高三数学(理)二轮复习高考作业卷(十八)超几何分布(含解析)
高三数学超几何分布练习题
高三数学超几何分布练习题超几何分布是概率论中重要的一种离散概率分布,常用于描述具有有限个体总数的总体中,抽取样本后各种结果出现的概率分布。
在高三数学中,超几何分布是一个重要的知识点。
下面将通过一些练习题来加深对超几何分布的理解。
1. 有一批产品共50个,其中10个有瑕疵。
从中随机抽取5个,求出抽到恰好3个瑕疵的概率。
解析:根据超几何分布的公式,可以计算出抽到3个瑕疵的概率。
设事件A为抽到3个瑕疵,事件B为抽到5个产品。
则事件A的概率为:P(A) = (10C3 * 40C2) / 50C5,其中nCr表示从n个物体中选取r个的组合数。
代入计算得到,P(A) ≈ 0.219。
2. 一桶有1000个铆钉,其中有70个次品。
从中不放回地抽取20个铆钉,求出其中恰好有3个次品的概率。
解析:同样使用超几何分布的公式,设事件A为抽到3个次品,事件B为抽取20个铆钉。
则事件A的概率为:P(A) = (70C3 * 930C17) / 1000C20。
代入计算得到,P(A) ≈ 0.255。
3. 一批零件中有50个次品,质量合格的零件有200个。
从中不放回地随机抽取8个零件,求出其中至少有3个次品的概率。
解析:由于题目要求至少有3个次品,即求抽取8个零件中恰好有3个次品、恰好有4个次品......、恰好有8个次品的概率之和。
设事件A为抽到k个次品,事件B为抽取8个零件。
则所求概率为:P(A) =Σ(k=3~8) [(50Ck * 200C(8-k)) / 250C8],其中Σ表示求和运算。
代入计算得到,P(A) ≈ 0.450。
4. 一盒子中有20个黑色球和30个白色球,从中有放回地抽取10个球,求出其中恰好有5个黑色球的概率。
解析:对于有放回地抽取的情况,超几何分布的公式不适用。
此时可以近似地使用二项分布来计算。
设事件A为抽到5个黑色球,事件B为抽取10个球。
则事件A的概率为:P(A) = C(10,5) * (20/50)^5 * (30/50)^5 ≈ 0.237。
(衡水万卷)届高考数学二轮复习十八超几何分布作业理【含答案】
衡水万卷作业(十八)超几何分布考试时间:45分钟姓名:__________班级:__________考号:__________一、解答题(本大题共6小题,前2题16分,后4题17分,共100分)1.(2015重庆高考真题)(本小题满分13分,(I)小问5分,(II)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。
(I)求三种粽子各取到1个的概率;(II)设X表示取到的豆沙粽个数,求X的分布列与数学期望2.(2015四川高考真题)某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队的概率.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望3.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(Ⅰ)求一次摸奖恰好摸到1个红球的概率;(Ⅱ)求摸奖者在一次摸奖中获奖金额X的分布列与数学期望.4.某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务)。
(1)求5名大学生中恰有2名被分配到体操项目的概率;(2)设X,Y分别表示5名大学生分配到体操、游泳项目的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ).5.某科考试中,从甲.乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图5所示,成绩不小于90分为及格.(Ⅰ)甲班10名同学成绩的标准差乙班10名同学成绩的标准差(填“>”,“<”);(Ⅱ)从两班10名同学中各抽取一人,已知有人及格,求乙班同学不及格的概率;(Ⅲ)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X,求X的分布列和期望. 6.某地区举行一次数学新课程骨干教师研讨会,共邀请15名使用人教A版或人教B版的教师,数据如下表所示:(Ⅰ)从这15名教师中随机选出2名教师,则这2名教师恰好是教不同版本的男教师的概率是多少?(Ⅱ)研讨会中随机选出2名代表发言,设发言代表中使用人教B版的女教师的人数为ξ,求随机变量ξ的分布列和数学期望.甲乙2 5 73 6 85 86 8 789108 96 7 81 2 3 51衡水万卷作业(十八)答案解析一、解答题1.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有()11123531014.C C C P A C== (Ⅱ)X 的所有可能值为0,1,2,且()()312828331010770,11515C C C P X P X C C ======,()21283101215C C P X C ===. 综上知,X 的分布列为故()77130121515155E X =⨯+⨯+⨯=(个) 2.【答案】(1)A 中学至少1名学生入选的概率为99100p =. (2)X 的分布列为:X 的期望为()2E X =.【解析】(1)由题意,参加集训的男女生各有6名。
高考专题复习 超几何分布(解析版)
第4讲 超几何分布一.离散型随机变量的概率分布(1)随着试验结果变化而变化的变量叫做随机变量,常用字母X ,Y ,ξ,η,…表示,所有取值可以一一列出的随机变量叫做离散型随机变量.(2)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为离散型随机变量X (3)离散型随机变量的概率分布的性质: ①p i ≥0,i =1,2,…,n ; ②p 1+p 2+…+p i +…+p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 二.两点分布如果随机变量X 的概率分布表为其中0<p <1,则称离散型随机变量X 三.超几何分布1.概念:一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =r )=C r M C n -rN -MC n N(r =0,1,2,…,l ).即其中l =min(M ,n ),且n 如果一个随机变量X 的概率分布具有上表的形式,则称随机变量X 服从超几何分布.2.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是: ①考察对象分两类; ②已知各类对象的个数;③从中抽取若干个个体,考察某类个体个数X 的概率分布 四.离散型随机变量的均值与方差 1.离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列为:(1)称1122()n n E X x p x p x p =++⋅⋅⋅+为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)称21()(())nii i D X x E X p ==-∑为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏X 的标准差. 2.均值与方差的性质若Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量, 且E (aX +b )=aE (X )+b ;D (aX +b )=a 2D (X )考向一 分布列性质【例1】(1)设离散型随机变量X 的概率分布为下表,求2X +1的概率分布.(2)若(1(3)若(1)中条件不变,求随机变量η=X2的概率分布.【答案】见解析【解析】(1)由概率分布的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.列表为从而2X+1的概率分布为(2)由(1)知m=0.3∴P(η=1)=P(X=0)+P(X=2)P(η=0)=P(X=1)=0.1,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的概率分布为(3)依题意知η的值为列表为从而η=X 2的概率分布为【举一反三】1.设X 是一个离散型随机变量,其概率分布为则q =________. 【答案】 32-336【解析】 ∵13+2-3q +q 2=1,∴q 2-3q +43=0,解得q =32±336.又由题意知0<q 2<23,∴q =32-336.2.设随机变量ξ的概率分布为P (ξ=k )=m ⎝ ⎛⎭⎪⎫23k(k =1,2,3),则m 的值为________.【答案】2738【解析】 由概率分布的性质得P (ξ=1)+P (ξ=2)+P (ξ=3)=m ×23+m ×⎝ ⎛⎭⎪⎫232+m ×⎝ ⎛⎭⎪⎫233=38m 27=1,∴m =2738. 考向二 超几何分布【例2-1】 某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求: (1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X 的概率分布. 【答案】(1)47. (2)见解析【解析】(1)设事件A :选派的3人中恰有2人会法语,则P (A )=C 25C 12C 37=47.(2)由题意知,X 服从超几何分布,X 的可能取值为0,1,2,3, P (X =0)=C 34C 37=435, P (X =1)=C 24C 13C 37=1835,P (X =2)=C 14C 23C 37=1235, P (X =3)=C 33C 37=135,∴X 的概率分布为【例2-2】为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下: (1)若甲单位数据的平均数是122,求x ;(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为1ζ, 2ζ,令12=ηζζ+,求η的分布列和期望.【答案】(1)8;(2)答案见解析.【解析】(1)由题意()10510711311511912612013213414112210x ++++++++++=,解得8x =.(2)由题意知,随机变量η的所有可能取值有0,1,2,3,4.()227622101070;45C C p C C η=== ()112736221010911;225C C C p C C η===()222211113674736422101012;3C C C C C C C C p C C η++=== ()211112364734221010223;225C C C C C C p C C η+=== ()223422101024;225C C p C C η===η∴的分布列为:η0 1 2 34P745 91225 13 22225 2225∴()012344522532252255E η=⨯+⨯+⨯+⨯+⨯=.