人教版八年级上册数学课时练:第十五章《分式与分式方程》

合集下载

八年级数学上册 第十五章《分式》15.3 分式方程 15.3.1 分式方程及其解法课时作业 (新版)新人教版

八年级数学上册 第十五章《分式》15.3 分式方程 15.3.1 分式方程及其解法课时作业 (新版)新人教版

15.3分式方程第1课时分式方程及其解法知识要点基础练知识点1分式方程的概念1.下列方程中,不是分式方程的是(B)A.x-=1B.=xC. D.x+2.有下列方程:①2x+=10;②x-=2;③-3=0;④=0.属于分式方程的有(B)A.①②B.②③C.③④D.②④知识点2分式方程的解法3.小明解方程=1的过程如下,他的解答过程中从第(A)步开始出现错误.解:去分母,得1-(x-2)=1,①去括号,得1-x+2=1,②合并同类项,得-x+3=1,③移项,得-x=-2,④系数化为1,得x=2.⑤A.①B.②C.③D.④4.解分式方程-2=,去分母得1-2(x-1)=-3.5.解下列分式方程:(1);解:方程两边同乘x(x-3),得2x=3x-9,解得x=9.检验:当x=9时,x(x-3)≠0,所以x=9是原分式方程的解.(2);解:方程两边同乘3(3x-1),得2(3x-1)+3x=1,解得x=.检验:当x=时,3(3x-1)=0,因此x=不是原分式方程的解,所以原分式方程无解.(3).解:方程两边乘(x+2)(x-2),得x+2(x-2)=x+2,解得x=3.检验:当x=3时,(x+2)(x-2)≠0,所以x=3是原分式方程的解.综合能力提升练6.下列方程:①=2;②y=x;③;④y+1=;⑤1+3(x-2)=7-x;⑥y2-3=.其中分式方程有(C)A.1个B.2个C.3个D.4个7.(鄂尔多斯中考)对于两个不相等的实数a,b,我们规定符号min{a,b}表示a,b中较小的数,如:min{3,5}=3.按照这个规定.方程min{-2,-3}=的解为(D)A.-2B.-3C.D.8.对于非零实数a,b,规定a b=.若2(2x-1)=1,则x的值为.9.关于x的分式方程+5=有增根,则m的值为4.10.已知关于x的分式方程的解是非负数,那么a的取值范围是a≥1且a≠9.【变式拓展】若关于x的分式方程=2-的解为正数,则满足条件的正整数m的值为(C)A.1,2,3B.1,2C.1,3D.2,311.解分式方程:(1)+1=;解:方程两边乘(x-1)(x+2),得3+(x-1)(x+2)=x(x+2),解得x=1.检验:当x=1时,(x-1)(x+2)=0,因此x=1不是原分式方程的解.所以原分式方程无解.(2).解:两边通分,得,,6x=36,x=6.经检验,x=6是原分式方程的解.12.如图,点A,B在数轴上,它们所对应的数分别是-2和,且点A,B到原点的距离相等,求x的值.解:由已知可得-2+=0,解得x=4,经检验x=4是原分式方程的解.13.已知关于x的方程(a-1)x+2x=2的解是分式方程=1的根,求a的值.解:分式方程去分母得x2+2x+1+4=x2-1,解得x=-3,经检验x=-3是分式方程的解,把x=-3代入已知方程得-3a+3-6=2,解得a=-.14.若关于x的方程无解,求m的值.解:方程两边都乘以(x-1)(x-2),得x-2+m(x-1)=2m+2.化简,得(x-3)m=4-x.原分式方程的增根是x=1或x=2.当x=1时,-2m=3,解得m=-;当x=2时,-m=2,解得m=-2.另当整式无解时,有m+1=0得出m=-1.综上所述,m=-1或-或-2.拓展探究突破练15.阅读下面材料,解答后面的问题.解方程:=0.解:设y=,则原方程化为y-=0,方程两边同时乘以y,得y2-4=0,解得y=±2,经检验,y=±2都是方程y-=0的解.∴当y=2时,=2,解得x=-1;当y=-2时,=-2,解得x=, 经检验,x=-1或x=都是原分式方程的解.∴原分式方程的解为x=-1或x=.上述这种解分式方程的方法称为换元法.若在方程=0中,设y=,则原方程可化为y-=0.问题:模仿上述换元法解方程:-1=0.解:原方程化为=0,设y=,则原方程化为y-=0,方程两边同时乘以y,得y2-1=0,解得y=±1,经检验,y=±1都是方程y-=0的解.当y=1时,=1,该方程无解;当y=-1时,=-1,解得x=-.经检验,x=-是原分式方程的解,∴原分式方程的解为x=-.。

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、要使代数式有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1C.x≠0D.x>﹣1且x≠02、计算:的结果为()A.x+3B.C.x-3D.3、若把分式中的、都扩大为原来的3倍,则分式的值()A.缩小3倍B.扩大3倍C.扩大9倍D.不变4、若,则=()A. B. C. D.5、分式方程的解是()A.3B.﹣3C.±3D.无解6、要使分式有意义,则x应满足条件()A.x≠1B.x≠﹣2C.x>1D.x>﹣27、若关于x的分式方程+ =2有增根,则m的值是()A.m=﹣1B.m=0C.m=3D.m=0或m=38、把分式方程化成整式方程,正确的是()A.2(x+1)-1=-x 2B.2(x+1)-x(x+1)=-xC.2(x+1)-x(x+1)=-x 2 D.2x-x(x+1)=-x9、(﹣2)﹣3的值等于()A.6B.﹣8C.D.10、使分式和分式相等的值是()A.-5B.-4C.-3D.-111、甲、乙两地相距,提速前动车的速度为,提速后动车的速度是提速前的倍,提速后行车时间比提速前减少,则可列方程为()A. B. C. D.12、下列运算中,错误的是()A. B. C. D.13、计算:53×5﹣2的值是()A.5B.﹣5C.10D.﹣1014、函数y= 中,自变量x的取值范围()A.x>﹣4B.x>1C.x≥﹣4D.x≥115、下列计算正确的是( )A. B. C. D.二、填空题(共10题,共计30分)16、若分式方程=4﹣无解,则a的值为________.17、当x=________时, 与互为相反数.18、化简:÷的结果是________.19、甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为________.20、 +(2﹣π)0﹣sin60°=________.21、若关于x的分式方程=1的解为正数,那么字母a的取值范围是________.22、化简:﹣=________.23、(________ )2=;(________ )3=-24、函数f(x)= 的定义域是________.25、使有意义的x的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求值:•,其中x=3.27、在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个.求第一次和第二次分别购进的医用口罩数量为多少个?28、为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?29、今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.30、先化简,再求值:÷(x+1﹣),其中x=﹣8sin30°+2cos45°.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、D5、D7、A8、C9、D10、C11、A12、C13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

人教版八年级上册第15章 《分式方程应用》专项综合训练(六)

人教版八年级上册第15章 《分式方程应用》专项综合训练(六)

