晶粒尺寸计算方法
Jade是如何计算晶粒尺寸的
Jade 是如何计算晶粒尺寸的?不止10次有人问到这个问题,让我有兴趣去了解。
看了看这个软件的帮助,也没有得到答案。
只好一种一种方法去试,好象还真是得到了解答。
今天,把它写出来供大家验证。
Jade 按照谢乐公式来计算。
θβλcos k D = λ 是辐射的波长,按K α1的波长计算,如铜靶,则λ=0.154056nm 。
D 就是晶块尺寸,单位可以是纳米,与波长λ的单位相同。
k 是一个参数,可以取0.89,0.95或者1,一般人都愿意取1。
但是,软件是按0.89计算的。
θ是半衍射角,单位可以是度或者弧度,只要你能正确计算出它的余弦就可以。
β是衍射峰的加宽。
一般按两种方法来计算,即b B −=β,22b B −=β一般人愿意用b B −=β。
但是,Jade 却用后者。
确实,一些教科书中都提到,后者更符合实际情况。
这里的B 就是FWHM ,即样品的衍射峰宽,b 则是仪器宽度。
好了。
让大家来看看我的试验过程。
有这么一个衍射峰,我们先来做拟合:通过Report----peak profile report菜单,查看到拟合的结果:通过菜单Edit-----Preferences,可看到下面的窗口:单击View FWHM Curve,你看到:你可能看到的不一样,这是因为你没有做仪器校正,而使用了软件自带的某个“标样”,如Constant FWHM。
这里看到的是我在07年12月19日做的硅标数据。
移动你的鼠标,并定位于116°处,你可看到FWHM=0.140°。
这就是仪器宽度,即b。
在这个窗口中,你还看到了仪器波长是 1.54056埃,即0.145056nm。
怎么样?把这些数据代入到公式,得到14.40902nm。
这里讲的是单峰处理时的晶块尺寸。
要注意,除非你的样品是分散单体纳米晶,否则,这个数据是不可信的。
关于晶块尺寸计算与微观应变更详细的解释,请访问我的QQ空间,也许会有些帮助。
Scherrer公式(计算晶粒尺寸)
精品word完整版-行业资料分享
Scherrer公式
Scherrer公式D=Kλ/βcosθ
K为Scherrer常数,其值为0.89,一般取1。
D为晶粒尺寸(nm);
β为积分半高宽度,在计算的过程中,需转化为弧度(rad);
θ为衍射角;
λ为X射线波长,Cu靶为0.154056 nm
注意:由于材料中的晶粒大小并不完全一样,故计算所得实为不同大小晶粒的平均值。
而且晶粒不是球形,在不同方向其厚度是不同的,所以由不同衍射线求得的D是不同的。
一般求取数个,如n个不同方向的晶粒厚度,据此可以估计晶粒的外形。
求他们的平均值,所得为不同方向厚度的平均值D,即为晶粒大小。
xRD晶粒尺寸分析1
XRD晶粒尺寸分析注:晶粒尺寸和晶面间距不同计算晶粒大小:谢乐公式:D=kλ/βcosθD—垂直于反射晶面(hkl)的晶粒平均粒度 D是晶粒大小β--(弧度)为该晶面衍射峰值半高宽的宽化程度K—谢乐常数,取决于结晶形状,常取0.89θ--衍射角λ---入射X射线波长(Ǻ)计算晶面间距:布拉格方程:2dsinθ=nλ d是晶面间距。
此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式很多人都想算算粒径有多大。
其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。
A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。
X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M个单胞,而且这个方向上的晶面间距为d,则测得的尺寸就是Md。
如果某个方向(HKL)的单胞数为N,晶面间距为d1,那么这个方向的尺寸就是Nd1。
由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。
B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。
比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。
C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。
纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。
实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。
比如,北京钢铁研究总院做这个就做了很长时间。
但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOP20β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOP20β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
谢勒公式计算晶粒尺寸
谢勒公式计算晶粒尺寸嘿,咱今天来聊聊谢勒公式计算晶粒尺寸这事儿!你知道吗,在材料科学的世界里,晶粒尺寸可是个相当重要的家伙。
