初中数学《三角形的边》教案_答题技巧

合集下载

11.1.1三角形的边(教案)

11.1.1三角形的边(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形边相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过用小棒组成三角形,观察并验证三角形的边的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、边的关系以及在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对三角形边的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解三角形的边这一概念。首先,通过日常生活中的实例导入新课,我发现学生们对三角形的边产生了浓厚的兴趣。他们积极参与讨论,提出了许多有关三角形的问题,这是一个很好的开始。
4.探究三角形的稳定性及其在实际生活中的应用。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.理解并掌握三角形的基本概念和性质,培养几何直观和空间想象能力;
2.能够运用三角形的边的关系进行分析和解决问题,发展逻辑思维和推理能力;
3.通过实际生活中的例子,感受三角形在稳定性方面的应用,增强数学与现实生活的联系,提高数学应用意识;
在学生小组讨论环节,我鼓励他们提出自己的观点和想法,并与其他同学进行交流。从成果分享来看,学生们对于三角形在实际生活中的应用有了更深入的认识。但同时,我也发现部分学生在分析问题时,思路不够清晰。为了提高他们的逻辑思维能力,我计划在今后的教学中,多设计一些类似的活动,让学生们多加练习。
实践活动和小组讨论环节,学生们表现出了很高的积极性。他们通过分组讨论、实验操作等方式,主动探索三角形边的奥秘。这一过程不仅加深了他们对知识的理解,还培养了他们的团队协作能力。但在活动过程中,我也发现有些小组在讨论时偏离了主题,这让我意识到在今后的教学活动中,我需要更好地引导和监督学生,确保讨论的方向正确。

三角形三边关系教案(实用6篇)

三角形三边关系教案(实用6篇)

三角形三边关系教案(实用6篇)三角形三边关系教案第1篇教学目标:1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

3、在探索体验的过程中,能进行简单、有条理的思考。

通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

教学重点:理解、掌握三角形任意两边之和大于第三边的性质。

教学难点:引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。

教学准备:课件、不同长度纸条若干张、实验表格。

教学过程:一、创设情境1、出示情境图。

政府师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。

)师:你觉得老师走哪条路最近呢?为什么?(学生会说出中间这条线路最快,但原因说不清楚。

)师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。

2、大胆猜测师:请同学们观察,在这幅图中,你可以发现几个三角形?(学生边说边用手指出两个三角形)师:在每个三角形里,老师从家直走到学校的路程是三角形的一条边,走旁边的路走过的路程又是这个三角形的什么呢?师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。

师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的?揭示课题:三角形的三边关系。

二、自主探究动手实验:用三张纸条摆一个三角形。

师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)三角形三边关系教案第2篇教学理念:1、尊重学生的认知规律三角形“任意两边的和大于第三边”之内容是人教版新课标实验教材四年级下册的一个内容,它是在熟悉了什么是三角形的基础上进行教学的。

冀教版数学七年级下册9.1《三角形的边》教学设计

冀教版数学七年级下册9.1《三角形的边》教学设计

冀教版数学七年级下册9.1《三角形的边》教学设计一. 教材分析冀教版数学七年级下册9.1《三角形的边》是初中的基础课程,主要让学生了解三角形的三条边之间的关系,掌握三角形的性质。

本节内容主要包括三角形的定义、三角形的边长关系、三角形的分类等。

通过本节课的学习,学生能够理解三角形的基本概念,掌握三角形边长之间的关系,并能运用这些知识解决实际问题。

二. 学情分析七年级的学生已经学习了平面几何的基本知识,对图形的认识有一定的基础。

但是,对于三角形这一概念,他们可能还存在着模糊的认识,需要通过实例来进一步明确。

此外,学生对于数学概念的理解往往停留在表面,需要通过大量的练习来加深对概念的理解。

三. 教学目标1.知识与技能:让学生理解三角形的基本概念,掌握三角形边长之间的关系,能运用这些知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生抽象概括的能力,发展空间观念。

3.情感态度与价值观:让学生在解决实际问题的过程中,体验数学的价值,增强学习的信心,培养合作精神。

四. 教学重难点重点:三角形的基本概念,三角形边长之间的关系。

难点:对三角形概念的理解,三角形边长关系的运用。

五. 教学方法1.情境教学法:通过生活情境,让学生在实际问题中感受三角形的存在,理解三角形的基本概念。

2.活动教学法:让学生通过实际操作,自主探索三角形的性质,培养学生的动手能力。

3.引导发现法:教师引导学生发现问题,分析问题,从而解决问题,培养学生的思维能力。

六. 教学准备1.教具准备:三角板、直尺、圆规等。

2.教学课件:制作课件,展示三角形的图片,动画等。

七. 教学过程1.导入(5分钟)通过展示生活中常见的三角形图片,如自行车的三角形车架、三角形的屋顶等,引导学生发现三角形的存在,激发学生的学习兴趣。

同时,让学生举例说明生活中见到的三角形,进一步理解三角形的概念。

2.呈现(10分钟)利用课件,展示三角形的基本概念,三角形的边长关系。

初中数学《三角形的边》教案

初中数学《三角形的边》教案

教学设计教学过程(一)创设情境引入新课1.人不遵守交通规则,冒着生命危险斜穿马路.你能用所学的数学知识解释这种不文明的行为吗?2.展示学习目标:1、认识三角形的边、内角、顶点,能用符号语言表示三角形。

2、掌握三角形三边的关系定理,能利用定理及其推论进行简单的证明。

3、了解三角形按边分类的原则和结论。

(二) 探究新知(看书第2页,完成下列填空:)1.三角形有关的概念(1)定义:不在一条直线上的条线段相接所组成的图形叫做三角形。

(2)三角形ABC,表示为;读作: ;(3)三角形的元素: 条边、个顶点、个内角.2.三角形的分类⎧⎪⎪⎨⎪⎪⎩三角形按角分三角形三角形⎧⎪⎪⎧⎨⎪⎨⎪⎪⎪⎩⎩三角形三角形按边分三角形三角形即时训练:⑴、图中有几个三角形?用符号表示这些三角形。