《分式方程应用》专项综合训练(六)限时训练(一):限时60分钟1.新冠肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,现安排甲、乙两个工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成48万只口罩的生产任务时,甲厂比乙厂少用4天.(1)甲、乙两个工厂每天分别生产多少万只口罩?(2)若甲厂每天生产成本为3万元,乙厂每天生产成本为2.4万元,要使这批口罩的生产总成本不高于57万元,至少安排甲厂生产多少天?2.春节即将来临,根据习俗好多家庭都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进批红灯笼和对联进行销售,已知红灯笼的进价是对联进价的2.25倍,用720元购进对联的数量比用540元购进红灯笼的数量多60件(1)对联和红灯笼的进价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼.已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个.销售一段时间后发现对联售出了总数的,红灯笼售出了总数的.为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?3.某商场第一次用22000元购进某款智能清洁机器人进行销售,很快销售一空,商家又用48000元第二次购进同款智能清洁机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进智能清洁机器人多少台?(2)若所有智能清洁机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每台智能清洁机器人的标价至少是多少元?4.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的共50台进行试销,购买资金不超过9.8万元试求最多可以购买A型净水器多少台?5.某校开学初在超市购进A、B两种品牌的消毒液,购买A品牌消毒液花费了2500元,购买B品牌消毒液花费了2000元,且购买A品牌消毒液数量是购买B品牌消毒液数量的2倍.已知购买一瓶B品牌消毒液比购买一瓶A品牌消毒液多花30元.(1)购买一瓶A品牌、一瓶B品牌消毒液各需多少元?(2)该校为了防疫,决定再次购进A、B两种品牌的消毒液共50瓶,恰逢超市对这两种品牌消毒液的售价进行调整,A品牌消毒液售价比第一次购买时提高了8%,B品牌消毒液按第一次购买时售价的9折出售,如果该校此次购买的总费用不超过3200元,那么,最多可以购买多少瓶B品牌消毒液?6.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?7.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?8.2019年8月,因暴雨某县受灾,某市抗灾基金会组织一批救灾物资用15列车厢组成的一列火车运到该县,两地相距180km,为了更快的到达目的地.列车以原速的1.5倍行驶,这样提前了半小时到达.(1)求提速后列车的速度;(2)若车厢分A、B两种组成,每个A种车厢能运送5万元的救灾物资,每个B种车厢能运送7万元的救灾物资,总物资不低于是85万,那么最多可安排多少个A种车厢?9.某公司开发的720件新产品,需加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而乙工厂的工作效率是甲工厂的1.5倍;在加工过程中,公司需每天支付80元劳务费请工程师到厂进行技术指导.(1)求甲、乙两个工厂每天各能加工多少件新产品?(2)该公司要选择省时又省钱的工厂加工,如果甲工厂向公司报加工费用为每天600元,请问:乙工厂向公司报加工费用每天最多为多少元时,才可满足公司要求,有望加工这批产品.10.冰封文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元;(2)若该商店A种笔记本每本售价24元,B种笔记本每本售价35元,准备购进A、B 两种笔记本共100本,且这两种笔记本全部售出后总获利不小于468元,则最多购进A 种笔记本多少本?限时训练(二):限时20分钟11.澜鑫商场为“双十一购物节”请甲乙两个广告公司布置展厅,已知乙单独完成此项任务的天数是甲单独完成此任务天数的2倍.若两公司合作4天,再由甲公司单独做3天就可以完成任务.(1)甲公司与乙公司单独完成这项任务各需多少天?(2)甲公司每天所需费用为5万元,乙公司每天所需费用为2万元,要使这项工作的总费用不超过40万元,则甲公司至多工作多少天?12.“垃圾分一分,环境美十分”某中学为更好地进行垃圾分类,特购进A,B两种品牌的垃圾桶,购买A品牌垃圾桶花费了4000元,购买B品牌垃圾桶花费了3000元,且购买A 品牌垃圾桶数量是购买B品牌垃圾桶数量的2倍,已知购买一个B品牌垃圾桶比购买一个A品牌垃圾桶多花50元.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)该中学决定再次购进A,B两种品牌垃圾桶共20个,恰逢百货商场对两种品牌垃圾桶的售价进行调整,A品牌垃圾桶按第一次购买时售价的九折出售,B品牌垃圾桶售价比第一次购买时售价提高了10%,如果这所中学此次购买A,B两种品牌垃圾桶的总费用不超过2550元,那么该学校此次最多可购买多少个B品牌垃圾桶?13.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?14.某手机店老板到电子批发市场选购A、B两种型号的手机,A型手机比B型手机每套进价高200元,同样用6000元采购A型、B型手机时,B型手机比A型手机多1台.(1)求A、B两种手机进价分别为多少元?(2)该A型手机每台售价为1800元,B型手机每台售价为1500元,手机店老板决定,购进B型手机的数量比购进A型手机的数量的2倍少3台,两种手机全部售完后,总获利超过12800元,问最少购进A型手机多少台?15.为全面推进“三供一业”分离移交工作,甲、乙两个工程队承揽了某社区2400米的电路管道铺设工程.已知甲队每天铺设管道的长度是乙队毎天铺设管道长度的1.5倍,若两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天.(1)求甲、乙两工程队每天分别铺设电路管道多少米;(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工多少天才能完成该项工程?参考答案1.解:(1)设乙工厂每天生产x万只口罩,则甲工厂每天生产1.5x万只口罩,依题意,得:﹣=4,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.答:甲工厂每天生产6万只口罩,乙工厂每天生产4万只口罩.(2)设安排甲工厂生产m天,则安排乙工厂生产天,依题意,得:3m+2.4×≤57,解得:m≥5.答:至少安排甲厂生产5天.2.解:(1)设对联的进价为x元,则红灯笼的进价为2.25x元,依题意,得:﹣=60,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴2.25x=18.答:对联的进价为8元,红灯笼的进价为18元.(2)设商店对剩下的商品打y折销售,依题意,得:12×300×+24×200×+12××300×(1﹣)+24××200×(1﹣)﹣8×300﹣18×200≥(8×300+18×200)×20%,整理,得:240y≥1200,解得:y≥5.答:商店最低打5折,才能使总的利润率不低于20%.3.解:(1)设该商家第一次购进智能清洁机器人x台,则第二次购进智能清洁机器人2x 台,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:该商家第一次购进智能清洁机器人200台.(2)设每台智能清洁机器人的标价为y元,依题意,得:(200+200×2)y﹣(22000+48000)≥(22000+48000)×20%,解得:y≥140.答:每台智能清洁机器人的标价至少为140元.4.解:(1)设每台B型净水器的进价是x元,则每台A型净水器的进价是(x+200)元,依题意,得:=,解得:x=1800,经检验,x=1800是原方程的解,且符合题意,∴x+200=2000.答:每台A型净水器的进价是2000元,每台B型净水器的进价是1800元.(2)设购买A型净水器y台,则购买B型净水器(50﹣y)台,依题意,得:2000y+1800(50﹣y)≤98000,解得:y≤40.答:最多可以购买A型净水器40台.5.解:(1)设购买一瓶A品牌消毒液需x元,则购买一瓶B品牌消毒液需(x+30)元,依题意,得:=2×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=80.答:购买一瓶A品牌消毒液需50元,一瓶B品牌消毒液需80元.(2)设购买m瓶B品牌消毒液,则购买(50﹣m)瓶A品牌消毒液,依题意,得:50×(1+8%)(50﹣m)+80×0.9m≤3200,解得:m≤27.又∵m为正整数,∴m的最大值为27.答:最多可以购买27瓶B品牌消毒液.(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)6.解:x元,依题意,得:﹣=50,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.7.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,依题意,得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.8.解:(1)设提速前列车的速度为xkm/h,则提速后列车的速度为1.5xkm/h,依题意,得:﹣=0.5,解得:x=120,经检验,x=120是所列分式方程的解,且符合题意,∴1.5x=180.答:提速后列车的速度为180km/h.(2)设安排m个A种车厢,则安排(15﹣m)个B种车厢,依题意,得:5m+7(15﹣m)≥85,解得:m≤10.答:最多可安排10个A种车厢.9.解:(1)设甲工厂每天加工x件,则乙工厂每天加工1.5x件,依题意,得:﹣=20,解得:x=12,经检验,x=12是原分式方程的解,且符合题意,∴1.5x=18.答:甲工厂每天加工12件,乙工厂每天加工18件.(2)甲工厂的加工总费用为(600+80)×=40800(元).设乙工厂向公司报加工费用每天y元,则乙工厂的价格总费用为×(y+80)=40(y+80)元,依题意,得:40(y+80)≤40800,解得:x≤940.答:乙工厂向公司报加工费用每天最多为940元时,可满足公司要求,有望加工这批产品.10.解:(1)设A种笔记本每本的进价为x元,则B种笔记本每本的进价为(x+10)元,依题意,得:=,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴x+10=30.答:A种笔记本每本的进价为20元,B种笔记本每本的进价为30元.(2)设购进A种笔记本m本,则购进B种笔记本(100﹣m)本,依题意,得:(24﹣20)m+(35﹣30)(100﹣m)≥468,解得:m≤32.答:最多购进A种笔记本32本.11.解:(1)设甲公司单独完成这项任务需要x天,则乙公司单独完成这项任务需要2x 天,依题意,得:+=1,解得:x=9,经检验,x=9是原方程的解,且符合题意,∴2x=18.答:甲公司单独完成这项任务需要9天,乙公司单独完成这项任务需要18天.(2)设甲公司工作m天,则乙公司工作=(18﹣2m)天,依题意,得:5m+2(18﹣2m)≤40,解得:m≤4.答:甲公司至多工作4天.12.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,依题意,得:=2×,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:购买一个A品牌垃圾桶需100元,购买一个B品牌垃圾桶需150元.(2)设该学校此次购买m个B品牌垃圾桶,则购买(20﹣m)个A品牌垃圾桶,依题意,得:100×0.9(20﹣m)+150×(1+10%)m≤2550,解得:m≤10.答:该学校此次最多可购买10个B品牌垃圾桶.13.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.14.解:(1)设A型手机进价为x元,则B型手机进价为(x﹣200)元,由题意得:+1=解得:x1=1200,x2=﹣1000(不合题意,舍去),经检验:x=1200是原分式方程的解,x﹣200=1200﹣200=1000,答:A、B两种手机进价分别为1200元、1000元;(2)设购进A型手机a台,则购进B型手机(2a﹣3)台,由题意得:(1800﹣1200)a+(1500﹣1000)(2a﹣3)>12800,解得:a>8,答:至少购进A型手机的数量是9台.15.解:(1)设乙队每天铺设电路管道x米,则甲队每天铺设电路管道1.5x米,依题意,得:.解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=1.5×40=60.答:甲队每天铺设电路管道60米,乙队每天铺设电路管道40米.(2)设乙队施工m天正好完成该项工程,依题意,得:≤20,解得:m≥30.答:若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工30天才能完成该项工程.。

