函数恒成立问题常见类型及解法 PPT

合集下载

恒成立问题常见类型及其解法

恒成立问题常见类型及其解法

设 f x x 3 x 7
可求得 f x 10
lg x 3 x 7 lg10 1
a 1
三. 变换主元法:
例5.对任意a [-1,1],不等式x 2 (a - 4) x 4 - 2a 0 恒成立,求 的取值范围 x . 解:原问题转化为对任 a [-1,1], 意
m - 2 0 0 (5) 4m ,解得1 m 2 2( m - 2) 0 f ( 0) 0 y
y
m - 2 0 (6) ,无解 f (0) 0
综上所述, a 3 1
O
x
x
4.已知函数f ( x) (m - 2) x 2 - 4mx 2m - 6的图像与 x轴的负半轴有交点,求 实数m的取值范围 .
不等式( x - 2)a x - 4 x 4 0恒成立
2
令f (a) ( x - 2)a x - 4 x 4
2
f (1) 0 解得x 1或x 3. f (-1) 0
x的取值范围为 ,1) (3,). (-
数形结合法 4.数形结合法
解:因为ax2 1 1,所以- 1 - x ax2 1 - x (1)当x 0时, 0 1恒成立. -1
1 1 a- 2 1 1 1 1 x x (2)当x (0,1]时, 2 - a 2 - , 即 在(0, ,1]上恒成立. x x x x a 1 - 1 x2 x 1 令t 1, x 1 1 1 1 - 2 - 化为关于t的函数u -t 2 - t -(t ) 2 ,u max -2 x x 2 4 1 1 1 2 1 2 - 化为关于t的函数v t - t (t - ) - ,vmin 0 2 x x 2 4 要是不等式恒成立,应 u max a vmin,故 - 1 a 0 有 综上所述,如果 [0,1]时, ( x) 1恒成立,则- 2 a 0 x f

“恒成立”问题的解法 通用精品课件

“恒成立”问题的解法 通用精品课件
解:已知函数的定义域为 R ,即 2x2 2axa 1 0 在 R上恒成立,也即 x2 2ax a 0 恒成立,所以有 (2a)2 4(a) 0 解得 1 a 0 .
(2)恒成立问题与二次函数联系:
类型2:设 f (x) ax2 bx c(a 0) ,f (x) 0
2. 变量分离法:
【例4】 当 x (1, 2) 时,不等式 x2 mx 4 0
恒成立,则 m 的取值范围是
.
解:当 x (1, 2) 时,由 x2 mx 4 0
得 m x2 4 .令 f (x) x2 4 x 4
x
x
x
则易知 f (x) 在 (1, 2) 上是减函数,
在区间 [, ] 上恒成立问题:
(1)当 a 0 时,f (x) 0在x [, ] 上恒成立

b 2a

b 2a



b 2a



f ( ) 0 0
f ( ) 0
f
(x)

0在x
[,
]
上恒成立
4.数数形形结结合合法
数形结合思想在高考中占有非常重要的地位, 其“数”与“形”结合,相互渗透,把代数式的 精确刻划与几何图形的直观描述相结合,使代数 问题、几何问题相互转化,使抽象思维和形象思 维有机结合.应用数形结合思想,要熟练掌握一些 概念和运算的几何意义及常见曲线的代数特征.
4. 数形结合法:
物质缺乏的年代,大家过得都是差不多的日子,这四家就属老干部老李条件最好,一般买东西都是要用粮票、布票、肉票。要是没有这些票证的话,就算你有钱出去也会饿死的。老干部的待遇好一点,经常用不了那些票证,于是老李就常常把用不完的票证分给了这些邻居。 那个年代的钱特别的顶用,一斤大米一毛三分八;一斤鱼两角钱;一斤牛肉熟的才五角钱;一个大肉包子五分钱;一只烧鸡两元钱;小米一斤一角钱;一个卤猪蹄子两毛钱一个;一盒火柴两分钱;一斤面粉两毛五。全国啥地方都是统一的价格,住的房子都是单位给分的,房子也都不交水电费的。一点也不像现在一会一个价钱。那个时候老干部一般一个月一百多元钱,一般的干部工人多数就是一个月五六十元到七八十元不等。这几家人特别的和睦,就像一家人一样,谁家有事大家都会过去帮忙。