⑵、图中以AB为边的三角形有哪些?⑶、图中以E为顶点的三角形有哪些?(4)、图中以D为顶点的三角形有哪些?EDCBA二.合作探究三角形三边的关系活动一:(画一画,量一量,算一算)在练习本上任画一个三角形,用a、bc 表示各边,用刻度尺量出各边的长度,并空:a= a= a= a=b= b= b= b=c= c= c= c= 计算每个三角形的任意两边之和,并与第三边比较,你能得到的结论是通过观察和实验得到的结论并不一定都正确,它的正确性必须经过严格的推理论证活动二:证明三角形三边关系,即:大于第三边已知如图,三角形ABC,求证:AB+AC>BC;AB+BC>AC;AC+BC>AB证明:由“两点之间,线段最短”,得AB+AC BC; 同理,AC+BC AB; AB+BC AC[例1] 下列长度的三条线段能否组成三角形?为什么(1)3,4,8 ()(2)2,5,6 ()(3)2:3:4 ()(4)3,5,8 ()思考:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法?方法小结:比较较短的两边之和与最长边的大小即可。

初中数学《三角形的边》教案

初中数学《三角形的边》教案

初中数学《三角形的边》教案7.1.1 三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P68-69图.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.学生回答:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P71,第一部分至思考,一段课文,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展示议论,并指定回答以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从BCb.从BAC(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+ACBC,可以说这两条路线的长是不一样的.四、议一议1.在用一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?按角分呢?(1)三角形按边分类如下:三角形不等三角形等腰三角形底和腰不等的等腰三角形等边三角形(2)三角形按角分类如下:三角形直角三角形斜三角形锐角三角形钝角三角形六、练一练有三根木棒长分别为3cm、6cm和2cm,用这木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm2cm用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+62,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业1.课本P71练习1.2,P75练习7.1 1.2.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

七年级数学《三角形的边》教案新人教版

七年级数学《三角形的边》教案新人教版

七年级数学《三角形的边》教案新人教版教学目标:1.结合具体事例,进一步认识三角形的概念及基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类。

3.理解三角形任何两边之和大于第三边的性质,并会初步应用这一性质来解决问题。

4.在探索三角形三边关系的过程中让学生经历了观察、实验、推理、交流等活动,培养学生的空间观念和推理能力。

教学重点:三角形三边关系。

教学难点:三角形三边关系。

教学过程:一、创设情景引入新课同学们你们曾经认识过哪些图形?这些图形都可以分割成什么样的基本图形?(学生答:三角形)师说:三角形是简单的平面图形,也是学好其它图形的基础,因此,本章的学习,从三角形有关的线段开始。

今天我们就来研究三角形的边。

(出示课题:三角形三边)二、了解概念加深认识1. 根据你的认识和了解,你能概括出什么样的图形是三角形呢?学生概括,师生共同补充。

总结出:不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.请同学们一起做裁判,看看下列三条线段组的图形中哪些是三角形?(AB BC AC) (AB AC BD) (AB CD EF) (AB BC CD)3.让学生围绕以下几个要点阅读第63页及第64页的前两段。

⑴三角形的记法⑵三角形的顶点、边、角的表示方法⑶三角形有几种分类方法,它们分别是怎样分类的?4.当堂检验自学效果找出图中有几个三角形并用符号表示出来。

⑴△BCD的顶点是-----------⑵以BD为边的三角形有------⑶以AD为边的三角形有------5.了解三角形的按边的相等关系分类及等腰三角形中腰及底边的概念。

三、动手实践,探究新知教科书第64页探究题请学生用学过的知识说明道理师生共同归纳并板书:三角形两边之和大于第三边。

三角形两边之差小于第三边.几何语言:如a、b、c 分别是一个三角形的三条边,就有a+b>c,a+c>b,b+c>a 。

四.尝试练习,体验成功例1.判断下列各组线段中,哪些能组成三角形,哪些不能组成三角形,并说明理由。

《三角形的边》教案

《三角形的边》教案

《三角形的边》教案一、教学目标1、知识与技能目标(1)理解三角形的定义,掌握三角形的表示方法。

(2)掌握三角形三边的关系,能够判断三条线段能否组成三角形。

2、过程与方法目标(1)通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理的表达能力。

(2)经历探究三角形三边关系的过程,体会分类讨论和转化的数学思想。

3、情感态度与价值观目标(1)通过实际问题的解决,感受数学与生活的紧密联系,激发学习数学的兴趣。

(2)在探究活动中,培养合作交流的意识和勇于探索的精神。

二、教学重难点1、教学重点(1)三角形的定义及表示方法。

(2)三角形三边关系的定理及应用。

2、教学难点(1)理解三角形三边关系定理的推导过程。

(2)能灵活运用三角形三边关系定理解决实际问题。

三、教学方法讲授法、讨论法、演示法、探究法四、教学过程1、导入新课通过展示生活中常见的三角形物体,如三角形的屋顶、三角形的交通标志等,引导学生观察并思考三角形的特点,从而引出本节课的主题——三角形的边。

2、讲解三角形的定义(1)结合图形,讲解三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

(2)强调三角形的三个特征:三条线段、不在同一直线上、首尾顺次相接。

3、三角形的表示方法(1)介绍三角形的顶点、边、内角的概念。

(2)以三角形 ABC 为例,讲解三角形的表示方法:可以用三个顶点的大写字母表示,如△ABC;也可以用一个小写字母表示,如△a。

4、探究三角形三边的关系(1)提出问题:是不是任意三条线段都能组成三角形呢?(2)让学生动手操作,准备不同长度的小棒,尝试能否拼成三角形。

(3)引导学生观察、比较、分析,得出结论:三角形任意两边之和大于第三边,任意两边之差小于第三边。

5、三角形三边关系的应用(1)例 1:判断下列长度的三条线段能否组成三角形。

3cm,4cm,5cm2cm,2cm,6cm5cm,6cm,10cm(2)例 2:已知一个三角形的两条边长分别为 3cm 和 7cm,第三边长为整数,求第三边的长度可能是多少?6、课堂练习(1)让学生完成课本上的相关练习题,巩固所学知识。

三角形的边优秀教学设计

三角形的边优秀教学设计

三角形的边教案一.教案背景1.教案内容分析(1)地位和作用:三角形是最简单、最基本的几何图形,在生活中随处可见。

它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。

因此,探索和掌握它的基本性质对学生更好地认识现实世界、发展空间观念和推理能力都是非常重要的。

本节课是认识三角形的开始,介绍了三角形的有关概念,以及三角形三边之间的关系,为后面介绍三角形内角和性质以及全等三角形打下基础。

本节课围绕三角形的概念开展自学,培养学生的自学能力;围绕三角形三边的关系开展探究和同伴交流、发现三角形的有关结论,解决一些实际问题。

为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会;同时也为学生推理意识的建立和对推理过程的理解打下基础,为运用自己的方式有条理地表达推理过程作出铺垫。

