案】2 3【解析】根据240360︒︒可得阴影部分面积占总面积的23,进而即可得到答案.【详解】∵2402 3603︒=︒,∴阴影部分面积占总面积的23,即:顾客转动一次可以打折的概率为23.故答案是:23.【点睛】本题主要考查几何图形与概率,掌握概率公式是解题的关键.17.“若两条直线不相交,则这两条直线平行”是_____命题.(填“真”或“假”)【答案】假【解析】若空间中两条直线不相交,则这两条直线平行,也有可能异面.【详解】解:若空间中两条直线不相交,则这两条直线平行,也有可能异面,故是假命题.故答案为:假.【点睛】本题考查命题真假的判断,考查学生的推理能力,属于基础题.三、解答题18.某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?【答案】(1)足球的单价是70元,篮球的单价是100元;(2)有2种不同的购买方案.【解析】(1)设足球的单价为x元/个,篮球的单价为y元/个,根据“购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个足球,则购买篮球(24-m)个,根据总价=单价×数量结合购买篮球的个数大于足球个数的2倍且购买球的总费用不超过2220元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各购买方案.【详解】(1)设购买一个足球需要x元,一个篮球需y元,则有x +2y =2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。

2018-2019(下)期末七年级数学考试试卷(含参考答案)

2018-2019(下)期末七年级数学考试试卷(含参考答案)

2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。

2018-2019学年七年级(下)期末数学试卷及答案详解

2018-2019学年七年级(下)期末数学试卷及答案详解

2018-2019学年七年级(下)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .47.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .210.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)11.(3分)如果点(3,1)P m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4)-12.(3分)如图,若12∠=∠,//DE BC ,则:①//FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠,⑥FGC DEC DCE ∠=∠+∠,其中正确的结论是( )A .①②③B .①②⑤⑥C .①③④⑥D .③④⑥13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .626314.(3分)定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 .16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 .17.(3分)点(,)p q 到y 轴距离是 .18.(3 3.65 1.91036.5 6.042365000≈ .19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 .三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= ( )又1A ∠=∠(已 知) ,//AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .26.(12分)ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ;B ' ;C ' ;(2)说明△A B C '''由ABC ∆经过怎样的平移得到? .(3)若点(,)P a b 是ABC ∆内部一点,则平移后△A B C '''内的对应点P '的坐标为 ;(4)求ABC ∆的面积.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对【分析】根据垂线段的性质,可得答案.【解答】解:把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是垂线段最短,故选:A .【点评】本题考查了垂线段最短,利用垂线段的性质是解题关键.2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 【分析】根据立方根的定义进行解答.【解答】解:3(3)27-=-,27∴-3273-=-,故选:A .【点评】本题主要考查了立方根的定义,找出立方等于27-的数是解题的关键.3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【解答】解:由图可知小猫位于坐标系中第四象限,所以小猫遮住的点的坐标应位于第四象限,故选:C .【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A 、BAC ∠和ACB ∠是同旁内角,不符合题意;B 、B ∠和DCE ∠是同位角,符合题意;C 、B ∠和BAD ∠是同旁内角,不符合题意;D 、B ∠和ACD ∠不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B .【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .【分析】根据对等角相等可得13∠=∠,再由12∠=∠,可得32∠=∠,根据同位角相等, 两直线平行可得//AB CD .【解答】解:13∠=∠,12∠=∠,32∴∠=∠,//AB CD ∴,故选:B .【点评】此题主要考查了平行线的判定, 关键是掌握平行线的判定定理 .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .4【分析】(1)根据无理数的定义即可判定;(2)根据无理数的定义即可判定;(3)根据无理数的分类即可判定;(4)根据无理数和数轴上的点对应关系即可判定.【解答】解:(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B .【点评】此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001⋯,等有这样规律的数.7.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-【分析】首先根据题意得到P 点的横坐标为负,纵坐标为正,再根据到x 轴的距离与到y 轴的距离确定横纵坐标即可. 【解答】解:点P 在第二象限,P ∴点的横坐标为负,纵坐标为正,到x 轴的距离是4,∴纵坐标为:4,到y 轴的距离是3,∴横坐标为:3-,(3,4)P ∴-,故选:C .【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒【分析】先根据135∠=︒,//a b 求出3∠的度数,再由AB BC ⊥即可得出答案.【解答】解://a b ,135∠=︒,3135∴∠=∠=︒.AB BC ⊥,290355∴∠=︒-∠=︒.故选:C .【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 80不是无理数;3π3273=不是无理数;227不是无理数;1.1010010001⋯是无理数,故选:C .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.10.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B '点的坐标.【解答】解:(1,1)A --平移后得到点A '的坐标为(3,1)-,∴向右平移4个单位,(1,2)B ∴的对应点坐标为(14,2)+,即(5,2).故选:B .【点评】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(3分)如果点(3,1)++在x轴上,则点P的坐标为()P m mA.(0,2)B.(2,0)C.(4,0)D.(0,4)-【分析】根据点P在x轴上,即0y=,可得出m的值,从而得出点P的坐标.【解答】解:点(3,1)++在x轴上,P m m∴=,y∴+=,m10解得:1m=-,∴+=-+=,3132m∴点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m 的值是解题关键.12.(3分)如图,若12∠=∠,//∠=∠;③CD平FG DC;②AED ACBDE BC,则:①//分ACB∠=∠+∠,其中正∠=∠,⑥FGC DEC DCE∠+∠=︒;⑤BFG BDC∠;④190B确的结论是()A.①②③B.①②⑤⑥C.①③④⑥D.③④⑥【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠=∠,得出//FG DC,①正确;由平行线的性质得出⑤正确;进而得出⑥2DCB∠=∠+∠正确,即可得出结果.FGC DEC DCE【解答】解://DE BC,∠=∠,故②正确;1∴∠=∠,AED ACBDCB∠=∠,12∴∠=∠,2DCBFG DC∴,故①正确;//∴∠=∠,故⑤正确;BFG BDC∴∠=∠+∠,故⑥正确;FGC DEC DCE而CD不一定平分ACB∠,1B∠+∠不一定等于90︒,故③,④错误;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【分析】观察数据,发现第n个数为221nn-,再将6n=代入计算即可求解.【解答】解:观察该组数发现:1,43,97,1615,⋯,第n个数为221nn-,当6n=时,22664 21217nn==--.故选:C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为221nn-.14.(3分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(,)p q是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选:D.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 3± .【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:819=,9的平方根是3±,∴81的平方根是3±.故答案为3±.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 7 .【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】解:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠,DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+,即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =,ADF ∴∆的周长437=+=,故答案为7.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.17.(3分)点(,)p q 到y 轴距离是 ||p .【分析】点到y 轴的距离等于横坐标的绝对值.【解答】解:点(,)p q 到y 轴距离||p =故答案为||P .【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.18.(3 3.65 1.91036.5 6.042365000≈ 604.2 .【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案. 3.65 1.910≈36.5 6.042≈365000604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 (1,2)或(7,2)- .【分析】在平面直角坐标系中与x 轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x 轴平行,相当于点A 左右平移,可求B 点横坐标.【解答】解://AB x 轴,∴点B 纵坐标与点A 纵坐标相同,为2,又4AB =,可能右移,横坐标为341-+=-;可能左移横坐标为347--=-,B ∴点坐标为(1,2)或(7,2)-,故答案为:(1,2)或(7,2)-.【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= C ∠ ( )又1A ∠=∠(已 知) , //AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)【分析】先根据两直线平行, 得出同位角相等, 再根据内错角相等, 得出两直线平行, 进而得出内错角相等, 最后根据等量代换得出结论 .【解答】证明://BE CD (已 知)2C ∴∠=∠(两 直线平行, 同位角相等)又1A ∠=∠(已 知)//AC DE ∴(内 错角相等, 两直线平行)2E ∴∠=∠(两 直线平行, 内错角相等)C E ∴∠=∠(等 量代换)【点评】本题主要考查了平行线的性质, 解题时注意区分平行线的性质与平行线的判定的区别, 条件与结论不能随意颠倒位置 .21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.【分析】(1)利用平方根的定义,即可求得32x +,即可转化成一元一次方程即可求得x 的值;(2)利用立方根的定义,即可转化成一元一次方程即可求得x 的值.【解答】解:(1)2(32)16x +=,324x +=±, 23x ∴=或2x =;(2)3(21)27x -=-,213x -=-,1x ∴=-.【点评】本题考查了平方根与立方根的定义,理解定义是关键.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: BOD ∠ ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出BOD ∠的度数,再根据:2:3BOE EOD ∠∠=求出BOE ∠的度数,然后利用互为邻补角的两个角的和等于180︒即可求出AOE ∠的度数.【解答】解:(1)AOC ∠的对顶角是BOD ∠,EOB ∠的邻补角是AOE ∠,故答案为:BOD ∠,AOE ∠;(2)70AOC ∠=︒,70BOD AOC ∴∠=∠=︒,:2:3BOE EOD ∠∠=, 2702832BOE ∴∠=⨯︒=︒+, 18028152AOE ∴∠=︒-︒=︒.AOE ∴∠的度数为152︒.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180︒求解是解答此题的关键.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(2,2)-,行政楼(2,2)--,大门(0,4)-,食堂(3,4),图书馆(4,2)-.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .【分析】根据平行线的性质及三角形内角定理解答 .【解答】解: 由三角板的性质, 可知45EAD ∠=︒,30C ∠=︒,90BAC ADE ∠=∠=︒.因为//AE BC ,所以30EAC C ∠=∠=︒,所以453015DAF EAD EAC ∠=∠-∠=︒-︒=︒,所以180180901575AFD ADE DAF ∠=︒-∠-∠=︒-︒-︒=︒.【点评】本题考查的是平行线的性质及三角形内角和定理, 解题时注意: 两直线平行, 内错角相等 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .【分析】先根据题意得出132E ∠+∠=∠+∠,再由25E ∠+∠=∠可知,135∠+∠=∠,即5ADC ∠=∠,据此可得出结论.【解答】证明:12∠=∠,3E ∠=∠,132E ∴∠+∠=∠+∠.25E ∠+∠=∠,135∴∠+∠=∠,5ADC ∴∠=∠,//AD BE ∴.【点评】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.26.(12分)ABC∆与△A B C'''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(3,1)-;B';C';(2)说明△A B C'''由ABC∆经过怎样的平移得到?.(3)若点(,)P a b是ABC∆内部一点,则平移后△A B C'''内的对应点P'的坐标为;(4)求ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A'的变化写出平移方法即可;(3)根据平移规律逆向写出点P'的坐标;(4)利用ABC∆所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)(3,1)A'-;(2,2)B'--;(1,1)C'--;(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)(4,2)P a b'--;(4)ABC∆的面积111 23131122 222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=.故答案为:(1)(3,1)-,(2,2)--,(1,1)--;(2)先向左平移4个单位,再向下平移2个单位;(3)(4,2)a b--.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.。