人教版 八年级上册数学 15.3 分式方程 同步课时训练(含答案)

人教版 八年级上册数学 15.3 分式方程 同步课时训练(含答案)

人教版初二数学15.3 分式方程同步课时训练一、选择题1. 下列关于x的方程:+x=1,+===2,其中,分式方程有 ()A.1个B.2个C.3个D.4个2. 解分式方程+=,分以下四步,其中错误的一步是()A.最简公分母是(x-1)(x+1)B.方程两边乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=13. 把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2xC.x+4 D.x(x+4)4. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x小时,根据题意可列出方程为()A.+=1B.+=C.+=D.+=15. [2018·益阳] 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊速度的1.25倍,小进比小俊少用了40秒.设小俊的速度是x米/秒,则下列所列方程正确的是()A.40×1.25x-40x=800B.-=40C.-=40D.-=406. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( ) A .-5 B .-8C .-2D .57.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A. -3B. -2C. -32D. 128. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-2二、填空题9. 分式方程5y -2=3y 的解为________.10. 若关于x 的方程ax +1x -1-1=0有增根,则a 的值为________.11. 若式子1x -2和32x +1的值相等,则x =________.12. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.13. 若分式方程x -ax +1=a 无解,则a 的值为________.14. 在正数范围内定义一种运算“※”,其规则为a ※b=+,如2※4=+=.根据这个规则求得x ※(-2x )=的解为 .15. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.16. 拓广应用已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是________________.三、解答题17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 解分式方程:(1)23+x3x-1=19x-3;(2)xx+2=2x-1+1;(3)7x2+x+3x2-x=6x2-1.19. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.20. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版初二数学15.3 分式方程同步课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】B[解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得+=.5. 【答案】C [解析] 小进跑800米用的时间为秒,小俊跑800米用的时间为秒.∵小进比小俊少用了40秒, ∴所列方程是-=40.6. 【答案】A[解析] 分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.具体的解答过程如下: 去分母,得3x -2=2x +2+m.由分式方程无解,得到x +1=0,即x =-1. 代入整式方程,得-5=-2+2+m. 解得m =-5. 故选A.7.【答案】B【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a ,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.8. 【答案】B二、填空题9. 【答案】y =-3[解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.10.【答案】-1【解析】将方程两边同时乘以x -1,得ax +1-x +1=0,则(a -1)x +2=0,∵原方程有增根,∴x =1,将x =1代入(a -1)x +2=0中,得a -1+2=0,a =-1.11. 【答案】7 11.1512. 【答案】±1[解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解. 故答案为±1.13. 【答案】17 [解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x=3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.14. 【答案】x=[解析] x ※(-2x )=+=,即-=,解得x=.经检验,x=是原分式方程的解.15. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2), 得x(x -1)=2(x +2)+(x -1)(x +2). 解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0. 所以原分式方程的解为x =-12. (3)方程两边同乘x(x +1)(x -1),得16. 【答案】k>-12且k≠0 [解析] 去分母,得k(x -1)+(x +k)(x +1)=(x +1)(x -1).整理,得(2k +1)x =-1.因为方程kx +1+x +k x -1=1的解为负数,所以2k +1>0且x≠±1, 即2k +1>0且-12k +1≠±1. 解得k>-12且k≠0,即k 的取值范围为k>-12且k≠0. 故答案为k>-12且k≠0.三、解答题17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x +2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】x-1)+3(x+1)=6x.解得x=1.检验:当x=1时,x(x+1)(x-1)=0,所以x=1不是原方程的解.故原分式方程无解.19. 【答案】解:(1)设买每本软面笔记本花费x元,则买每本硬面笔记本花费(x+1.2)元.由题意,得=,解得x=1.6.经检验,x=1.6是原分式方程的解.此时==7.5(不符合题意),∴小明和小丽不能买到相同数量的笔记本.(2)存在.设买每本软面笔记本花费m元(1≤m≤12,且m为整数),则买每本硬面笔记本花费(m+a)元.由题意,得=,解得a=m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,==1.5(不符合题意).∴a的值为3或9.20. 【答案】解:(1)1(2)设该商品在乙商场的原价为x元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。

初中数学人教版八年级上册第十五章 分式15.3 分式方程-章节测试习题(11)

初中数学人教版八年级上册第十五章 分式15.3 分式方程-章节测试习题(11)