(2)重点:三角形三边关系的探究和归纳;难点:三角形三边关系的应用;(设计意图:突破重难点的方法是充分运用多媒体教案手段,设置问题、探究讨论、例题评析、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。

)2.教案目标:(1)知识与技能目标:知道三角形的边,角及三角形的表示法;在具体的情境中认识三角形,并探索出三角形的三边关系,解决一些生活中的实际问题。

(2)过程与方法目标:经历摆三角形,画三角形、测量三角形的三边长度的过程,培养学生自主、合作、探索的学习方式,并锻炼其语言表达能力。

(3)情感与态度目标:联系学生的生活环境,创设情景,使学生通过观察,操作、交流、归纳,获得必需的数学知识,让学生体会用数学思想方法解决生活中的实际问题意义,激发学生的学习兴趣。

二.教案过程1.创设情境,引入新课[活动1]在小学,我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处。

一起来欣赏老师收集的图片(电脑播放:吊桥,吊塔等图片)。

图片欣赏完了,请同学们再举例说明在日常生活中你还见到什么物体上有三角形呢?(设计思路:提醒同学们平时要注意观察生活,生活中很多地方有数学)2.观察图形,自然引入[活动2]观察下面的屋顶框架图(设计思路:从具体事物中,抽象出数学图形,培养数学思想)⑵这些三角形有什么共同的特点?(设计思路:回顾已有知识:边、角、顶点,同时也为引入概念作铺垫)[活动3]三角形的概念:让学生根据上面所找出的特点,描述什么样的图形是三角形。

统编八年级上册数学《三角形的边》精品教案

统编八年级上册数学《三角形的边》精品教案

11.1 与三角形有关的线段1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点) 2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点) 3.三角形在实际生活中的应用.(难点)一、情境导入 出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学. 教师利用多媒体演示三角形的形成过程,让学生观察. 问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A .2个B .3个C .4个D .5个解析:(1)以A 为顶点的锐角三角形有△ABC 、△ADC 共2个;(2)以E 为顶点的锐角三角形有△EDC 共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n 个点,那么就有n (n -1)2条线段,也可以与线段外的一点组成n (n -1)2个三角形.探究点二:三角形的三边关系【类型一】判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是( ) A.3<x<11 B.4<x<7C.-3<x<11 D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.11.1 与三角形有关的线段11.1.1 三角形的边2.用三角形三边不等关系判定三条线段可否组成三角形.教学准备教师:课件、三角尺、屋顶架结构图等。

《三角形的边》教学设计

《三角形的边》教学设计

《三角形的边》教学设计《三角形的边》教学设计一、内容和内容解析1.内容三角形中相关元素的概念、按边分类及三角形的三边关系.2.内容解析三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.本节课的教学重点:三角形中的相关概念和三角形三边关系.本节课的教学难点:三角形的三边关系.二、目标和目标解析1.教学目标(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.(2)理解并且灵活应用三角形三边关系.2.教学目标解析(1)结合具体图形,识三角形的概念及其基本元素.(2)会用符号、字母表示三角形中的相关元素,并会按边接所组成的图形叫做三角形.【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.3.概念辨析,应用巩固如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.1.以AB为一边的三角形有哪些?2.以∠D为一个内角的三角形有哪些?3.以E为一个顶点的三角形有哪些?4.说出ΔBCD的三个角.师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.4.拓广延伸,探究分类我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.三角形按边分类:【设计意图】通过这一活动的设计,提高学生分类讨论和归纳概括的能力,加深学生对三角形按边分类的理解.5.联系实际,突破难点情境引入:如右图三角形中,假设有一只小虫要从点B出发沿着三角形的边爬到点C,它有几条路线可选择?各条路线的长一样吗?师生活动:引导学生讨论分析,得到两条路线:(1)B直接到C即BC;(2)先由B到A再到C即BA+AC.显然,路线(1)中的BC要短一些,即:BC最后,师生共同得到:BC即三角形的两边之和大于第三边.【设计意图】根据“两点之间线段最短”这一几何公理,推理出三角形任意两边之和大于第三边,让学生亲历知识的形成过程,同时加深对“三角形两边之和大于第三边”的理解.6.应用巩固例用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长是4cm的等腰三角形吗?为什么?解:(1)设底边长为xcm,则腰长为2xcm.x+2x+2x=18.解得x=3.6.所以,三边长分别为3.6cm,7.2cm,7.2cm.(2)因为长为4的边可能是腰,也可能是底边,所以需要分情况讨论.如果4cm长的边为底边,设腰长为xcm,则 4+2x=18解得x=7.如果4cm长的边为腰,设底边长为xcm,则 2×4+x=18解得x=10.因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4的等腰三角形.由以上讨论可知,可以围成底边长是4cm的等腰三角形.引导学生通过解决这样的应用问题,特别是(2)中思想方法,让学生学会什么情况下要用到分类讨论的思想,并通过问题的解答过程加深对三角形三边关系理解.【设计意图】设计有一定综合性的题目,考查学生的灵活运用知识的能力,培养学生分类讨论的数学思想,还能突破难点加深学生对三角形三边关系的理解,一举多得.补充说明:应用三角形的三边关系时要灵活应变,最简洁的方法只需判断两小边之和大于最大边即可组成三角形.师生活动:结合具体图形,教师引导学生分析,活学活用.7.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)三角形的定义?三角形的相关元素的概念(边、顶点、角)?三角形的表示方法.(2)三角形按边的分类.(3)三角形三边之间的关系.师生活动:教师引导,学生小结.【设计意图】学生共同总结,互相取长补短,再一次突出本节课的学习重难点.8.布置作业教科书第8页第1,2题.。

三角形的边(教案)

三角形的边(教案)

教师资格证技能考试试讲教案试讲教材:人民教育出版社出版《数学》七年级下册试讲题目: 7.1.1三角形的边内容所属章节:第七章《三角形》中第一节《与三角形有关的线段》第一课时教案设计如下:【教学内容】本节课主要学习三角形的有关概念,三角形的分类以及三角形三边关系。

