中学物理中的理想模型

合集下载

“理想模型”方法在中学物理中的作用

“理想模型”方法在中学物理中的作用

“理想模型”方法在中学物理中的作用陈利华“理想模型”方法是物理学中研究事物的方法之一,它贯穿了整个中学物理,并在教学中发挥了重要作用。

一理想模型客观世界中物体间的相互作用相当复杂,进行物理研究时我们不可能面面俱到,在分析和研究物理现象时,为了研究问题的需要,我们常常忽略物理过程中的次要因素,抓住主要矛盾,抽象概括出“理想实体模型”、“过程理想模型”、“理想实验模型”等模型,使研究的问题得以简化,据此导出的规律能根实际物理问题相吻合或较好的吻合。

在教学实践中,使学生能深刻体会这种思维方法将有利于他们迅速把握解题方向。

通常物理理想模型包括:1.实体模型物理中的某些客观实体,如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特征,用一个有质量的点来描绘,这是对实际物体的简化,类似的实体模型,如:刚体、完全弹性体、理想气体、点电荷、薄透镜、弹簧振子、光滑平面(或斜面)、单摆、理想电表、理想变压器等等,都是属于将物体本身理想化,另外还有一些,如“光源、光线、电场线、磁感线等是属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.过程理想模型实际的物理过程涉及的变量很多,一般比较复杂,为使过程简化,对于那些变化很小的物理量X,可以视为恒量,就可以得到理想化的物理过程。

如:匀速直线运动(V=S量)、匀变速直线运动(a= 恒量)、匀速圆周运动(量)、等温变化(丁=恒量)……等等,这些运动在实际当中是不存在的, 而是经过抽象的, 理想化的物理过程, 但是,据此研究而得出的规律与许多实际物理过程能较好的吻合,或在此基础上略加修正也能较好的吻合。

当我们计算飞机航程、时间和速度的关系时,就可以用匀速直线运动的公式进行计算,当近似地讨论地球公转运动时,我们可以用匀速圆周运动的有关公式,如果不用这种理想化的思维方式,即使最简单的物理过程都很难分析清楚,更不要说复杂的运动了。

3. 理想实验理想实验又叫思想实验,是揭示自然规律的科学方法之一。

物理教学中的理想模型

物理教学中的理想模型

序渐进 。逐 次深入 。物理 所分 析 、
研 究 的 实 际 问 题 往 往 很 复 杂 .因 素
维方 式 。例 如 ,在讲 自由落体 时 ,
就 应 该 引 导 学 生 去 理 解 为 什 么要 把
化 。如质点 、刚体 、单摆 、弹簧振 子 、点 电荷 、纯 电阻 、薄透镜 、理 想气体 、恒压 电源 、点 电荷 、点光 源等
是 两 个 不 同的 概 念 .有 时意 识 比 能 力 更 重 要 。物 理 模 型 的 建立 很 具 创 新 性 .引 导 和 培 养 学 生 建 立 物理 模 型 的 思 维 方 法 和 思 维 过 程 .有 利 于
四 、使 用模 型 应 注 意 的 问 题
是凭空想象出来的 .它们来源 于客 观实践 .然而它们又都不完全等 于
客 观 实 践 虽 然 它 们 不 保 留客 观 实 践 的 各 种 具 体 细 节 .不 具 备 客 观 实
理 解 :在实验 中追求 百分之百 的精 确度。这里我们 就要及时指 出物理 模 型的特点 和功能 .使学生 明确物
的 问 题 建 立 物 理 模 型 的 过 程 是 一 种严 密 的 正 确 的 思 维 方 法 的训 练 过 程 .教 师 要 引 导 和 帮 助 学 生 分 析 好 每 一 个 物 理 模 型 .建 立 起 正 确 的思

中 学 物 理 中 多 次 出现 了理 想 模 型 .其 大致 可 分为 以下 几 类 。 1 对 象模 型 . 把 物 理 问 题 的 研 究 对 象 模 型
力定律 、物体 的平 动以及 电学 中的 点电荷模 型 、光学 中的点光源模型
等奠 定 良好 的基 础 。
型 的建 立和分析 的教学 过程中 .要

论物理学中的理想模型

论物理学中的理想模型

论物理学中的理想模型摘要:理想化模型就是只考虑事物本身及其影响的主要因素,而忽略其次要因素的理想想象。

它是为了我们更好的分析研究对象而采用的一种方法。

通过理想化使物理规律简单、明晰,易于理解。

关键字:理想模型条件模型主要因素次要因素物理世界是纷繁复杂的,正如我们所感受到的一样。

事物之间,总是存在着千丝万缕的联系,在我们研究这个纷繁的事务之间的千丝万缕的联系时,难免会被各种因素所困扰。

但我不希望那些无关紧要的因素去左右我们的想法。

这就是理想化模型的动机!保留对所研究问题起决定影响的主要因素,以突出物质的基本特征及其基本规律。

这种科学抽象的产物就是理想化模型。

什么是理想化模型呢?就是对一个客观的事物,只考虑事物本身及其影响的主要因素,而忽略其次要因素,对客观事物的存在条件、属性、状态等的一种理想的想象。

物理模型的理想化是为了我们更好的分析研究对象而采用的一种方法,它的原则是突出主要矛盾!它的目标是忽略次要因素,展现问题的本质!一、理想模型的种类1、物理对象模型实际物体在某些特定条件下往往可抽象为理想的研究对象,即物理对象模型。