章节测试题1.【题文】某工程队修建一条1200m的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】解:(1)设这个工程队原计划每天修建道路x米.由题意,得.解得x=100.经检验,x=100是所列方程的根.答:这个工程队原计划每天修建100米.(2)设实际平均每天修建道路的工效比原计划增加y%.据题意,得解得y=20.经检验,y=20是所列方程的根.答:实际平均每天修建道路的工效比原计划增加20%.【分析】【解答】2.【题文】某公司需在一个月(31天)内完成新建办公楼装修工程.如果由甲、乙两队合做,12天可以完成;如果由甲、乙两队单独做,甲队单独完成所用的时间是乙队单独完成所用时间的.(1)求甲、乙两队单独完成此工程所需的时间;(2)若请甲队施工,公司每日需付费用2000元;若请乙队施工,公司每日需付费用1400元.在规定时间内,有下列三种方案;方案一:请甲队单独施工完成此工程;方案二:请乙队单独施工完成此工程;方案三:甲、乙两队合作完成此工程.以上三种方案哪一种费用最少?【答案】解:(1)设乙队单独完成此工程所需的时间为x天.根据题意,得.解这个方程得x=30.经检验,x=30是所列方程的根.则(天).所以,甲队单独完成此工程所需时间为20天,乙队单独完成此工程所需的时间为30天.(2)方案一,费用为2000×20=40000(元);方案二,费用为1400×30=42000(元);方案三,费用为(2000+1400)×12=40800(元).所以,方案一费用最少.【分析】【解答】3.【题文】某校进行期末体育达标测试,甲、乙两班的学生人数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【答案】解:设乙班的达标率为x,则甲班的达标率为(x+6%)根据题意,得.解这个方程,得x=0.9.经检验,x=0.9是所列方程的根.故乙班的达标率为90%.【分析】【解答】4.【题文】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.求粽子与咸鸭蛋的价格各是多少.【答案】解:设咸鸭蛋的价格是x元,则粽子的价格是(x+1.8)元,根据题意,得.解得x=1.2.经检验,x=1.2是所列分式方程的根.∴x+1.8=3.答:粽子的价格是3元,咸鸭蛋的价格是1.2元.【分析】【解答】5.【题文】某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔.毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支.求钢笔、毛笔的单价分别是多少元.【答案】解:设钢笔的单价为x元/支,则毛笔的单价为1.5x元/支.据题意,得.解得x=10.经检验,x=10是原方程的根.当x=10时,1.5x=15.答:钢笔的单价为10元/支,毛笔的单价为15元/支.【分析】【解答】6.【题文】近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A,B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B 种设备的数量相同.(1)求A种、B种设备每台各多少万元.(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台.【答案】解:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元.根据题意,得.解得x=0.5.经检验,x=0.5是所列方程的根,且符合题意.∴x+0.7=1.2.答:每台A种设备0.5万元,每台B种设备1.2万元.(2)设购买A种设备m台,则购买B种设备(20-m)台.根据题意,得0.5m+1.2(20-m)≤15.解得.∵m为整数,∴m≥13.答:A种设备至少要购买13台.【分析】【解答】7.【题文】烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,是进价的2倍价格销售,剩下的小苹果以高于进价的10%销售.乙超市销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【答案】解:(1)设苹果进价为每千克x元,由题意,得.解得x=5.经检验,x=5是原方程的根.答:苹果进价为每千克5元.(2)由(1)知每个超市苹果总量为(千克).大、小苹果售价分别为10元和5.5元.∴乙超市获利(元)∵甲超市获利2100>1650,∴甲超市的销售方式更合算.【分析】【解答】8.【答题】下列方程中,是分式方程的是()A. B.C. D. 6x2+4x+1=0【答案】B【分析】【解答】9.【答题】解分式方程时,去分母后可得到()A. x(2+x)-2(3+x)=1B. x(2+x)-2=2+xC. x(2+x)-2(3+x)=(2+x)(3+x)D. x-2(3+x)=3+x【答案】C【分析】【解答】10.【答题】分式方程的解为()A. x=1B. x=-1C. 无解D. x=-2【答案】C【分析】【解答】去分母,得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:把x=1代入(x-1)(x+2)=0.所以分式方程的无解.11.【答题】关于z的分式方程的解为x=4,则常数a的值为()A. a=1B. a=2C. a=4D. a=10【答案】D【分析】【解答】把x=4代入方程,得.解得a=10.选D12.【答题】某加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件).设安排x人加工A零件,由题意列方程得()A. B.C. D.【答案】A【分析】【解答】13.【答题】关于x的分式方程的解为负数,则a的取值范围是()A. a>1B. a<1C. a<1日a≠-2D. a>1且a≠2【答案】D【分析】【解答】解分式方程得x=1-a.根据分式方程解为负数,得1-a<0,且1-a≠-1.解得a >1且a≠2.选D.14.【答题】已知x=1是分式方程的根,则实数k=______.【答案】【分析】【解答】把x=1代入分式方程,得.所以.15.【答题】若关于x的方程有增根,则m的值是______.【答案】0【分析】【解答】由x-2=0得方程的增根x=2..方程两边都乘x-2,得2-x-m=2x-4.将x=2代入,得2-2-m=2×2-4.解得m=0.16.【答题】端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个.求平时每个粽子卖多少元.设每个粽子卖x元,列方程为______.【答案】【分析】【解答】17.【答题】已知关于x的分式方程有一个正数解,则k的取值范围为______.【答案】k<6且k≠3【分析】【解答】.方程两边都乘(x-3),得x=2(x-3)+k,x=6-k≠3.关于x 的方程有一个正数解,∴x=6-k>0.∴k<6,且k≠3.18.【题文】解方程:(1);(2).【答案】解:(1)方程两边同乘(x-2)(x+3),得6(x+3)=x(x-2)-(x-2)(x+3),.化简得.当时,(x-2)(x+3)≠0,所以当是原方程的根.(2)整理,得.方程两边都乘(x-3),得2x-x-3=2x-6.解这个方程,得x=3.检验:当x=3时,x-3=0.因此x=3是增根,原方程无解.【分析】【解答】19.【题文】若关于x的方程无解,求m的值.【答案】解:去分母,得x-2=m+2x-10,x=-m+8.因为原方程无解,所以x=-m+8为原方程的增根.又由于原方程的增根为x=5,所以-m+8=5.所以m=3.【分析】【解答】20.【题文】某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.【答案】解:设每人每小时的绿化面积为x平方米.则有.解得x=2.5.经检验,x=2.5是所列分式方程的根.答:每人每小时的绿化面积为2.5平方米.【分析】【解答】。

八年级数学上册第十五章《分式》15.3分式方程15.3.2列分式方程解决实际问题课时作业新人教版(

八年级数学上册第十五章《分式》15.3分式方程15.3.2列分式方程解决实际问题课时作业新人教版(

2018年秋八年级数学上册第十五章《分式》15.3 分式方程15.3.2 列分式方程解决实际问题课时作业(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第十五章《分式》15.3 分式方程15.3.2 列分式方程解决实际问题课时作业(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第十五章《分式》15.3 分式方程15.3.2 列分式方程解决实际问题课时作业(新版)新人教版的全部内容。

第2课时列分式方程解决实际问题知识要点基础练知识点列分式方程解决实际问题1.某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工。

某同学设规定的工期为x天,根据题意列出了方程:=1,则方案③中被墨水污染的部分应该是(B)A。

甲先做4天B。

甲、乙合做4天C。

甲先做工程的D。

甲、乙合做工程的2.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,则所列方程为=4.3.(扬州中考)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行"的号召,两人都步行,已知小明的速度是小芳的速度的1。

人教版八年级上册课时练:第15章《分式》实际应用提优(二)

人教版八年级上册课时练:第15章《分式》实际应用提优(二)

课时练:第15章《分式》实际应用提优(二)1.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?2.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若这两次购买防护口罩过程中所产生其他费用不少于600元,那么该超市购买这两批防护口罩的平均单价至少为多少元?3.为全面推进“三供一业”分离移交工作,甲、乙两个工程队承揽了某社区2400米的电路管道铺设工程.已知甲队每天铺设管道的长度是乙队毎天铺设管道长度的1.5倍,若两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天.(1)求甲、乙两工程队每天分别铺设电路管道多少米;(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工多少天才能完成该项工程?4.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?5.全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪声小而更受消费者的欢迎.商社电器计划A型净化器的进货量不少于20台且是B型净化器进货量的三倍,在总进货款不超过5万元的前提下,试问有多少种进货方案?6.某社区积极响应正在开展的“文明城市创建工作”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300m2的绿化面积比乙工程队完成200m2的绿化面积少用2h.求乙工程队每小时能完成多少平方米的绿化面积?7.新冠肺炎疫情爆发之后,全国许多省市对湖北各地进行了援助,广州市某医疗队备好医疗防护物资迅速援助武汉.第一批医疗队员乘坐高铁从广州出发,2.5小时后,第二批医疗队员乘坐飞机从广州出发,两批队员刚好同时到达武汉.已知广州到武汉的飞行距离为800千米,高铁路程为飞行距离的倍.(1)求广州到武汉的高铁路程;(2)若飞机速度与高铁速度之比为5:2,求飞机和高铁的速度.8.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?9.某商家预测某种粽子能够畅销,就用6000元购进了一批这种粽子,上市后销售非常好,商家又用14000元购进第二批这种粽子,所购数量是第一批购进数量的2倍,但每袋进价多了5元.(1)该商家两批共购进这种粽子多少袋?(2)由于储存不当,第二批购进的粽子中有10%腐坏,不能售卖.该商家将两批粽子按同一价格全部销售完毕后获利不低于8000元,求每袋粽子的售价至少是多少元?10.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?参考答案1.解:(1)设A种品牌的口罩每个的进价为x元,根据题意得:,解得x=1.8,经检验x=1.8是原方程的解,x+1.8=2.5(元),答:A种品牌的口罩每个的进价为1.8元,B种品牌的口罩每个的进价为2.5元.(2)设购进B种品牌的口罩m个,根据题意得,(2.1﹣1.8)(8000﹣m)+(3﹣2.5)m≥3000,解得m≥3000,∵m为整数,∴m的最小值为3000.答:最少购进种品牌的口罩3000个.2.解:(1)设第一批口罩进货单价为x元,则第二批进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原分式方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)购进第一批防护口罩的数量1600÷8=200(个),购进第二批防护口罩的数量200×3=600(个).设该超市购买这两批防护口罩的平均单价为m元,依题意,得:(200+600)m≥1600+6000+600,解得:m≥10.25.答:该超市购买这两批防护口罩的平均单价至少为10.25元.3.解:(1)设乙队每天铺设电路管道x米,则甲队每天铺设电路管道1.5x米,依题意,得:.解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=1.5×40=60.答:甲队每天铺设电路管道60米,乙队每天铺设电路管道40米.(2)设乙队施工m天正好完成该项工程,依题意,得:≤20,解得:m≥30.答:若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工30天才能完成该项工程.4.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.5.解:(1)设B型空气净化器的进价为x元,则A型空气净化器的进价为(x+300)元,∴=,解得:x=1200,经检验,x=1200是原方程的解,∴x+300=1500,答:一台A型空气净化器和一台B型空气净化器的进价各为1500元和1200元.(2)设B型号的进货量为m台,则A型号的进货量为3m台,∴,解得:≤m≤,∵m是整数,∴m=7或8,当m=7时,3m=21,当m=8时,3m=24,答:共有两种进货方案.6.解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:=﹣2,解得:x=25,经检验,x=25是分式方程的解.答:乙工程队每小时能完成25平方米的绿化面积.7.解:(1)800×=1000(千米).答:广州到武汉的高铁路程为1000千米.(2)设飞机的速度为5x千米/小时,则高铁的速度为2x千米/小时,依题意,得:﹣=2.5,解得:x=136,经检验,x=136是原方程的解,且符合题意,∴2x=272,5x=680.答:飞机的速度为680千米/小时,高铁的速度为272千米/小时.8.解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥33,因此,A种型号健身器材至少购买34套.9.解:(1)设该商家第一次购进这种粽子x袋,则第二次购进2x袋,依题意,得:﹣=5,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意,∴x+2x=600.答:该商家两批共购进这种粽子600袋.(2)设每袋粽子的售价是y元,依题意,得:[200+200×2×(1﹣10%)]y﹣6000﹣14000≥8000,解得:y≥50.答:每袋粽子的售价至少是50元.10.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.。