恒成立存在性问题课件

恒成立存在性问题课件

详细描述
不等式证明问题是数学中常见的问题类型,这类问题 通常涉及到比较两个数或两个函数的大小。通过证明 不等式,我们可以找到满足某些条件的参数或函数的 取值范围,从而解决恒成立存在性问题。
导数综合问题变式
总结词
利用导数性质和函数单调性,解决恒成立存在性问题。
详细描述
导数综合问题涉及到导数的计算、单调性判断以及极值 和最值的求解等知识点。通过利用导数的性质和函数的 单调性,我们可以找到满足某些条件的参数或函数的取 值范围,从而解决恒成立存在性问题。
转化与化归法
总结词
将问题转化为已知的问题或简单的问题,从而解决问题。
详细描述
转化与化归法是一种常用的解题策略,通过将复杂的问题转化为已知的问题或简单的问题,可以降低问题的难度 。在处理恒成立问题时,可以将问题转化为求最值问题、不等式问题等已知的问题类型,从而利用已知的解题方 法来解决该问题。
03
THANKS
感谢观看
常见错误反思
忽视定义域
在解决恒成立存在性问题时,容易忽 视函数的定义域,导致解题错误。
混淆最值与恒成立
在处理最值问题时,容易将最值与恒 成立混淆,导致解题思路出现偏差。
忽视参数的取值范围
在确定参数的取值范围时,容易忽视 参数的实际取值范围,导致答案不准 确。
缺乏对题目的深入理解
在解题过程中,容易缺乏对题目的深 入理解,导致解题思路不清晰,答案 不完整。
06
总结与反思
解题思路总结
转化思想
将恒成立存在性问题转化为最 值问题,通过求最值来确定参
数的取值范围。
数形结合
利用数形结合的方法,将问题 转化为几何图形,通过观察图 形的性质和变化规律来解决问 题。

恒成立问题课件 2

恒成立问题课件 2

课后习题: (1)设函数 f ( x) x ax 2 x b 若对于任意的 a 2,2 ,不等式 f ( x) 1在 - 1,1 上恒成立,求 b 的 取值范围; (2)已知 a e , e 1 ,对任意 t R 恒


4

3
2
成立,则 a t e a e ,则 ( )
化为二次不等式,则可考虑应用判别式法 解题。 解法二、最值法:将不等式恒成立问题 转化为求函数最值问题的
解法三、分离参数法: 若所给的不等式能通过
恒等变形使参数与主元分离于不等式两端,从而 问题转化为求主元函数的最值,进而求出参数范 围。这种方法本质也还是求最值,但它思路更清 晰,操作性更强
辨式练习:
(4)x1 D, x2 D : f ( x1 ) g ( x2 ) f min ( x) g min ( x)
(5)x1 , x2 D : f ( x1 ) g ( x2 ) f max ( x) g min ( x)
例5:若不等式
3x log a x 0
2 3 已知 f ( x) 4 x ax x ( x R) 在区间 3
2
1,1 是增函数,求实数 a 的取值范围。
结论1:若是二次函数在指定区间上的恒成 立问题,还可以利用韦达定理以及跟与系 数的分布知识求解。
结论2:常见题型:①若m f (x) 在x [a, b] 上恒成立,则 m f (x) max ;若m f (x) 在 x [a, b] 上恒成立,则 m f (x) min ②若 m f (x) 在 x [a, b] 上有解, 则 m f (x) min ;若 m f (x) 在 x [a, b] 上无解,则 m f (x) min。(注:m 为常 数。)

恒成立问题题型大全(详解详析)

恒成立问题题型大全(详解详析)

不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。

恒成立问题的基本类型:2f(x) 0在x Rf(x) ax bx c(a 0)类型1:设,(1)且 0f(x) 0在x R;上恒成立 a 0且 0 a 0(2)上恒成立。