2018-2019学年度七年级下期末数学试卷及答案

2018-2019学年度七年级下期末数学试卷及答案

12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。

人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案

人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案

人教版2018—2019学年度第二学期七年级数学(下)期末考试卷及答案(满分:100分答题时间:100分钟)一、选择题(每小题3分,共18分)1.如图,半径为1圆,在x轴上从原点O开始向右滚动一周后,落定点M的坐标为()A.(0,2π)B.(2π,0)C.(π,0)D.(0,π)2.在平面直角坐标系中,若m为实数,则点(﹣2,m2+1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列调查适合抽查方法调查的是()A.为了了解你所在班级中有多少同学需要近视眼镜B.为了了解你们学校七年级中有多少同学需要近视眼镜C.为了了解你们学校有多少教师骑自行车来学校上班D.为了了解你所在班级中有多少同学喜欢足球4.下列说法错误的是()A.的平方根是±2 B.是无理数C.是有理数D.是分数5.已知点M(3,﹣2),N(﹣3,﹣2),则直线MN与x轴、y 轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交6.已知一个正方体的体积是729立方厘米,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是665立方厘米,则截去的每个小正方体的棱长是()A.8厘米B.6厘米C.4厘米D.2厘米7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A .40°B .50°C .60°D .140° 9.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( ) A .9折B .8折C .7折D .6折10.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( ) A . B . C .D .二、填空题(每小题3分,共18分)11.不等式3x ﹣4≥4+2(x ﹣2)的最小整数解是 . 12.如图,有一条直的等宽纸带按图折叠时,则图中∠α= .13.比较大小2.3.14.已知|x ﹣2y|+(y+2)2=0,则x ﹣y= .15.如果点P (x ,y )的坐标满足x+y=xy ,那么称点P 为“和谐点”,请你写出三个和谐点的坐标 .16.如图所示是小刚一天24小时中的作息时间分配的扇形统计图,那么他的阅读时间是 分钟.三、完成下列各题(共52分) 17.(4分)解方程组.18.(4分)解不等式:1﹣+x .19.(5分)计算:(﹣3)2+|1﹣|﹣.20.(6分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中那些直线平行,并说明理由.21.(8分)自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)若<0,则或.根据上述规律,求不等式>0的解集.22.(8分)线段AB在直角坐标系中的位置如图.(1)写出A、B两点的坐标.(2)在y轴上找点C,使BC长度最短,写出点C的坐标.(3)连接AC、BC并求出三角形ABC的面积.(4)将三角形ABC平移,使点B与原点重合,画出平移后的三角形A1B1C1.23.(13分)如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.24.(10分)为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)参考答案与试题解析一、选择题(共30分)二、填空题(每小题3分,共18分)三、完成下列各题(共52分)17.(4分)解方程组.【解答】解:,由①得y=4﹣2x ③,把③代入②得x+2(4﹣2x)=5,解得x=1,把x=1代入③,得y=2,方程组的解为.18.(4分)解不等式:1﹣+x.【解答】解:去分母得,3﹣(x﹣1)≤2x+3+3x,去括号得,3﹣x+1≤2x+3x+3,移项得,﹣x﹣2x﹣3x≤3﹣3﹣1,合并同类项得,﹣6x ≤﹣1,把x的系数化为1得,x≥.19.(5分)计算:(﹣3)2+|1﹣|﹣.【解答】解:(﹣3)2+|1﹣|﹣=9+﹣1﹣3=5+20.(6分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中那些直线平行,并说明理由.【解答】解:AB∥CD,PG∥QH,理由:∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=APQ,∠2=∠PQH=∠EQD,∵∠1=∠2,∴∠GPQ=∠PQH ,∠APQ=∠PQD , ∴AB ∥CD ,PG ∥QH .21.(8分)自学下面材料后,解答问题. 分母中含有未知数的不等式叫分式不等式.如:<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a >0,b >0,则>0;若a <0,b <0,则>0; (2)若a >0,b <0,则<0;若a <0,b >0,则<0. 反之:(1)若>0,则或(2)若<0,则 或.根据上述规律,求不等式>0的解集.【解答】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x >2或x <﹣1.22.(8分)线段AB 在直角坐标系中的位置如图.(1)写出A 、B 两点的坐标.(2)在y 轴上找点C ,使BC 长度最短,写出点C 的坐标. (3)连接AC 、BC 并求出三角形ABC 的面积.(4)将三角形ABC 平移,使点B 与原点重合,画出平移后的三角形A 1B 1C 1.【解答】解:(1)A (1,3),B (3,1);(2)C (0,1);(3)三角形ABC 的面积:×3×2=3;(4)如图所示:△A 1B 1C 1即为所求.23.(13分)如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE 平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.【考点】Q2:平移的性质;JA:平行线的性质.【分析】(1)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA的度数,进而得出答案;(2)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA的度数,进而得出答案;(3)直接利用角平分线的性质结合平行线的性质得出∠1和∠2的度数,进而得出答案.【解答】解:(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.24.(10分)为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)【解答】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得:,答:A种型号家用净水器购进了60台,B种型号家用净水器购进了40台;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得:60a+40×2a≥5600,解得:a≥40,150+40=190(元).答:每台A型号家用净水器的售价至少是190元.。