【举一反三】1.某普通高中为了解本校高三年级学生数学学习情况,对一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[]60,150),按下列分组[)60,70,[)70,80,[)80,90,[)90,100,[)100,110,[)110,120,[)120,130,[)130,140,[]140,150作出频率分布直方图,如图1;样本中分数在[)70,90内的所有数据的茎叶图如图2:根据往年录取数据划出预录分数线,分数区间与可能被录取院校层次如表.【套路总结】超几何分布的两个特点①超几何分布是不放回抽样问题; ②随机变量为抽到的某类个体的个数. (2)超几何分布的应用条件 ①两类不同的物品(或人、事);(1)求n 的值及频率分布直方图中的,x y 值;(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取2人,求此2人都不能录取为专科的概率;(3)在选取的样本中,从可能录取为自招和专科两个层次的学生中随机抽取3名学生进行调研,用ξ表示所抽取的3名学生中为自招的人数,求随机变量ξ的分布列和数学期望.【答案】(1)0.014;(2)616625;(3)见解析 【解析】(1)由图2知分数在[)70,80的学生有4名, 又由图1知,频率为:0.008100.08⨯=,则:4500.08n == 50.015010x ∴==⨯,()10.0420.0820.10.120.160.240.01410y -⨯+⨯++++==(2)能被专科院校录取的人数为:()500.0040.008106⨯+⨯=人抽取的50人中,成绩能被专科院校录取的频率是:635025= ∴从该校高三年级学生中任取1人能被专科院校录取的概率为325, 记该校高三年级学生中任取2人,都不能被专科院校录取的事件为A则此2人都不能录取为专科的概率:()23616125625P A ⎛⎫=-=⎪⎝⎭(3)选取的样本中能被专科院校录取的人数为6人成绩能过自招线人数为:()500.0120.0040.0081012⨯++⨯=人, 又随机变量ξ的所有可能取值为0,1,2,3∴()363182050816204C P C ξ∴====;()2161231818015181668C C P C ξ====; ()1261231839633281668C C P C ξ====;()03612318220553816204C C P C ξ==== ∴随机变量ξ的分布列为:()012322046868204E ξ∴=⨯+⨯+⨯+⨯= 【套路运用】1.随机变量X 的概率分布如下:其中a ,b ,c 成等差数列,则P (|X |=________. 【答案】 23 ⎣⎢⎡⎦⎥⎤-13,13【解析】 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据概率分布的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.2.若离散型随机变量X的分布列是则常数c的值为_____.【答案】【解析】由随机变量的分布列知,9c2﹣c≥0,3﹣8c≥0,9c2﹣c+3﹣8c=1,∴c =.故答案为:.3.我国城市空气污染指数范围及相应的空气质量类别见下表:空气污染指数空气质量空气污染指数空气质量0--50 优201--250 中度污染51--100 良251--300 中度重污染101--150 轻微污染>300 重污染151----200 轻度污染我们把某天的空气污染指数在0-100时称作A类天,101--200时称作B类天,大于200时称作C类天.下图是某市2018年全年监测数据中随机抽取的18天数据作为样本做的茎叶图:(百位为茎,十、个位为叶)(1)从这18天中任取3天,求至少含2个A类天的概率;(2)从这18天中任取3天,记X是达到A类或B类天的天数,求X的分布列.【答案】(1);(2)见解析【解析】(1)从这18天中任取3天,取法种数有种,3天中至少有2个A类天的取法种数有种,所以这3天至少有2个A类天的概率;(2)的一切可能的取值是,当时,;当时,;当时,;当时,;的分布列为:X 3 2 1 0P数学期望。
高考二轮复习理科数学作业卷(十八)超几何分布(含解析)
衡水万卷作业(十)双曲线的标准方程和几何性质考试时间:45分钟姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题6分,共72分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.与双曲线221916y x -=有共同的渐近线,且经过点(-的双曲线方程为( )A.224149y x -=B.224149y x -= C.224194y x -= D.224194y x -= 2.已知0a b >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为( ) (A )02x =±y (B )02=±y x (C )02y x =± (D )0y 2x =± 3.已知F 是双曲线22221x ya b -=的右焦点,点,A B 分别在其两条渐近线上,且满足2BF FA =,0OA AB ⋅=(O 为坐标原点),则该双曲线的离心率为( )A.3B. 21 4.已知F 1,F 2分别是双曲线C :22221(0,0)x y a b a b-=>>的左右焦点,以F 1F 2为直径的圆与双曲线C在第二象限的交点为P ,若双曲线的离心率为5,则21cos PF F ∠等于( ) A .35 B .34 C .45 D .565.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.3 6.已知双曲线22122x y -=的准线过椭圆22214x y b +=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件( )A.11,22k ⎡⎤∈-⎢⎥⎣⎦ B.()11,,22k ⎤⎡∈-∞-+∞⎥⎢⎦⎣ C.k ⎡∈⎢⎣⎦D. 2,,2k ⎛⎡⎫∈-∞+∞ ⎪⎢⎝⎦⎣⎭7.已知双曲线22122:1(0,0)x y C a b a b-=>>的左.右焦点分别为F1.F2抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P 满足2120PF F F ⋅=,则双曲线C1的离心率为( )C.38.已知双曲线2221(0)2x y b b -=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF ×uuu r uuu r= ( )A.-12B.-2 C .0 D. 4 9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.3B.3C.3D.2 10.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A.(1,2)B.(-1,2)C.(2,+∞)D.[2,)+∞11.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限的公共点。
高三数学超几何分布
x P
0
1
2
3
4
5
超几何分布的概率背景
一批产品有 N件,其中有 M 件次品,其余 N-M 件为正品.现从中取出 n 件. 令 X:取出 n 件产品中的次品数. 则 X 的分 布列为
k n k CM CN M PX k n CN
k 0, 1, , minM, n
此时,随机变量 X 服从超几何分布
例2:生产方提供50箱的一批产品, 其中有2箱不合格 产品, 采购方接收该批产品的准则是:从该产品 中任取5箱产品进行检测,若至多有1箱不合格 便接收该批产品,问:该批产品被接收的概率是 多少?
4、
5、
这两个问题的求解方法一样吗?
超几何分布:适用于不放回抽取
本小题第二问是二项分布这是我们 后面要研究的内容
C
N
例如从全班任取n个人,取到女生的人数; 从扑克牌中取n张,取到黑桃的张数;买n张彩 票,中奖的张数,等等都可以用超几何分布描 述。
例1:一个口袋中装有10个红球,20个白球, 这些球除颜色外完全相同,一次从中摸出 5个球,摸到4个红球1个白球的就中一等奖 求中一等奖的概率.
变题:至少摸出4个红球就中一等奖?
超几何分布
一、复习
1) 随机变量的分布列
设随机变量 X 的所有可能取值为
x1 , x2 , , xn ,
并设 P X x n pn 则称上式或
n 1,
x2 p2
2,
xn
X
x1 p1
,
P
, pn
为随机变量 X 的分布列.
2)随机变量分布列的性质:
⑴ 对任意的自然数 n,有 pn 0;
二、新课:超几何分布
超几何分布练习题高三数学
超几何分布练习题高三数学超几何分布(Hypergeometric Distribution)是一种离散型概率分布,常用于从有限总体中抽取不放回样本的情况。
在高三数学中,超几何分布是一个重要的概率分布,掌握了超几何分布的性质和计算方法,能够解决与样本抽样相关的概率问题。
下面,我们将通过一些练习题来巩固对超几何分布的理解和应用。
练习题一:某班级有60名学生,其中有30名男生和30名女生。
从中随机选取10名学生组成一个小组。
求小组中至少有3名男生的概率。
解答一:我们可以将此问题抽象为从60个学生中抽取10个学生的问题。
假设我们将男生看作是“成功”的事件,女生看作是“失败”的事件。
根据超几何分布的概率公式,小组中至少有3名男生的概率可以表示为:P(X≥3) = 1 - P(X<3)其中,X表示成功事件(即选中的男生人数)。
根据超几何分布的概率计算公式:P(X=k) = (C(30,k) * C(30,10-k)) / C(60,10)其中,C(n, k)表示从n个元素中选取k个元素的组合数。
代入上述公式,我们可以得到答案:P(X≥3) = 1 - [P(X=0) + P(X=1) + P(X=2)]练习题二:某批产品有100个,其中有20个次品。
现从中随机抽取10个产品进行检查。
求检查中恰好有3个次品的概率。
解答二:类似于练习题一,我们可以将此问题抽象为从100个产品中抽取10个产品的问题,其中成功事件为选中的次品,失败事件为选中的良品。
根据超几何分布的概率公式,检查中恰好有3个次品的概率可以表示为:P(X=3) = (C(20,3) * C(80,7)) / C(100,10)其中,C(n, k)表示从n个元素中选取k个元素的组合数。
代入上述公式,我们可以得到答案。
练习题三:某地区一批森林中,有100棵树,其中有40棵橡树。
现在从中随机抽取8棵树进行研究。
求研究中橡树的数量的期望值和标准差。
解答三:期望值表示随机变量的平均值。
(最新整理)二轮复习:超几何分布和二项分布的比较
故2所021求/7/2概6 率为P(X=2)=C52(0.3)2(0.7)3=0.3087
总结11
2. (2011•广州二模)某地区对 12 岁儿童瞬时记忆能力进行调查,
瞬时记忆能力包括听觉记忆能力
视觉
与视觉记忆能力.