2f(x) ax bx c(a 0)类型2:设f(x) 0在x *,+a 0(1)当时,上恒成立或或bbb2a2a2a,() 0 f() 0 f() 0 0ff(x) 0在x *,+ 上恒成立f() 0 f() 0 f(x) 0在x *,+a 0 (2)当时,上恒成立f() 0 bbbf(x) 0在x *,+ 或或2a2a2a 上恒成立类型3:f() 0 0f() 0f(x) 对一切x I恒成立 f(x) min f(x) 对一切x I恒成立 f(x) 。

max类型4: f(x) g(x)对一切x I恒成立 f(x)的图象在g(x)的图象的上方或f(x) g(x)minmax(x I) 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。

一、用一次函数的性质f(x) kx b,x *m,n+ 对于一次函数有:恒成立 ,f(x) 0恒成立 f(m) 0f(m) 0 f(x) 0f(n) 0f(n) 0 12m2 m 22x1 m(x1)例1:若不等式对满足的所有都成立,求x的范围。

解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:222 m 2m(x1)(2x1) 0f(m) m(x1)(2x 1),;令,则时,恒成2 f(2) 02(x1)(2x1) 0 f(m) 0立,所以只需即,所以x的范围 f(2) 02 2(x1)(2x1) 01713x (,)是。

22二、利用一元二次函数的判别式2f(x) ax bx c 0(a 0,x R) 对于一元二在x R(1)上恒次函数有: a 0且 0f(x) 0成立; a 0且 0f(x) 0在x R(2)上恒成立2(m1)x(m1)x2 0例2:若不等式的解集是R,求m的范围。

函数、不等式恒成立问题解法

函数、不等式恒成立问题解法

1函数、不等式恒成立问题解法恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

类型2:设)0()(2≠++=a c bx ax x f(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。

类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

“恒成立”问题的解法ppt完美课件 通用

“恒成立”问题的解法ppt完美课件 通用
yf(x ) a x b (a 0 ),若 y f (x) 在 [ m , n ] 内恒有 f (x) 0 ,则根据函数的
图像(直线)可得上述结论等价于
ⅰ)
a f
0 (m)
0
或ⅱ)
a f
0 (n)
0
亦可合并成
f f
(m) 0 (n) 0
.
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(2)恒成立问题与二次函数联系:
类型2:设 f(x)a2x b xc(a0),f (x) 0
在区间 [ , ] 上恒成立问题:
(1)当 a0 时,f(x)0在 x [,]上恒成立
2ba或 2ba或 2ba,
的范围.
解:
f fБайду номын сангаас
(1) 0 (2) 0
∴ m4 3
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(2)恒成立问题与二次函数联系:
类型1:设 f(x)a2x b xc(a0),f (x) 0 在全集 R 上恒成立问题:
(1)f(x)0在 xR上恒成立 a0且 0 (2)f(x)0在 xR上恒成立 a0且 0
1.函函数数性性质质法法
如图所示.同理,若在 [ m , n ] 内恒有 f (x) 0
则有
f f
(m) 0 (n) 0
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(1)恒成立问题与一次函数联系
【例1】 如果当自变量满足 1x2时,函数

恒成立与存在性问题

恒成立与存在性问题

01
总结词
一次函数性质简单,常用于基础问 题。
总结词
一次函数在定义域内单调,不存在 极值点。
03
02
总结词
一次函数图像为直线,单调性明显。
总结词
一次函数在定义域内单调,恒成立 与存在性问题较易解决。
04
二次函数的恒成立与存在性问题实例
总结词
二次函数开口方向由二次项系数决定。
总结词
二次函数在区间$[-infty, frac{b}{2a}]$上单调递增,在区间$[-
利用三角函数的周期性、对称性、数形结合 等方法,判断三角函数在某个区间内是否存 在极值点或零点。
三角函数存在性问题的应 用
在解决实际问题中,如物理、工程等领域, 常常需要判断某个三角函数是否满足某些条
件,如是否存在最优解或可行解。
03
恒成立与存在性问题的解 法
分离参数法
总结词
分离参数法是一种通过将参数分离到不等式的两边,从而简化问题的方法。
判别式法
总结词
判别式法是一种通过引入判别式来解决 问题的方法。
VS
详细描述
判别式法的基本思想是通过引入判别式来 简化方程的解的求解过程。这种方法在处 理一元二次方程和二元二次方程组时非常 有效。通过判别式,我们可以更容易地找 到方程的解,并且可以更好地理解解的性 质和分布。
04
实例分析
一次函数的恒成立与存在性问题实例
详细描述
分离参数法的基本思想是将参数从不等式中分离出来,单独放在不等式的另一 边,这样可以更容易地找到参数的取值范围,从而解决问题。这种方法在处理 包含参数的不等式问题时非常有效。
数形结合法
总结词
数形结合法是一种通过将问题转化为 图形问题,从而直观地理解问题的方 法。

