1.1 集合的概念练习题
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)
3.已知 , ,且 ,则( )
A. B. C. D.
答案:B
解析:根据集合的包含关系可求得 的取值范围.
详解:
, ,且 , .
故选:B.
4.能够组成集合的是( )
A.与2非常数接近的全体实数
B.很著名的科学家的全体
C.某教室内的全体桌子
D.与无理数π相差很小的数
答案:C
解析:由集合中元素的特征:确定性、互异性、无序性,进行判断即可
1.1 集合的概念
一、单选题
1.已知集合 ,集合 ,若 ,则实数 的值是( )
A.0B. C.0或 D.0或
答案:C
解析:计算 ,考虑 , , 三种情况,计算得到答案.
详解:
, ,
当 时, , ;当 时, , ;当 时, .
即 或 或 .
故选:C.
2.已知 小于 的自然数},则( )
A. B. C. D.
故答案为:
2.已知 ,则实数 的值是_________.
答案:-1
解析:试题分析:
考点:元素互异性
【名师点睛】对于集合中含有参数的问题,要注意将得到的参数的值代回集合中,对解出的元素进行检验,判断是否满足集合中元素的互异性.
3.已知集合 ,则实数 的取值范围为__________.
答案:
解析:根据题意得 ,解不等式即可得答案
点睛:
本题考查了一元二次不等式的解法,属于基础题.
7.设集合 , ,则下列关系中正确的是( )
A. B. C. D.
答案:C
解析:根据元素与集合之间的关系,即可求出结果.
详解:
由题意可知, ,所以 ,故选C.
点睛:
本题主要考查了元素与集合之间的关系.
1.1集合的基本概念练习题(含答案)
集合的基本概念练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是()A.第一象限的点集B.第二象限的点集C.第三象限的点集D.第四象限的点集【答案】C【分析】利用不等式的性质可得x<0,y<0,进而判断出集合的意义.【详解】由xy>0,x+y<0⇔x<0,y<0,故集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是第三象限的点集.故选:C.2.集合{x∈N|x−2<2}用列举法表示是()A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.{0,1,2,3}【答案】D【分析】解不等式x−2<2,结合列举法可得结果.【详解】{x∈N|x−2<2}={x∈N|x<4}={0,1,2,3}.故选:D.3.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4【答案】A【分析】根据x,y为整数,分析所有可能的情况求解即可【详解】当x=−1时,y2≤2,得y=−1,0,1,当x=0时,y2≤3,得y=−1,0,1当x=1时,y2≤2,得y=−1,0,1即集合A中元素有9个,故选:A.4.已知集合M={x∣x2+x=0},则()A.{0}∈M B.∅∈M C.−1∉M D.−1∈M 【答案】D【分析】先求得集合M,再根据元素与集合的关系,集合与集合的关系可得选项.【详解】因为集合M={x∣x2+x=0}={0,−1},所以−1∈M,故选:D.5.已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}【答案】D【分析】根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可【详解】由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D6.若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}【答案】D【分析】由题中条件可得m2=2或m2=4,解方程即可.【详解】因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.二、多选题7.下列结论不正确的是()A.1∈N B.√2∈Q C.0∈N∗D.−3∈Z【答案】BC【分析】根据N、Q、N∗、Z表示的数集,结合元素与集合之间的关系即可做出判断.【详解】由N表示自然数集,知1∈N,故A正确;由√2为无理数且Q表示有理数集,知√2∉Q,故B错;由N∗表示正整数集,知0∉N∗,故C错;由Z表示整数集,知−3∈Z,故D正确.故选:BC.8.已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆A B.A⊆B C.0∉A D.1∈A【答案】ACD【解析】求出集合A,利用元素与集合、集合与集合的包含关系可得出结论.【详解】∵A={y|y=x2+1}={y|y≥1},B={x|x>2},所以,B⊆A,0∉A,1∈A.故选:ACD.三、填空题9.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]= {5n+k|n∈Z},k=0,1,2,3,4;给出下列四个结论:①2015∈[0];①−3∈[3];①Z=[0]∪[1]∪[2]∪[3]∪[4];①“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.