八年级数学上册第十五章《分式方程》课时练习题(含答案)

八年级数学上册第十五章《分式方程》课时练习题(含答案)

八年级数学上册第十五章《15.3分式方程》课时练习题(含答案)一、选择题1.方程2152x x =+-的解是( ) A .=1x - B .5x = C .7x = D .9x = 2.若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2 3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.分式方程3262(2)x x x x =+--的解是( ) A .0 B .2 C .0或2 D .无解5.已知111,1a b b c=-=-,用a 表示c 的代数式为( ) A .11c b =- B .11a c =- C .1a c a -= D .1a c a -= 6.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .3x =-B .2x =-C .13x =D .13x 7.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2 C .m <3 D .m <3且m≠2 8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 二、填空题 9.方程11212x x =+-的解是______.10.定义一种新运算:对于任意的非零实数a ,b ,11b a b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.11.若关于x 的分式方程211111k k x x x +-=--+有增根,则k 的值为______. 12.某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.13.若方程2111ax a x -=+-的解与方程63x=的解相同,则=a ________. 14.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 三、解答题15.解分式方程:2312x x x --=-.16.为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?17.科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?18.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?19.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?20.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.D2.C3.B4.D5.D6.A7.D8.A9.-310.12-##0.5-11.1或13-##13-或112.30013.1 3 -14.-1或5或1 3 -15.方程2312xx x--=-,224432x x x x x-+-=-,54x-=-,45x=,经检验45x=是分式方程的解,∴原分式方程的解为45x=.16.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.17.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.18.设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意有:15001200100x x=+,解得:x=400,经检验,x=400是原方程的根,故乙班每小时挖400千克的土豆.19.(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x米.由题意可得:4000400051.2x x-= 解得:4003x = 经检验得:4003x =是原分式方程的解. ∴ 第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米. 答:小勇同学两次慢跑的速度各是4003米/分、160米/分. 20.解:(1)设一次性医用口罩单价为x 元,则N95口罩的单价为()10x +元 由题意可知,1600960010x x =+, 解方程 得2x =.经检验2x =是原方程的解,当2x =时,1012x +=.答:一次性医用口罩和N95口单价分别是2元,12元.(2)设购进一次性医用口罩y 只根据题意得212(2000)10000y y +-≤,解不等式得1400y ≥.答:药店购进一次性医用口罩至少1400只.。

人教版八年级上册课时练:第15章《分式》实际应用解答题提优(四)

人教版八年级上册课时练:第15章《分式》实际应用解答题提优(四)

八年级上册课时练:第15章《分式》实际应用解答题提优(四)1.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?2.某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的1.5倍,用900元单独购买甲图书比用900元单独购买乙图书要少30本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买甲乙两种图书共80本,且用于购买图书的总经费不超过900元,那么该图书馆最多可以购买多少本甲图书?3.某工程队承建一所希望学校,在施工过程中,由于改进了工作方法,工作效率提高了20%,因此比原定工期提前1个月完工.这个工程队原计划用几个月的时间建成这所希望学校?4.我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?5.某厂为抗击疫情,要在规定时间内加工1500万只口罩.在加工了300万只口罩后,厂家把工作效率提高到原来的1.5倍,结果提前4天完成任务,求该厂原来每天加工多少万只口罩?6.科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.7.2020年由于新冠肺炎爆发,为预防疫情专家提出了“勤洗手,戴口罩”的措施,口罩在市场上供不应求,生产口罩的主要材料是熔喷布.已知1吨熔喷布可以生产105万只医用一次性口罩,或者60万只KN95口罩.某生产熔喷布的企业要求在规定时间内完成100吨熔喷布的订单,为提高产量,现对生产车间进行改造,改造后每天比改造前多生产4吨熔喷布,结果在规定时间内多生产了40吨熔喷布.(1)现有一批熔喷布,若全部用来生产医用一次性口罩则可以生产420万只,则这批熔喷布全部用来生产KN95口罩则可以生产万只;(2)求该企业改造后熔喷布的日产量和企业要求规定的天数.8.长春市某街道开展爱心捐赠活动,并决定赠送一批阅读图书,用于贫困学生的课外学习.据了解,科普书的单价比文学书的单价多8元,用12000元购买科普书与用8000元购买文学书的本数相同,求这两类书籍的单价各是多少元.9.老街文化节开幕前,工艺师接到200个风筝的定制任务,他以原计划的效率制作了1天后,将工作效率提高了50%,结果比预定计划提前1天完成.求他原计划每天制作多少个风筝.10.京张高铁是世界上首条智能化高速铁路,起点是北京北,终点是张家口南.建成后的京张高铁铁路运行里程由原来的196km缩短为174km,运行时间缩短为原来的,平均速度比原来快150千米/小时.求建成后的京张高铁从北京北至张家口南的运行时间.参考答案1.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.2.解:(1)设乙图书每本价格为x元,则甲图书每本价格是1.5x元,由题意可得:,解得:x=10,经检验得:x=10是原方程的根,则1.5x=15,答:乙图书每本价格为10元,甲图书每本价格是15元;(2)设图书馆可以购买y本甲图书,由题意可得:15x+10(80﹣x)≤900,解得:x≤20,答:图书馆最多可以购买20本甲图书.3.解:设工程队原计划用x个月的时间建成这所希望学校,根据题意,得解这个方程,得x=6经检验,x=6是原分式方程的根答:这个工程队原计划用6个月建成这所希望学校.4.解:设二班单独整理这批实验器材需要x分钟,根据题意可得:15×(+)+15×=1,解得:x=60,经检验得:x=60是原方程的根,答:二班单独整理这批实验器材需要60分钟.5.解:设该厂原来每天加工x万只口罩,则提高工作效率后每天加工1.5x万只口罩,依题意,得:﹣=4,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:该厂原来每天加工100万只口罩.6.解:设该建筑集团原来每天铺设高架桥x米,则采用新的铺设技术后每天铺设高架桥2x 米,依题意,得:+=9,解得:x=300,经检验,x=300是原方程的解,且符合题意.答:该建筑集团原来每天铺设高架桥300米.7.解:(1)×60=240万只,故答案为:240;(2)设:企业规定的天数为x天,由题意可得:,解得:x=10,经检验x=10是原方程的解,且符合题意,∴改造后熔喷布的日产量为=14吨,答:企业改造后熔喷布的日产量为14吨,企业要求规定的天数为10天.8.解:设文学书每本x元,则科普书每本(x+8)元,依题意列方程得=,解得x=16,经检验,x=16是原方程的根,且符合题意,x+8=24,答:文学书每本16元,科普书每本24元.9.解:设原计划每天制作x个风筝,可得:=1,解得:x=50,经检验x=50是原方程的解,答:原计划每天制作50件风筝.10.解:设建成后的京张高铁从北京北至张家口南的运行时间为x小时,依题意,得:﹣=150,解得:x=,经检验:x=是原方程的解,且符合题意.答:建成后的京张高铁从北京北至张家口南的运行时间为小时.。