【教学目标】1、知识与技能目标:理解三角形的基本表示方法及其分类,掌握三角形三条边之间的相互关系,构建空间意识。

2、过程与方法目标:通过对三角形三边关系的探索过程,学生能熟练掌握三角形这个最基本、最简单的几何图形,探索能力得到锻炼与提升。

3、情感态度与价值观目标:掌握一定的推理能力,能运用专业几何语言有条理地表述三角形有关概念,体会三角形在生活中的应用价值,使数学与生活联系起来。

【教学重点】1、掌握三角形三边之间的关系,熟记三角形的基本概念和分类。

2、熟练运用三角形三边关系来解决问题。

【教学难点】通过空间想象、观察、测量、动手操作和讨论的方法感受三角形的知识运用。

【学情分析】七年级的学生已经储备一定的数学知识,有较强的动手操作能力,对生活的观察比较主动,表现出较明显的感知能力。

但学生的记忆模式正处在由具体形象思维过渡到抽象逻辑思维时期,对知识点的识记还不能较好地贯穿与联系。

因此,教师需要在课堂上尽可能地辅助学生主动联系之前所掌握的知识,调动学生的主观能动性,促使学生积极发言,使其思维得到更活跃的锻炼,则学生对知识的记忆也能相应得到巩固。

【教学方法】本节课采用“情境导入——问题探究——小结归纳——巩固练习”的教学方法,“以学生主体、教师主要引导”的思想贯穿整个授课过程。

【教具准备】1、教师准备:生活中应用三角形的相关图片,三角形的分类图,多媒体教学课件、3cm、4cm、8cm、11cm长度的吸管数根。

2、学生准备:草稿纸、数根长吸管、剪刀、直尺。

【教学过程】一、情境导入教师通过电脑放映PPT ,展示现实生活中运用三角形的建筑物等图片。

引导学生观看屏幕展示的内容,引出本课主题:教师提问:同学们,通过对大屏幕的观察,你能找出这些建筑物和国旗的图片有什么共同特征么?学生回答:这些图片上都出现了三角形(板书:三角形)。

初中数学三角形的边教学设计

初中数学三角形的边教学设计

初中数学三角形的边教学设计教学设计:初中数学三角形的边一、教学目标:1.知识目标:了解三角形的边的概念和性质。

2.能力目标:能够根据已知条件推导出三角形边长的关系,并运用相关性质解决实际问题。

3.情感目标:培养学生的数学兴趣和思维逻辑能力。

二、教学内容:三角形的边的概念、性质及其应用。

三、教学重点与难点:1.教学重点:三角形的边的概念、性质的掌握与应用。

2.教学难点:如何灵活运用三角形边的关系解决实际问题。

四、教学方法:1.探究法:通过引导学生观察、发现、总结,培养学生主动思考和解决问题的能力。

2.归纳法:通过教师的引导,让学生一起总结与发现规律。

五、教学过程:步骤一:引入问题(5分钟)教师出示一个三角形问学生:三角形的边有什么特点?引导学生通过观察进行讨论,并归纳出三角形边的概念与性质。

步骤二:学习三角形的边的性质(25分钟)1.学生围绕三角形的边的特点,通过讨论总结出三角形边的性质:任意两边之和大于第三边,任意两边之差小于第三边。

教师在黑板上板书三角形边的性质,并进行解释和示例演示。

2.学生通过观察与计算,分析为什么这样的性质成立。

教师引导学生进行讨论,帮助学生理解。

3.教师出示几道练习题,供学生巩固与练习。

步骤三:三角形边之间的关系(20分钟)1.归纳与引理:教师引导学生回顾之前学习的知识,再次进行讨论总结。

例如,根据三角形的边的性质,可以推导出关于三角形边的引理:“在三角形中,最长边的对边的角最大,最短边的对边的角最小”。

2.提示与引导:教师用图形和实例引导学生分析:如何通过已知两边的关系推导出第三边的大小关系?如何根据已知两角之和推导出第三角的范围?3.练习与应用:教师出示一些相关实际问题,让学生通过已知条件和三角形边的关系来解决问题。

步骤四:拓展与运用(20分钟)1.教师引导学生分析与讨论更复杂的三角形问题,并给出相应的解决方法。

2.学生进行小组讨论,自主解决三角形的相关问题,教师进行点拨和辅导。

初中数学三角形的边 优秀教学设计

初中数学三角形的边 优秀教学设计

初中数学三角形的边优秀教学设计教学目标:1.能够区分三角形的三条边,并确定其中最长的边和最短的边。

2.能够使用比较运算符(大于、小于、等于)比较三角形的边长关系。

3.能够根据三角形边长的关系确定三角形的类型。

教学步骤:1.导入问题教师在黑板上画出一个三角形,让学生从三角形的几点出发,结合图中实际情境,思考三角形的边应该如何称呼。

2.信息输入教师将三角形的边长数据输入到黑板上并让学生与教师进行比较。

学生可以通过观察、比较三角形三边长度的大小关系,找出最短的边、中间长的边和最长的边,并用比较运算符比较三边的长度关系。

例如:三角形的三边分别为3cm,4cm,5cm,最短的边为3cm,中间长的边为4cm,最长的边为5cm。

通过比较可以发现:3<4<5。

3.活动设计接下来,教师让学生以小组形式,用尺规画出一个三角形,并测量出三边长,并用比较运算符比较三边的长度。

学生可通过口头描述,或用比较语句表达三边长度的大小关系。

例如:AB<AC<BC。

4.扩展探究继续以小组形式,让学生用三角板或直尺、圆规、量角器等工具,根据三角形三边长度的大小关系,将三角形分为等腰三角形、等边三角形、直角三角形、任意三角形等,讨论这些三角形的性质和特点。

5.课堂总结教师与学生一起回顾本课所学知识,并对不熟悉的知识点进行强化,例如如何较准测量三角形边长,前后边长相等的三角形是等腰三角形等。

同时,教师鼓励学生将数学知识应用到日常生活中,如何运用三角形的边长关系去求解实际问题。

教学反思:本课采用以学生为中心的教学方式,通过学生自主探究和小组讨论,培养学生的观察能力和团队协作能力,提高学生的参与度和自信心。

同时,通过实际测量和比较,让学生更直观地了解三角形三边长度关系。

整堂课的设计十分严密,既以教师为主,又注重以学生的思考和解决问题的能力出发,不但有符合教材的知识点和学习目标,同时有一个完整的课堂循环流程,既做到了知识的传授,又避免了学生的被动听课,充分调动了学生的积极性和学习热情。