听觉
某班学生共有 40 人,图表为该
偏低
班学生瞬时记忆能力的调查结果. 听觉 中等
(1)答案
7
(2)答案
变式探究
某地工商局从某肉制品公司的一批数量较大的火腿 肠产品中抽取10件产品,检验发现其中有3件产品的大 肠菌群超标.
(1)如果在上述抽取的10件产品中任取2件,设随机 变量ξ为大肠菌群超标的产品数量,求随机变量ξ的分布 列及数学期望;
答案
(2)如以该次检查的结果作为该批次每件产品大肠菌 群超标的概率,如从该批次产品中任取2件,设随机变 量η的数学期望.
72 247
,
P(
2)
C224C116 C430
552 , P(
1235
3)
C234C106 C430
253 1235
的分布列为
0
1
2
3
2021/7/P26
14
72
552
253
247
247
1235
1235
总1结3
3.(2011•山东淄博二模) A 、 B 是治疗同一种疾病的两种药,用若干
法“则(取事2出件)A的记与2个“事小取件球出B是上的对的2个立数小事字球件相∵上同P的”(数B的)字=事互CC件2613不=记相13为5同=B”15,,为事件A,
2021/7/26 ∵P(B)=CC2613=135=15, ∴P(A)=1-P(B)=45.
(完整版)超几何分布典型例题(附答案)
1.20世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染。
人们长期食用含高浓度甲基汞的鱼类引起汞中毒.引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ.【分析】①不放回→超几何分布②N=15,汞含量超标的鱼为X,则X服从一个参数为15(N).5(M).3(n)的超几何分布③由频率估计概率/由样本估计总体 2句都等价于将N无限化→不是超几何分布④做n次独立重复实验,每次实验成功的概率都相同→二项分布法2:设3条鱼中汞含量超标的鱼的条数为X.则X服从一个参数为15、5、3的超几何分布∴P(X=1)=(每个概率的求得过程必须有公式和最简结果,再画表格)设“学生持满意态度”为事件A,由题意可知该事件满足古典概型。
∴P(A)=(Ⅱ)由题意可知,服从参数为14、3、4的超几何分布.(右上角为4-k)(1)解:设“扫黑除恶利国利民”的卡片有M张设抽取2张卡片中“扫黑除恶利国利民·”的卡片数为X,则X服从参数为9、M、2的超几何分布。
故由题意可得,即解得M=4则抽奖者获奖的概率为(为防止与第二问雷同,将X改为Y)(2)【分析】甲乙丙三人在抽奖过程中互不影响,各自独立,可看作3次独立重复实验,故为二项分布解:设中奖为事件A(下求中奖的概率)即则X服从参数为3(抽奖的人数)、5/9(中奖概率)的二项分布.补充:数学期望。
高考数学专题 二项分布、超几何分布与正态分布问题(学生版)
高考数学专题 二项分布、超几何分布与正态分布问题【高考真题】1.(2022·新高考Ⅱ) 在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001). 【知识总结】 1.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . E (X )=np ,D (X )=np (1-p ). 2.超几何分布一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC n N,k =m ,m+1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.E (X )=n ·MN.3.正态分布解决正态分布问题的三个关键点 (1)对称轴x =μ. (2)样本标准差σ.(3)分布区间:利用3σ原则求概率时,要注意利用μ,σ分布区间的特征把所求的范围转化为3σ的特殊区间.【题型突破】1.2021年3月6日,习近平总书记强调,教育是国之大计、党之大计.要从党和国家事业发展全局的高度,坚守为党育人、为国育才,把立德树人融入思想道德教育、文化知识教育、社会实践教育各环节,贯穿基础教育、职业教育、高等教育各领域,体现到学科体系、教学体系、教材体系、管理体系建设各方面,培根铸魂、启智润心.某中学将立德树人融入到教育的各个环节,开展“职业体验,导航人生”的社会实践教育活动,让学生站在课程“中央”.为了更好了解学生的喜好情况,根据学校实际将职业体验分为:救死扶伤的医务类、除暴安良的警察类、百花齐放的文化类、公平正义的法律类四种职业体验类型,并在全校学生中随机抽取100名学生调查意向选择喜好类型,统计如下:在这100名学生中,随机抽取了3名学生,并以统计的频率代替职业意向类型的概率(假设每名学生在选择职业类型时仅能选择其中一类,且不受其他学生选择结果的影响).(1)求救死扶伤的医务类、除暴安良的警察类这两种职业类型在这3名学生中都有选择的概率;(2)设这3名学生中选择除暴安良的警察类的随机变量为X,求X的分布列与均值.2.“大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响).(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;(2)设这3所学校中选择“科技体验游”学校数为随机变量X,求X的分布列与数学期望.3.某市某中学为了了解同学们现阶段的视力情况,现对高三年级2 000名学生的视力情况。
高二数学超几何分布
[多选]逆钟向典型心房扑动心电图的特点包括()A.下壁导联F波向下B.下壁导联F波向上C.V1导联F波直立D.V6导联F波倒立E.下壁导联呈典型的锯齿形 [问答题,简答题]化石形成的原因和条件? [判断题]化学热处理不仅改变了钢的组织,而且表层的化学成分也发生了变化。()A.正确B.错误 [单选,A1型题]水解后主要产生没食子酸和葡萄糖(或多元酚)的鞣质是()A.没食子鞣质B.逆没食子鞣质C.咖啡鞣质D.缩合鞣质E.含有没食子酰基的缩合鞣质 [单选]某施工项目,工程合同价300万元,建设工期6个月。则开工前,建设单位到位资金不得少于()万元。A.90B.100C.150D.300 [单选]下列因素中除哪项以外都是肾控制肾素释放的因素().A.血液中的血管紧张素ⅡB.远曲小管中钠的浓度C.肾动脉的灌注压D.肾的胆碱能受体E.肾的肾上腺素能受体 [问答题,简答题]调度自动化系统分类。 [单选]重排系统吹扫时所用介质为()。A、蒸气B、氢气C、仪表风D、氮气 [填空题]目前国内城轨交通的主要形式有()、()、(),其中()和()是今后城市轨道交通发展的方向。 [单选]以下()项指的是边际效用A.张某吃了第二个面包,满足程度从10个效用单位增加到了15个单位,增加了5个效用单位B.张某吃了两个面包,共获得满足15个效用单位C.张某吃了四个面包后再不想吃了D.张某吃了两个面包,平均每个面包带给张某的满足程度为7.5个效用单位E.以上都 [单选,A2型题,A1/A2型题]神经病理性疼痛临床表现不包括()A.有明确的损伤史B.无损伤区可出现疼痛C.疼痛伴随感觉缺失,阵发或自发性疼痛D.疼痛累加,反复刺激可使疼痛强度增强E.痛觉过敏,表现为非疼痛刺激引起的疼痛,疼痛刺激反而无疼痛 [单选]世界上首家采用生命表计算人寿保险费率的保险公司是()A.英国伦敦衡平保险社B.英国伦敦公平人寿保险社C.美国加利福尼亚人寿保险公司D.美国纽约人寿保险公司 [单选,A2型题,A1/A2型题]患者右侧肢体无力一年余,查体右上肢下运动神经元瘫,肌力4级,右下肢上运动神经元瘫,肌力3级,其病变部位为()。A.左上胸髓部B.右上胸髓部C.双侧颈膨大部D.左侧颈膨大部E.右侧颈膨大部 [单选]质量管理体系的现场审核的实施中,要举行首次会议该由()来主持。A.审核委托方B.审核组长C.一般审核员D.向导 [单选]不同所有人的物因一定的行为而结合在一起形成不可分割的物或具有新质的物,这在民法理论上称为()。A.先占B.继受所得C.添附D.提存 [单选]招标采购合同规划的内容不包括()。A.工程建设项目或政府采购活动目标和需求分析B.项目建设可行性分析C.合同订立及履行规划以及合同动态跟踪评估规划D.初步合同规划 [单选]水泥稳定基层中,对水泥最主要的技术要求是()。A.终凝时间较长B.强度等级较高C.抗压强度较高D.抗折强度较高 [填空题]根据参与上课的人数,可以分为私人课程、小班课程和()。 [单选]慢性胆囊炎的CT特征性表现是()A.胆囊大,囊壁水肿,密度低B.胆囊正常大小,肝内胆管扩张C.胆囊小,囊壁增厚D.胆囊大,胆总管扩张E.以上都不是 [单选,A2型题,A1/A2型题]关于会阴的描述,正确的是()A.广义的会阴前方为耻骨联合上缘B.狭义的会阴是指尿道口与肛门之间的软组织C.会阴包括皮肤、肌肉、筋膜及骨骼D.会阴体厚3~4cm,呈楔状E.会阴组织妊娠时的延展性差,分娩时容易裂伤 [单选]对于西地那非的说法,不正确的是()A.是治疗勃起功能障碍的一线用药B.疗效与剂量成正比C.为肌内注射剂D.适用于前列腺根治术后导致的勃起功能障碍E.超量使用可引起阴茎异常勃起 [单选,A1型题]医疗机构从业人员违反本规范的,视情节轻重给予处罚,其中不正确的是()A.批评教育、通报批评、取消当年评优评职资格B.卫生行政部门依法给予警告、暂停执业或吊销执业证书C.纪检监察部门按照党纪政纪案件的调查处理程序办理D.缓聘、解职待聘、解聘E.涉嫌犯罪的,移 [多选]以下各项线路布置时,须要短路保护和过载保护的是()。A.架空线路敷设B.电缆线路敷设C.室内配线敷设D.室外线路敷设E.照明线路敷设 [单选]根据支付结算法律制度的规定,下列银行卡分类中,以是否具有透支功能划分的是()。A.人民币卡与外币卡B.单位卡与个人卡C.