【答案】3【分析】根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断①;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断①;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明①的真假.【详解】①由2015÷5=403,所以2015∈[0],故①正确;①由−3=5×(−1)+2,所以−3∉[3],故①错误;①整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故①正确;①假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,①正确;故答案为:3【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.10.已知集合A={12,a2+4a,a−2},且−3∈A,则a=_________.【答案】-3【分析】由集合A={12,a2+4a,a−2},且−3∈A,得a2+4a=−3或a−2=−3,由此能求出结果.【详解】解:∵集合A={12,a2+4a,a−2},且−3∈A,∴a2+4a=−3或a−2=−3,解得a=−1,或a=−3,当a=−1时,A={12,−3,−3},不合题意,当a=−3时,A={12,−3,−5},符合题意.综上,a=−3.故答案为:−3.11.用∈或∉填空:0________N【答案】∈【解析】可知0是自然数,即可得出.【详解】∵0是自然数,∴0∈N.故答案为:∈.12.集合{2a,a2−a}中实数a的取值范围是________【答案】{a|a≠0且a≠3}【分析】由2a≠a2−a得结论.【详解】由题意2a≠a2−a,a≠0且a≠3,故答案为{a|a≠0且a≠3}.【点睛】本题考查集合中元素的性质:互异性,属于基础题.四、解答题13.已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.14.试分别用描述法和列举法表示下列集合:(1)方程x2−2=0的所有实数根组成的集合A;(2)由大于10且小于20的所有整数组成的集合B.{11,12,13,14,15,16,17,18,19}.【解析】(1)用描述法表示集合A,再解方程求出对应根,用列举法表示即可;(2)用描述法表示集合B,再列举出大于10且小于20的所有整数,用列举法表示集合B即可.【详解】(1)设x∈A,则x是一个实数,且x2−2=0.因此,用描述法表示为A={x∈R|x2−2=0}.方程x2−2=0有两个实数根√2,−√2,因此,用列举法表示为A={√2,−√2}.(2)设x∈B,则x是一个整数,即x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.【点睛】本题主要考查了用描述法以及列举法表示集合,属于基础题.15.已知集合A={x∈R|ax2−3x+1=0,a∈R}.(1)若1∈A,求实数a的值;(2)若集合A中仅含有一个元素,求实数a的值;(3)若集合A中仅含有两个元素,求实数a的取值范围.【答案】(1)a=2(2)a=0或a=94,a≠0}(3){a|a<94【分析】(1)将x=1代入方程求解即可;(2)分a=0、a≠0两种情况求解即可;(3)由条件可得a≠0,且Δ=(−3)2−4a>0,解出即可.(1)①1∈A,①a×12−3×1+1=0,①a=2;(2)当a=0时,x=13,符合题意;当a≠0时,Δ=(−3)2−4a=0,①a=94.综上,a=0或a=94;(3)集合A中含有两个元素,即关于x的方程ax2−3x+1=0有两个不相等的实数解,①a≠0,且Δ=(−3)2−4a>0,解得a<94且a≠0,①实数a的取值范围为{a|a<94,a≠0}.16.用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.【答案】(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}【分析】(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}。
1.1集合的概念基础练习题
11.已知集合 ,若 ,则 __________.
12.被3除余1的所有整数组成的集合用描述法表示为_________.
13.用描述法表示下列集合:所有被3整除的整数________.
14.已知集合 ,若 ,则 ______.
15.集合 用列举法表示为__________.
16.用列举法表示集合 =_________.
【分析】
表示出集合A中的元素,即可得出个数.
【详解】
,
集合A中有2个元素.
故选:B.
【点睛】
本题考查集合元素个数的求解,属于简单题.
9.D
【分析】
由 或 解出 的值,再验证集合中元素的互异性.
【详解】
当 时,可得 或 ,
若 ,则 ,不合题意;
若 ,则 , 符合题意;
当 ,可得 或 ,
若 ,则 ,不合题意;
15. .
【分析】
由集合的描述得到集合元素,应用列举法写出集合即可.
【详解】
由集合描述有: ,得 ,
∴集合为 .
故答案为: .
【点睛】
本题考查了集合的表示,由集合的描述法得到集合元素,列举法写出集合,属于简单题.
16.
【分析】
根据 ,采用列举法求解.
故选:C.
【点睛】
本题考查了元素和集合的关系,考查了 等符号的含义,考查了概念的理解记忆,属于基础题.
11.1或2;
【分析】
由 ,可得 或 ,注意要满足集合元素的互异性,即可得解.