物理中常见物理对象的理想模型有:质点、刚体、弹性体、理想流体、弹簧振子、单摆、点电荷、试验电荷、无限大平板、点磁荷、纯电阻(纯电容、纯电感)、光线、薄透镜、点光源、绝对黑体、汤姆逊模型、卢瑟福模型等。

如研究竖直放置在光滑圆弧形轨道上的物体作小幅度运动时就可以把它等效为单摆模型处理;研究跳水运动员时就要把跳水运动员看作全部质量集中在其重心的一个质点模型。

2、物理过程模型将实际物理过程进行处理,忽视次要因素,考虑主要因素;忽略个性,考虑共性,使之成为典型过程,即过程模型。

比如:匀速直线运动,匀变速直线运动,抛体运动,匀速圆周运动,简谐运动,质点运动的自由落体运动,完全弹性碰撞,电学中的稳恒电流,等幅振荡,热学中的等温变化、等容变化、等压变化、绝热变化等等都是物理过程、物理状态的模型。

探究中学物理解题中的构建理想模型法

探究中学物理解题中的构建理想模型法

探究中学物理解题中的构建理想模型法摘要:构建理想模型法是对物理现象、本质规律探索学习的一种方法,这种方法将现实的物质转化为理想的模型,促使学生在理解学习、物理解题时,更容易分析物理知识的核心内容,让学生一步步的深入到物理问题的解决中,是提升学生解题能力的重要方式。

关键词:物理模型;初中物理;模型法;解题能力引言:中学物理中的一些定律、问题的分析都是基于构建理想的模型上进行的,而构建理想模型法解题也具备抽象性、近似性、相对性和局限性等特点,凸显的是问题的主要因素,让学生在解题中对次要的因素进行理想化分析,针对不同的物理问题构建不同的理想模型,进而解决问题。

1.找出物理问题的题干中物理对象及关系,初步建立理想模型中学物理问题的出题方式,往往不仅是考查学生对某一知识点、物理规律的掌握运用,而是训练学生的物理思维、物理建模能力,物理问题的题干不会直接阐述物理对象中所含有隐形条件及物理对象之间的关系,甚至题干中还会出现许多干扰的因素,影响到的学生分析问题,而构建理想模型的方法,可以帮助学生的排除干扰因素,理想化干扰因素,对问题主要因素、问题的主要考查的知识点进行分析,而区分识别物理问题的题干中干扰因素,正确的找出物理问题的物理对象及对象关系是最为基础,也最为关键的环节,是学生初步搭建理想模型,完成解题过程的重要过程。

而在具体的实践中,教师可以依据教学的内容及进度,设置物理问题,让学生先学会找到所有的物理对象及物理关系,对题干的关键信息进行分析,之后再找出次要的、干扰的因素,进行理想化建模,帮助学生更简单的分析物理问题,具备解决物理问题的能力。

例如在中学物理有关“力”、“运动和力”的相关物理问题的解决中,物理问题的题干中往往含有多个物理对象及物理关系,需要学生能够找准物理对象及物理关系,进行理想化的建模,排除干扰的因素,分析问题,如有这样一道题物理问题“如图一,木块竖立在小车上,随小车一起以相同的速度在水平地面上向右做匀速直线运动,不考虑空气阻力,下列说法是否正确”,问题有四个选项,分别为A.如果小车突然停止运动,木块将向左倾倒B.木块对小车的压力与木块受到的重力是一对平衡力c.小车对木块的支持力与木块受到的重力是一对平衡力D.木块对小车的压力与地面对小车的支持力是一对相互作用力,根据四个选项,学生在解题当中需要具体的分析物体“小车与木块”的受力情况,题干直接示意不用考虑空气阻力的因素,那么学生可以建立理想化模型,分析物体间的摩擦力、重力、压力等物理关系,学生通过建立理想化的受力分析,将木块作为主要因素,找出其受力情况,理想化次要的摩擦力等因素,只考虑“竖直方向”受到的重力及小车对其的支持力为一对平衡力,找出正确的答案C。

高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析

高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析

高中物理中“轻绳”、“轻杆”和“轻弹簧”的问题分析中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。

但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。

一、三个模型的正确理解1. 轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。

②内部张力大小处处相等,且与运动状态无关。

③轻绳的弹力大小可发生突变。

2. 轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力〔力的方向不一定沿着杆的方向〕;②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。

3. 轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。

其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变〔除弹簧被剪断外〕;④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量。

二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。

【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。

理想物理模型在高中物理教学中的基础作用和意义

理想物理模型在高中物理教学中的基础作用和意义

理想物理模型在高中物理教学中的基础作用和意义为使人们逐渐理解和掌握物理学的重要和基本的规律,物理学中用理想化模型代替实在、复杂的物理研究对象,即所谓的理想物理模型。

它是物理学研究方法和逻辑思维的结晶,是研究物理规律的重要基石,也是贯穿于整个高中阶段物理教学内容的重要组成部分。

在科学研究中,一种重要的方法就是在研究事物时常忽略事物的次要因素而抓住事物的主要因素,从而得出事物的结果、性质或规律;同样在物理学研究中,为了便于研究,人们在观察和实验时,会忽略研究对象和物理过程中的次要因素而只抓住主要因素,从而掌握研究对象的基本性质和重要物理规律。