七年级数学下册《三角形的边》教案、教学设计

七年级数学下册《三角形的边》教案、教学设计
6.课后作业,巩固提高
-设计具有挑战性的课后作业,巩固学生对三角形边的认识和应用。
-鼓励学生进行课后探究,发现三角形在其他领域的应用,提高学生的创新能力。
7.教学评价,关注成长
-采用多元化的评价方式,如课堂提问、小组讨论、课后作业等,全面了解学生的学习情况。
-注重过程性评价,关注学生的努力和进步,鼓励学生持续发展。
4.关注学生的情感需求,给予积极的评价和鼓励,提高学生的自信心和自尊心。
二、学情分析
七年级学生经过上半学期的学习,已经具备了一定的几何图形认识和简单计算能力。在此基础上,他们对三角形的边的学习将面临以下挑战:
1.对三角形边的关系理解不够深入,需要通过具体实例和实际操作来加强认识。
2.在解决三角形边长和面积问题时,可能存在计算不准确、推理不严谨的现象,需要教师在教学中予以关注和指导。
3.关注学生的个体差异,鼓励学生发挥自己的优势,充分调动学生的学习积极性。
4.对作业完成情况进行及时评价和反馈,鼓励学生不断进步,提高学习效果。
在教学过程中,注重引导学生从以下几个方面实现教学目标:
1.激发学生兴趣,注重知识引入的趣味性和生活化,使学生在轻松愉快的氛围中学习。
2.注重启发式教学,引导学生主动思考、提出问题、解决问题,培养学生的自主学习能力。
3.结合学生实际,设计不同难度的练习题,使学生在巩固基础知识的同时,提高解决问题的能力。
4.小组合作,提升能力
-将学生分成小组,进行探究性学习,共同解决三角形边长和面积的计算问题。
-教师巡回指导,关注学生讨论过程,及时解答疑问,引导学生运用所学知识解决问题。
5.归纳总结,拓展延伸
-师生共同总结本节课所学知识,强调三角形边的性质和计算方法。

最新版初中数学教案《三角形的边》精品教案(2022年创作)

最新版初中数学教案《三角形的边》精品教案(2022年创作)