【详解】
由 , ,
若 , , ,
此时 ,符合题意;
若 ,则 , ,
当 时, ,不符题意,
当 时, ,符合题意,
高一数学1.1集合的概念练习
1.1集合的概念练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}212,4,2A a a a =+-,3A -∈,则=a ( )A .1-B .3-或1C .3D .3-2.已知集合{}(,),,2M x y x y N x y *=∈+≤,则M 中元素的个数为( ) A .1 B .2 C .3 D .03.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .数学必修第一册课本中所有的难题4.设集合{}21,25A a a =--+,若4∈A ,则a =( ) A .-1 B .0 C .1 D .35.下列各组集合表示同一集合的是( )A .{}{}(3,2),(2,3)M N ==B .{}{}(,)1,1M x y x y N y x y =+==+=C .{}4,5M =,{}5,4N =D .{}{}1,2,(1,2)M N ==二、多选题6.下列结论不正确的是( )A .1N ∈B QC .*0N ∈D .3Z -∈ 7.已知集合{2M =-,2334x x +-,24}x x +-,若2M ∈,则满足条件的实数x 可能为( )A .2B .2-C .3-D .1三、填空题8.已知集合{}22,2A a a a =++,若3A ∈,求实数a 的值_______9.集合{}2320,M x ax x a =--=∈R 中只有一个元素,则实数a 的值是___________.10.若集合{}220x ax x ++=有且只有一个元素,则实数a 的取值集合为______________.11.已知集合32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣,用列举法表示集合A ,则A =__________.四、解答题12.已知集合{}2320A x x x =-+=,集合()(){}222150B x x a x a =+++-=. (1)若{}2A B ⋂=,求实数a 的值.(2)若A B A ⋃=,求实数a 的取值范围.(3)若U =R ,A B A =,求实数a 的取值范围.13.已知全集{}4U x x =≤,集合{}23A x x =-<<,{}32B x x =-≤≤,求(1)()U A B(2)()U A B .参考答案:1.D【分析】依题意可得234a a -=+或32a -=-,分别求出a 的值,再代入检验是否满足集合元素的互异性,即可得解.【详解】∈3A -∈,∈234a a -=+或32a -=-.若234a a -=+,解得1a =-或3a =-.当1a =-时,2423a a a +=-=-,不满足集合中元素的互异性,故舍去;当3a =-时,集合{}12,3,5A =--,满足题意,故3a =-成立.若32a -=-,解得1a =-,由上述讨论可知,不满足题意,故舍去.综上所述,3a =-.故选:D .2.A【分析】由列举法表示M 即可求解【详解】集合{}(,),,2{(1,1)}M x y x y N x y *=∈+≤=∣, M 中只有1个元素.故选:A3.C【分析】根据集合的定义可直接确定结果. 【详解】构成集合的元素具有确定性,选项ABD 中没有明确标准,不符合集合定义,选项C 正确.故选:C.4.C【分析】由4∈A ,可得2254a a -+=,解方程即可得到答案.【详解】因为4∈A ,所以2254a a -+=,解得1a =.故选:C5.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A :集合{}(3,2)M =表示含有点()3,2的集合,{}(2,3)N =表示含有点()2,3的集合,显然不是同一集合,故A 错误;对于B :集合M 表示的是直线1x y +=上的点组成的集合,集合N R =为数集,故B 错误;对于C :集合M 、N 均表示含有4,5两个元素组成的集合,故是同一集合,故C 正确; 对于D :集合M 表示的是数集,集合N 为点集,故D 错误;故选:C6.BC【分析】根据N 、Q 、N *、Z 表示的数集,结合元素与集合之间的关系即可做出判断.【详解】由N 表示自然数集,知1N ∈,故A 正确;Q Q ,故B 错;由N *表示正整数集,知*0N ∉,故C 错;由Z 表示整数集,知3Z -∈,故D 正确.故选:BC.7.AC【解析】根据集合元素的互异性2M ∈必有22334x x =+-或224x x =+-,解出后根据元素的互异性进行验证即可.【详解】解:由题意得,22334x x =+-或224x x =+-,若22334x x =+-,即220x x +-=,2x ∴=-或1x =,检验:当2x =-时,242x x +-=-,与元素互异性矛盾,舍去;当1x =时,242x x +-=-,与元素互异性矛盾,舍去.若224x x =+-,即260x x +-=,2x ∴=或3x =-,经验证2x =或3x =-为满足条件的实数x .故选:AC .