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3
15.3 第3课时 分式方程的应用
一、选择题
1.小明和小张两人 练习 电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相 等。设小明打字速度为x个/分钟,则列方程正确的 是( )
A: B: C: D:
2.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所 用的天数相等,若设甲班每天植 树x棵,则根据题意列出的方程是().
20.列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
A. = B. = C. = D. =
5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. = B. =
C. = D. =
6.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()
18 .某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎么样调配劳动力才能使挖出的土能及时运走且不窝工,解决此问题可设派x人挖土,其他人运土,列方程:.
三、解答题
19.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.

人教版数学八年级上册第15章 分式之方程实际应用 专项练习(二)

人教版数学八年级上册第15章 分式之方程实际应用 专项练习(二)

分式之方程实际应用专项练习(二)1.某校学生到离学校15千米的青少年营地举行活动,先遣队与大部队同时出发,已知先遣队的平均速度是大部队平均速度的1.2倍,预计比大部队早半小时到达.求先遣队的平均速度.2.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?3.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?4.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.5.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价7元售出150本时,出现滞销,便以定价的5折售完剩余的书.(1)每本书第一次的批发价是多少钱?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?6.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?7.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?8.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?9.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?10.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?11.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?12.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?13.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.14.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?16.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?17.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?18.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?19.某商场用8万元购进一批新型衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果用去17.6万元.(1)该商场第一批购进衬衫多少件?(2)商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?20.小明家在“吾悦广场”购买了一间商铺,准备承包给甲、乙两家装修公司进行店面装修,经调查:甲公司单独完成该工程的时间是乙公司的2倍,已知甲、乙两家公司共同完成该工程建设需20天;若甲公司每天所需工作费用为650元,乙公司每天所需工作费用为1200元,若从节约资金的角度考虑,则应选择哪家公司更合算?参考答案1.解:设大部队的速度为x千米/时;则先遣队的速度为1.2x千米/小时.根据题意,得﹣=,解得x=5,经检验:x=5是原方程的根,∴1.2x=6.答:先遣队的行进速度为6千米/小时.2.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400═2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.3.解:(1)设B的进价为x元,则a的进价是(x+3)元由题意得=,解得x=15,经检验x=15是原方程的解.所以15+3=18(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具(100﹣a)个,由题意得:12a+10(100﹣a)≥1080,解得a≥40.答:至少购进A40个.4.解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.5.解:(1)设每本书第一次的批发价是x元,则第二次购书时,每本书的批发价是(1+20%)x元,根据题意得:.解得:x=5.经检验,x=5是原方程的解,答:每本书第一次的批发价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为150×(7﹣5×1.2)+(250﹣150)×(7×0.5﹣5×1.2)=﹣100(元),所以两次共赚钱480﹣100=380(元),答:该老板两次售书总体上是赚钱了,共赚了380元.6.解;设每个小组有x名学生,根据题意得:,解之得x=10,经检验,x=10是原方程的解,且符合题意.答:每组有10名学生.7.解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;秒,设慢车驶过快车某个窗口需用t1根据题意得x+y=,=.∴t1即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;=,(2)所求的时间t2∴,的值最小,依题意,当慢车的速度为8米/秒时,t2t=,2∴t的最小值为62.5秒.2答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.8.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.9.解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.10.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.11.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.12.解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥33,因此,A种型号健身器材至少购买34套.13.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.14.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.15.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≤200×120,解得:y≥140.答:乙队至少需要140天才能完工.16.解:(1)设甲每小时做x个零件,则乙每小时做(x+8)个零件,依题意,得:=,解得:x=32,经检验,x=32是原方程的解,且符合题意,∴x+8=40.答:甲每小时做32个零件,乙每小时做40个零件.(2)40×4÷32=5(小时).答:甲做5小时与乙做4小时所做机械零件数相等.17.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.18.解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.19.解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,依题意,得:﹣=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意.答:商场第一批购进衬衫2000件.(2)(2000+2000×2﹣150)×58+150×58×0.8﹣80000﹣176000=90260(元).答:售完这两批衬衫,商场共盈利90260元.20.解:设乙公司单独完成需x天,则甲公司单独完成需要2x天,根据题意得:+=,解得:x=30,经检验,x=30是原方程的解.∴应付甲公司2×30×650=39000(元).应付乙公司30×1200=36000(元).∵36000<39000,∴公司应选择乙公司.答:公司应选择乙公司,应付工程总费用36000元.。

人教版八年级上册数学课时练:第十五章《分式与分式方程》

人教版八年级上册数学课时练:第十五章《分式与分式方程》

课时练:第十五章《分式与分式方程》满分:100分限时:60分钟一.选择题(每题3分,共30分)1.解分式方程=时,去分母化为一元一次方程,正确的是()A.x+1=2(x﹣1)B.x﹣1=2(x+1)C.x﹣1=2 D.x+1=22.解分式方程时,去分母变形正确的是()A.﹣1+x=1+3(2﹣x)B.﹣1+x=﹣1﹣3(x﹣2)C.1﹣x=﹣1﹣3(x﹣2)D.1﹣x=1﹣3(x﹣2)3.若关于x的分式方程=有增根,则m的值是()A.m=﹣1 B.m=1 C.m=﹣2 D.m=24.若分式的值总是正数,a的取值范围是()A.a是正数B.a是负数C.a>D.a<0或a>5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.下列各式从左到右变形正确的是()A.B.C.D.7.如果把分式中的x和y都扩大5倍,那么分式的值()A.不变B.缩小5倍C.扩大2倍D.扩大5倍8.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.9.将()﹣1,(﹣3)0,(﹣2)3这三个数按从小到大的顺序排列,正确的顺序是()A.()﹣1<(﹣3)0<(﹣2)3B.(﹣3)0<(﹣2)3<()﹣1C.(﹣2)3<()﹣1<(﹣3)0D.(﹣2)3<(﹣3)0<()﹣110.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现同款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批同款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.二.填空题(每题4分,共20分)11.当x=时,分式的值为0.12.若关于x的分式方程﹣=1有增根,则a的值.13.可乐和奶茶含有大量的咖啡因,世界卫生组织建议青少年每天摄入的咖啡因不能超过0.000085kg,将数据0.000085用科学记数法表示为.14.南昌至赣州的高铁于2019年年底通车,全程约416km,已知高铁的平均速度比普通列车的平均速度快100km,人们的出行时间将缩短一半,求高铁的平均速度.设高铁的平均速度为x,则可列方程:.15.已知x2+5x+1=0,那么x2+=.三.解答题(共50分)16.解分式方程:(1);(2).17.先化简,再求值:,其中x=3.18.红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.甲乙进价(元/袋)m m﹣2售价(元/袋)20 13(1)求m的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,且不超过5280元,问该超市有几种进货方案?(3)在(2)的条件下,该超市如果对甲种袋装食品每袋优惠a(2<a<7)元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?19.学习了分式运算后,老师布置了这样一道计算题:,下面是一位同学有错的解答过程:=①=②=③=④;(1)该同学的解答过程的错误步骤是;(填序号),你认为该同学错误的原因是.(2)请写出正确解答过程.20.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?参考答案一.选择题1.解:去分母得:x+1=2,故选:D.2.解:方程整理得:=﹣﹣3,去分母得:1﹣x=﹣1﹣3(x﹣2),故选:C.3.解:方程两边同时乘以x﹣1,得m+1=﹣x,解得:x=﹣m﹣1,∵方程有增根,∴x=1,∴﹣m﹣1=1,∴m=﹣2,故选:C.4.解:由题意可知:a>0且2a﹣1>0,或a<0且2a﹣1<0,∴a>或a<0,故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:A.分式的分子和分母同时乘以10,应得,即A不正确,B.,故选项B正确,C.分式的分子和分母同时减去一个数,与原分式不相等,即C项不合题意,D.不能化简,故选项D不正确.故选:B.7.解:根据题意,得==.∴分式的值不变.故选:A.8.解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.9.解:∵()﹣1=4,(﹣3)0=1,(﹣2)3=﹣8,∴(﹣2)3<(﹣3)0<()﹣1.故选:D.10.解:设拖鞋原价每双为x元,则“双11”大减价期间该款拖鞋价格每双为(x﹣5)元,依题意,得:=﹣2.故选:D.二.填空题(共5小题)11.解:由题意得:x2﹣9=0,且3﹣x≠0,解得:x=﹣3,故答案为:﹣3.12.解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.13.解:0.000085=8.5×10﹣5.故答案为:8.5×10﹣5.14.解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣100)km/h,依题意,得:=.故答案为:=.15.解:∵x2+5x+1=0,∴x+=﹣5,则原式=(x+)2﹣2=25﹣2=23,故答案为:23三.解答题(共5小题)16.解:(1)方程两边同乘(x﹣2),得1﹣3(x﹣2)=﹣(x﹣1),解得:x=3,检验:当x=3时,x﹣2≠0,所以x=3是原分式方程的解;(2)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,因此x=﹣1不是原分式方程的解,所以原分式方程无解.17.解:原式=÷=•=﹣,当x=3时,原式=﹣.18.解:(1)依题意得:=,解得:m=10,经检验m=10是原分式方程的解;(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800﹣x)袋,根据题意得,,解得:240≤x≤256,∵x是正整数,256﹣240+1=17,∴共有17种方案;(3)设总利润为W,则W=(20﹣10﹣a)x+(13﹣8)(800﹣x)=(5﹣a)x+4000,①当2<a<5时,5﹣a>0,W随x的增大而增大,所以,当x=256时,W有最大值,即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;②当a=5时,W=4000,(2)中所有方案获利都一样;③当5<a<7时,5﹣a<0,W随x的增大而减小,所以,当x=240时,W有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.19.解:(1)该同学的解答过程的错误步骤是②;该同学错误的原因是:用分式基本性质时,分母乘以(x+1),但是分子没有乘;故答案为:②,用分式基本性质时,分母乘以(x+1),但是分子没有乘;(2)====.20.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.。