第十一章三角形——三角形的有关概念、分类及三边关系一、新课导入1.导入课题:三角形是我们早已熟悉的图形,你能列举出日常生活中形如三角形的物体吗?对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?2.学习目标:〔1〕记住三角形的有关概念.〔2〕会用符号表示三角形,会对三角形进行分类.〔3〕能说出三角形的三边关系,并能运用三角形三边关系解决相关问题.3.学习重、难点:重点:三角形及其有关的概念;三角形的分类.难点:三角形三边关系及应用.二、分层学习1.自学指导:〔1〕自学内容:教材第2页到“思考〞前的内容.〔2〕自学时间:5分钟.〔3〕自学要求:认真阅读课本的内容,划出你认为是重点的语句.〔4〕自学参考提纲:①什么样的图形叫三角形?由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.②对照右边的图形,指出三角形的边、角、顶点.线段AB、BC、CA是三角形的边,点A、B、C是三角形的顶点,∠A,∠B,∠C是三角形的角.③三角形的边有几种表示方法?对照右边的图形写出来.除了②中的表示方法,还可以用a,b,c表示.④用符号语言表述右图的三角形记作:△ABC,读作:三角形ABC.⑤什么是等腰三角形、等边三角形?等腰三角形与等边三角形之间有什么关系?有两条边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.⑥等边三角形是特殊的等腰三角形,用图示的方法表示它们之间的包容关系.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:三角形的知识在小学已经学习过,本节知识是对三角形知识的系统学习,而本层次主要是学习三角形的相关概念及两种特殊三角形的概念,学生能很快接受.②差异指导:a.引导学生理解三角形的概念中“首尾顺次相接〞的意思;b.让学生认识到三角形的表示方法不是单一的.〔2〕生助生:学生围绕各自的学习疑点进行互助交流.4.强化:〔1〕三角形的有关概念及等腰三角形的意义.〔2〕练习:如图,共有6个三角形,其中以AC为边的三角形是△ABC,△AEC,△ADC;以∠B为内角的三角形有ABC,△DBC,△EBC.1.自学指导:〔1〕自学内容:教材第2页“思考〞到第3页“探究〞之前的内容.〔2〕自学时间:5分钟.〔3〕自学方法:思考三角形的分类方法.〔4〕自学参考提纲:①想一想:研究三角形,我们应该从哪些方面着手?可以从角和边这两个方面着手.②试一试:按角分,可以将三角形分为哪几类?按边分,可以将三角形分为哪几类?按角分,可以分为三类:锐角三角形,直角三角形,钝角三角形;按边分可以分为两类:三边都相等的三角形,等腰三角形,而等腰三角形又包括底边和腰不相等的等腰三角形和等边三角形.③议一议:你能用图示的方法表示三角形按边分的情况吗?2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:按角分类学生比较容易理解,按边分类局部学生理解等边三角形为什么放在等腰三角形中时可能会存在一定困难.②差异指导:教师对个别学困生进行点拨指导.〔2〕生助生:学生之间相互讨论交流三角形的分类标准是什么.4.强化:三角形的分类标准,按边的分类.1.自学指导:〔1〕自学内容:探究三角形三边之间的关系.〔2〕自学时间:5分钟.〔3〕自学方法:任意画出一个三角形ABC,思考:从B点到C 点有哪几条路径?并比较各路径的长度.〔4〕探究提纲:①如图,假设一只小虫从点B出发,沿三角形的边爬到点C,有两条路线,路线B→C最近.根据是:两点之间线段最短.于是得出结论三角形两边的和大于第三边.②在三角形ABC中,可以得出:AB+BC>AC,AC+BC>AB,AB+AC>BC.③由②还可以得出:AC-AB<BC;AB-AC<BC;BC-AB<AC.由此又可得出三角形的三边关系的另一个结论是:三角形两边的差小于第三边.④以下长度的三条线段能否构成三角形,为什么?a.3、4、8b.5、6、11c.5、6、10a.不能,因为3+4<8;b.不能,因为5+6=11;c.能,因为5+6>10.⑤动手完成例题,看看你的方法和书上的方法一样吗?谁的更好?⑥思考例题〔2〕中为什么要分情况讨论?2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:这节课中探讨三边之间的不等关系.三边关系中“两边之和大于第三边〞,学生通过观察能直接得出结论;“两边之差小于第三边〞的结论局部学生很难推导.其次,例题的解法比较多,但是学生还不习惯用方程的知识解决几何问题,因此,教师要了解学生的认知困难在哪里.②差异指导:a.引导学生先用观察或测量的方法,归纳三边之间的不等关系,形成系统的知识体系,教师讲解推导过程.b.引导学生自己动手完成例题,然后说说书上这样做的好处,让学生形成用代数方程解决几何问题的意识.〔2〕生助生:学生之间相互交流帮助.4.强化:〔1〕三角形三边不等关系.〔2〕归纳例题的解题要领.〔3〕练习:①一个等腰三角形的周长为24cm,只知其中一边的长为7cm,那么这个等腰三角形的腰长为7 或8.5cm.②以下长度的线段不能组成三角形的是〔A〕A.3,8,4B.4,9,6C.15,20,8D.9,15,8三、评价1.学生自我评价〔围绕三维目标〕:学生总结交流自己的学习收获及存在的困惑.2.教师对学生的评价:〔1〕表现性评价:对学生在学习过程的态度、方法、成果和缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师自我评价〔教学反思〕:教学过程中,强调学生自主探索和合作交流,经历观察、猜想、实验、数据处理、归纳、类比等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.一、根底稳固〔每题10分,共50分〕1.以下说法:①等边三角形是等腰三角形;②三角形按边分类可分为等腰三角形、等边三角形、不等边三角形;③三角形的两边之差大于第三边;④三角形按角分类应分为锐角三角形、直角三角形、钝角三角形. 其中正确的有〔B〕2.如图,以下不等关系成立的是(C)A.PA+PD>AMB.PN+PD>ADC.PN+PM>MND.PA+PM>MN3.以下长度的线段能组成三角形的是〔D〕A.3cm,12cm,8cmB.6cm,8cm,15cmC.2cm,3cm,5cmD.6.3cm,6.3cm,12cm4.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是〔D〕2cm<x<8cm.二、综合应用〔第6题20分,第7题10分,共30分〕6.等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长.解:如果该等腰三角形的腰长为4,三角形的三边长分别为4,4,9.因为4+4<9,此时不能构成三角形.如果该等腰三角形的腰长为9,三角形的三边长分别为4,9,9,所以这个等腰三角形的周长为4+9+9=22.△ABC中,AB=AC,AD=BD=BC,那么图中有3个等腰三角形.三、拓展延伸〔每题10分,共20分〕8.等腰三角形的周长为20厘米.(1)假设腰长是底长的2倍,求各边的长;(2)假设一边长为6厘米,求其它两边的长.解:〔1〕设底边长为x厘米,那么腰长为2x厘米.x+2x+2x=20解得x=4.所以三边长分别为4cm,8cm,8cm.〔2〕如果6厘米长的边为底边,设腰长为x厘米,那么6+2x=20,解得x=7;如果6厘米长的边为腰,设底边长为x厘米,那么2×6+x=20,解得x=8.由以上讨论可知,其他两边的长分别为7厘米,7厘米或6厘米,8厘米.9.观察以下列图形,完成后面的问题.〔1〕第十个图形中共有55个阴影三角形.〔2〕用正整数n表示第n个图形中阴影三角形的个数.(n2+n)解:12第4课时教学内容两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕,关于原点的对称点为P′〔-x,-y〕及其运用.教学目标理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P〔x,y〕关于原点的对称点为P′〔-x,-y〕的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重难点、关键1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕•关于原点的对称点P′〔-x,-y〕及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具、学具准备小黑板、三角尺教学过程一、复习引入〔学生活动〕请同学们完成下面三题.1.点A 和直线L ,如图,请画出点A 关于L 对称的点A ′.2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.〔略〕二、探索新知〔学生活动〕如图,在直角坐标系中,A 〔-3,1〕、B 〔-4,0〕、C 〔0,3〕、•D 〔2,2〕、E 〔3,-3〕、F 〔-2,-2〕,作出A 、B 、C 、D 、E 、F点关于原点O 的中心对称点,并写出它们的坐标,并答复:这些坐标与点的坐标有什么关系?老师点评:画法:〔1〕连结AO 并延长AO〔2〕在射线AO 上截取OA ′=OA〔3〕过A 作AD ′⊥x 轴于D ′点,过A ′作A ′D ″⊥x 轴于点D ″.∵△AD ′O 与△A ′D ″O 全等∴AD ′=A ′D ″,OA=OA ′∴A ′〔3,-1〕同理可得B 、C 、D 、E 、F 这些点关于原点的中心对称点的坐标.〔学生活动〕分组讨论〔每四人一组〕:讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:〔1〕从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.〔2〕坐标符号相反,即设P 〔x ,y 〕关于原点O 的对称点P ′〔-x ,-y 〕.例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A 、点B 关于原点的对称点A ′、B ′即可.解:点P 〔x ,y 〕关于原点的对称点为P ′〔-x ,-y 〕,因此,线段AB 的两个端点A 〔0,-1〕,B 〔3,0〕关于原点的对称点分别为A ′〔1,0〕,B 〔-3,0〕.连结A ′B ′.那么就可得到与线段AB 关于原点对称的线段A ′B ′.〔学生活动〕例2.△ABC ,A 〔1,2〕,B 〔-1,3〕,C 〔-2,4〕利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的图形.老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ABC ,要作出△ABC 关于原点O 的对称三角形,只需作出△ABC 中的A 、B 、C 三点关于原点的对称点,•依次连结,便可得到所求作的△A ′B ′C ′.三、稳固练习教材 练习.四、应用拓展例3.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1.〔1〕在图中画出直线A 1B 1.〔2〕求出线段A 1B 1中点的反比例函数解析式.〔3〕是否存在另一条与直线AB 平行的直线y=kx+b 〔我们发现互相平行的两条直线斜率k 值相等〕它与双曲线只有一个交点,假设存在,求此直线的函数解析式,假设不存在,请说明理由. 两个点关于原点对称时,它们的坐标符号相反, 即点P 〔x ,y 〕关于原点O 的对称点P ′〔-x ,-y 〕.分析:〔1〕只需画出A 、B 两点绕点O 顺时针旋转90°得到的点A 1、B 1,连结A 1B 1. 〔2〕先求出A 1B 1中点的坐标,设反比例函数解析式为y=k x代入求k . 〔3〕要答复是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A 1B 1与双曲线是相切的,只要我们通过A 1B 1的线段作A 1、B 1关于原点的对称点A 2、B 2,连结A 2B 2的直线就是我们所求的直线.解:〔1〕分别作出A 、B 两点绕点O 顺时针旋转90°得到的点A 1〔1,0〕,B 1〔2,0〕,连结A 1B 1,那么直线A 1B 1就是所求的.〔2〕∵A 1B 1的中点坐标是〔1,12〕 设所求的反比例函数为y=k x 那么12=1k ,k=12∴所求的反比例函数解析式为y=12x〔3〕存在.∵设A 1B 1:y=k′x+b′过点A 1〔0,1〕,B 1〔2,0〕∴1`02b k b =⎧⎨=+⎩ ∴`11`2b k =⎧⎪⎨=-⎪⎩ ∴y=-12x+1 把线段A 1B 1作出与它关于原点对称的图形就是我们所求的直线.根据点P 〔x ,y 〕关于原点的对称点P ′〔-x ,-y 〕得:A 1〔0,1〕,B 1〔2,0〕关于原点的对称点分别为A 2〔0,-1〕,B 2〔-2,0〕 ∵A 2B 2:y=kx+b∴102`b k b -=⎧⎨=-+⎩ ∴121k b ⎧=-⎪⎨⎪=-⎩ ∴A 2B 2:y=-12x-1 下面证明y=-12x-1与双曲线y=12x相切 11212y x y x ⎧=--⎪⎪⎨⎪=⎪⎩ -12x-1=12x ⇒x+2=-1x ⇒ x 2+2x+1=0,b 2-4ac=4-4×1×1=0∴直线y=-12x-1与y=12x相切 ∵A 1B 1与A 2B 2的斜率k 相等∴A 2B 2与A 1B 1平行∴A 2B 2:y=-12x-1为所求. 五、归纳小结〔学生总结,老师点评〕本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P 〔x ,y 〕,•关于原点的对称点P ′〔-x ,-y 〕,及其利用这些特点解决一些实际问题.六、布置作业1.教材 复习稳固3、4.2.选用作业设计.作业设计一、选择题1.以下函数中,图象一定关于原点对称的图象是〔〕A .y=1xB .y=2x+1C .y=-2x+1D .以上三种都不可能 2.如图,矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,那么矩形边长中较长的一边等于〔〕A .8cmB .22cmC .24cmD .11cm二、填空题1.如果点P 〔-3,1〕,那么点P 〔-3,1〕关于原点的对称点P ′的坐标是P ′_______.2.写出函数y=-3x 与y=3x具有的一个共同性质________〔用对称的观点写〕. 三、综合提高题1.如图,在平面直角坐标系中,A 〔-3,1〕,B 〔-2,3〕,C 〔0,2〕,画出△ABC•关于x 轴对称的△A ′B ′C ′,再画出△A ′B ′C ′关于y 轴对称的△A ″B ″C ″,那么△A ″B ″C ″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A 〔0,3〕,B 〔3,0〕,现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1.〔1〕在图中画出直线A 1B 1;〔2〕求出过线段A 1B 1中点的反比例函数解析式;〔3〕是否存在另一条与直线A 1B 1平行的直线y=kx+b 〔我们发现互相平行的两条直线斜率k 相等〕它与双曲线只有一个交点,假设存在,求此直线的解析式;假设不存在,请说明不存在的理由.答案:一、1.A 2.B二、1.〔3,-1〕 2.答案不唯一 参考答案:关于原点的中心对称图形.三、1.画图略,△A ″B ″C ″与△ABC 的关系是关于原点对称.2.〔1〕如右图所示,连结A 1B 1;〔2〕A 1B 1中点P 〔1.5,-1.5〕,设反比例函数解析式为y=k x ,那么y=-2.25x . 〔3〕A 1B 1:设y =k 1x+b 1113033b k =-⎧⎨=-⎩1113k b =⎧⎨=-⎩ ∴y=x+3∵与A 1B 1直线平行且与y=2.25x 相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3, 下面证明y=x+3与y=-2.25x 相切,x2+3x+2.25=0,b2-4ac=9-4×1×2.25=0,∴y=x+3与y=-2.25x相切.。