物理学是一门研究物质最普遍、最基本的运动形式的自然科学。

而所有的自然现象都不是孤立的。

这种事物之间复杂的相互联系,一方面反映了事物联系的规律性,同时又存在着许多偶然性,使我们的研究产生了复杂性。

例如,在研究物体的机械运动时,实际上的运动往往非常复杂,不可能有单纯的直线运动、匀速运动、圆周运动。

为了使研究变为可能和简化,我们常采取先忽略某些次要因素,把问题理想化的方法,如引入匀速直线运动、匀变速直线运动、匀速圆周运动和简谐运动等理想化的运动。

这就是先建立理想化的物理模型,然后在一定条件下,用于处理某些实际问题。

这种把物理研究对象形式化、纯粹化的方法就是一种理想化的方法,理想化的研究对象就是物理学中的理想化物理模型。

理想化物理模型是学习物理知识的重要手段和方法,在高中物理知识架构和学习中始终起着非常重要的作用。

在高中物理教学过程中如何引导学生对物理模型及其科学方法的正确有效建立及其思维方法的掌握,直接关系到高中物理教学及学生学习的成败。

(1模拟型模型。

物理概念和规律在形式上常常是抽象的,但在内容上是具体的,对于这样的研究对象我们可以采用模拟形式来描述。

如电磁学中的电力线、磁感线、等势面等物理模型。

这些实际不存在的线或面并非是凭空臆造,而是通过科学模型的建立,达到形象地用这些模拟的线或面使得这些看不见、摸不着难以理解的客观存在的物体、物质、规律具体化、形象化,使人们对研究对象的本质和规律得到形象化的理解和掌握,并借助这样的形象化模型对其抽象的内蕴的客观物理规律方便地进行研究。

谈谈如何在物理学中构建理想模型

谈谈如何在物理学中构建理想模型

谈谈如何在物理学中构建理想模型构建模型是科学研究的基本方法之一,模型在物理学中也得到了广泛的应用,物理模型是物理学理论体系的基石,物理模型的构建当然地也是物理学研究的主要方法之一,构建物理模型,可以采用多种方式方法,本文只对物理模型的构建中的理想化方法构建,提出一些粗浅的看法。

理想化方法是构建物理模型最主要的一种方法,他是将复杂的物理过程、物理现象中最本质具有共性的东西抽象出来,将其理想化、模型化,略去其次要因素和条件,抓住主要因素,即将其理想化,找出他们在理想状况下所遵循的基本规律,并构建出相应的物理模型。

这是研究物理问题的重要思想方法。

1、构建理想的物理模型是科学理论的依据纵观物理学发展史,许多重大的发现与结论,都是由科家们经过大胆的猜想构思,创建出科学的理想化的物理模型,并通过实验检验或实践验证,模型与事实基础很好吻合的前提下获得的。

伽利略让小球从弯曲的斜槽上自由下落,当斜槽充分光滑时,小球可沿另端斜槽上升到初始高度,如果另端斜槽末端越接近水平,小球为达到初始高度,将运动很远。

如果末端完全水平,小球将一直运动下去,永不停止。

正因为伽里略构建了光滑这一理想化的模型,才有惯性定律的重大发现。

法拉第在1852年,对带电体、磁体周围空间存在的物质,设想出电场线、磁感线一类力线的模型,并用铁粉显示了磁棒周围的磁力线分布形状,从而建立了场的概念,对当前的传统观念是一个重大的突破。

1905年爱因斯坦受普朗克量子假设的启发,大胆地建立了光子模型,并提出著名的爱因斯坦光电效应方程,圆满地解释了光电效应现象。

卢瑟福以特有的洞察力和直觉,抓住粒子轰击金箔有大角度偏转这一反常现象,从原子内存在强电场的思想出发,于1911年构思出原子的核式结构模型。

倘若离开了物理模型,不仅物理研究无法进行,而且对物理学科的纵深发展必然会起阻碍束缚的作用。

2、在中学物理中应用的理想化模型构建归纳起来有以下几种一是将物质形态自身理想化,如质点、系统、理想气体、点电荷、匀强电场、匀强磁场等。

理想模型法

理想模型法

理想模型法即将抽象的物理现象用简单易懂的具体模型表示。

如用太阳系模型代表原子结构,用简单的线条代表杠杆等,引入光线、磁感线等。

放大法把微弱的力量通过另一种方法表现出来。

叠加法物理学中常常把微小的、不易测量的同一物理量叠加起来,测量后求平均值的方法俗称“叠加法”。

【经典实验:测邮票的质量;粗测分子的大小】控制变量法自然界发生的各种现象,往往是错综复杂的。

决定某一个现象的产生和变化的因素常常也很多。

为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较,研究其他两个变量之间的关系,这种研究问题的科学方法就是“控制变量法”。

初中物理实验大多都用到了这种方法,如通过导体的电流I受到导体电阻R和它两端电压U的影响,在研究电流I与电阻R的关系时,需要保持电压U不变;在研究电流I与电压U的关系时,需要保持电阻R不变。

再如探究影响动能大小的因素时,在研究动能大小与速度的关系时,要控制质量不变;在研究动能大小与质量的关系时,要控制速度不变。

中学物理课本中,蒸发的快慢与哪些因素的有关;滑动摩擦力的大小与哪些因素有关;液体压强与哪些因素有关;研究浮力大小与哪些因素有关;压力的作用效果与哪些因素有关;滑轮组的机械效率与哪些因素有关;动能、重力势能大小与哪些因素有关;导体的电阻与哪些因素有关;研究电阻一定、电流与电压的关系;研究电压一定、电流和电阻的关系;研究电流做功的多少跟什么因素有关系;电流的热效应与哪些因素有关;研究电磁铁的磁性强弱跟哪些因素有关系等均应用了这种科学方法。