它就像材料的“小细胞”,大小不同,材料的性能那可是千差万别。
而谢勒公式呢,就是我们用来探究这些“小细胞”大小的一把神奇钥匙。
先来说说谢勒公式到底是个啥。
简单来讲,它就是通过测量材料的衍射峰宽来计算晶粒尺寸的一个公式。
听起来是不是有点玄乎?别担心,咱们慢慢捋。
比如说,有一次我在实验室里做实验,就是为了用谢勒公式算出一种金属材料的晶粒尺寸。
那是个大热天,实验室里的空调好像也不太给力,我满头大汗地摆弄着那些仪器。
我先把样品准备好,小心翼翼地放到衍射仪里,心里那叫一个紧张,就怕哪个环节出错了。
然后,眼睛紧紧盯着屏幕上显示的数据,心里默默祈祷着一切顺利。
当衍射峰终于出现的时候,我长舒了一口气,可紧接着又开始发愁怎么处理这些数据。
这时候才是谢勒公式真正发挥作用的时候。
我拿着那些密密麻麻的数据,按照公式一步一步地计算。
这过程可一点儿都不轻松,要考虑各种因素,像衍射角啦、波长啦,一个不小心算错了,就得从头再来。
在计算的过程中,我发现谢勒公式虽然强大,但也不是万能的。
它有一些前提条件和假设,如果不注意,算出来的结果可就不靠谱了。
比如说,它假设晶粒是均匀大小的,可实际情况中,往往没那么理想。
而且,用谢勒公式计算晶粒尺寸的时候,测量的精度也特别重要。
哪怕一点点的误差,都可能让结果差之千里。
这就像是走钢丝,得小心翼翼,保持平衡。
还有啊,不同的材料,用谢勒公式计算的时候也有不同的注意事项。
像有些材料的晶体结构比较复杂,那计算起来就更得加倍小心。
总之,谢勒公式计算晶粒尺寸这事儿,看起来简单,实则暗藏玄机。
需要我们细心、耐心,还得有足够的知识和经验。
回想那次在实验室里的经历,虽然过程有点曲折,但当我最终算出比较靠谱的晶粒尺寸时,那种成就感真是无法言表。
所以啊,朋友们,不管是在学习还是实际应用中,对待谢勒公式都得认真谨慎,才能真正揭开晶粒尺寸的神秘面纱,为材料科学的发展贡献一份力量!。
Jade是如何计算晶粒尺寸的
Jade 是如何计算晶粒尺寸的?不止10次有人问到这个问题,让我有兴趣去了解。
看了看这个软件的帮助,也没有得到答案。
只好一种一种方法去试,好象还真是得到了解答。
今天,把它写出来供大家验证。
Jade 按照谢乐公式来计算。
θβλcos k D = λ 是辐射的波长,按K α1的波长计算,如铜靶,则λ=0.154056nm 。
D 就是晶块尺寸,单位可以是纳米,与波长λ的单位相同。
k 是一个参数,可以取0.89,0.95或者1,一般人都愿意取1。
但是,软件是按0.89计算的。
θ是半衍射角,单位可以是度或者弧度,只要你能正确计算出它的余弦就可以。
β是衍射峰的加宽。
一般按两种方法来计算,即b B −=β,22b B −=β一般人愿意用b B −=β。
但是,Jade 却用后者。
确实,一些教科书中都提到,后者更符合实际情况。
这里的B 就是FWHM ,即样品的衍射峰宽,b 则是仪器宽度。
好了。
让大家来看看我的试验过程。
有这么一个衍射峰,我们先来做拟合:通过Report----peak profile report菜单,查看到拟合的结果:通过菜单Edit-----Preferences,可看到下面的窗口:单击View FWHM Curve,你看到:你可能看到的不一样,这是因为你没有做仪器校正,而使用了软件自带的某个“标样”,如Constant FWHM。
这里看到的是我在07年12月19日做的硅标数据。
移动你的鼠标,并定位于116°处,你可看到FWHM=0.140°。
这就是仪器宽度,即b。
在这个窗口中,你还看到了仪器波长是 1.54056埃,即0.145056nm。
怎么样?把这些数据代入到公式,得到14.40902nm。
这里讲的是单峰处理时的晶块尺寸。
要注意,除非你的样品是分散单体纳米晶,否则,这个数据是不可信的。
关于晶块尺寸计算与微观应变更详细的解释,请访问我的QQ空间,也许会有些帮助。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
β为衍射xx的半xx宽时,k=
0.89β为衍射xx的积分宽度时,k=
1.0。其中积分宽度=衍射峰面积积分/峰高
如何获得单色Kα1:
1)硬件滤掉Kβ:
K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。而X射线衍射仪要求使用单色X射线,因此,需要在XRD实验时把后者除掉。
a).传统的方法是在光路上加入一个滤波片(如Ni)。
b).现在一般使用铜靶,在光路上增加一个石墨晶体单色器来去除Kβ射线。通常的做法是在衍射线的光路上,安装弯曲晶体单色器。石墨单晶体单色器是一块磨成弯曲面的石墨单晶体。由试样衍射产生的衍射线(称为一次衍射)经单色器时,通过调整单晶体的方位使它的某个高反射本领晶面与一次衍射线的夹角刚好等于该晶面对一次衍射的Kα辐射的布拉格角。单色器可以去除衍射背底,也可以去除Kβ射线的干扰。这样,由单晶体衍射后发出的二次衍射线就是纯净的与试样衍射对应的Kα衍射线。