《三角形的边》优秀教案

《三角形的边》优秀教案

以博致雅:“八有效”文化课堂讲学案
5、已知等腰三角形的一边长等于5,周长为16,求另两边长.
6.下列说法:
(1)等边三角形是等腰三角形;
(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;
(3)三角形的两边之差大于第三边;
(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()
A.1个 B.2个 C.3个 D.4个
7.下列长度的各组线段中,能组成三角形的是()
A.3cm,12cm,8cm B.6cm,8cm,15cm
C.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm
8、已知等腰三角形的两边长分别是3和6,则它的周长等于()
A.12 B.12或15
C.15 D.15或18
9下图中有几个三角形?用符号表示这些三角形.
________________________________________________
批改有效。

人教初中数学八上 《三角形的边》教案 (公开课获奖)

人教初中数学八上   《三角形的边》教案 (公开课获奖)

[教学目标]1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程] 一、情景导入三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢? 二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。

三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:〔1〕从B→C,〔2〕从B→A→C;不一样, AB+AC >BC ①;因为两点之间线段最短。

同样地有 AC+BC >AB ② AB+BC >AC ③由式子①②③我们可以知道什么? 三角形的任意两边之和大于第三边. 四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类: 三角形 直角三角形斜三角形锐角三角形钝角三角形 那么三角形按边如何进行分类呢?请你按“有几条边相等〞将三角形分类。