(高一用)函数中的恒成立存在性问题PPT 课件

(高一用)函数中的恒成立存在性问题PPT 课件
也就是说,从平均值看,名校毕业生的 收入就 已经遥 遥领先 好几倍 ,更不 用说那 些高薪 行业的 实际收 入差距 了。 好的大学,不一定保证每一个人都会有 高收入 ,但他 的确能 够为你 提供通 向高收 入的第 一块敲 门砖。 2 开学季前几天,老家的一个远房表兄传 来消息 ,刚满 17岁的 表侄小 立不愿 意再继 续读高 三,准 备辍学 去打工 。 表兄很是着急,把家族里学历比较高的 我也搬 了出来 ,希望 我能劝 劝小立 。 “我虽然这些年到处打工也挣了一些钱 ,但这 样挣钱 太辛苦 了,我 不希望 他重走 我的老 路,” 堂兄苦 口婆心 ,一再 强调, “你一 定要好 好劝劝 他:不 上学以 后没有 出路。 ” 刚开始我和这位00后表侄在微信上聊的 时候, 非常话 不投机 。 我问他:不想读书是不是觉得功课太难 了? 他答道:也没有多难,就是不想太累了 ,高考 复习很 无聊。 我劝他:再坚持几个月,苦一阵子熬一 熬就过 去了。 他回答得很干脆:太没劲!考上又能怎 么样? 现在我 家邻居x x大学 毕业上 班了, 挣的还 没我爸 高呢! 我再问他:你爸爸现在一身伤病常年要 吃药, 你不是 不知道 吧,还 有,你 爸爸为 了多挣 点钱, 一年到 头在外 面跑, 只有过 年才能 回家一 趟,这 些你也 很清楚 吧? 他无话可说了。 最后,我实在忍不住,不得不扎他一句 : “如果现在你连高考都比不过别人,凭 什么以 后你能 比别人 成功? ” 微信那头一阵静默。 后来,小立打消了退学的念头,告诉家 人他会 继续读 书,备 战高考 。 从十八线小城出身,依靠读书这条独木 桥,到 如今过 上在旁 人眼里 还不错 生活的 我,只 想用自 己的亲 身经历 ,告诉 小立这 样的年 轻人: 在本该吃点苦的年纪,千万不能选择安 逸,否 则只会 错过最 好的改 变命运 的机会 。 现在不读书,不吃苦,换来的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变式4、已知f (x) ax2 (a 2)x 1, g(x)=2x且对于任意的x R, f (x) g(x) 恒成立,求a的取值范围
三、分离参数型(转化为求新函数最值)
【理论阐释】 若在等式或不等式中出现两个变量,其中一个变量
的范围已知,另一个变量的范围为所求,且容易通过恒 等变形将两个变量分别置于等号或不等号的两边,则可 将恒成立问题转化成函数的最值问题求解。
解:依题意知:
(1)当a 0时,f ( x) 1 0对x R恒成立;
(2)当a
0时,需满足
a
0 a2
4a
0
解得:0 a 4
综上:0 a 4.
变式2、已知f (x) ax2 ax 2,
且对于任意的x R, f (x) 1恒成立
求a的取值范围
解:Q f ( x) ax2 ax 2,对x R都有f ( x) 1恒成立
四、恒成立问题直接转化为函数最值问题
从例 2 可以看出解决恒成立的不等式 问题,还可以考虑如下方法:
直接转化为求原函数的最值
f (x) 0 恒成立 f (x)min 0 , f (x) 0 恒成立 f (x)max 0
五、 把不等式恒成立问题转化为函数图象问题
【理论阐释】
若把不等式进行合理的变形后,能非常容易地画出不等 号两边对应函数的图象,这样就把一个很难解决的不等式的 问题转化为利用函数图象解决的问题,然后从图象中寻找条 件,就能解决问题。
象的关系再处理。
4、通过分离参数,将问题转化为a≥f(x)(或a≤f(x))恒 成立,再运用不等式知识或求函数最值的方法,使 问题获解。
由题意得: f (2) 0
a 1
-2
2
法二:a x 3在x [2,2]上恒成立
设g(x) x 3
g(x) x 3在[2,2]上的最小值为 g(2) 1 a 1
二、二次函数型
一元二次不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)的 解集与二次函数、二次方程的关系
二次函数 y=ax2+bx+c(a>0)的图