如果f和g均为Cauchy函数,其积分宽度分别为β和b,则其卷积h(h=f·g)的积分宽度B等于(β+b)。因此,β=B–b。所以,作为一种简化方法,我们可以从实验测得的宽化衍射剖面数据(h)和结晶良好晶体的无宽化的衍射剖面数据(g),经过分离Kα2重叠后,分别求取其积分宽度B和b,B和b之差便是Scherrer公式所需的β。在较低的2θ角区域,g和h的形式和Cauchy函数有较大的偏离,故对于低角度的h数据使用这种简化方法求得的β将有较大的误差
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
β为衍射xx的半xx宽时,k=
0.89β为衍射xx的积分宽度时,k=
1.0。其中积分宽度=衍射峰面积积分/峰高
如何获得单色Kα1:
1)硬件滤掉Kβ:
K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。而X射线衍射仪要求使用单色X射线,因此,需要在XRD实验时把后者除掉。
如果f和g均为Cauchy函数,其积分宽度分别为β和b,则其卷积h(h=f·g)的积分宽度B等于(β+b)。因此,β=B–b。所以,作为一种简化方法,我们可以从实验测得的宽化衍射剖面数据(h)和结晶良好晶体的无宽化的衍射剖面数据(g),经过分离Kα2重叠后,分别求取其积分宽度B和b,B和b之差便是Scherrer公式所需的β。在较低的2θ角区域,g和h的形式和Cauchy函数有较大的偏离,故对于低角度的h数据使用这种简化方法求得的β将有较大的误差
2).仪器宽化函数的测定
为了进行仪器宽化的校正,需要事先准备好仪器宽化函数g的数据。我们可以选取一种结构近于完美的晶体,用相同的一组实验条件,测定它在待校正的实验衍射峰角度附近的一个衍射峰剖面。我们假定结构近于完善的晶体的“纯”衍射剖面的宽度趋近于零,因此它的实验剖面便可视为在这一角度附近、这一组实验条件下的仪器宽化函数g,此时所得到的实验数据也必须进行Kα
h(θ)通常较g(θ)宽,这是由于结构缺陷引入f(θ)所致。一般称f(θ)为衍射线的真实剖面函数或真实宽化函数,而g(θ)则称为(包括各种实验测试条件在内的)测试函数或仪器宽化函数。
因此,通过对实验剖面函数h(θ)数据的解析处理,有可能求得反映结构缺陷的真实剖面函数f(θ),从而对结构中各种形式的缺陷进行研究。微细晶粒(平均粒度<1000埃)的平均大小、粒度分布、微观应力(第二类应力)、结构面的堆垛层错等等信息,都能通过对衍射剖面f(θ)的分析得到一定结果。
xrd中d的计算公式
xrd中d的计算公式
在X射线衍射(XRD)中,D表示晶粒的尺寸。
D的计算公式与XRD实验条件相关,其中最常见的是Scherrer公式:
D = Kλ/ (βcosθ)。
其中D是晶粒的平均尺寸,K是一个常数(通常为1),λ是入射X 射线的波长,β是峰的半高宽(在弥散扩展情况下),θ是角度(以弧度表示),cosθ是晶体填充因子的校正因子。
这个公式被称为Scherrer 公式,是由A. V. Scherrer在1918年提出的。
需要注意的是,Scherrer公式假设所有晶粒的尺寸相同,并且晶体是无拓扑缺陷的单晶体,因此该公式只能作为估计尺寸的近似方法。
在实际情况下,由于晶体中存在不同大小和形状的晶粒,并且存在拓扑缺陷,因此需要使用更复杂的方法来确定晶体的尺寸和形态。
xRD晶粒尺寸分析1
XRD晶粒尺寸分析注:晶粒尺寸和晶面间距不同计算晶粒大小:谢乐公式:D=kλ/βcosθD—垂直于反射晶面(hkl)的晶粒平均粒度 D是晶粒大小β--(弧度)为该晶面衍射峰值半高宽的宽化程度K—谢乐常数,取决于结晶形状,常取0.89θ--衍射角λ---入射X射线波长(Ǻ)计算晶面间距:布拉格方程:2dsinθ=nλ d是晶面间距。
此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式很多人都想算算粒径有多大。
其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。
A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。
X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M个单胞,而且这个方向上的晶面间距为d,则测得的尺寸就是Md。
如果某个方向(HKL)的单胞数为N,晶面间距为d1,那么这个方向的尺寸就是Nd1。
由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。
B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。
比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。
C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。
纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。
实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。
比如,北京钢铁研究总院做这个就做了很长时间。
但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。