信用卡与借记卡D.磁条卡与芯片卡 [名词解释]人工饲料 [单选]当高度增加时,真空速和迎角应如何变化才能产生相同的升力?()A.相同的真空速和迎角B.对于任意给定的迎角,真空速需增大C.真空速减小,迎角增加 [单选]使用浏览器上网时,不影响系统和个人信息安全的是()。A.浏览包含有病毒的网站B.浏览器显示网页文字的字体大小C.在网站上输入银行账号、口令等敏感信息D.下载和安装因特网上的软件或者程序 [单选]膀胱内药物灌注,目前认为效果最好的是()A.塞替派B.丝裂霉素C.阿霉素D.卡介苗E.羟喜树碱 [单选]餐饮、商店等商业设施通过有顶棚的步行街连接,步行街两侧的建筑利用步行街进行安全疏散,且步行街采用自然排烟设施。自然排烟口的有效面积不应小于其地面面积的()%。A.2B.5C.10D.25 [单选,A2型题,A1/A2型题]关于原子能级的相关叙述,错误的是()A.电子在各个轨道上具有的能量是连续的B.原子能级,以电子伏特表示C.结合力与原子序数有关D.移走轨道电子所需的最小能量叫结合能E.原子处于能量最低状态时叫基态 [判断题]为了查明换热器管子的泄漏情况,首先要作气压试验。A.正确B.错误 [名词解释]价格歧视 [单选]VDSL技术适用于()。A.远距离(大于2Km,小于5Km)分散客户群B.中等距离(小于1.5Km)、较集中客户群C.近距离(小于200M)密集客户群D.长距离(大于15Km)集中客户群 [单选]一项病例对照研究,500名病例中有暴露史者400例,而500名对照中有暴露史者100例,其OR值为()A.1.25B.1.6C.16D.160E.无法计算 [单选]关于传染病感染过程的各种表现,下列哪种说法是正确的()A.隐性感染极为少见B.病原体感染必引起发病C.每个传染病都存在潜伏性感染D.显性感染的传染病不过是各种不同的表现之一,而不是全部E.病原体必引起炎症过程和各种病理改变 [问答题,简答题]2010版GMP新修订共有几个附录,它们的名称是什么? [问答题]某建筑工程,地下1层,地上16层。总建筑面积28000m2,首层建筑面积2400m2,建筑红线内占地面积6000m2。该工程位于闹市中心,现场场地狭小。施工单位为了降低成本,现场只设备了一条3m宽的施工道路兼作消防通道。现场平面呈长方形,在其斜对角布置了两个临时消火栓,两者之 [单选]采用平行结转分步法时,完工产品与在产品之间的费用分配是()。A.各生产步骤完工产品与月末加工中在产品之间费用的分配B.各步骤产成品与各步骤在产品之间的费用分配C.产成品与月末各步骤尚未加工完成的在产品和各步骤已完工但尚未最终完成的产品D.产成品与月末加工中在产品 [配伍题,B1型题]口咽检查时应观察咽后壁()。</br>在口咽检查时应观察口咽粘膜()。</br>在口咽检查时应观察扁桃体()。</br>在口咽检查时应观察腭垂()。</br>在口咽检查时应观察软腭()。A.有无充血、溃疡或新生物B.有无下塌或裂开,双侧运动是否对称C.是否过长、分叉D.有 [单选,A1型题]寒凉药长期给药,对植物神经系统功能的影响是()A.心率加快B.尿中儿茶酚胺排出量减少C.血浆中和肾上腺内多巴胺β-羟化酶活性提高D.尿中17-羟皮质类固醇排出量增多E.耗氧量增加
9道题分清超几何分布和二项分布(含答案)
9道题分清超几何分布和二项分布(含答案)一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.(3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数618-12现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.?5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]10 12 8 4数量~6(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:~ 经常进行网络购物偶尔或从不进行网络购物合计男性50501006040100/女性合计11090200*(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)&k0[7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)…男02472女1(3731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型<消极型总计男女/总计附:.P(K2≥k0))k0—8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数!女性录用比例A26916762%402460% /B401230%2026231%C$1775732%1845932%D44)59%382258%263267%E32…67%16936%总计53326450%·467(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”…(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5]不获奖合计<200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)'k-9道题分清超几何分布和二项分布参考答案与试题解析…一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.【分析】(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望值.【解答】解:(1)甲恰好通过两个项目测试的概率为:;……(4分)(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:@X0123 P(…………(8分)所以,X的数学期望为.……(10分)【点评】本题考查了离散型随机变量的分布列与数学期望问题,是基础题.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.!(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.【分析】(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P (A)=1﹣P.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P =1﹣=.(Ⅱ)X的取值为0,1,2,3.P(X=k )=,>P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.X的分布列为:X0123P&【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:;步数[0,4000)[4000,16000)[16000,+∞]人数61812:现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.【分析】(1)记事件A,这2人健步走状况一致,利用互斥事件概率计算公式能求出这两人健步走状况一致的概率.(2)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)记事件A,这2人健步走状况一致,则.(2)X的可能取值为0,1,2,)所以,所以X的分布列为X 0 1 2P&所以.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查互斥事件概率计算公式、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.,【分析】(1)根据频率分布直方图,能求出产值小于500万元的城市个数.(2)由Y的所有可能取值为0,1,2.分别滶出相应的概率,由此能求出Y的分布列及期望和方差.【解答】解:(1)根据频率分布直方图可知,产值小于500万元的城市个数为:[(+)×5]×40=14.(2)Y的所有可能取值为0,1,2.,,.?∴Y的分布列为:Y012P,期望为:,方差为:.【点评】本题考查概率的求法,考查离散型随机变量的分布、期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)#[15,25)[25,35)[35,45)[45,55]数量 6 10 12【84(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X ,求X的分布列及数学期望.【分析】(1)估算妹纸生蚝的质量为,由此能估计这批生蚝的数量.(2)任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由表中的数据可以估算妹纸生蚝的质量为:,|所以购进500kg,生蚝的数量为500000÷≈17554(只).(2)由表中数据知,任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,则,,∴X的分布列为:X 0—12 3 4P:∴.