【点睛】本题主要考查集合中元素的互异性,属于基础题.8.32-## 1.5- 【分析】根据题意,可得23a +=或223+=a a ,然后根据结果进行验证即可.【详解】由题可知:集合{}22,2A a a a =++,3A ∈所以23a +=或223+=a a ,则1a =或32a =-当1a =时,222a a a +=+,不符合集合元素的互异性, 当32a =-时,1,32⎧⎫=⎨⎬⎩⎭A ,符合题意 所以32a =-, 故答案为:32- 9.0或98- 【分析】根据a 的取值分类讨论可得.【详解】0a =时,2{|320}{}3M x x =--==-,满足题意; 0a ≠时,980a ∆=+=,98a =-. 综上,0a =或98-. 故答案为:0或98-. 10.10,8⎧⎫⎨⎬⎩⎭##1,08⎧⎫⎨⎬⎩⎭【分析】分0a =、0a ≠两种情况讨论,结合已知条件可得出关于a 的等式,进而可求得实数a 的取值.【详解】当0a =时,则有{}{}{}220202x ax x x x ++==+==-,合乎题意;当0a ≠时,由题意可得180a ∆=-=,解得18a =. 综上所述,实数a 的取值集合为10,8⎧⎫⎨⎬⎩⎭. 故答案为:10,8⎧⎫⎨⎬⎩⎭. 11.{1,1,3,5}-【分析】根据集合的描述法即可求解. 【详解】32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣, {1,1,3,5}A ∴=-故答案为:{1,1,3,5}-12.(1)1a =-或3-;(2)(],3-∞-;(3)()()(),33,1313,1-∞-------(()1,113,---++∞.【分析】(1)将2x =代入集合B 中,解方程可求得a 的值,验算可得结果; (2)由A B A ⋃=知B A ⊆,由此得到B 所有可能的结果,由此分类讨论B 每种可能性即可得到结果;(3)由A B A =知A B =∅,分别在B =∅,1B ∈和2B ∈三种情况下确定A B =∅的解,综合可得结果. 【详解】{}()(){}{}23201201,2A x x x x x x =-+==--==(1){}2A B =,()244150a a ∴+++-=,即2430a a ++=,解得:1a =-或3-;当1a =-时,{}{}2402,2B x x =-==-,满足{}2A B ⋂=;当3a =-时,{}{}24402B x x x =-+==,满足{}2A B ⋂=;综上所述:1a =-或3-;(2)A B A =,B A ∴⊆,B ∴可能的结果为∅,{}1,{}2,{}1,2;∈当B =∅时,()()2241450a a ∆=+--<,解得:3a <-;∈当{}1B =时,()()212150a a +++-=,解得:1=-a若1a =-{}{}2101,1B x x =-+==,不满足B A ⊆;若1a =-{}{}2101B x x =+-==--,不满足B A ⊆; ∈当{}2B =时,()()244150a a +++-=,解得:1a =-或3-;若1a =-,则{}{}2402,2B x x =-==-,不满足B A ⊆;若3a =-,则{}{}24402B x x x =-+==,满足B A ⊆;∈当{}1,2B =时,()21221125a a ⎧+=-+⎨⨯=-⎩,方程组无解; 综上所述:实数a 的取值范围为(],3-∞-; (3)A B A =,A B ∴⋂=∅;当B =∅时,由(2)知:3a <-,满足A B =∅;当1B ∈时,由(2)知:1=-±a A B =∅,则1≠-a 当2B ∈时,由(2)知:1a =-或3-;若A B =∅,则1a ≠-且3a ≠-;综上所述:实数a 的取值范围为()()(),33,1313,1-∞-------(()1,113,---++∞. 13.(1){|2x x ≤或}34x ≤≤;(2){|3x x <-或34}x ≤≤.【分析】根据集合交集和补集,并集的定义分别进行计算即可.【详解】(1){|2U A x x =≤-或}34x ≤≤,{()|2U A B x x ⋃=≤或}34x ≤≤,.(2){|33}A B x x =-< (){|3U A B x x =<-或34}x .。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(60)
1.1 集合的概念一、单选题1.下列叙述正确的是( ).A .方程2210x x -+=的根构成的集合为{}1,1-B .{}22401030x x R x x R x ⎧⎫+>⎧∈+==∈⎨⎨⎬+<⎩⎩⎭C .集合(){,5M x y x y =+=且}20x y -=表示的集合是{}2,3D .集合{}1,2,3与集合{}3,2,1是不同的集合答案:B解析:解出2210x x -+=、520x y x y +=⎧⎨-=⎩可判断AC 的正误,由集合的无序性可得D 的正误,{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,可得B 的正误. 详解:方程2210x x -+=的根为1x =,故A 错误;{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,故B 正确; 由520x y x y +=⎧⎨-=⎩可解得53103x y ⎧=⎪⎪⎨⎪=⎪⎩,故C 错误; 集合{}1,2,3与集合{}3,2,1是相同的集合,故D 错误故选:B2.