Scherrer公式计算晶粒尺寸(XRD)
Scherrer公式计算晶粒尺寸(XRD)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou 2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
Scherrer公式计算晶粒尺寸(XRD)
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou •2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
平均晶粒尺寸计算方法
平均晶粒尺寸计算方法晶粒尺寸是材料科学中一个非常重要的参数,它决定了材料的力学性能、物理性能和化学性能等。
因此,准确地测量晶粒尺寸对于材料研究和工业应用都非常关键。
在实际应用中,我们通常采用平均晶粒尺寸来描述晶粒的大小。
平均晶粒尺寸是指材料中所有晶粒尺寸的平均值。
下面介绍几种常见的平均晶粒尺寸计算方法。
1. Scherrer方程法Scherrer方程法是一种比较简单的计算平均晶粒尺寸的方法。
该方法基于X射线衍射的原理,通过测定晶体衍射峰的半高宽来计算晶粒尺寸。
具体计算公式如下:D = Kλ/βcosθ其中,D代表晶粒尺寸,K是Scherrer常数,λ是X射线波长,β是晶体衍射峰的半高宽,θ是晶体衍射角。
这种方法适用于粒径在10-100 nm范围内的纳米晶体。
2. TEM法透射电镜(TEM)是一种高分辨率显微镜,可以直接观察材料中的晶粒结构。
通过TEM观察晶粒,可以测量晶粒的直径,并计算出平均晶粒尺寸。
这种方法适用于纳米晶体和超细晶体的测量。
3. SEM法扫描电子显微镜(SEM)也可以用来测量晶粒尺寸。
通过SEM观察晶粒表面形貌,可以测量晶粒的直径,并计算出平均晶粒尺寸。
这种方法适用于微米级晶体的测量。
4. XRD法X射线衍射(XRD)也可以用来测量晶粒尺寸。
通过XRD图谱中的布拉格峰宽度,可以计算出晶粒的大小。
这种方法适用于粒径在10-1000 nm范围内的纳米晶体。
不同的平均晶粒尺寸计算方法适用于不同范围的晶粒测量。
在实际应用中,我们需要根据具体情况选择合适的测量方法,并结合其他材料性能参数来评估材料的质量和性能。
Scherrer公式计算晶粒尺寸
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为),λ为入射X射线波长(Cuka 波长为,Cuka1 波长为。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响在什么情况下,可以简化这一步骤答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均还是有其它处理原则答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值能不能直接代入上面公式吗如果不能,如何根据XRD图谱获得半峰宽TOP 20β为衍射峰的半高峰宽时,k=β为衍射峰的积分宽度时,k=。
其中积分宽度=衍射峰面积积分/峰高如何获得单色Kα1:1)硬件滤掉Kβ:K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。
xRD晶粒尺寸分析
XRD晶粒尺寸分析注:晶粒尺寸和晶面间距不同计算晶粒大小:谢乐公式:D=kλ/βcosθD—垂直于反射晶面(hkl)的晶粒平均粒度D是晶粒大小β--(弧度)为该晶面衍射峰值半高宽的宽化程度K—谢乐常数,取决于结晶形状,常取0.89θ--衍射角λ---入射X射线波长(Ǻ)计算晶面间距:布拉格方程:2dsinθ=nλd是晶面间距。
此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式很多人都想算算粒径有多大。
其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。
A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。
X 射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M个单胞,而且这个方向上的晶面间距为d,则测得的尺寸就是Md。
如果某个方向(HKL)的单胞数为N,晶面间距为d1,那么这个方向的尺寸就是Nd1。
由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。
B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。
比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。
C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。
纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。