【点评】本题考查概率的求法及应用,考查离散型随机变量的分布列及数学期望的求法,考查排列组合、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物-合计偶尔或从不进行网络购物男性5050100100女性60}40合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;/(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)`k0【分析】(1)由列联表数据求出K 2≈<,从而不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有3人,偶尔或从不进行网购的有2人,由此能求出从这5人中选出3人至少有2人经常进行网购的概率.、(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),由此能求出X的期望和方差.【解答】解:(1)由列联表数据计算K2=≈<,∴不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有5×=3人,偶尔或从不进行网购的有5×=2人,故从这5人中选出3人至少有2人经常进行网购的概率是p=+=.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,^由于该市市民数量很大,故可以认为X~B(10,),∴E(X)=,D(X)==.【点评】本题考查独立性检验及应用,考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别—(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)男02~472女1373&1(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男}女总计》附:.P(K2≥k0)《k0【分析】(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(Ⅱ)完成2×2列联表求出k 2的观测值k0≈<.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.*【解答】解:(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,∴,,,,∴X的分布列为X 0[231P·则.(Ⅱ)完成2×2列联表如下:积极型消极型总计男9—156女41115总计13—3017k2的观测值=.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【点评】本题考查离散型随机变量的分布列、数学期望的求法,考查独立检验的应用,考查古典概型、二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位.男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A269、16762%402460%B4012}30%2026231%C1775732%,1845932%D442659%38.2258%E3267%32:67%总计53326450%46716936%$(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【分析】(I)根据录用总人数与应聘总人数的比值得出概率;(II)根据超几何分布列的概率公式得出分布列和数学期望;(III)去掉一个岗位后计算剩余4个岗位的男女总录用比例得出结论.【解答】解:(Ⅰ)因为表中所有应聘人员总数为533+467=1000,被该企业录用的人数为264+169=433,?所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(Ⅱ)X可能的取值为0,1,2.因为应聘E岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:X01]2P.(Ⅲ)取掉A岗位后,男性的总录用比例为≈%,女性的总录用比例为≈%,故去掉A岗位后,男、女总录用比例接近.'∴这四种岗位是:B、C、D、E.【点评】本题考查了古典概型的概率计算,离散型随机变量的分布列,属于中档题.9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k【分析】(1)列出表格根据公式计算出K2,参考表格即可得出结论.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).即可得出.【解答】解:(1)文科生理科生合计获奖53540不获奖45115160合计50150200k==≈>,所以有超过95%的把握认为“获奖与学生的文理科有关”.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).P(X=k)=×()k(1﹣)3﹣k(k=0,1,2,3),X0123PE(X)=3×=.【点评】本题考查了独立性检验原理、二项分布列的概率计算公式与数学期望,考查了推理能力与计算能力,属于中档题.。
高中数学复习典型题专题训练112---超几何分布
高中数学复习典型题专题训练112几类典型的随机分布⑴两点分布如果随机变量X 的分布列为X 1 0 P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.X 1P 0.8 0.2两点分布又称01-布又称为伯努利分布.⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)k k n kn n P k p p -=-(0,1,2,,)k n =L . 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复知识内容超几何分布试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =L .于是得到由式001110()C CC C n n n k k n k n n n n n n q p p q p q p q p q --+=++++L L各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.典例分析【例1】一盒子内装有10个乒乓球,其中3个旧的,7个新的,从中任意取4个,则取到新球的个数的期望值是.【例2】某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的6题,规定每次考试都从备选题中随机抽出5题进行测试,每题分数为20分,求他得分的期望值.【例3】以随机方式自5男3女的小群体中选出5人组成一个委员会,求该委员会中女性委员人数的概率分布、期望值与方差.【例4】在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不再放回,若以ξ和η分别表示取出次品和正品的个数.求ξη,的期望值及方差.【例5】某人可从一个内有2张100元,3张50元的袋子里任取2张,求他获得钱数的期望值.【例6】某人有一张100元与4张10元,他从中随机地取出2张给孙儿、孙女,每人一张,求孙儿获得钱数的期望值.【例7】从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数.⑴求X的分布列;⑵求X的数学期望与方差;⑶求“所选3人中女生人数1X≤”的概率.【例8】甲、乙两人参加一次英语口语考试,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.⑴求甲答对试题数X的分布列、数学期望与方差;⑵求甲、乙两人至少有一人考试合格的概率.【例9】一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79.⑴若袋中共有10个球,从袋中任意摸出3个球,求得到白球的个数的数学期望;⑵求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.。
超几何分布超几何分布
第二章 概 率
X
=
0
10 11 15 20 10 20 50 60
0 00 0
k
P(
X 161 7 7 14 1 79 1 1 1 = 330 33 330 99 33 990 66 99 495
k)
栏目 导引
单击此处添加大标题内容
∴P(5≤X≤120)=P(X=10)+P(X=20)+P(X=50)+P(X=60) +P(X=100)+P(X=110) = 7 + 7 +14+ 1 + 79 + 1 =1.
栏目 导引
1.袋中有 7 个球,其中 3 个黑球、4 个红球,从袋中任取 3 个球,求取出的红球数 X 的分布列,并求至少有一个红球 的概率. 解:X=0,1,2,3,X=0 表示取出的三个球全是黑球, P(X=0)=CC7333=315.
第二章 概 率
同理 P(X=1)=CC14C37 32=1325, P(X=2)=CC24C37 31=1385,P(X=3)=CC7343=345. ∴X 的分布列为:
第二章 概 率
学法指 导
2.许多不放回抽样的实际问题,可 以 通 过化归为超几何分布,并运用 它简捷求 解.凡类似于“在含有次 品 的产 品中取部分产品,问所取出的 产品中次品件数”的问 题,都属于超 几何分布的模型.
超几何分布
一般地,设有 N 件产品,其中有 M(M≤N)件次品.从中 任取 n(n≤超N几)件何产分品布,用CkMXC表nN--示kM 取出的 n 件产品中次品的 件数,那么 P(X=k)=____C_nN_______.(其中 k 为非负整数) 如果一个随机变量的分布列由上式确定,则称 X 服从参数 为 N,M,n 的_______________.
