一种新的TS模型辨识算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种新的TS模型辨识算法
林妹娇1,陈水利2
(1.福州大学数学与计算机科学学院,福建福州 350108;2.集美大学理学院,福建厦
门 361021)
[摘要]提出一种新的TS模型辨识算法.该算法思想:首先采用MCR算法(Mountain C Regression method)自动确定聚类数目和初始聚类中心,然后采用改进的GK (Gustafon Kessl)聚类算法得到最优的划分矩阵,再根据最优划分矩阵计算系统前件参数的最优值,最后用自适应粒子群优化算法(Adaptive Particle Swarm Optimization,APSO)对后件参数进行优化.此辨识算法能够用较少的规则数描述给定的未知系统,并且容易实现.仿真实验表明该算法能够实现非线性系统的辨识,并且可获得相对高的精度.
[关键词]TS模型辨识;MCR算法;改进的GK聚类算法;自适应粒子群优化算法
A Novel TS Model Identification Algorithm
LIN Mei-jiao1,CHEN Shui-li2
(1.College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China;2.School of Science,Jimei University,Xiamen 361021,China)
Abstract:In this paper,a novel TS model identification algorithm is proposed.The identification algorithm is on the base of the following ideas:Firstly,the Mountain C-Regression method (MCR) is used to automatically identify the number of clusters and initial cluster center.Secondly,the modified Gustafson-Kessl (GK) algorithm is used to obtain an optimal input-output space fuzzy partition matrix which provids the values of premise parameters.Finally,Adaptive Particle Swarm Optimization (APSO) algorithm is adopted to precisely adjust consequent parameters.It can express a given unknown system with a small number of fuzzy rules and is easy to
implement.The simulation results show the proposed algorithm realizes the identification of the nonlinear system with relative high accuracy.
Key words:Takagi Sugeno model identification;Mountain C-Regression method,MCR;modified GK algorithm;Adaptive Particle Swarm Optimization,APSO