2018-2019学年七年级下期末考试数学试卷及答案

2018-2019学年七年级下期末考试数学试卷及答案

228.如果 (x 1)2 2 ,那么代数式 x 2 2x 7的值是 A . 8B . 92018--2019 学年第二学期期末考试初一数学试卷考 生 须 知 1.本试卷共 6 页,共三道大题, 27道小题。

满分 100分。

考试时间 90分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、做图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共 30 分,每小题 3分)第 1-10 题均有四个选项,符合题意的选项只有..一个.1.根据北京小客车指标办的通报,截至 2017年 6月 8日 24时,个人普通小客车指标的基准中签几率继续创新低,约为 0.001 22,相当于 817 人抢一个指标,小客车指标中签难 度继续加大 .将 0.001 22 用科学记数法表示应为A .1.22 ×10-5B .122 ×10-3C . 1.22 ×10-3D .1.22 ×10-2 2. a 3 a 2 的计算结果是A . a 9B .a 6C . a 5D . a3.不等式 x 1 0 的解集在数轴上表示正确的是4. 如果-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 35.6.7.A .3如图, A .a 21,是关于 x 和 y 的二元一次方程 ax2y 1 的解,那么 a 的值是B .1C .-1D .-32×3 的网格是由边长为32B . aa 的小正方形组成,那么图中阴影部分的面积是C . 2a 2D . 3a 2如图,点 O 为直线 AB 上一点, OC ⊥OD. 如果∠ 1=35°, 那么∠ 2 的度数是 A . 35° B . 45° C . 55°D . 65°某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示知道香草口味冰淇淋一天售出 200 份,那么芒果口味冰淇淋 的份数是A . 80B . 40C .20D . 10,b14.右图中的四边形均为长方形 . 根据图形的面积关系,写出一个正 确的等式: ______________________ .15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基 本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程 术是《九章算术》最高的数学成就. 《九章算术》中记载: “今有共买 鸡,人出八,盈三;人出七,不足四 . 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出 8 钱,多余 3 钱,每人出 钱,还缺 4 钱.问人数和鸡的价钱各是多少?”设人数有 x 人,鸡的价钱是 y 钱,可列方程组为 ____________ .16.同学们准备借助一副三角板画平行线 . 先画一条直线 MN ,再按如图所示的 样子放置三角板 . 小颖认为 AC ∥DF ;小静认为 BC ∥EF.C .10D . 119.一名射箭运动员统计了 45 次射箭的成绩,并绘制了如图所示的折线统计图 . 则在射箭成绩的这组数据中,众数和中位数分别是A .18,18B . 8,8C .8, 9D . 18,810.如图,点 A ,B 为定点,直线 l ∥AB ,P 是 直线l 上一动点 . 对于下列各值: ①线段 AB 的长②△PAB 的周长 ③△PAB 的面积④∠APB 的度数其中不.会.随点 P 的移动而变化的是A .① ③B .① ④C .② ③D .② ④二、填空题(本题共 18 分,每小题 3 分)311.因式分解: 2m 3 8m . 12.如图,一把长方形直尺沿直线断开并错位,点 E ,D ,B , F 在同一条直线上.如果∠ ADE =126 °,13.关于 x 的不等式 ax b 的解集是 xb b. 写出一组满足条件的 a ,b 的值:aBD你认为的判断是正确的,依据是.三、解答题(本题共52分,第17- 21小题,每小题4分,第22- 26小题,每小题 5 分,第27 小题7 分)2017 0 1 17.计算:( 1)2017(3 )02 1.2 1 218.计算:6ab(2a2b - ab2).35x 17 8(x 1),19.解不等式组:x 10x 6 ,2并写出它的所有正整.数.解...20.解方程组:2x 3y 1,x 2y4.21.因式分解:- 3a3b- 27ab318a2b2 .22.已知m -1,求代数式(2m43)(2m 1) -(2m 1)2(m 1)(m 1)的值EF⊥BC,垂足为F,过点D作DG∥AB交AC于点G.(1)依题意补全图形;( 2)请你判断∠ BEF 与∠ ADG 的数量关系,并加以证明.24.《中共中央国务院关于深化教育改革全面推进素质教育的决定》中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现. ”王老师所在的学校为23.已知:如图,在ABC中,过点A作AD⊥BC,垂足为D,E 为AB 上一点,过点E作加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:1)王老师是第次购买足球和篮球时,遇到商场打折销售的;2)求足球和篮球的标价;3)如果现在商场均以标价的 6 折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60 个,且总费用不能超过2500 元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车” )的现状,北京市统计局采用拦截式问卷调查的方式对全市16 个区,16-65 周岁的1000 名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用 1 次,32.5%的人2-3 天使用1 次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT 业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8% 、93.1% 和92.3%.∴∠ A+∠ B+∠ ACB =180°.使用过共享单车的被访者中, 满意度(包括满意、 比较满意和基本满意) 达到 97.4% , 其中“满意”和“比较满意”的比例分别占 41.1% 和 40.1% ,“基本满意”占 16.2%. 从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9% ;对“付费 /押金”和“找车 /开锁 /还车流程”的满意度分别为 96.2% 和 91.9% ; 对“管理维护”的满意度较低,为 72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:1)现在北京市 16-65 周岁的常住人口约为 1700 万,请你估计每天共享单车骑行人数至少约为 万;2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来; 3)请你写出现在北京市共享单车使用情况的特点(至少一条) .26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180 °”的结论 . 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过 证明来确认它的正确性.请你参考小明解决问题的思路与方法,写出通过实验方法 2 证明该结论的过程受到实验方法 1的启发,小明形成了证明该结论的想法: 实验 1 的拼接方法直观上看, 是把∠1 和∠2 移动到∠ 3 的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象 为几何图形,那么利用平行线的性质就可以解决问题了 小明的证明过程如下:已知:如图, ABC .求证:∠ A+∠B+∠C =180°. 证明:延长 BC ,过点 C 作 CM ∥BA.∴∠ A=∠ 1(两直线平行,内错角相等), ∠ B=∠ 2(两直线平行,同位角∵∠ 1+∠2+∠ACB =180 °(平角定义),27.对x,y定义一种新运算T,规定:T(x,y)(mx ny)(x 2y)(其中m,n 均为非零常数).例如:T (1,1) 3m 3n.(1)已知T(1,1) 0,T (0,2) 8.① 求m,n 的值;T(2p,2 p) 4,② 若关于p的不等式组恰好有 3 个整数解,求a的取值范围;T(4p,3 2p) a(2)当x2y2时,T(x,y) T(y,x)对任意有理数x,y都成立,请直接写出m,n 满足的关系式.∴正整数解为 1,2.17.解:原式=1 2分34分18.解:原式=3212a 3b 223 2a 2b 3.19.解: 5x 17 8(x 1),①x 10. ② 2由①,x 3. 1分 由②,x 2. 2分 2.3分解得 y 1. 把 y1代入③,∴原方程组的解是21.解:原式= 3ab (a 222.解:原式= 4m 22m 2分3ab(a 6m 32. 2, 1.9b23b)2.(4m 23分 4分6ab) ⋯2 分4分4m 1) m 2 12=m 4m 1.3分20.解: 2x 由②, 3y 1,①2y 4.②得x 4 2y .③ 1分当m12 4 1时,原式 =( )44 1165分2018-2019学年度第二学期期末练习 初一数学评分标准及参考答案 、选择题(本题共 30 分,每小题 3分)二、填空题(本题共 18分,每小题 3分)把③代入①,得 8 4y 3y 1.三、23.(1)如图. ⋯⋯1分(2)判断:∠ BEF=∠ADG. ⋯⋯2 分证明:∵ AD⊥BC,EF ⊥BC,∴∠ ADF =∠EFB=90∴ AD∥ EF (同位角相等,两直线平行).∴∠ BEF=∠BAD(两直线平行,同位角相等).⋯⋯3分∵DG∥ AB ,∴∠BAD = ∠ADG (两直线平行,内错角相等).⋯⋯4分∴∠ BEF =∠ ADG. ⋯⋯5 分24.解:(1)三;(2)设足球的标价为x 元,篮球的标价为y 元.⋯⋯1分根据题意,得6x 5y700,3x 7y710.解得:x 50,y 80.答:足球的标价为50 元,篮球的标价为80元;⋯⋯ 4 分(3)最多可以买38 个篮球.⋯⋯5分25.解:(1)略.1分项目骑行付费/ 押金找车/ 开锁/还车流程管理维护满意度97.9%96.2%91.9%72.2% 2)使用共享单车分项满意度统计表3)略.26.已知:如图,ABC .求证:∠ A+∠B+∠C =180 °.证明:过点A作MN ∥BC. ⋯⋯1 分∴∠ MAB=∠ B,∠NAC=∠C(两直线平行,内错角相等).⋯3 分∵∠ MAB +∠ BAC+∠NAC=180°(平角定义),∴∠ B +∠BAC+∠C =180°.5分m 1, ⋯⋯2分 n1.(2p 2 p)(2p 4 2p) 4①, (4p 3 2p)(4 p 6 4p) a ②.∵恰好有 3 个整数解,42 a 54.2) m 2n27.解:①由题意,得 (m n) 0,8n 8. ②由题意,得解不等式①,得 p 解不等式②,得 p1. a 18123分1pa 18 12 4分a 18 123.6分 7分。