高中试卷-专题7.4 二项分布与超几何分布(含答案)
专题7.4 二项分布与超几何分布姓名: 班级:重点二项分布与超几何分布的特征难点二项分布与超几何分布的计算一、超几何分布例1-1.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( )。
A 、41004901C C -B 、4100390110490010C C C C C ⋅+⋅C 、4100110C CD 、4100390110C C C ⋅【答案】D【解析】由超几何分布概率公式可知,所求概率为4100110390C C C ⋅,故选D 。
例1-2.有8名学生,其中有5名男生。
从中选出4名代表,选出的代表中男生人数为X ,则其数学期望为=)(X E ( )。
A 、2B 、5.2C 、3D 、5.3【答案】B【解析】随机变量X 的所有可能取值为1、2、3、4,141)1(483315=⋅==C C C X P 、73)2(482325=⋅==C C C X P 、73)3(481335=⋅==C C C X P 、141)4(48345=⋅==C C C X P ,X 的分布列为:X1234P1417373141∴2514137337321411)(=⨯+⨯+⨯+⨯=X E ,故选B 。
例1-3.在含有3件次品的10件产品中,任取4件,X 表示取到的次品数,则==)2(X P 。
【答案】103【解析】X 满足超几何分布,∴103)2(4102723=⋅==C C C X P 。
例1-4.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望 。
【答案】109【解析】由题设知含有红色乒乓球个数ξ的可能取值是0、1、2、3,247)0(3103703=⋅==ξC C C P ,4021)1(3102713=⋅==ξC C C P ,407)2(3101723=⋅==ξC C C P ,1201)3(310733=⋅==ξC C C P ,109120134072402112470)(=⨯+⨯+⨯+⨯=ξE 。
高考培优微专题《超几何分布与二项分布》解析版
高考数学培优微专题《超几何分布与二项分布》【考点辨析】在高考概率题型中,二项分布和超几何分布是两个非常重要的概率模型,它们在解决实际问题中发挥着关键作用。
其中,二项分布描述的是固定次数的独立实验中,成功的次数的概率分布。
而超几何分布则描述的是不返回抽样问题,即从有限的总体中抽取一定数量的样本时,其中含有特定种类的数量的概率分布。
在解题过程中,正确地区分题目条件是否涉及到放回或不放回抽样是解决超几何分布和二项分布问题的关键。
掌握这两个分布的定义、性质和计算方法,对于提高学生的逻辑思维能力和解决复杂问题的能力具有重要意义。
【知识储备】(1)二项分布①背景:每次事件A p事件A1-p连续重复n次 事件A发生的次数X~B(n,p)事件A发生的次数Y~B(n,p)②分布列X01⋯k⋯n P C0n p0q n C1n p1q n-1⋯C k n p k q n-k⋯C n n p n q0③数字特征:E(X)=np,D(X)=np(1-p)(2)超几何分布①背景:一次某-类 M另一类 N-M搭配n个 某一类的个数X~H(n,N,M)另一类的个数Y~H(n,N,N-M)②分布列:X01⋯k⋯nP C0M C n-kN-MC n N C1M C n-1N-MC n N⋯C k M C n-kN-MC n N⋯C n M C0N-MC n N③数字特征:E(X)=n×MN,D(X)=n×MN×(1-n-1N-1)【例题讲解】类型一:有放回与无放回的区别1.一个袋子里10个大小相同的球,其中有黄球4个,白球6个(1)若从袋中随机摸出3个球作为样本,若有放回的摸球,求恰好摸到2个白球的概率;(2)若从袋中随机摸出3个球作为样本,若不放回的摸球,用X表示样本中白球的个数,求X的分布列和均值.【解析】【答案】解:(1)设恰好摸到2个白球为事件A,则P(A)=C23352⋅25=54125;(2)由题意可知,X的可能取值为0,1,2,3,由题意可知X服从超几何分布,则P(X=0)=C34C06C310=130,P(X=1)=C24C16C310=310,P(X=2)=C14C26C310=12,P(X=3)=C04C36C310=16,所以X的分布列为:X0 1 2 3 P130 3101216则E(X)=0×130+1×310+2×12+3×16=95.类型二:占比与概率的区别2.某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标问题中随机抽取3个问题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正确回答每道题目的概率均为23,甲、乙两家公司对每题的回答都是相互独立,互不影响的.(I)求甲、乙两家公司共答对2道题目的概率;(II)设甲公司答对题数为随机变量X,求X的分布列、数学期望和方差;(III)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?【解析】【答案】解:(I)设事件A“甲、乙两家公司共答对2道题”,由题意可知:所求概率P(A)=C14C22C36×C1323 11-232+C24C12C36×1-233=115.(II)设甲公司答对题数为X,则X的取值分别为1,2,3.P(X=1)=C14C22C36=15,P(X=2)=C24C12C36=35,P(X=3)=C34C02C36=15,则X的分布列为:X123P153515∴E(X)=1×15+2×35+3×15=2,D(X)=(1-2)2×15+(2-2)2×35+(3-2)2×15=25. (III)法一:设乙公司答对题数为Y,则Y取值分别为0,1,2,3. P(Y=0)=13 3=127,P(Y=1)=C13×23×13 2=29,P(Y=2)=C23×23 2×13=49,P(Y=3)=23 3=827,则Y的分布列为:Y0123P1272949827∴E(Y)=0×127+1×29+2×49+3×827=2.D (Y )=(0-2)2×127+(1-2)2×29+(2-2)2×49+(3-2)2×827=23.所以E (X )=E (Y ),D (X )<D (Y ),所以甲公司竞标成功的可能性更大.法二:由题知:Y ~B 3,23,∴E (Y )=3×23=2,D (Y )=3×23×13=23,所以E (X )=E (Y ),D (X )<D (Y ),所以甲公司竞标成功的可能性更大.类型三:样本与总体的区别3.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为490,495 、495,500 、⋯、510,515 ,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X 为重量超过505克的产品数量,求X 的分布列及期望;(3)样本估计总体,从流水线上任取5件产品,设Y 为重量超过505克的产品数量,求Y 的期望、方差.【解析】【答案】解:(1)由频率分布直方图得重量超过505克的产品频率为:(0.05+0.01)×5=0.3,∴重量超过505克的产品数量为:0.3×40=12(件).(2)由题意X 的可能取值为0,1,2,P (X =0)=C 228C 240=63130,P (X =1)=C 128C 112C 240=56130=2865,P (X =2)=C 212C 240=11130,∴X 的分布列为:X 0 1 2 P63130286511130随机变量X 的数学期望为E (X )=0×63130+1×2865+2×11130=35;(3)从流水线上任取5件产品服从二项分布:Y 可能取值有0、1、2、3、4、5,超过505克的产品发生的概率为p =0.3,则Y ~B (5,0.3),Y 的期望E (Y )=5×0.3=1.5,方差D (Y )=5×0.3×0.7=1.05.类型四:一次与多次的区别4.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;(2)求在4次游戏中获奖次数X 的分布列及数学期望E (X ).【答案】【答案】(1)①15,②710;(2)分布列见解析,145.【解析】【解析】(1)设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),①P (A 3)=C 23C 25·C 12C 23=15.②设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3,又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2,3,4,由(1)P (B )=710,P (B )=1-P (B )=310,P (X =0)=P (B ) 4=310 4=8110000,P (X =1)=C 14P (B )P (B ) 3=4×710×310 3=1892500,P (X =2)=C 24P (B ) 2P (B ) 2=6×710 2×310 2=13235000P (X =3)=C 34P (B ) 3P (B )=4×710 3×310=10292500P (X =4)=P (B ) 4=710 4=240110000所以X 的分布列是X 01234P811000018925001323500010292500240110000显然X ~B 4,710 ,所以X 的数学期望E (X )=4×710=145.【解题策略】____________________________________________________________________________________________________________________________________________________________________________________________________________【教考衔接】1.现对某高校16名篮球运动员在多次训练比赛中的得分进行统计,将每位运动员的平均成绩所得数据用频率分布直方图表示如下.(如:落在区间[10,15)内的频率/组距为0.0125)规定分数在[10,20),[20,30),[30,40)上的运动员分别为三级篮球运动员、二级篮球运动员、一级篮球运动员,现从这批篮球运动员中利用分层抽样的方法选出16名运动员作为该高校的篮球运动员代表.(1)求a 的值和选出篮球运动员代表中一级运动员的人数;(2)若从篮球运动员代表中选出三人,求其中含有一级运动员人数X 的分布列;(3)若从该校篮球运动员中有放回地选三人,求其中含有一级运动员人数Y 的期望.【答案】【答案】(1)a =0.0250,4人;(2)答案见解析;(3)34.【解析】【解析】(1)由频率分布直方图知:(0.0625+0.0500+0.0375+a +2×0.0125)×5=1,∴a =0.0250.其中为一级运动员的概率为(0.0125+0.0375)×5=0.25,∴选出篮球运动员代表中一级运动员为0.25×16=4人.(2)由已知可得X 的可能取值分别为0,1,2,3,P (X =0)=C 312C 316=1128,P (X =1)=C 212⋅C 14C 316=3370,P (X =2)=C 112⋅C 24C 316=970,P (X =3)=C 34C 316=1140,∴X 的分布列为X 0123P112833709701140(3)由已知得Y ~B 3,14 ,∴E (Y )=np =3×14=34,∴含有一级运动员人数Y 的期望为34.2.甲、乙两名运动员进行羽毛球单打比赛,根据以往比赛胜负情况知道,每一局甲胜的概率为23,乙胜的概率为13.如果比赛采用“五局三胜”(即有一方先胜三局即获胜,比赛结束)规则,设比赛场次为随机变量X .(1)求乙胜的概率;(2)求随机变量X 的概率分布列及数学期望、方差;.