实验推理法有一些物理现象,由于受实验条件所限,无法直接验证,需要我们先进行实验,再进行合理推理得出正确结论,这也是一种常用的科学方法。

如将一只闹钟放在密封的玻璃罩内,当罩内空气被抽走时,钟声变小,由此推理出:真空不能传声。

【经典实验:牛顿第一定律的推理】转换法一些看不见,摸不着的物理现象,不好直接认识它,我们常根据它们表现出来的看的见、摸的着的现象来间接认识它们。

例析高中物理解题中的理想模型法

例析高中物理解题中的理想模型法

例析高中物理解题中的理想模型法作者:刘晓琳来源:《中学生数理化·学习研究》2017年第02期高中物理是相对较难的学科,学过高中物理的大部分同学都会有这样的疑问:“上课听得懂,听得清,但在课下做题时就不会了。

”这是个普遍的问题,也是值得同学们认真研究的问题。

在运用物理知识解决实际问题的过程中,人们逐步积累和形成了物理学中处理问题的方法,下面主要介绍先把研究对象或研究过程转化为理想模型,然后再求解的方法。

在高中物理中,我们所研究的对象或物理过程可以说都是理想模型,例如在研究对象上有质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等。

又如在研究物体运动时有匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等。

在解答物理问题时,最关键的是:(1)明确研究对象及其所处的状态,并把研究对象视为适当的物理模型;(2)分析物理过程,并找出物理规律。

现在很多同学对于物理规律和物理公式背的很熟,但是真正碰到问题的时候,却无从下手,其主要原因是他们不会将一个实际问题抽象为一个正确的模型。

例题精密测量电子比荷e/m的现代方法之一是双电容法,其装置如图1所示,在真空管中由阴极K发射电子,其初速度可忽略不计。

此电子被阴极K与阳极A间的电场加速后穿过屏障D1上的小孔,然后依次穿过电容器C1、屏障D2上的小孔和第二个电容器C2而射到荧光屏F上。

阳极与阴极之间的电势差为U,分别在电容器C1、C2上加有频率为f的完全相同的正弦式交变电压,C1、C2中心间的距离为L,选择频率f使电子束在荧光屏上的亮点不发生偏转。

试证明电子的比荷为em=2f2L2n2U(其中n为正整数)。

分析:由题意可知,研究对象必然是电子,其对象模型显然是带电的质点,对其过程模型的构建,可按先后顺序考虑。

首先是在电场中的变加速运动,这是我们能处理的模型;接着进入电容器,遇到偏转电场,由于电容器上加的是变化电压,那么其中的电场是不稳定的,随时间变化的电子沿电场方向的运动不是匀变速运动,这是我们没办法处理的。

理想物理模型在高中物理教学中基础作用和意义论文

理想物理模型在高中物理教学中基础作用和意义论文

理想物理模型在高中物理教学中的基础作用和意义摘要:在物理教学中,利用理想物理模型可以使学生对抽象难懂的物理学基本规律有更加清楚的认识,理想物理模型贯穿高中物理教学始终。

本文主要阐述了理想物理模型在高中物理教学中所发挥的作用及其意义。

关键词:理想物理模型高中物理教学作用意义世间所有自然现象之间都存在一定的联系,而物理学就是以物质间存在的基本运动形式为主要研究对象的学科。

在物理学领域,常会采取将研究对象进行形象化、纯粹化的方法进行研究,理想化的研究对象即本文所要探讨的理想化物理模型,其在高中物理学习中发挥着极为重要的作用。

1、理想物理模型的类型理想物理模型主要分为以下几种类型:(1)实物模型,即在特定条件下降物理研究对象的部分次要因素予以忽略的理想化模型,例如单摆、质点以及杠杆等,此类模型将研究对象的部分次要因素所产生的影响予以了忽视,从而为学生掌握相关知识提供了便利;(2)过程模型,主要适用于对物理事件发生过程的分析,即将物理过程中某些次要因素予以忽视,从而得到理想化变化过程,例如气体等压变化以及等容变化等,借助此类理想模型,物体运动过程中的主要方面及规律就会更加突出,便于学生理解和掌握;(3)数学模型,原则上讲,客观规律都具有数学表现形式,物理模型的构建过程,就是对表现物理状态及过程的规律的数学模型的构建过程;(4)模拟型模型,很多物理学概念及规律,其具体的内容是通过抽象形式表现出来的,对此可以借助模拟型模型加以描述,例如磁感线以及等势面等。

在中学物理教学内容中很多知识及规律都需要借助此种模型。

2、理想物理模型在高中物理教学中的作用及意义2.1高中物理教学中理想物理模型的作用(1)有助于科学思维方法的培养在中学物理教学过程中,培养学生的物理思维能力至关重要。