人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案

人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案

人教版2018—2019学年度第二学期七年级数学(下)期末考试卷及答案(满分:120分答题时间:100分钟)一、选择题(每小题3分,共30分)1.下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.﹣3a>﹣3b D.3a<3b3.9的算术平方根是()A.3 B.﹣3 C.±3 D.94.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2)D.(3,﹣2)5.若m=﹣4,则估计m的值所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5 6.数学课上,小明同学在练习本的相互平行的横隔线上先画了直线a,度量出∠1=112°,接着他准备在A点处画直线b.若要b//a,则∠2的度数()A. 112°B. 88°C. 78°D. 68°7.如图,周董从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,则∠ABC的度数是()A.80°B.90°C.100°D.95°8.已知关于x,y的方程组的解是,则关于x,y的方程组的解是()A.B.C.D.9.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上如果∠1=20°,那么∠2 的度数是( )A.25°B.30°C.40°D.45°10.如图是一块长方形ABCD 的场地,长AB=102m ,宽AD=51m ,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2二、填空题(每小题3分,共30分)11.已知,则.12.点P (m+3,m+1)在直角坐标系的x 轴上,则P 点坐标为 .13.的相反数是 .14.如图,当剪子口∠AOB 增大15°时,∠COD 增大 度.15.一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 组.16.如图是一组密码的一部分,为了保密,许多情况下课采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“正做数学”的真实意思是“祝你成功”.若“正”所处的位置为(x ,y ),你找到的密码钥匙是 ,破译的“今天考试”真实意思是 .17.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB ∥CD 的条件有 (填写所有正确的序号).18.对于有理数x ,y 定义新运算:x*y=ax+by ﹣5,其中a ,b 为常数,已知1*2=﹣9,(﹣3)*3=﹣2,则2a ﹣b= .19.从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75°.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22°.则∠AOD的度数是.20.若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是.三、解答题(共60分)21.(8分)计算(1)|﹣2|+2(﹣1);(2)++(﹣1)2019.22.(10分)解方程组或不等式组(1)解不等式组.(2)解方程组23.(6分)某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.(2)图①中,a等于多少?D等级所占的圆心角为多少度?24.(6分)已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.25.(8分)推理填空,如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(),∴AC∥DF(),∴∠D=∠1(),又∵∠C=∠D(),∴∠1=∠C(),∴BD∥CE().26.(11分)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B 分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.27.(11分)【数学活动回顾】:七年级下册教材中我们曾探究过“以方程x-y=0的解为坐标(x的值为横坐标、y的值为纵坐标)的点的特性”,了解二元一次方程的解与其图像上点的坐标的关系。

2018-2019学年七年级下期末考试数学试卷(含答案)

2018-2019学年七年级下期末考试数学试卷(含答案)

2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。

2018-2019学年七年级下期末考试数学试卷及答案

2018-2019学年七年级下期末考试数学试卷及答案

2018-2019学年七年级下期末考试数学试卷及答案2018--2019学年第⼆学期期末考试初⼀数学试卷⼀、选择题(本题共30分,每⼩题3分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的 1.9的平⽅根为 A .±3 B .﹣3 C .3D .2.下列实数中的⽆理数是A .1.414B . 0C .13D .3.如图,为估计池塘岸边A ,B 的距离,⼩明在池塘的⼀侧选取⼀点O ,测得OA =15⽶,OB =10⽶,A ,B 间的距离可能是 A .30⽶B .25⽶C .20⽶D .5⽶4.下列调查⽅式,你认为最合适的是 A .了解北京市每天的流动⼈⼝数,采⽤抽样调查⽅式B .旅客上飞机前的安检,采⽤抽样调查⽅式C .了解北京市居民”⼀带⼀路”期间的出⾏⽅式,采⽤全⾯调查⽅式D .⽇光灯管⼚要检测⼀批灯管的使⽤寿命,采⽤全⾯调查⽅式5. 如图,已知直线a//b ,∠1=100°,则∠2等于 A .60° B . 80° C .100° D .70°6.象棋在中国有着三千多年的历史,由于⽤具简单,趣味性强,成为流⾏极为⼴泛的益智游戏.如图,是⼀局象棋残局,已知表⽰棋⼦“⾺”和“⾞”的点的坐标分别为(4,3),(-2,1),则表⽰棋⼦“炮”的点的坐标为A .(-3,3)B .(0,3)C .(3,2)D .(1,3)7.若⼀个多边形的内⾓和等于外⾓和的2倍,则这个多边形的边数是 A .4B .5C .6D .88.若m >n ,则下列不等式中⼀定成⽴的是 A .m+2<n+3 B .2m <3n C .a ﹣m <a ﹣n D . ma 2>na 29. 在⼤课间活动中,同学们积极参加体育锻炼.⼩丽在全校随机抽取⼀部分同学就“⼀分钟跳绳”进⾏测试,并以测试数据为样本绘制如图所⽰的部分频数分布直⽅图(从左到右依次分为六个⼩组,每⼩组含最⼩值,不含最⼤值)和扇形统计图,若“⼀分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学⽣,根据图中提供的信息,下列说法不.正确..的是A .第四⼩组有10⼈B .第五⼩组对应圆⼼⾓的度数为45°C .本次抽样调查的样本容量为50D .该校“⼀分钟跳绳”成绩优秀的⼈数约为480⼈10. 如图所⽰,下列各三⾓形中的三个数之间均具有相同的规律,根据此规律,最后⼀个三⾓形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +1⼆、填空题:(本题共16分,每⼩题2分,将答案填在题中横线上)11.如图,盖房⼦时,在窗框未安装好之前,⽊⼯师傅常常先在窗框上斜钉⼀根⽊条,这种做法的依据是12.⽤不等式表⽰:a 与2的差⼤于-113.在这四个⽆理数中,被墨迹(如图所⽰)覆盖住的⽆理数是.14.若2-30=(),则=+a a b 15. 如图,将⼀副三⾓板叠放在⼀起,使直⾓的顶点重合于点O ,AB//OC,DC 与OB 交于点E ,则∠DEO 的度数为.16. 在平⾯直⾓坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是_______________. 17.如图,ABC 中,点D 在BC 上且BD=2DC ,点E 是AC 中点,已知CDE ⾯积为1,那么ABC 的⾯积为18.在数学课上,⽼师提出如下问题:⼩军同学的作法如下:①连接AB ;②过点A 作AC ⊥直线l 于点C ;则折线段B-A-C 为所求.D lCBAlCBA⽼师说:⼩军同学的⽅案是正确的. 请回答:该⽅案最节省材料的依据是.三、解答题(本题共10个⼩题,共54分,解答应写出⽂字说明,证明过程或演算步骤) 19.(53-2( 20.(5分)解不等式组()38,41710.x x x x <++≤+?? 并把它的解集在数轴上表⽰出来。