三边都相等的三角形叫做等边三角形;⎧⎨⎩⎧⎨⎩ abc(1)CBA有两条边相等的三角形叫做等腰三角形; 三边都不相等的三角形叫做不等边三角形。

初中数学《三角形的边》教案

初中数学《三角形的边》教案

初中数学《三角形的边》教案7.1.1 三角形的边教学目的1.看法三角形,了解三角形的意义,看法三角形的边、内角、顶点,能用符号言语表示三角形.2.阅历度量三角形边长的实际活动中,了解三角形三边不等的关系.3.懂得判别三条线段可否构成一个三角形的方法,并能运用它处置有关的效果.4.协助先生树立几何知识源于客观实践,用客观实践的观念,激起先生学习的兴味.重点、难点重点:1.对三角形有关概念的了解,能用符号言语表示三条形.2.能从图中识别三角形.3.经过度量三角形的边长的实际活动,从中了解三角形三边间的不等关系.难点:1.在详细的图形中不重复,且不遗漏地识别一切三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学进程一、看一看1.投影:图形见章前P68-69图.教员表达: 三角形是一种最罕见的几何图形之一.(看条件容许, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同窗放映)从古埃及的金字塔到现代的飞机、上天的飞船,从庞大的修建如P68-69的图,到庞大的分子结构, 处处都有三角形的身影.结合以上的实践使先生了解到:我们所研讨的〝三角形〞这个课题来源于实践生活之中.先生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上教员画出以下几个图形.(1)教员引导先生观察上图:区别三条线段能否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB能否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描画三角形的特点:板书:〝不在不时线上三条线段首尾依次相接组成的图形叫做三角形〞.教员提问:上述对三角形的描画中你以为有几个局部要惹起注重.先生回答:a.不在不时线上的三条线段.b.首尾依次相接.二、读一读指点先生阅读课本P71,第一局部至思索,一段课文,并回答以下效果:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母区分表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假定有一只小虫要从B点动身,沿三角形的边爬到C,它有几种路途可以选择?各条路途的长一样吗?同窗们在画图计算的进程中,展现议论,并指定回答以上效果:(1)小虫从B动身沿三角形的边爬到C有如下几条路途.a.从BCb.从BAC(2)从B沿边BC到C的路途长为BC的长.从B沿边BA到A,从A沿边C到C的路途长为BA+AC.经过测量可以说BA+ACBC,可以说这两条路途的长是不一样的.四、议一议1.在用一个三角形中,恣意两边之和与第三边有什么关系?2.在同一个三角形中,恣意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?经过入手实验同窗们可以失掉哪些结论?三角形的恣意两边之和大于第三边;恣意两边之差小于第三边.五、想一想三角形按边分可以,分红几类?按角分呢?(1)三角形按边分类如下:三角形不等三角形等腰三角形底和腰不等的等腰三角形等边三角形(2)三角形按角分类如下:三角形直角三角形斜三角形锐角三角形钝角三角形六、练一练有三根木棒长区分为3cm、6cm和2cm,用这木棒能否围成一个三角形?剖析:(1)三条线段能否构成一个三角形, 关键在捡判定它们能否契合三角形三边的不等关系,契合即可的构成一个三角形,看不契合就不能够构成一个三角形.(2)要让先生明白两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只要2cm,所以不能够用这三条木棒构成一个三角形.错导:∵3cm+6cm2cm用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为恣意两边之和大于第三边,恣意两边之差小于第三边,这里3+62,没错,可6-3不小于2,所以回答这类效果应先确定最大边,然后看小于最少量的两量之和能否大于最大值,大时就可构成,小时就无法构成. 七、忆一忆明天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.经过实际了解三角形的三边不等关系.八、作业1.课本P71练习1.2,P75练习7.1 1.2.2.补充:如图,线段、相交于点,能否确定与的大小,并加以说明.。

初中数学 三角形的边教案

初中数学 三角形的边教案

11.1.1三角形的边教学设计
2、三角形表示:
教师强调,为了简单起见:三角
形用符号“△”表示,如图的三角形
ABC就表示成△ABC,三个顶点为:A,B、
C,三边分别为:AB,BC,AC。

通常顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用。

3、请同学们按要求找出图中的三角形,并用符号表示出来
目标二
通过教师提问引导学生对三角形进行分类。

三角形的分类:
①按三个内角的大小分类:锐角三角形、直角三角形和钝角三角形
②按边进行分类。

不等边三角形
目标三
动手操作:
(1)任意画一个△ABC,从点B出发,沿边到点C,有几条路线?
(2)各条路线的长有什么关系?说明理由.
结论:三角形任意两边之和大于第三边,两边之差小于第三边.
两边之差<第三边<两边之和加深认识,巩固对三角形概念及三角形要素的理解,更加深刻理解三角形表示的必要性.
为学生提供探索与交流的时间与空间,同时注重数学的实际应用,使学生体会到数学的应用价值及其学习数学的重要性、必要性
三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学《三角形的边》教案_答题技巧
7.1.1 三角形的边
教学目标
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.
4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.
重点、难点
重点:
1.对三角形有关概念的了解,能用符号语言表示三条形.
2.能从图中识别三角形.
3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.
难点:
1.在具体的图形中不重复,且不遗漏地识别所有三角形.
2.用三角形三边不等关系判定三条线段可否组成三角形.
教学过程
一、看一看
1.投影:图形见章前P68-69图.
教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.
学生活动:(1)交流在日常生活中所看到的三角形.
(2)选派代表说明三角形的存在于我们的生活之中.
2.板书:在黑板上老师画出以下几个图形.
(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)
(2)观察发现,以上的图,哪些是三角形?
(3)描述三角形的特点:
板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.
教师提问:上述对三角形的描述中你认为有几个部分要引起重视.
学生回答:
a.不在一直线上的三条线段.
b.首尾顺次相接.
二、读一读
指导学生阅读课本P71,第一部分至思考,一段课文,并回答以下问题:
(1)什么叫三角形?
(2)三角形有几条边?有几个内角?有几个顶点?
(3)三角形ABC用符号表示________.
(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC 可用a表示.
三、做一做
画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?
同学们在画图计算的过程中,展示议论,并指定回答以上问题:
(1)小虫从B出发沿三角形的边爬到C有如下几条路线.
a.从BC
b.从BAC
(2)从B沿边BC到C的路线长为BC的长.
从B沿边BA到A,从A沿边C到C的路线长为BA+AC.
经过测量可以说BA+ACBC,可以说这两条路线的长是不一样的.
四、议一议
1.在用一个三角形中,任意两边之和与第三边有什么关系?
2.在同一个三角形中,任意两边之差与第三边有什么关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?
三角形的任意两边之和大于第三边;任意两边之差小于第三边.
五、想一想
三角形按边分可以,分成几类?按角分呢?
(1)三角形按边分类如下:
三角形不等三角形
等腰三角形底和腰不等的等腰三角形
等边三角形
(2)三角形按角分类如下:
三角形直角三角形
斜三角形锐角三角形
钝角三角形
六、练一练
有三根木棒长分别为3cm、6cm和2cm,用这木棒能否围成一个三角形?
分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.
(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.
错导:△3cm+6cm2cm
用3cm、6cm、2cm的木棒可以构成一个三角形.
错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+62,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.
七、忆一忆
今天我们学了哪些内容:
1.三角形的有关概念(边、角、顶点)
2.会用符号表示一个三角形.
3.通过实践了解三角形的三边不等关系.
八、作业
1.课本P71练习1.2,P75练习7.1 1.
2.
2.补充:如图,线段、相交于点,能否确定与的大小,并加以说明.。

相关文档
最新文档