笔者在长期的教学实践中发现,学生在开始接触物理的时候,通常会将主要关注点集中在理论知识方面,对思维方法的重要性认识不足。

中学物理可以划分为几大阶段,每个阶段对应着不同的思维方式,在一定程度上讲,只有充分认识到物理学习各个阶段思维的特点及规律,才能取得满意的学习效果。

浅谈理想模型在中学物理教学中的作用

浅谈理想模型在中学物理教学中的作用

浅谈理想模型在中学物理教学中的作用理学作为一门基础性学科,它在科学知识体系中占有重要地位。

学习物理学需要学生具备独立思考、实践和抽象思维的能力。

这不仅要求学生必须有一定的知识背景,而且要求他们具有新颖、独特的思维方式。

为了解决这些问题,学生可以通过理想模型来学习物理学。

理想模型是一种系统化的,由若干简单的抽象的概念组成的科学理论模型,能够有效地描述复杂的现象。

因此,理想模型在中学物理教学中发挥着重要的作用。

一方面,理想模型能够帮助学生更好地理解物理学中的基本概念。

学生可以通过理想模型来更深刻地理解物理学理论。

例如,在力学领域中,学生可以用极坐标系中的某个物体作为理想模型,并由此理解相关的概念,如,矢量的模和方向、作用力方向的求解等。

与此同时,理想模型也可以帮助学生间接理解某些概念,比如,动量定理和能量守恒定律。

理想模型通过数学模型来描述实际现象,因此,学生可以通过理想模型来加深对物理学概念的理解。

另一方面,理想模型也可以帮助学生理解物理学实验中的各种物理现象。

在实验中,学生可以通过理想模型来分析各种物理现象。

例如,学习动量守恒定律时,学生可以用理想模型来分析物体的动量变化,并通过实验来验证理论的正确性。

此外,理想模型也可以帮助学生更直接地理解实验中的现象。

这样,学生就可以更加深入地理解物理学中的基本概念。

总之,理想模型在中学物理教学中发挥着重要的作用。

理想模型能够帮助学生更好地理解物理学中的基本概念,特别是一些不容易理解的概念,同时也能够帮助学生理解实验中的现象,使得学生更加深入地理解物理学。

未来,可以探索更多的理想模型,并将其用于中学物理教学中,以加深学生对物理学的理解。

理想模型法,高中物理

理想模型法,高中物理

理想模型法,高中物理篇一:高中物理理想化模型高中物理理想化模型邓嘉豪质点匀速直线运动平抛运动匀速圆周运动弹性碰撞轻绳轻杆轻弹簧理想气体理想变压器1. 质点质点不一定是很小的物体﹐只要物体的形状和大小在所研究的问题中属于无关因素或次要因素﹐即物体的形状和大小在所研究的问题中影响很小时﹐物体就能被看作质点。

它注重的是在研究运动和受力时物体对系统的影响,忽略一些复杂但无关的因素。

2. 匀速直线运动⑴一个物体在受到两个或两个以上力的作用时,如果能保持静止或匀速直线运动,我们就说物体处于平衡状态。

⑵不能从数学角度把公式s=vt理解成物体运动的速度与路程成正比,与时间成反比。

匀速直线运动的特点是瞬时速度的大小和方向都保持不变,加速度为零,是一种理想化的运动。

⑶带电粒子受恒力和洛仑兹力共同作用下运动时,只要是直线运动,一定是匀速直线运动。

(原因:像F洛这样的力会随速度的变化而变化,即速度直接影响合力,合力又直接影响加速度,即影响运动方向。

) 3. 平抛运动⑴运动时间只由高度决定。

⑵水平位移和落地速度由高度和初速度决定。

⑶在任意相等的时间里,速度的变化量相等,方向也相同. 是加速度大小,方向不变的曲线运动⑷任意时刻,速度偏向角的正切等于位移偏向角正切的两倍。

⑸任意时刻,速度矢量的反向延长线必过水平位移的中点。

⑹从斜面上沿水平方向抛出物体,若物体落在斜面上,物体与斜面接触时的速度方向与水平方向的夹角的正切是斜面倾角正切的二倍。

⑺从斜面上水平抛出的物体,若物体落在斜面上,物体与斜面接触时速度方向、物体与斜面接触时速度方向和斜面形成的夹角与物体抛出时的初速度无关,只取决于斜面的倾角。

4. 匀速圆周运动物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。

又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。

“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。

整合 轻绳、轻杆、轻弹簧

整合 轻绳、轻杆、轻弹簧

轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。

一.三种模型的特点1.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。

由此特点可知:绳(或线)中的张力可以突变。

2.轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。

由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。

3.轻弹簧中学物理中的轻弹簧,也是理想化的模型。

具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。

由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。

二.三种模型的应用例1.如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F mg 2=,F F mg mg 122=+='。

剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。

高中物理常用的理想化模型

高中物理常用的理想化模型

高中物理常用的理想化模型理想化模型就是抽象和虚构的结合,与讨论问题相关的、同现实客体相结合的、但又不具有现实客体的其他各种复杂性的理想客体。

并以他们来代替现实客体而进行研究的一种科学方法。

理想化方法是物理教学和研究的一种最基本也是最常用的一种方法,没有理想化就没有现代物理学,而客观世界的复杂性、多样性和统一性也需要理想化的观点。

在现实生活和学习中,实际问题往往是很复杂的,其中包含一些非本质的枝节,物理模型就是把实际问题理想化,先略去一些次要因素,而突出其主要因素,这样我们就可以得到一些简要的物理规律。

高中物理教学中理想化模型的应用十分广泛,无论是做为研究对象的物体,物体运动的变化,还是物体所外的环境和条件,都是以各种理想化的形式而出现的,它们都是从实际问题抽象出来的理想化的问题。

所以我们在教学中应当对物理课本、习题,考试中所涉及到的理想化模型都应该有一个清晰的认识,理解为什么必须对这些问题进行这样或那样的理想化处理,在什么条件下这些理想化的处理才是最有效的。