重庆南开(融侨)中学2018-2019学年初2021级七下期末数学试卷(无答案)

重庆南开(融侨)中学2018-2019学年初2021级七下期末数学试卷(无答案)

重庆南开(融侨)中学2018-2019学年第二学期初2021级期末数学试卷(全卷五个大题,满分150分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,共36分)1.下列图形中,不是轴对称图形的是( ▲ )2.下列运算正确的是( ▲ )A.5322a a a =+B.248a a a =÷C.1553a a a =⋅D.4222)(b a ab = 3.已知等腰三角形的两边长分别为3和7,则其周长为( ▲ )A.11B. 13C.15D.174.下列叙述不正确的是( ▲ )A.掷一枚骰子,向上的一面出现的点数为4是随机事件B.某种彩票中奖的概率为1%,那么买100张这种彩票一定会中奖C.某兴趣小组14位同学中至少两人的生日在同一月份是必然事件D.在相同条件下,试验的次数足够大时,某一随机事件发生的频率会稳定于某一数值5.如图,在4×4的方格中随机撒一颗大小忽略不计的沙粒,撒到阴影部分的概率是( ▲ ) A.167 B.83 C.163 D.416.如图,根据图中的运算程序进行计算,当输入4=x 时,输出的结果y 值为( ▲ )A. 2B. 4C. 9D. 117.如图,直线21l l ∥,AB=BC ,CD ⊥AB 于点D ,若∠DCA=20°,则∠1的度数为( ▲ )A. 80°B.70°C.60°D.50°8.将若干个菱形按如图所示的规律排列:第1个图形有5个菱形,第2个图形有8个菱形,第3个图形有11菱形,…,则第10个图形有( ▲ )个菱形.A.30B.31C.32D.339.若13,122=+=-b a b a ,则ab 等于( ▲ )A.6B.7C.-6D.-710.如图,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且△ABC 的面积是12,则△BEF 的面积是( ▲ )A.2B.3C.4D.611.《九章算术》中有一题:今有二马、一牛价过一万,如半马之价,一马、二牛价不满一万,如半牛之价.问、牛、马价各几个?译文:现有二匹马加一头牛的价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛个多少钱?设一匹马的价钱是x ,一头牛的价钱是y ,则可建立方程组为( ▲ ) A.⎪⎪⎩⎪⎪⎨⎧=++=++1000021)2(1000021)2(y y x x y x B.⎪⎪⎩⎪⎪⎨⎧=++=-+1000021)2(1000021)2(y y x x y x C.⎪⎪⎩⎪⎪⎨⎧=-+=-+1000021)2(1000021)2(y y x x y x D.⎪⎪⎩⎪⎪⎨⎧=++=++1000021)2(1000021)2(y y x x y x 12.如图,∠AOB=20°,点M 、N 分别是边OA 、OB 上的定点,点P 、Q 分别是边OB 、OA 上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN 最小时,则αβ-的值为( ▲ )A.10°B.20°C.40°D.60°二、填空题(本大题共12小题,每小题3分,共36分)13.2019年1月1日,“学习强国”平台全国上线,截止至2019年6月17日,重庆市党员“学习强国”APP 注册人数约1380000,参学覆盖率达71%,稳居全国前列,将数据1380000用科学技术法表示为 ▲ .14.已知,2=-b a 那么=+ba 33 ▲ .15.如图,点D 是AB 边上的中点,将△ABC 沿过点D 的直线DE 折叠,使点A 落在BC 边上F 处,如果∠B=65°,则∠BDF= ▲ .16.如图,直线b a ∥,在Rt △ABC 中,点C 在直线a 上,若∠1=54°,∠2=24°,则∠B 的度数为 ▲ .17.一个不透明的袋子里装有6个红球和若干个白球,这些球除颜色外完全相同,从袋子中随机摸出一个球,这个球是白色的概率为52,那么袋子里白球的个数为 ▲ . 18.如图,在等腰△ABC 中,AB=BC ,∠B=120°,线段AB 的垂直平分线分别交AB 、AC 于点D 、E ,若AC=12,则DE= ▲ .19.若a ,b 满足0106222=++-+b a b a ,则a +b =的值是 ▲ .20.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,12,440===∆AC DE S ABC ,,则AB 长是 ▲ .21.关于y x ,的二元一次方程组⎩⎨⎧=+-=+8235232y x k y x 的解满足3=+y x ,则=k ▲ . 22.如图,在△ABC 河和△DEF 中,∠ACB=∠EFD=90°,点B 、F 、C 、D 在同一直线上,已知AB ⊥DE ,且AB=DE ,AC=6,EF=8,DB=10,则CF 的长度为 ▲ .23.如图1是一个装有A 、B 两个阀门的空容器,打开A 阀门水将匀速注入甲容器,打开B 阀门甲容器的水将匀速注入乙容器(水流动过程的时间忽略不计),小溪先打开A 阀门,几分钟后再打开B 阀门,甲、乙两容器内水的体积的差值y (升)和小溪打开A 阀门的时间x (分钟)之间的关系如图2所示,则图2中转折点P 对应的时间是 ▲ 分钟.24.6月18日晚,苏宁易购发布618全程战报:从6月1日到18日晚6点,苏宁依托线上线下全场景优势,逆势增长.经调查,苏宁易购线上有甲乙两家在销售华为A 手机、华为B 电脑和华为C 耳机.已知每部A 手机的利润率为40%,每台B 电脑的利润率为60%,每副C 耳机的利润率为30%,甲商家售出的B 电脑和C 耳机的数量都是A 手机的数量的一半,获得的总利润为50%,乙商家售出的A 手机的数量是B 电脑的数量的一半,售出的C 耳机的数量是B 电脑的数量的134,则乙商家获得的总利润率是 ▲ . 三、计算题:(本大题共4小题,每小题4分,共16分)25.计算:302019)21()14.3(|42|)1(--⨯---+-π26.化简:)3)(3()5(2)2(2x y y x y x x y x +-+---27.解方程组:⎩⎨⎧-=-=-75412y x y x28.解方程组:⎪⎩⎪⎨⎧=-=-++1811101233y x y x y x四、解答题(本大题共4小题,29小题8分,其余每小题10分,共38分)29.如图,直线AB ∥CD ,∠ACD 的平分线CE 交AB 于点F ,∠AFE 的平分线交CA 延长线于点G.(1)证明:AC=AF;(2)若∠FCD=30°,求∠G 的大小.30.某中学为了调查本校初2021级学生的跳绳水平,抽取了某班60名学生的跳绳成绩(满分为10分,分数均为自然数),绘制如下两幅不完整的统计图.请根据统计图的信息,回答下列问题.(1)在扇形统计图中,a的值是,成绩为10分所在扇形的圆心角是度;(2)补全条形统计图;(3)若从该班男生中随机抽取一人,求这名男生跳绳成绩不是10分的概率.31.互联网时代,发达的物流业改变了我们的生活.某快递公司的分发中心、菜鸟驿站、快递员公寓依次分布在同一条直线上,快递员甲、乙分别同时从菜鸟驿站和分发中心出发,甲先骑自行车回到分发中心,将自行车归还分发中心后步行经过菜鸟驿站返回公寓(归还自行车的时间忽略不计),乙先从分发中心步行到菜鸟驿站,步行速度与甲的步行速度相同,到达菜鸟驿站后停下来继续完成剩余工作,随后跑步回公寓,最后两人同时到达公寓.甲、乙两人与公寓的距离y(米)与出发的时间x(分钟)之间的关系如图所示.(1)甲骑自行车的速度为米/分,乙跑步的速度为米/分;(2)乙在菜鸟驿站停留的时间为分钟;(3)甲乙第二次相遇后再经过多少分钟他们相距450米?32.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.五、解答题(本大题2个小题,每小题12分,共24分)33.随着科技的发展,只能制造逐渐成为一种可能的生产方式.重庆某电子零部件生产商原来采用自动化程度较低的传统生产方式,工厂有熟练工人和新工人共100人,熟练工平均每天能生产30个零件,新工人平均每天能生产20个零件,所有工人刚好用30天完成了一项7.2万个零件的生产任务.(1)请问该工厂有熟练工,新工人各多少人?(请列二元一次方程组解题)(2)今年,某自动化技术团队为工厂提供了A、B两种不同型号的机器人,且两种机器人都可以单独完成零件的生产.已知A型机器人的售价为80万元/台,B型机器人的售价为120万元/台.工厂准备试采购价值840万元的机器人设备,两种机器人都至少购买一台,若840万元刚好用完,求出所有可能的购买方案.(3)已知一个零件的毛利润(只扣除了原材料成本)为10元,若选择传统生产方式,熟练工每月基本工资3000元,新工人每月基本工资2000元,在基本工资之上,工厂还需额外支付计件工资5元/件,传统生产方式的设备成本忽略不计.若选择智能制造方式生产,A型机器人每月生产零件1.5万个,B型机器人每月能生产零件2.7万个,1台A型机器人需要8名技术人员操控,一台B型机器人需要12名技术人员操控,技术人员每人工资1万元,实际生产过程中,一台A型机器人平均每月的总成本为6万元(包含所以设备成本和维护成本),一台B型机器人平均每月的总成本为8万元(包含所以设备成本和维护成本).请你比较传统的生产方式和(2)中的所有购买方案对应的智能生产方式,哪种生产方式每月的总利润最大,最大利润为多少万元?(注:每月均按30天计算)34.已知:在Rt △ABC 中,∠ACB=90°,过点C 作CD ⊥AB 于点D ,点E 是BC 上一点,连接AE 交CD 于点F.(1)如图1,若AE 平分∠CAB ,CP 平分∠BCD ,求证:FP=EP ;(2)如图2,若CE=CA ,过点E 作EG ⊥CD 于点G ,点H 为AE 的中点,连接DH ,GH ,判断△GDH 的形状,并证明;(3)如图3,在(2)的条件想,点K 为AE 上一点,连接GK ,点M 为GK 的中点,连接MH ,过点D 作DH ⊥MH ,交MH 的延长线于点N ,∠GHA=90°-21∠GHM ,若NH ∶HM=8∶5,△GHK 的面积为10,求△GDH 的面积.。