【解析】【答案】解:(1)记“乙获胜”为事件A ,则P A =13 3+C 2313 2×23×13+C 2413 2×23 2×13,即P A =1781,所以乙获胜的概率1781;(2)由题意可知,随机变量X 可以取:3、4、5,所以P X =3 =23 3+13 3=927=13,P X =4 =C 2323 3×13×23+C 2313 2×23 ×13=1027,P X =5 =C 2423 3×13 2×23+C 2413 2×23 2×13=827所以X 的分布列为:X 345P131027827所以随机变量X 的数学期望:E X =3×13+4×1027+5×827=10727;(3)随机变量X 的方差:D X =E (X 2)-(E (X ))2=32×13+42×1027+52×827 -10727 2=44127-10727 2=458729. 3.食品安全问题越来越受到人们的重视.某超市在进某种蔬菜的货前,要求食品安检部门对每箱蔬菜进行三轮各项指标的综合检测,只有三轮检测都合格,该种蔬菜才能在该超市销售.已知每箱这种蔬菜第一轮检测不合格的概率为13,第二轮检测不合格的概率为14,第三轮检测不合格的概率为15,每轮检测只有合格与不合格两种情况,且各轮检测互不影响.(1)求每箱这种蔬菜能在该超市销售的概率;(2)若这种蔬菜能在该超市销售,则每箱可获利200元,若不能在该超市销售,则每箱亏损100元,现有3箱这种蔬菜,求这3箱蔬菜总收益X 的分布列和数学期望.【解析】【答案】解:(1)设每箱这种蔬菜能在该超市销售为事件A ,则P (A )=1-13 ×1-14 ×1-15 =25,即每箱这种蔬菜能在该超市销售的概率为25.(2)X 的所有可能取值为600,300,0,-300.因为P (X =600)=25 3=8125,P (X =300)=C 2325 2×35=36125,P (X =0)=C 13×25×35 2=54125,P (X =-300)=35 3=27125,所以X 的分布列为:X 6003000-300P8125361255412527125所以E (X )=600×8125+300×36125-300×27125=60. 4.体育课程的实施可以有效地促进学生身体的正常发育,提高身体的健康水平.某校对高一年男生进行1000米测试,经对随机抽取的100名学生的成绩数据处理后,得到如下频率分布直方图:(1)从这100名学生中,任意选取2人,求两人测试成绩都低于60分的概率;(2)从该校所有高一年男生中任意选取3人,记70分以上的人数为ξ,求ξ的分布列和期望、方差;【解析】(1)从这100名学生中,任意选取2人,求两人测试成绩都低于60分的概率;(2)从该校所有高一年男生中任意选取3人,记70分以上的人数为ξ,求ξ的分布列和期望、方差;解:(1)设两人测试成绩都低于60分为事件A ,低于60分频率为(0.002+0.001)×10=0.03,所以在100人中有3人低于60分,故P (A )=C 23C 2100=11650,(2)70分以上的频率为1-10×(0.001+0.002+0.017)=0.8,用样本估计总体即100个样本的频率视为高一年男生总体的概率服从二项分布ξ~B (3,0.8),P (ξ=0)=C 03(1-0.8)3=0.008,P (ξ=1)=C 13(1-0.8)2×0.8=0.096,P (ξ=2)=C 23(1-0.8)×0.82=0.384,P (ξ=3)=C 330.83=0.512,故分布列为:ξ0123P0.0080.0960.3840.512E (ξ)=3×0.8=2.4;D (ξ)=3×0.8×(1-0.8)=0.485.2020·浙江台州市·高二期中)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?【答案】【答案】(1)114400;(2)选择第二种方案更合算.【解析】【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A,则P A=C22C11C310=1120,所以两位顾客均享受到免单的概率为P=P A⋅P A=1 14400;(2)若选择方案一,设付款金额为X元,则X可能的取值为0、500、700、1000.P X=0=C22C11C310=1120,P X=500=C22C17C310=7120,P X=700=C11C27C310=740,P X=1000=1-1120-7120-740=91120.故X的分布列为,X05007001000P1120712074091120所以E X=0×1120+500×7120+700×740+1000×91120=910(元).若选择方案二,设摸到红球的个数为Y,付款金额为Z,则Z=1000-200Y,由已知可得Y~B3,3 10,故E Y =3×310=910,所以E Z=E1000-200Y=1000-200E Y=820(元).因为E X>E Z,所以该顾客选择第二种抽奖方案更合算.6.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级标准果优质果精品果礼品果个数10304020(1)将频率视为概率,从这100个水果样本中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率.(结果用分数表示)(2)用水果样本中的样本估计总体,果园老板提出两种购销方案给采购商参考.方案1:不分类卖出,单价为20元/kg.方案2:分类卖出,分类后的水果售价如下:等级标准果优质果精品果礼品果售价(元/kg)16182224从采购商的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果样本中抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取的是精品果的数量,求X的分布列及数学期望.【解析】【答案】解:(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A,则P(A)=20100=15,现有放回地随机抽取4个,设抽到礼品果的个数为Y,则Y~B4,1 5,∴恰好抽到2个礼品果的概率为:P(Y=2)=C241-15215 2=96625;(2)设方案2的单价为ξ,则单价的期望值为:E(ξ)=16×110+18×310+22×410+24×210=20.6,∵E(ξ)>20,∴从采购商的角度考虑,应该采用第一种方案;(3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个,现从中抽取3个,则精品果的数量X所有可能的取值为0,1,2,3,则P(X=0)=C36C310=16;P(X=1)=C26C14C310=12;P(X=2)=C16C24C310=310;P(X=3)=C34C310=130,∴X的分布列为:X0123P1612310130∴E(X)=0×16+1×12+2×310+3×130=65.。
超几何分布与二项分布考题详解
超几何分布与二项分布考题详解专题: 超几何分布与二项分布南海中学20XX届高三理科数学备课组[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N个)内含有两种不同的事物A(M个)、个),任取n个,其中恰有X个A.符合该条件的即可断定是超几何分布,按照超几何分布的分布列)进行处理就可以了. nCN二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A这两个,且事件A发生的概率为p,事件A发生的概率为;②试验可以独立重复地进行,即每次重复做一次试验,事件A发生的概率都是同一常数p,事件A发生的概率为1、(2011•北京海淀一模)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为2.现有10件产品,其中6件是一等品,4件是二等品. 3(Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ) 随机选取3件产品,其中一等品的件数记为X,求X的分布列;(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.【解析】(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A等于事件“选取一等品都通过检测或者是选取二等品通过检测” ……………2分分 1010315(Ⅱ) 由题可知X可能取值为0,1,2,3.分 C102C106故X的分布列为……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分事件B等于事件“随机选取3件产品都是二等品且都不能通过检测”所以,分 3038102、(2011•深圳一模)第26届世界大学生夏季运动会将于20XX年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。
将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.【解析】(Ⅰ)根据茎叶图,有“高个子”12人,“非高个子”18人,............1分用分层抽样的方法,每个人被抽中的概率是, (2)分306第 1 页共 8 页人,“非高个子”有人.…………3分 66用事件A表示“至少有一名“高个子”被选中”,则它的对立事件A表示“没有一名“高个子”被选中”,则.……5分因此,至少有一人是“高个子”的概率是.…6分 101010C5(Ⅱ)依题意,的取值为0,1,2,3.………………7分所以选中的“高个子”有,,,.…………………9分因此,的分布列如下:.…………12分 555555553、(2011•广州二模)某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,,且听觉记忆能力为中等或中等以上的概率为2. 5(Ⅰ)试确定a、b 的值;(Ⅱ)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为求随机变量的分布列. 【解析】(Ⅰ)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A,,解得,从而(Ⅱ)由于从40位学生中任意抽取3位的结果数为C40,其中具有听觉记忆能力或视觉记忆能力偏高或则超常的学生共24人,从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为C24,所以从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视的可能取值为0、1、2、3. 觉记忆能力偏高或超常的概率为03122130C24因为,3333C40247C40247C401235C401235所以的分布列为第 2 页共 8 页4、(2011•北京朝阳一模)在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是2. 3(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?【解析】(Ⅰ)X的所有可能取值为0,1,2,3,4,5,6. 依条件可知X~B(6,所以X所以22或因为X~B(6,),所以即X的数学期望为4. 331224125263221. (Ⅱ)设教师甲在一场比赛中获奖为事件A,则32. 答:教师甲在一场比赛中获奖的概率为81242A4A42C42(Ⅲ)设教师乙在这场比赛中获奖为事件B,则此处为会更好!因为样本空2间基于:已知6个球中恰好投进了4个球)即教师乙在这场比赛中获奖的概率为. 5显然,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等. 580815、(2011•北京石景山一模)为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,)35岁的人数;(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.