八年级数学上册 第15章 15.1 分式课时练 (新版)新人教版

八年级数学上册 第15章 15.1 分式课时练 (新版)新人教版

鼎尚图文第十五章 15.1 分式学校: 姓名: 班级: 考号:一、选择题( )A. B. C. D.2. 要使分式有意义,则x 的取值应满足( )A. x ≠2B. x ≠-1C. x =2D. x =-13. 若分式的值为0,则x 的值为( )A. -1B. 0C. 2D. -1或24. 式子-x 2,,x 2+y 2,,,-,中分式的个数是( )A. 1B. 2C. 3D. 45. 若分式的值为0,则( )A. x=1B. x=±1C. x ≠-1D. x ≠06. 无论x 取何值,下列分式总有意义的是( )A. B. C. D.7. 使分式无意义的x 的值是( )A. x=-B. x=C. x ≠-D. x ≠8. 下列运算中,错误的是( )A. =(c ≠0)B. =-1C. =D. =9. 下列等式从左到右的变形一定正确的是( )A. =B. =C. =D.=10. 下列分式中,不可能等于0的是( )A. B. C. D.二、填空题 m ,且当m=5时,它的值为12,则这个分式可以是 (写出一个即可).12. 已知分式的值为零,那么x的值是.13. 当x=时,分式无意义.14. 一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n千克,则这两块地平均每公顷的粮食产量为千克.15. 不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1)=;(2)=;(3)=;(4)=.16. 如果分式无意义,那么x=;三、解答题,分母的各项系数化成整数.(1);(2);(3).18. 当x为何值时,分式的值为正数?(1)一变:当x为何值时,分式的值为负数?(2)二变:当x为何值时,分式的值为非负数?19. 分式和分式中的x的取值范围一样吗?20. 观察下列一组分式:,-,,-,,…,请问第10个分式是什么?第n个分式是什么?(n为正整数)21. 当x为何值时,分式的值为负数?参考答案1. 【答案】C【解析】A选项,是整式,错误;B选项,是整式,错误;C,正确;D选项,是整式,错误.分式的分母中含有字母.2. 【答案】A【解析】由x-2≠0得x≠2,所以x的取值应满足x≠2,故选A.3. 【答案】C【解析】由题意得,令=0⇒x-2=0⇒x=2,故选C.4. 【答案】C【解析】∵-x2,x2+y2,,的分母中不含有未知数,都是常数,∴它们是整式,不是分式;∵,,-的分母中含有未知数,满足分式的概念,∴它们是分式.故选C.5. 【答案】A【解析】∵=0,∴|x|-1=0且x+1≠0,∴x=1.故选A.6. 【答案】C【解析】A.当x=0时,分母x2=0,分式无意义;B.当x=-1时,分母(x+1)2=0,分式无意义;C.∵不论x取何值x2≥0,x2+1>0,∴无论x取什么值,分式总有意义;D.当x=-1时,分母x+1=0,分式无意义.故选C.7. 【答案】B【解析】∵分式无意义,∴2x-1=0,即当x=时,分式无意义.故选B.8. 【答案】D【解析】==(c≠0) ,A正确;==-1 ,B正确;==C正确.=-≠, D错误.故选D.9. 【答案】C【解析】选项A,当分子、分母同加1时分式的值发生改变,故A不正确;选项B,当 m=0时等式不成立,故B不正确;选项C,分式中暗含a≠0这个条件,∴分子、分母同时除以a,分式值不变;选项D,分子乘b,分母乘a,故D错.故选C.10.【答案】C【解析】A.当x=0时,;B.当x=时,;C.∵的分子是一个常数,而其分母又不能为0,∴不可能为0;D.当x=-2时,=0.故选C.11. 【答案】12. 【答案】113. 【答案】214. 【答案】15. 【答案】16. 【答案】217. 【答案】原式==.18. 【答案】有两种情况:①解得x≥2;即x≥2时,分式的值为非负数;②解得x<-3, 即x<-3时,分式的值为非负数.综上所述,当x≥2或x<-3时,分式的值为非负数.19. 【答案】解:不一样.因为分式中的x2-1≠0,即x≠±1,分式中的x-1≠0,即x≠1,故两个分式中x 的取值范围不一样.20. 【答案】观察可知分式的符号为(-1)n+1,x的次数为分式的序号数,y的系数为n(n-1)+1,即n2-n+1,故第10个分式为-,第n个分式为(-1)n+1·.21. 【答案】∵<0,且3+(x-1)2>0,∴5-x<0, 解得x>5,即当x>5时,分式的值为负数.鼎尚图文。

八年级数学上册第十五章分式15.3分式方程第1课时分式方程的解法训练新人教版(2021年整理)

八年级数学上册第十五章分式15.3分式方程第1课时分式方程的解法训练新人教版(2021年整理)

八年级数学上册第十五章分式15.3 分式方程第1课时分式方程的解法同步训练(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第十五章分式15.3 分式方程第1课时分式方程的解法同步训练(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第十五章分式15.3 分式方程第1课时分式方程的解法同步训练(新版)新人教版的全部内容。