重庆南开中学七年级下期期末考试

重庆南开中学七年级下期期末考试

南开中学七年级下期期末考试数学试题(满分:100分 时间:120分钟)一、选择题(本题共12小题,每题2分,共24分)请把选择题的答案填涂在机读卡上. 1、单项式53xy -的次数为( )A .5B .6C .7D . 82、下列汽车标志中,不是轴对称图形的是( )A B C D3、据统计,今年重庆市约有37. 9万名考生参加中考, 37. 9万保留两位有效数字约为( )A .43710⨯B .43810⨯C .53.710⨯D .53.810⨯4、在一个不透明的口袋里,装了若干个除颜色不同其余都相同的球,如果口袋中有7个 红球,且摸到红球的概率为14,那么口袋中球的总个数为( ) A .28个B .21个C .14个D .7个5、如图所示的长方形纸片,先沿虚线向右对折,接着将对折后的纸片沿虚线剪下一个小圆 和一个小三角形,然后将纸片打开,打开后的图形是( )A B C D 6、下列几组线段中,不能构成直角三角形的是( )A .10,24,26B .9,40,41C .8,15,16D .6,8,107、若224445m n m n +=--,则m ²n 的值为( )A .1B .-1C .4D .-48、已知代数式133m xy +-与252m n x y -是同类项,那么3m n + 的值为( )A .-1B .1C .±1D .09、已知0a <,那么22a a -的值为( )A .aB .-aC .3aD .-3a10、如图,在△ABC 和△ADE 中:①AB = AD ;②AC = AE ;③BC = DE ;④∠C = ∠E ;⑤∠B = ∠ADE .下列四个选项分别以其中三个为条件,剩下两个为结论,则其中错误的是( ) A .若①②③成立,则④⑤成立. B .若①②④成立,则③⑤成立. C .若①③⑤成立,则②④成立.D .若②④⑤成立,则①③成立.ED CABBCAFGEBACD第10题图 第11题图 第12题图11、如图,小正方形的边长为1,△ABC 的三个顶点均在格点上,则AB 边上的高是( )A .322B .3510C .355D .45512、如图,在梯形ABCD 中,AD ∥BC ,∠ABC = 90°,∠DCB = 60°,AD = 2,AC 平分∠BCD ,DE ⊥AC 于点F ,交BC 于点G ,交AB 延长线于点E ,且AE = AC .则下列四个结论:①4ADC S ∆=;②3AB =;③BG = 1;④GC = 2BG .其中正确的有( )个 A .1B .2C .3D .4二、填空题(本题共12小题,每题2分,共24分)请把填空题的答案填入答题卷的横线上.13、16的平方根是______________.14、周末小华在家做作业时,在镜子里看到后面墙上电子钟的示数如下图所示,那么此刻的时间为.abcd21EDBC A第14题第15题第16题15、如图,a∥b,c⊥d,∠1 = 40°,则∠2 = ___________.16、如图,△ABC中,∠B = 40°,AC的垂直平分线交AC于点D,交BC于点E,且∠EAB∶∠CAE = 3∶1,则∠C = ___________.17、一个等腰三角形的两边长分别为3和4,则此三角形的周长为______________.18、设730-的整数部分为a,小数部分为b,那么a–b的值为_______________.19、若291x kx-+是完全平方式,则k的值为_______________.20、若1922213=-++mm,则m的值为________________.21、如图(1),直线l上有12,A A两点,它们与直线外一点P能组成1个三角形;如图(2),直线l上有123,,A A A三点,它们与直线外一点P能组成3个三角形;按这样的规律,如图(3),如果直线l上有123,,nA A A A⋅⋅⋅共n个不重合的点,那么它们与直线外一点P能组成__________________(用含n的代数式表示)个三角形.图(1)图(2)图(3)lA3A2A1Pl A2A1Pl An…A4A3A2A1P22、下列四种说法:①等腰三角形是轴对称图形,它的对称轴是顶角的平分线;②三角形的三条高都在三角形内,且都相交于一点;③在△ABC 中,若1123A B C ∠=∠=∠,则△ABC 一定是直角三角形;④一个三角形的两边长为8和10,那么它的第三边b 的取值范围是218b <<.其中正确的是_______________(填序号). 23、如图,正方形ABCD 的边长为4,E 是BC 边的中点,F 是AC 边上一动点,则FE +FB 的最小值是______________.E BCADFEFC'DABC第23题图 第24题图24、如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB = 6,BC = 8,则折痕EF 的长为___________.重庆南开中学初2014级七年级下期期末考试数学试题答题卷(满分:100分 时间:120分钟)题号 一 二 三 四 五 总分 满分 24分24分22分4分26分100分得分一.选择题(每小题2分,共24分)(温馨提示:请将选择题答案填涂在机读答题卡中)二、填空题(每小题2分,共24分)13、_____________;14、_____________;15、 ;16、 ; 17、 ;18、 ;19、 ;20、 ;21、 ;22、 ;23、 ;24、 .三、计算题:(本大题共5个小题,25-28题每小题4分,29题6分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25、011(5)25()102π--+-+ 26、243238252(2)()()2x x x x x x ⎛⎫-⋅----+÷ ⎪⎝⎭27、32113184332+--+ 28、()2()(3)(3)2x y x y y x y y x ---+--29、先化简,再求值:222(2)()2()a b a a b a b ----+,其中,31a =+,31b =-.四、作图题(4分)30、市规划局准备修建一个加油站,如下图所示,设计要求:加油站到A ,B 两个城镇的距离必须相等,到两条高速公路a ,b 的距离也必须相等,加油站P 应该修在什么位置,请用尺规作图画出P 点所有可能....的位置.(不写已知,求作和作法,保留作图痕迹)abAB五、解答题(本大题共4个小题,31题6分,32题5分,33题7分,34题8分,共26分)解答时每小题必须给出必要的演算过程或推理步骤.31、“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 分别表示了“龟兔 赛跑”时这两只动物运动的路程与时间关系, 请你根据图中给出的信息,解决下列问题: (1)线段OD 表示赛跑过程中_____________ (填“兔子”或“乌龟”)运动的路程与时间关 系,赛跑的全程是___________米. (2)兔子在睡觉前每分钟跑___________米, 乌龟每分钟爬____________米.(3)乌龟用了___________分钟追上了正在睡觉的兔子.(4)兔子醒来,以160米/分的速度跑向终点,结果还是比乌龟晚到了1分钟,那么兔子 中间停下睡觉用了___________分钟.32、如图,在△ABC 中,D 是BC 上一点,BE ⊥AD 于点E ,CF ⊥AD 交AD 延长线于点F ,且BE = CF .请你判断AD 是△ABC 的中线还是角平分线?并证明你的结论.ot /分钟s /米700307D1500A BC31FED A BC33、如图,四边形ABCD 中,AB ⊥BC 于点B ,CD ⊥BC 于点C ,M 为BC 上一点, MA = MD ,∠AMB = 75°,∠DMC = 45°,求证:AB =BC .B ADCMFC AB ED34、如图1,△ABC 是等边三角形,点E 在AC 边上,点D 是BC 边上的一个动点,以DE 为边作等边△DEF ,连接CF .(1)当点D 与点B 重合时,如图2,求证:CE + CF = CD ;(2)当点D 运动到如图3的位置时,猜想CE 、CF 、CD 之间的等量关系,并说明理由;(3)只将条件“点D 是BC 边上的一个动点”改为“点D 是BC 延长线上的一个动点”,如图4,猜想CE 、CF 、CD 之间的等量关系为___________________(不必证明).FC AB ED图4FC AB (D )EFCAB ED图1图2图3。