△>0
△=0
△<0
一元二次方程 ax2+bx+c=0(a>0)的根
有两不等 x1,x2(x1<x2)
不等式 ax2+bx+c>0(a>0)的解

不等式 ax2+bx+c<0(a>0)的解

{x|x<x1或x>x2}
{x|x1<x<x2}
有两相等根 x1=x2=-b/2a
恒成立问题常见类型 及解法
问题引领
已知不等式 x2 2ax 1 0对 x [1,2]
恒成立求正实数 a 的取值范围.
思路1、通过化归最值,直接求函数 f (x) x2 2ax 1
的最小值解决,即 fmin (x) 0
x2 1 1 1
思路 2、通过分离变量,转化到 a
2x
(x ) 2x
若不等式 f x g x 在区间D上恒成立,则等价于
在区间D上函数 y f x 的图象在函数 y g x图象
的上方(若是小于则在下方)
课堂小结
1、一次函数型问题,利用一次函数的图像特征求解。 2、二次函数型问题,结合抛物线图像,转化成最值问
题,分类讨论。
3、对于f(x)≥g(x)型问题,利用数形结合思想转化为函数图
a≥f(x)恒成立的充要条件是:__a__≥_[f_(x_)_]_m_ax___; a≤f(x)恒成立的充要条件是:__a__≤__[f_(_x_)]_m_in__。
延伸拓展
若存在a使得a≥f(x)的充要条件: ___a___f _( x_)_m_in__; 若存在a使得a≤f(x) 充要条件是:___a___f _( x_)_m_ax___。
一、一次函数型
1、f(x)=ax+b,x [α,β],根据函数的图象(线段)得 :
f(x)>0恒成立< >
f()>0 f()>0
f(x)<0恒成立< > y
f()<0 f()<0
α
o
βxBiblioteka 典例导悟一若不等式 2 x 1> m x2 1 对一切 m2, 2 都成立,求实数 x 的取值范围。
【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m)在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
2
2
例2:已知x 3 a 0在x [2,2]上恒成立,求 a的取值范围。
解:设f (x) x 3 a
即f ( x) 1 0,令g( x) f ( x) 1 ax2 ax 1 0 即g( x)对x R都有g( x) 0恒成立 (1)当a 0时,g( x) 1 0对x R恒成立;
(2)当a
0时,需满足
a
0 a2
4a
0
解得:0 a 4
综上:0 a 4.
变式3、已知f (x) ax2 ax 1, 且对于存在一个x R,使得f (x) 2 成立,求a的取值范围
{x|x≠-b/2a}
没有实根
R
方法一:判别式法
【理论阐释】
若二次函数 y ax2 bx c (a 0, x R) 的函数值大于 0 恒成
立,则有
a 0 0
,若是二次函数在指定区间上的恒成立问题,还
可以
利用韦达定理以及二次函数的图象求解。
例1、已知二次函数f (x) ax2 ax 1,
且对于任意的x R, f (x) 0恒成立
求a的取值范围
解:依题意知:
(1)当a 0时,f ( x) 1 0对x R恒成立;
(2)当a
0时,需满足
a
0 a2
4a
0
解得:0 a 4
综上:0 a 4.
变式1、已知二次函数f (x) ax2 ax 1, 且对于任意的x R, f (x) 0恒成立 求a的取值范围
解决,即
x2 1 a ( 2x ) min
思路3、通过数形结合,化归到 x2 1 2ax 作图解决, 即 y x2 1 图像在 y 2ax 的上方
概括方法
恒成立问题在解题过程中大致可分为以下几种类型: (1)一次函数型; (2)二次函数型; (3)变量分离型; (4)直接转化为函数的最值求解; (5)根据函数的图象求解; 下面分别举例示之。
相关文档
最新文档