下面是高中物理教学中常见的几种理想化模型。

1.质点模型在中学物理课本中,质点是这样定义的:在某些情况下,我们可以忽略物体的大小和形状,而突出"物体具有质量"这个要素,把它简化为一个有质量的物质点,这样的点称为质点;在另外一些情况下,我们虽然不能忽略物体的大小和形状,但是可以用其上任意一点的运动来代替整个物体的运动,于是整个物体的运动也可以简化为一个点的运动,把把物体的质量赋予这个点,它也就成了一个质点。

也就是说,质点就是没有线度和形状而带有质量的点,但是任何物体都具有一定的大小和形状,由干这些特性的存在,我们就很难确定这些物体的位置和物体的运动。

质点模型的建立就给我们解决这类问题带来了极大的方便。

2.刚体模型在某些情况下,物体的体积,形状不可忽略,但这些情况物体的体积和形状的变化是可以忽略的,这类物体就可以抽象为刚体。

所谓刚体,就是由相互间距离始终保持不变的许多质元组成的物体,在实际问题中,物体能否看做是刚体要根据具体情况而定。

建立理想模型法

建立理想模型法

初中物理建立理想模型法简介
王台中学王建国
百度+自己的总结,请有选择地参考。

某高人对高中物理的基本理想化模型分类
(1)实体理想化模型:质点,轻杆,轻绳,轻弹簧,点电荷,弹簧振子,单摆,理想气体,点光源,光滑轨道,匀强电场,匀强磁场,理
想变压器等;
(2).过程化理想模型:匀速直线运动,匀变速直线运动,平抛运动,匀速圆周运动,简谐运动,等温变化,等压变化等;
(3)形象化理想模型:电场线,磁场线,等势面等;
(4)理想化结构模型:原子核式结构,氢原子能级等。

“理想模型”及其在物理习题中的应用

“理想模型”及其在物理习题中的应用

“理想模型”及其在物理习题中的应用作者:向发仕来源:《读写算》2012年第33期摘要:文章主要介绍了理想模型及其在中学物理习题中的应用。

简要讨论了它的起源、分类、特点、认识的一般过程和作用,并引入实例具体分析。

本文从理论到实际再到理论地阐述了理想模型教学在中学物理教学中的重要地位。

关键词:理想模型教学实例分析中学物理教材无论哪一部分的内容都是以理想模型为基础向学生传达物理知识的。

理想模型是中学物理知识的载体,通过理想模型的教学来教育学生从中学会如何去科学抽象,即如何抓住主要矛盾,忽略次要矛盾;学会如何处理实际问题。

当前我国正在推行素质教育,培养学生的能力是其中的关键,培养思维能力更是一切能力的核心。

培养和提高学生分析问题和解决问题的能力是物理教学的目标之一。

因此,要抓住每一个理想模型的教学过程,把它作为培养和提高学生科学能力的一次实际锻炼,让学生从中学到一些在其一生起作用的思想方法和物理知识。

而理想模型在物理习题中的应用又是理想模型教学中的一个重要环节。

一般的物理习题都是拟题者根据自己头脑中的一个理想化物理模型,结合某些问题情境和物理条件而拟定出来的。

解题过程就是还原拟题者物理模型的过程,也就是把实际问题抽象化,把具体问题模型化,把具体问题抽象成熟悉的典型物理问题的过程,这种模型化方法是物理解题中的一种普遍方法。

1 物理模型知识综述物理学所分析研究的实际问题往往很复杂,为了着手分析与研究,物理学中常常突出主要矛盾,忽略次要矛盾,对实际问题进行科学抽象化处理,用一种能反映原物本质特征的理想物体(过程)或假想结构,去描述实际的事物,这样的物体称为“理想模型”。

1.1 理想模型的起源在亚里士多德时代,人们普遍认为运动是需要力来维持。

而伽利略则认为运动不需要力来维持,为了证明自己的观点是正确的,伽利略做了这样一个实验:让一个球沿斜面滚下,这样球的速度将增大。

若是给这个球一个起始推动让它沿斜面向上滚,它会慢下来(然后停下来并回头向下滚)。

构建物理理想模型的意义

构建物理理想模型的意义

教学信息新教师教学纵观物理学发展的历史,建立理想化模型,是简化物理学研究的重要手段。

随着物理学的发展,物理模型越来越受到人们的重视,它促进了物理规律、理论的发展,推动了物理学向新的领域扩展。

一、什么是理想化模型它是根据所研究的物理问题的需要,从客观存在的事物中抽象出来的一种简单、近似、直观的模型。

具体地说,是对事物的各个物理因素加以分析、忽略与问题无关或影响较小的因素,突出对问题起作用较大的主要因素,从而把问题简化,这一理想的抽象模型,就是理想化模型。

二、理想化模型的特征理想化模型主要具有4个特征:近似性、抽象性、局限性和相对性。

模型的近似性主要表现在任一理想化模型都是以一定的客观实体为基础,它反映了事物的主要性质。

另一方面模型与实体不同,它在实际生活中不存在,这又表现了它的抽象性。

任何理想化模型都是在一定的条件下建立起来的,离开了这一条件这一模型就不能使用.这就是理想化模型的局限性。

某个事物在不同的情况下,如同一物体在这个问题中可视为质点.而在另一间题中则不能作质点处理,这就是理想化模型的相对性。

三、建立理想化模型的原则建立理想化模型的一般原则是首先突出问题的主要因素,忽略问题的次要因素。

物理学是一门自然学科,它所研究的对象、问题往往比较复杂,受诸多因素的影响。

为了使物理问题简单化,也为了便于研究分析,我们往往把研究的对象、问题简化,忽略次要的因素,抓住主要的因素,建立理想化的模型。

其次理想化的模型要根据所研究问题的需要而定,并不是不变的,把一个实际问题抽象为什么样的模型,要具体问题具体分析,即使同一研究对象,在不同的研究中也可能需要抽象成不同的模型。