分式方程的解法[学生用书P117]1.下面是四位同学解方程错误!+错误!=1过程中去分母的一步,其中正确的是( )A.2+x=x-1 B.2-x=1C.2+x=1-x D.2-x=x-12.[2016·成都]分式方程错误!=1的解为( )A.x=-2 B.x=-3C.x=2 D.x=33.[2015·常德]分式方程错误!+错误!=1的解为()A.x=1 B.x=2C.x=错误! D.x=04.分式方程错误!-1=错误!的解是()A.x=1 B.x=-1±错误!C.x=2 D.无解5.[2015·巴中]分式方程错误!=错误!的解为x=__ __.6.[2015·嘉兴]小明解方程错误!-错误!=1的过程如图15-3—2所示.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x得1-(x-2)=1……①去括号得1-x-2=1……②合并同类项得-x-1=1……③移项得-x=2……④解得x=-2……⑤∴原方程的解为:x=-2……⑥图15-3-27.解方程:(1)[2016·连云港]错误!-错误!=0; (2)[2016·台州]错误!-错误!=2.8.[2015·遵义]若x=3是分式方程a-2x-错误!=0的根,则a的值是()A.5 B.-5C.3 D.-39.[2016·凉山州]关于x的方程错误!=2+错误!无解,则m的值为( ) A.-5 B.-8C.-2 D.510.关于x的方程错误!=-1的解是正数,则a的取值范围是____.11.解方程:①错误!=错误!-1的解x=__ __;②错误!=错误!-1的解x=__ __;③3x+1=错误!-1的解x=__ __;④错误!=错误!-1的解x=__ __.(1)根据你发现的规律直接写出第⑤,⑥个方程及它们的解;(2)请你用一个含正整数n的式子表示上述规律,并求出求解过程.参考答案【知识管理】1.未知数2.整式方程最简公分母【归类探究】例1B例2(1)x=1 (2)无解(3)x=3例3-1例4k>-错误!且k≠0【当堂测评】1.C 2.D 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时练:第十五章《分式与分式方程》
满分:100分限时:60分钟
一.选择题(每题3分,共30分)
1.解分式方程=时,去分母化为一元一次方程,正确的是()A.x+1=2(x﹣1)B.x﹣1=2(x+1)C.x﹣1=2 D.x+1=2
2.解分式方程时,去分母变形正确的是()
A.﹣1+x=1+3(2﹣x)B.﹣1+x=﹣1﹣3(x﹣2)
C.1﹣x=﹣1﹣3(x﹣2)D.1﹣x=1﹣3(x﹣2)
3.若关于x的分式方程=有增根,则m的值是()
A.m=﹣1 B.m=1 C.m=﹣2 D.m=2
4.若分式的值总是正数,a的取值范围是()
A.a是正数B.a是负数C.a>D.a<0或a>5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍
C.缩小为原来的D.缩小为原来的
6.下列各式从左到右变形正确的是()
A.
B.
C.
D.
7.如果把分式中的x和y都扩大5倍,那么分式的值()
A.不变B.缩小5倍C.扩大2倍D.扩大5倍
8.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小
说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()
A.B.
C.D.
9.将()﹣1,(﹣3)0,(﹣2)3这三个数按从小到大的顺序排列,正确的顺序是()A.()﹣1<(﹣3)0<(﹣2)3B.(﹣3)0<(﹣2)3<()﹣1
C.(﹣2)3<()﹣1<(﹣3)0D.(﹣2)3<(﹣3)0<()﹣1
10.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现同款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批同款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.
C.D.
二.填空题(每题4分,共20分)
11.当x=时,分式的值为0.
12.若关于x的分式方程﹣=1有增根,则a的值.
13.可乐和奶茶含有大量的咖啡因,世界卫生组织建议青少年每天摄入的咖啡因不能超过
0.000085kg,将数据0.000085用科学记数法表示为.
14.南昌至赣州的高铁于2019年年底通车,全程约416km,已知高铁的平均速度比普通列车的平均速度快100km,人们的出行时间将缩短一半,求高铁的平均速度.设高铁的平均速度为x,则可列方程:.
15.已知x2+5x+1=0,那么x2+=.
三.解答题(共50分)
16.解分式方程:
(1);
(2).
17.先化简,再求值:,其中x=3.
18.红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
甲乙
进价(元/袋)m m﹣2
售价(元/袋)20 13
(1)求m的值;
(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,且不超过5280元,问该超市有几种进货方案?
(3)在(2)的条件下,该超市如果对甲种袋装食品每袋优惠a(2<a<7)元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?
19.学习了分式运算后,老师布置了这样一道计算题:,下面是一位同学有错的解答过程:
=①
=②
=③
=④;
(1)该同学的解答过程的错误步骤是;(填序号),你认为该同学错误的原因是.
(2)请写出正确解答过程.
20.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?
参考答案
一.选择题
1.解:去分母得:x+1=2,
故选:D.
2.解:方程整理得:=﹣﹣3,
去分母得:1﹣x=﹣1﹣3(x﹣2),
故选:C.
3.解:方程两边同时乘以x﹣1,得
m+1=﹣x,
解得:x=﹣m﹣1,
∵方程有增根,
∴x=1,
∴﹣m﹣1=1,
∴m=﹣2,
故选:C.
4.解:由题意可知:a>0且2a﹣1>0,或a<0且2a﹣1<0,∴a>或a<0,
故选:D.
5.解:x,y同时扩大为原来的4倍,
则有==•,
∴该分式的值是原分式值的,
故选:D.
6.解:A.分式的分子和分母同时乘以10,应得,即A不正确,
B.,故选项B正确,
C.分式的分子和分母同时减去一个数,与原分式不相等,即C项不合题意,
D.不能化简,故选项D不正确.
故选:B.
7.解:根据题意,


=.
∴分式的值不变.
故选:A.
8.解:若设书店第一次购进该科幻小说x套,
由题意列方程正确的是,
故选:C.
9.解:∵()﹣1=4,(﹣3)0=1,(﹣2)3=﹣8,
∴(﹣2)3<(﹣3)0<()﹣1.
故选:D.
10.解:设拖鞋原价每双为x元,则“双11”大减价期间该款拖鞋价格每双为(x﹣5)元,依题意,得:=﹣2.
故选:D.
二.填空题(共5小题)
11.解:由题意得:x2﹣9=0,且3﹣x≠0,
解得:x=﹣3,
故答案为:﹣3.
12.解:﹣=1,
去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,
由分母可知,分式方程的增根可能是2,
当x=2时,2+2﹣a=2﹣2,
解得a=4.
故答案为:4.
13.解:0.000085=8.5×10﹣5.
故答案为:8.5×10﹣5.
14.解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣100)km/h,依题意,得:=.
故答案为:=.
15.解:∵x2+5x+1=0,
∴x+=﹣5,
则原式=(x+)2﹣2=25﹣2=23,
故答案为:23
三.解答题(共5小题)
16.解:(1)方程两边同乘(x﹣2),
得1﹣3(x﹣2)=﹣(x﹣1),
解得:x=3,
检验:当x=3时,x﹣2≠0,
所以x=3是原分式方程的解;
(2)方程两边同乘x(x+1),
得5x+2=3x,
解得:x=﹣1,
检验:当x=﹣1时,x(x+1)=0,
因此x=﹣1不是原分式方程的解,
所以原分式方程无解.
17.解:原式=÷=•=﹣,当x=3时,原式=﹣.
18.解:(1)依题意得:=,
解得:m=10,
经检验m=10是原分式方程的解;
(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800﹣x)袋,根据题意得,

解得:240≤x≤256,
∵x是正整数,256﹣240+1=17,
∴共有17种方案;
(3)设总利润为W,则W=(20﹣10﹣a)x+(13﹣8)(800﹣x)=(5﹣a)x+4000,
①当2<a<5时,5﹣a>0,W随x的增大而增大,
所以,当x=256时,W有最大值,
即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;
②当a=5时,W=4000,(2)中所有方案获利都一样;
③当5<a<7时,5﹣a<0,W随x的增大而减小,
所以,当x=240时,W有最大值,
即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
19.解:(1)该同学的解答过程的错误步骤是②;
该同学错误的原因是:用分式基本性质时,分母乘以(x+1),但是分子没有乘;
故答案为:②,用分式基本性质时,分母乘以(x+1),但是分子没有乘;
(2)



=.
20.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,
依题意,得:+=1,
解得:x=30,
经检验,x=30是原方程的解,且符合题意.
答:这项工程的规定时间是30天.
(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).
答:甲乙两队合作完成该工程需要18天.。

相关文档
最新文档