重庆南开中学2018学年七年级数学下学期期末试题北师大

重庆南开中学2018学年七年级数学下学期期末试题北师大

重庆南开中学初2018级七年级下期期末考试数学试题 (满分:100分时问:120分钟)一、选择题(本题共10小题,每题2分,共20分)注意:请把选择题的答案填入答题 卷的表格中.1.下列电视台台标中,是轴对称图形的是 ( )2.下列计算正确的是 ( )A.224347x x x += B.3515x x x ⋅= C.43x x x ÷= D.()257xx =3.在一个暗箱里装有3个红球、5个黄球和7个绿球,它们除颜色外都相同.搅拌均 匀后,从中任意摸出一个球是红球的概率是 ( ) A.13 B.15 C.17 D.7154.已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为 ( ) A .1cm B .8cm C .8cm 或10cm D .10cm5.下列都是无理数的是 ( )A.0.18,23.0.7π2276.下列说法正确的是 ( )A .将5.647精确到O .1是5.7B .将6.95精确到十分位是7.0C .近似数5.2x118与近似数5200的精确度相同D .近似数4.8x118与近似数4.80万的有效数字相同 7.已知a+b=1,ab=3,则22a b +一ab 的值为 ( )A .一4B .8C .10D .--108.如图,将图中的正方形沿其中一条对角线对折后,再沿原正方形的另一条对角线对 折,最后将得到的三角形剪去一片后展开,得到的图形为 ( )9.“健康重庆”就是要让孩子长得壮,老人寿命更长,全民生活得更健康.为了响应“健康重庆”的号召,小明的爷爷经常坚持饭后走一走.某天晚饭后他慢步到附近的融侨公园,在湖边亭子里休息了一会后,因家中有事,快步赶回家.下面能反映当天小明的爷爷所走的路程y与时间x的关系的大致图象是 ( )10.我们知道,正方形的四条边相等,四个角也都等于90.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,.下列结论:①APD≅AEB;②EB⊥ED;③点B到直线AE④1S APD S APB++=.其中正确结论的序号是 ( )A.①②③ B.①②④C.①③④ D.②⑨④二、填空题(本题共l0小题,每题2分,共20分)注意:请把填空题的答案填入答题卷的横线上. j11______.12.比较大小:填“>”,“<”或“=”).13.小丽在镜子里看到对面墙上电子钟示数为,则此时实际时刻为______.14.据市教委中招办介绍,今年全市高中阶段教育招生计划约为382000人.将数382000 保留2个有效数字,用科学记数法表示为_______.15.如图是一个等边三角形的靶子,靶心为其三条对称轴的交点,飞镖随机地掷在靶上,则投到区域A(包含边界)的概率是________.16.如图,在ABC中,AB=AC,AD是BC上的高,若AB=5,BC=6,则AD=_______.17.若ABC 的三边a 、b 、c 满足25(612)a -+-+=0,则△ABC 的面积为____.18.实数a 、b 在数轴上对应点的位置如图所示,a b -=________.19.如图,长方形纸片ABCD 的边长AB=4,AD=2.将长方形纸片沿EF 折叠,使点A 与点C 重合,则△FEC 的面积为_______.20.如图,在长方形ABCD 中,AB=4,AD=10,点Q 是BC 的中点,点P 在AD 边上运 动,当BPQ 是腰长为5的等腰三角形时,AP 的长度为________.三、计算题:(本大题5个小题,21--24题每小题4分,25题6分, 22分)解答时每小题必须给出必要的演算过程或推理步骤21.2201113(1)(3)2π-⎛⎫+-⨯- ⎪⎝⎭22.522372()(2)()(8)x x x x x ⋅-+-⋅-÷2(2)(2)()n m n m m n -++-25.先化简,再求值:2(2)(4)(3)(2)a b a b a b a ⎡⎤-++-÷⎣⎦,其中a 是27的立方根,6是4的算术平方根 .四、解答题:(本大题6个小题,26-30题每小题6分,31题8分,共38分)解答时 每小题必须给出必要的演算过程或推理步骤26.为促进“平安重庆”建设,市公安局交巡警总队拟在我市某“三角形”转盘区域内新 增一个交巡警平台,使交巡警平台到三个十字路口A 、B 、C 三点的距离相等,试确定 交巡警平台P 的位置(要求:用尺规作图,保留作图痕迹,不写已知、求作、作法和 结论).27.为了鼓励小强勤做家务,培养劳动意识,小强每月的总费用等于基本生活费加上奖 励(奖励由上个月他的家务劳动时间确定).已知小强4月份的家务劳动时间为20小时,他5月份获得了400元的总费用.小强每月可获得的总费用与他上月的家务劳动时间之间的关系如图所示,请根据图象回答下列问题.(1)上述变化过程中,自变量是_______,因变量是_______;(2)小强每月的基本生活费为________元.(3)若小强6月份获得了450元的总费用,则他5月份做了_______小时的家务.(4)若小强希望下个月能得到120元奖励,则他这个月需做家务________小时.28.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,.且AB=DE.,∠A=∠D,AF=DC.求证:B C∥EF29.如图,在ABC中,,∠ B=45,∠C=30,AD⊥BC于D,BD=6,求DC的长和ABC的面积(结果保留根号).30.如图,在四边形ABCD中,AD∥BC,点E是DC的中点,BE⊥DC,点F在线段BE上,且满足BF=AB,FC=AD.求证:(1) ∠A=∠BFC.(2) ∠FBC=∠BCF.31.已知两个全等的等腰直角ABC、△D EF,其中∠ACB=∠DFE=90,E为AB中点,△DE F可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在直线)于M、N.(1)如图l,当线段EF经过ABC的顶点C时,点N与点C重合,线段DE交AC 于M,求证:AM=MC;(2)如图2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由;(3)如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连MN,EC,请猜想AM,MN,CN之间的等量关系,不必说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年重庆市南开中学七年级(下)期末数学试卷
(考试时间:90分钟 满分:120分 )
一、选择题(每小题3分,共24分) 1.使分式
24
x
x -有意义的x 的取值范围是 (A )2x = (B )2x ≠ (C )2x =- (D )2x ≠-
2.5的算术平方根是
(A )5-. (B )5±.
(C )5.
(D )5±.
3.下列各数中,在1与2之间的数是 (A )-1.
(B )3.
(C )
3
7
. (D )3.
4.一次函数2+=x y 的图象不经过...