解决物理问题选择模型时,要综合考虑所研究问题的目的、性质等,然后再做出选择。

四、理想化模型方法的作用1、推动物理学发展由于受人们认识水平和时代科技水平的限制,理想化模型不可能全面地反映原型,所以如果提出的理想化模型不能说明新观察到的现象,或与新的实验事实有矛盾,就需要对这个理想化模型进行补充、修正、甚至否定,提出新的理想化模型,再由实验检验。

关于胡克定律和弹簧问题的分析

关于胡克定律和弹簧问题的分析

关于胡克定律和弹簧问题的分析关于胡克定律和弹簧问题的分析高中物理教材中弹簧模型是一个重要的模型,在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.弹簧在弹性限度内遵从胡克定律,弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比,即:F=kx,式中k叫做弹簧的劲度系数,单位是牛顿每米,符号是N/m.关于胡克定律的理解要注意以下几点:1.胡克定律的成立是有条件的,弹簧要发生“弹性形变”,即在弹性限度内才适用.2.表达式中的x是弹簧的形变量,是弹簧伸长(或缩短)的长度,而不是弹簧的原长,也不是弹簧形变后的长度.3.表达式中的劲度系数k,反映了弹簧的“软”“硬”程度,其大小与弹簧的材料、形状、长度有关.4.由于弹簧的形变量x常以“cm”为单位,而劲度系数k又往往以“N/m”为单位,在应用公式时要注意将各物理量的单位统一.5.胡克定律的另一种表达形式:设劲度系数为k的弹簧,在形变量为X1、x2时产生的弹力分别为F1、F2,则根据胡克定律F=kx,有,两式相减,有,即△F=k△x.上式表明:弹簧发生弹性形变时,弹力的变化△F与弹簧长度的变化△x成正比.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析人手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化,例1 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以依次表示四个弹簧的伸长量,则有()解析无论弹簧的左端情况怎样,轻弹簧的两端拉力总相等.设弹簧两端拉力分别为F、F’,则F-F’=ma,轻弹簧的质量为0,因此ma=0,即F=F’.且此拉力等于弹簧的弹力,则根据胡克定律得到四个弹簧应该是,所以四个弹簧一样长.所以选择D选项.例2 如图2示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()解析题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短,而m.刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短,因而m2移动的距离,所以选C.例3 量得一只弹簧测力计3N和5N两刻线之间的距离为2.5?M,求:(1)这只弹簧测力计所用弹簧的劲度系数:(2)这只弹簧测力计3N刻线与零刻线之间的距离.解析(1)根据(2)由.得点拨F=kx是胡克定律的数学表达式,F与x的关系还可以用图象来描述,横轴为白变量x,纵轴为因变量F,其图象是一条过原点的直线,如图3所示,图象上各点的坐标(x,F)反映弹簧的一个工作状态,所以这一条直线是弹簧所有状态的集合,直线的斜率反映了弹簧的劲度系数,从图象还可以看到:F与x对应,△F与△x对应,弹簧的劲度系数可用计算,也可用计算,这样使胡克定律的应用变得更加灵活.例4 如图4所示为一轻质弹簧的长度和弹力大小的关系图象,根据图象判断,下列结论正确的是()A.弹簧的劲度系数为1N/mB.弹簧的劲度系数为100N/mC.弹簧的原长为6cmD.弹簧伸长0.2m时,弹力的大小为4Ny解析图线与横轴交点为弹簧原长,即原长为6cm;劲度系数为直线斜率;弹簧伸长0.2m时,弹力F=kx=100×0.2N=20N.所以选项B、C正确.例5 如图5所示,光滑斜面倾角为θ=30°,一个重20N 的物体在斜面上静止不动.轻质弹簧原长为10cm,现在的长度为6cm.(1)求弹簧的劲度系数;(2)若斜面粗糙,将这个物体沿斜面上移6 cru(弹簧与物体相连),物体仍静止于斜面上,求物体受到的摩擦力的大小和方向.解析(1)对物体受力分析,受到重力、支持力、弹簧的弹力F,则有:mgsinθ=F,此时F=kx联立代人数据得:k=250N/m(2)物体上移,则摩擦力方向沿斜面向上,此时重力的分力加上弹簧的弹力等于物体受到沿斜面向上的摩擦力.有:Ff=mgsinθ+F’此时F’=kx2=5N,代人上式得Ff=15N,方向沿斜面向上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.牛顿万有引力定律与质点模型(质点模型引入解 决天体之间距离) 2.伽利略的惯性定律与理想实验模型(克服外力 对实验的影响) 3.热机效率与卡若的热机模型(循环模型由两个等温 过程和两个绝热过程组成,忽略工质温度变化和外 界热交换)