岁第 3 页共 8 页【解析】(Ⅰ)①处填20,②处填0.35;补全频率分布直方图如图所示. 500名志愿者中年龄在的人数为人.…6分(Ⅱ)用分层抽样的方法,从中选取20人, 则其中“年龄低于30岁”的有5人,“年龄不低于30岁”的有15人.故X的可能取值为0,1,2;2C1521,C2038112C15C515C52,,……11分C2038C2038所以X.…………13分岁6、(2011•北京朝阳二模)为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为11,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响. 610(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X). 【解析】(Ⅰ)记“该产品不能销售”为事件A,则所以,该产品不能销售的概率为11. ……………………………………4分 4(Ⅱ)由已知,可知X的取值为………………………5分1113331,,,, 441284464381分4256所以X的分布列为11分11272781,故均值E(X)为40.……12分25664128642561;L2路线上有B1,B227、(2011•北京丰台二模)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为两个路口,各路口遇到红灯的概率依次为33,. 452(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;..(Ⅱ)若走L2路线,求遇到红灯次数X的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.10【解析】(Ⅰ)设走L1路线最多遇到1次红灯为A事件,则所以走L1路线,最多遇到1次红灯的概率为12311121.…4分 2221. 2(Ⅱ)依题意,X的可能取值为0,1,2.…………5分33933133339,,.…8分45204510454520.………………10分102020201(Ⅲ)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布,,213所以.……12分因为,所以选择L2路线上班最好.……14分228、(2011•北京海淀二模)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望. 【解析】(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,……………………1分1由题意可得每位乘客在第2层下电梯的概率都是,……………………………3分3则分(Ⅱ) X的可能取值为0,1,2,3,4, ………………………7分11由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以分311分414分339、(2011•福建福州3月质检)“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(Ⅰ)求出在1次游戏中玩家甲胜玩家乙的概率;(Ⅱ)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X,求X的分布列及其期望.【解析】(Ⅰ)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头,石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,--------------------3分玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以,在1次游戏中玩家甲胜玩家乙的概率(Ⅱ)X的可能取值分别为0,1,2,3.331.--------------------6分 931,21,32.--------------------10分,32732X1(或:X~B(3,),).-----13分2727272733210、(2011•湖北黄冈3月质检)某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为p2,3在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;(Ⅰ)若1,求该小组在一次检测中荣获“先进和谐组”的概率; 2(Ⅱ)计划在20XX年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数,如果求p2的取值范围. 【解析】(Ⅰ)12111122111---------6分 332233223(Ⅱ)该小组在一次检测中荣获“先进和谐组”的概率8423而,所以由知解得1.-------12分994111、(2011•湖北部分重点中学第二次联考)一射击测试每人射击三次,每击中目标一次记10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡水万卷作业(十)
双曲线的标准方程和几何性质
考试时间:45分钟
姓名:__________班级:__________考号:__________
一、选择题(本大题共12小题,每小题6分,共72分。
在每小题给出的四个选项中,只有一个选项
是符合题目要求的)
1.与双曲线221y x -=有共同的渐近线,
且经过点(-的双曲线方程为( ) A.2241y x -= B.2241y x -= C.2241y x -= D.2241y x -=
2.已知0a b >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 22
22=-b
y a ,1C 与2C 的离心率
之积为
2
3
,则2C 的渐近线方程为( ) (A )02x =±y (B )02=±y x (C )02y x =± (D )0y 2x =±
3.已知F 是双曲线22
221x y a b
-=的右焦点,点,A B 分别在其两条渐近线上,且满足2BF FA =,
0OA AB ⋅=(O 为坐标原点)
,则该双曲线的离心率为( )
B. 2
1
4.已知F 1,F 2分别是双曲线C :22
221(0,0)x y a b a b
-=>>的左右焦点,以F 1F 2为直径的圆与双曲线C
在第二象限的交点为P ,若双曲线的离心率为5,则21cos PF F ∠等于( ) A .
35 B .34 C .45 D .56
5.设21F F ,分别为双曲线)0,0(122
22>>=-b a b
y a x 的左、右焦点,双曲线上存在一点P 使得
,4
9
||||,3||||2121ab PF PF b PF PF =
⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49
D.3 6.已知双曲线22122x y -=的准线过椭圆22
214x y b
+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充
要条件( )
A.11,k ⎡⎤∈-⎢⎥⎣⎦
B.()
11,,2k ⎤⎡
∈-∞-+∞⎥⎢
⎦⎣ C.
k ⎡∈⎢⎣⎦ D. 2,,2k ⎛⎡⎫
∈-∞+∞ ⎪⎢⎝⎦⎣⎭
7.已知双曲线22
122
:1(0,0)x y C a b a b
-=>>的左.右焦点分别为F1.F2抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P 满足
2120PF F F
⋅=,则双曲线C1的离心率为(
)
8.已知双曲线22
21(0)
2x y b b -=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0)P y 在该
双曲线上,则12PF PF ×uuu r uuu r
=( )
A.-12
B.-2 C .0 D. 4 9.已知12,F F 是椭圆和双曲线的公共焦点,P
是他们的一个公共点,且123
F PF π
∠=
,则椭圆和双曲线
的离心率的倒数之和的最大值为( ) C.3 D.2 10.已知双曲线22
221(0,0)x y a b a b
-=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支
有且只有一个交点,则此双曲线离心率的取值范围是( )
A.(1,2)
B.(-1,2)
C.(2,+∞)
D.[2,)+∞
11.如图,21,F F 是椭圆14
:22
1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限
的公共点。
若四边形21BF AF 为矩形,则2C 的离心率是
A. 2
B. 3
C.
23 D.2
6
12.如图,双曲线的中心在坐标原点O ,, A C 分别是双曲线虚轴的上.下顶点,
B 是双曲线的左顶点,
F 为双曲线的左焦点,直线AB 与FC 相交于点D .
若双曲线的离心率为2,则BDF ∠的余弦值
是( )
(A (
B
(C )(D 二、填空题(本大题共4小题,每小题7分,共28分)
13.双曲线
19
1622=-y x 的两条渐近线的方程为 14.设双曲线C 经过点()2,2,且与2
214
y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.
15.设F 是双曲线C :22
221x y a b
-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个
端点,则C 的离心率为 .
16.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。
若点P 到直线0
1=+-y x 的距离大于c 恒成立,则是实数c 的最大值为
衡水万卷作业(十)答案解析
一、选择题 1.【答案】D 2.【答案】A
解析:
(
)222
2
1222222
222
442
44
124344
c a b e a a c a b e a a a b e e a b a b a -==
+==
-∴==∴=∴
=±
故2C
渐进线2
y x =±
即0x =。
3.【答案】A
,∵0OA AB ⋅=,∴∵2BF FA =,∴【思路点拨】先求出直线的纵坐标,利用2BF FA =,4.5.【答案】B
【解析】设12m PF n PF ==,,且m >n ,则m+n=3b ,mn=9
4
ab ,m-n =2a ,222c a b =+,解得4a =3b ,所以令a =3,b =4,c =5,
5
3
c a =,选B 。
6.【答案】A 【解析】由双曲线22122x y -=的准线1x =±过椭圆22
214x y b
+=的焦点,得2413b =-=,则椭圆
方程为22143
x y
+=,当k=0时,2y kx =+与椭圆没有交点;当0k ≠时,将2y kx =+代入到椭圆的方
程,得22(34)160k x kx +
++=,由
2211
(16)16(34)022
k k k ∆=-+⇒-≤≤≤
7.【答案】B
8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】D 12.【答案】C 二、填空题 13.【答案】x y 4
3
±
= 14.【答案】
22
1312
x y -= 2y x =± 15.
【答案】5.
解析:根据对称性,不妨设(
),0F c ,短轴端点为(0,b ),从而可知点(),2c b -在双曲线上,
222241c b c
e a b a
∴-=⇒==考点:双曲线的标准方程及其性质. 16. 【解析】
试题分析:设(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 考点:双曲线渐近线,恒成立转化。