(A )第一象限 (B ) 第二象限 (C ) 第三象限 (D ) 第四象限 5.如图,△ABC 的两直角边AC =6 cm 、BC =8 cm ,现将该直角三角形折叠,使点B 与点A 重合,折痕为DE .则BE 的长为
(A )4 cm . (B )5 cm . (C )6 cm . (D )10 cm . 6.如图,将AOB △绕点O 逆时针旋转90,得到A OB ''△.若点A 的坐标为()a b ,,则点A '的坐标为
(A )),(a b - (B )),(b a - (C )),(a b - (D )),(b a - 7. 已知点A (1,m )B (2,n )是一次函数22--=x y 图象上的两点,则m 与n 的大小关系是
(A )m > n . (B )m < n . (C )m = n . (D )以上都不对
2
4
A
B
C
D
E
(第5题) (第6题) (第8题)
8. 如图,在平面直角坐标系中,点P (1
2
-,a )在直线22y x =+与直线24y x =+之间,则a
的取值范围为
(A )1<a <3. (B )2<a <4. (C )1<a <2. (D )0<a <2.
二、填空题(每小题3分,共18分) 9.计算:23-= .
10.若分式
1
3
x x -+的值为0,则x 的值为 . 11.已知正比例函数y kx =的图象经过点(2,6)
-,则这个正比例函数的表达式为 .
12.将函数6y x =-的图象向上平移5个单位得到的函数关系式为___________. 13.在平面直角坐标系中,点(2,-1)关于x 轴的对称点的坐标是___________. 14.直线b x y +=2与x 轴的交点坐标是(2,0),则关于x 的方程02=+b x 的解是x = .
三、解答题(本大题共9小题,共78分) 15.(6分)计算:020164+3
8--
16. (6分)计算:273
1321418-+-
17.(6分)计算: ab
b a ab b a 2
2)()(--
+
18.(7分)解方程: 1
23
12+=
-x x
19.(7分)先化简,再求值:21(1)11
a
a a +÷
--,其中3a =-.
20.(7分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.
21.(8分)今年入夏以来,我省发生了旱灾,为抗旱救灾,某村新修水渠3600米,为了
水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 求原计划每天修水渠多少米.
y
22.(9分)为表彰学习进步的同学,某班生活委员到文具店买文具作为奖品.如果买4
个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求每个笔记本和每支钢笔的售价.
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买(0)
x x 支钢笔需要花y元,求y与x的函数关系式.
23.(10分)某仓库有甲、乙两辆运货车,在满载的情况下,甲车每小时可运货6吨,
乙车每小时可运货10吨.某天乙车只负责进货,甲车只负责出货.下图是从早晨上班开始库存量y (吨)与时间x (时)之间的函数图象,OA段表示甲、乙两车一起工作,AB段表示甲车单独工作,且在工作期间,每辆车都是满载的.
(1)求m的值.
(2)求n的值.
(3)求AB段中库存量y与时间x之间的函数关系式.
24.(12分)如图,在平面直角坐标系中,一次函数4
y与x轴交于点A,与y
=x
2+
-
轴交于点B.点
P从A点出发,沿折线AO-OB以每秒1个单位长度的速度运动,当点P运动到点B 时停止.
设点P运动的时间为t秒,△APB的面积为S.
(1)请直接写出点B的坐标.
(2)求线段AO的长.
(3)当点P不与点A和点B重合时,求S与t之间的函数关系式,并直接写出对应的自变量t
的取值范围.
(4)当直线AP把△OAB分成的两个三角形中有一个是等腰三角形时,直接写出t的值.
2018-2019学年重庆市南开中学七年级(下)期末数学试卷
数学答案
一、选择题1.B . 2.C . 3.B . 4.D . 5.B .6.A 7.A .8.A . 二、填空题
9.91
10.1 11.x y 3-= 12. 56+-=x y 13.(2,1) 14. 2
三、解答题
15.(6分)解:原式=2+1+2……4分
=5……6分
16.(6分)解:原式=3332223-+
-……4分
= 322- ……6分
17. ( 6分) 解:原式=ab b ab a ab b ab a 2
22222+--++ 2分
=ab
b ab a b ab a 2
22222-+-++ 4分
=4 6分 18.(7分) )x ()x (13122-=+ 2分 3324-=+x x 4分
5-=x 6分 经检验 5-=x 是原方程的根. 7分
19.(7分)解:原式21
(1)(1)a a a a a
-=⨯+-……3分
1
a
a =
+.……5分 当3a =-时,原式33312-==-+. ……7分
20. (7分)解:由图象可知,点(21)M -,在直线3y kx =-上,231k ∴--=.
解得2k =-.………… 2分 ∴直线的解析式为23y x =--.……3分
令0y =,可得32x =-.∴直线与x 轴的交点坐标为302⎛⎫
- ⎪⎝⎭

.………… 6分 令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,.……… 8分
(8分) 设原计划每天修水渠 x 米. ………………1分
根据题意得:
……4分 解得:x = 80 ………6分
经检验:x = 80是原分式方程的解 且符合题意 ………………7分 答:原计划每天修水渠80米. ……………8分
22(10分)(1)解:设每个笔记本x 元,每支钢笔y 元.………………1分
4286357.x y x y +=⎧⎨
+=⎩, ………………3分 解得1415.x y =⎧⎨=⎩,…………5分 答:每个笔记本14元,每支钢笔15元.………………6分
(2)15(010)1230(10)x x y x x <⎧=⎨+>⎩

(自变量取值范围1分,每段函数关系式各1分)
23.(10分)解:(1)5(106)20m =⨯-=. ……………………3分
(2)206(75)8n =-⨯-=. ……………………6分 (3)设y kx b =+,由于图象经过(5,20),(7,8).
20587k b k b =+⎧⎨=+⎩ 解得6,
50.k b =-⎧⎨
=⎩ ∴650y x =-+.…………10分
24.(12分)
解:(1)B (0,4) …………………2分 (2)042=+-x ,2=x ……………4分
∴AO 的长为2 ……………………5分
(3)当20≤<t 时, t S 2= 当62<<t 时, 6+-=t S
∴ (自变量取值范围1分,每段函数关系式各1分)…9分
(4)4 或 3.5 ……………12分(答对4得1分,答对3.5得2分)
36003600
201.8x x
-=
………………8分
………………10分。

相关文档
最新文档