实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。
比如,北京钢铁研究总院做这个就做了很长时间。
但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。
Jade是如何计算晶粒尺寸的
Jade 是如何计算晶粒尺寸的?不止10次有人问到这个问题,让我有兴趣去了解。
看了看这个软件的帮助,也没有得到答案。
只好一种一种方法去试,好象还真是得到了解答。
今天,把它写出来供大家验证。
Jade 按照谢乐公式来计算。
θβλcos k D =λ是辐射的波长,按K α1的波长计算,如铜靶,则λ=0.154056nm 。
D 就是晶块尺寸,单位可以是纳米,与波长λ的单位相同。
k 是一个参数,可以取0.89,0.95或者1,一般人都愿意取1。
但是,软件是按0.89计算的。
θ是半衍射角,单位可以是度或者弧度,只要你能正确计算出它的余弦就可以。
β是衍射峰的加宽。
一般按两种方法来计算,即b B -=β,22b B -=β一般人愿意用b B -=β。
但是,Jade 却用后者。
确实,一些教科书中都提到,后者更符合实际情况。
这里的B 就是FWHM ,即样品的衍射峰宽,b 则是仪器宽度。
好了。
让大家来看看我的试验过程。
有这么一个衍射峰,我们先来做拟合:通过Report----peak profile report菜单,查看到拟合的结果:2θ=116°。
B=1.038° ,D=14nm通过菜单Edit-----Preferences,可看到下面的窗口:单击View FWHM Curve,你看到:你可能看到的不一样,这是因为你没有做仪器校正,而使用了软件自带的某个“标样”,如Constant FWHM。
这里看到的是我在07年12月19日做的硅标数据。
移动你的鼠标,并定位于116°处,你可看到FWHM=0.140°。
这就是仪器宽度,即b。
在这个窗口中,你还看到了仪器波长是 1.54056埃,即0.145056nm。
怎么样?把这些数据代入到公式,得到14.40902nm。
这里讲的是单峰处理时的晶块尺寸。
要注意,除非你的样品是分散单体纳米晶,否则,这个数据是不可信的。
关于晶块尺寸计算与微观应变更详细的解释,请访问我的QQ空间,也许会有些帮助。
晶粒尺寸计算方法
Wa'-yelerigthtoConfiputed-SpacingEnergy&Wa'/elengthData: *■K.:3lpha1 1.5405GDefaultkV8=mA=.|50 C K-alpha2'1.5444 *Energ^iDispejsi^Dala 厂K-average 1.54134DifFractiariAngleH«js0.0 C K-beta 1J922?- C WavelengthDispersiveDataK-a1/k :a2Tiatio= 2.0 Diffrac.d-Spacing(A)=.2.0130(GoniometerID]GoniometerRadiusI'rrim)=]? ApplyDeadTime 匚orrectionuponReadingPatternFiles.-门0Diffractometer-Vie^FV/HMCurve1.读取数据,文件-read2.去背底,平滑曲线一次,0说刽團。
&SAh.VI ■创竺卅血-I 型翼圖先BG 后S/MEditToo :bar -Cursor Off :;Men.u/Ctrl =Mi nimize)I3选定峰位43山弹卑如M 用园姻肓El 左数第三个标定峰位键)4. 对谱线进行拟合,Analyze-FitPeakProfile5. 记录FWHM,View-Reports&Files-PeakProfileReport ,所记录的FWHM(B)为总半高宽6. 记录仪器宽化,Edit-Preference-Instrument,倒数第二行的下拉菜单选Diffractometer,然后点击ViewFWHMCurve ,可以看到另一个界面;把鼠标放到相应峰DijphiJInsbumenl 旦即o"Wise'|位,便可以在界面右上角读取仪器宽化值FWHM (b );最后得到准确的FWHM=B-b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.读取数据,文件-read
2.去背底,平滑曲线一次,
先BG后S/M
3.选定峰位,(左数第三个,标定峰位键)
4. 对谱线进行拟合,Analyze-Fit Peak Profile
5. 记录FWHM, View-Reports&Files-Peak Profile Report,所记录的FWHM(B)为总
半高宽
6. 记录仪器宽化,Edit-Preference-Instrument,倒数第二行的下拉菜单选Diffractometer,
然后点击View FWHM Curve,可以看到另一个界面;把鼠标放到相应峰
位,便可以在界面右上角读取仪器宽化值FWHM(b);最后得到准确的FWHM=B-b。
7. 峰位可以在原始数据中读取准确数值。
8. 将所有数据带入谢乐公式中,便可计算出晶粒尺寸。
注意:谢乐公式针对于
晶粒尺寸小于100 nm的晶粒,如果大于100 nm,所得结果会有较大误差。