4.人类对原子结构的认识 与原子模型(汤姆逊根 据伦琴X射线提出枣糕模型 卢瑟福根据α粒 子散射提出原子核式结构 玻尔量子性的定 态核式模型 电子云原子模型)
所谓“建模”就是将带有实际色彩的物理对象或 物理过程通过抽象、理想化、简化和类比等方法转 化成理想的物理模型。正确构建物理模型应注意以 下几点: (1)养成根据物理概念和物理规律分析问题的思维 习惯。结合题目描述的现象、给出的条件,确定问题 的性质;同时抓住现象的特征寻找因果关系。这样能 为物理模型的构建打下基础。 (2)理想化方法是构建物理模型的重要方法,理 想化方法的本质是抓住主要矛盾,近似的处理实 际问题。因此在分析问题时要养成比较、取舍的 习惯。
5.气态方程与理想气体模型(气体分子极小之间无 相互作用,后来又提出有吸引力的刚性球模型推 导出范德瓦尔斯方程)
6.光的波动说和粒子说(两种模型最终提出光的“波 粒二象性”)
物理学的发展就是一个个模型的提出过程,模型的 提出是物理概念和规律得到了建立。那么我们学习 物理解决物理问题,从本质说就是探究、构建物理 模型的过程我们通常所要求的解题时应“明确物理 过程” 、“头脑中建立一副清晰的物理图景”,其 实就是要指导正确构建物理模型
(3)要透彻掌握典型物理模型的本质特征、不断积累典型 模型,并灵活运用他们。如研究碰撞时,总结出弹性碰撞和完 全非弹性碰撞两个模型,但后来发现一些作用时间较长的非碰 撞类问题,也有相同的数学形式,这就可以把这些问题也纳入 到这两个模型中去,直接应用这两个模型的结论。在粒子散射 实验中,粒子与重金属原子核的作用是非接触性的静电力作用, 由于动能守恒也可纳入弹性碰撞模型。
解决问题的一般方法总结: 审视物理情境 还原物理结论 构建物理模型总结
1.高中物理设计的基本理想化模型 (1)实体理想化模型:质点,轻杆,轻绳,轻弹簧, 点电荷,弹簧振子,单摆,理想气体,点光源,光 滑轨道,匀强电场,匀强磁场,理想变压器等;
(2).过程化理想模型:匀速直线运动,匀变速直 线运动,平抛运动,匀速圆周运动,简谐运动,等 温变化,等压变化等;
v0 v0 1 v0 A B A B
v0
M
L
s v
A
3.高中物理的动态模型
共点力作用下的动态平衡模型,直流电路动态分析 模型,变压器电路动态分析模型等。
四.运用模型处理问题
准确地建立模型,把握模型的要点使用好模型解 决问题的关键。这就需要我们在平时的学习中熟悉, 积累基本模型,这些模型来源于课堂老师讲授的基本 物理过程和典型问题,在此基础上要充分考虑题目给 出的条件和限制,也就是模型的要点,从而利用模型 顺利解题。 解决问题的过程实质就是建立模型的过程
在高中物理学习的过程中,正确理解物理概念和物理规律的 基础上,分析物理过程,构建物理模型;启发培养学生多向思 维的意识和习惯,并使学生认识到解决问题的途径不是单一的, 而是多种的,即开放式的。这对推进素质教育,提高教学质量, 是非常重要的。
谢谢大家!
3.物理模型的特征:物理学是研究物质最普遍、最基本 的运动形式的基本规律的一门学科。这些运动形式包 括机械运动、分子热运动、电磁运动、原子及原子内 部微观粒子的运动等。由于自然界的物质种类繁多, 运动情况错综复杂,相互作用的物理过程常包含许多 矛盾,且各具特征,几乎任何一个具体问题都会牵涉 到诸多因素。因此在物理学的研究中为了抓住主要矛 盾,忽略次要矛盾,就必须要采用理想模型的研究方 法。理想模型是根据物理研究对象和问题的特点.撇 开、舍弃次要的、非本质的因素,抓住主要的、本质 的因素,从而建立起的一个易于研究的、能反映研究 对象主要特征的新形象。实际上.物理学中的研究客 体。许多都是利用科学抽象和概括的方法
五.学好物理还需要掌握几种常见的物理思想方 法和处理问题的技巧
1.思想方法:理想模型法,整体法与隔离法,图像 法,等效法,微元法,猜想与假设法,临界分析法, 类比的思维方法,极限思维法,对称法,守恒的思 想方法,逆向思维法等
2.处理问题的技巧:估算法,求极值法,微元法,等效 法,极限法,递推法,对称法,类比法等
(3)形象化理想模型:电场线,磁场线,等势面 等;
(4)理想化:结构模型:原子核式结构,氢原子能 级等。 2.高中物理常见复杂模型 追击相遇模型,小船渡河模型,机车启动模型,卫 星变轨模型,双星模型,碰撞模型,子弹打击木块 模型,人船运动模型,导电滑轨模型,远距离输电 模型,传送带模型等
S2
S1 20m
1.物理模型是人们按照科学研究的特定目的,在一定的 假设条件下,用物质的形式或思维形式再现原型客体 的某种基本特征,诸如关于客体的某种结构(整体或 部分的)、功能、属性,关系,过程等等。通过对中 物理模型的研究,来推至客体的某种性质或规律。这 种借助构建模型来获取关于客体的认识的方法,就是 物理学研究常用的模型方法。 2.理想化方法是构建物理模型最主要的一种方法,他是 将复杂的物理过程、物理现象中最本质具有共性的东 西抽象出来,将其理想化、模型化,略去其次要因素 和条件,抓住主要因素,即将其理想化,找出他们在 理想状况下所遵循的基本规律,并构建出相应的物理 模型。这是研究物理问题的重要思想方法。
相关文档
最新文档