定义集合运算:{|()(),A B z z x y x y ⊗==+⨯-,}x A y B ∈∈,设A =,{1B =,则集合A B ⊗的真子集个数为A .8B .7C .16D .15答案:B详解:由题意A =,{B =,则A B ⊗有)))111,0,112,⨯=⨯==1= 四种结果,由集合中元素的互异性,则集合A B ⊗由3个元素,故集合A B ⊗的真子集个数为3217-=个,故选B3.已知M =x|x≤5,x∈R},a =b ( )A .a∈M,b∈MB .a∈M,b MC .a M ,b∈MD .a M ,b M答案:B解析:∵5a =,5b ,{|5}M x x x R =≤∈,,∴ a M b M ∈∉,,故选B. 4.设集合A={1,4,5},若a∈A,5-a∈A,那么a 的值为A .1B .4C .1或4D .0 答案:C详解:试题分析:当1a =时54a A -=∈成立;当4a =时51a A -=∈成立;当5a =时50a A -=∉,舍. 所以1a =或4a =.故C 正确.考点:元素与集合间的关系.5.已知集合A =3|,2x x Z Z x 且⎧⎫∈∈⎨⎬-⎩⎭,则集合A 中的元素个数为( ) A .2B .3C .4D .5 答案:C详解: 试题分析:32Z x ∈-,2x -的取值有3-、1-、1、3,又x Z ∈, x ∴值分别为5、3、1、1-,故集合A 中的元素个数为4,故选C.考点:数的整除性6.集合(x ,y)|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y)C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图像上的所有点组成的集合答案:D解析:由集合中的元素的表示法可知集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.详解:集合(x ,y )|y=2x ﹣1}中的元素为有序实数对(x ,y ),表示点,所以集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.故选D .点睛:本题考查了集合的分类,考查了集合中的元素,解答的关键是明确(x ,y )表示点,是基础题.7.已知集合{}1,2,3A =,则下列说法正确的是( )A .2A ∈B .2A ⊆C .2A ∉D .∅=A答案:A解析:根据元素与集合之间关系,可直接得出结果.详解:因为集合{}1,2,3A =,所以2A ∈.故选:A点睛:本题主要考查元素与集合之间关系的判断,熟记元素与集合之间的关系即可,属于基础题型.8.集合8,,3M y y x N y N x ⎧⎫==∈∈⎨⎬+⎩⎭的元素个数是 A .2B .4C .6D .8答案:A 解析:根据题中给出的条件,x y N ∈,分别从最小的自然数0开始给x 代值,求出相应的y 的值,直到得出的1y <为止,求出y N ∈的个数.详解: 因为8|,,3M y y x y N x ⎧⎫==∈⎨⎬+⎩⎭, 所以:当0x =时,83y N =∈/; 当x 1=时,8213y N ==∈+; 当x 2=时,88235y N ==∈/+; 当3x =时,84333y N ==∈/+; 当x 4=时,88437y N ==∈/+;当5x =时,8153y N ==∈+; 当6x ≥时,813y x =<+,且0y ≠,所以y N ∉. 综上,8|,,{2,1}3M y y x y N x ⎧⎫==∈=⎨⎬+⎩⎭,元素个数是2个. 故选A.点睛:本题考查了集合中元素的个数,关键根据,x y N ∈用赋值法分析和解决问题,属于基础题.9.下面对集合1,5,9,13,17}用描述法表示,其中正确的是( )A .x|x 是小于18的正奇数}B .x|x =4s +1,s∈N,且s <5}C .x|x =4t -3,t∈N,且t<5}D .x|x =4s -3,s∈N ,且s<6}答案:B解析:根据描述法的定义,依次判断选项即可.详解:A :集合含有元素3,故A 错误;B :当s 01234=、、、、时,1591317x =、、、、,故B 正确; C :当0t =时,3x =-,故C 错误;D :当0s =时,3x =-,故D 错误.故选:B二、填空题1.已知{}20,,A a a =,若1A ∈,则实数a 的值是______.答案:1-解析:利用元素和集合的关系,以及集合的互异性可求解.详解:1A ∈,1a 或21a =,当1a =时,21a =,则{0,1,1}A =,不满足集合的互异性,舍去.当21a =时,解得:1a =-,1a =(舍去),此时{0,1,1}A =-符合题意.故答案为:1-2.已知集合123A x N y Z x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 用列举法表示为__________________答案:{}0,1,3,9解析:由y Z ∈,x ∈N ,可得3x +是12不小于3的因数,列出因数,求解即可详解:由x ∈N ,y Z ∈,则3x +是12不小于3的因数,则3x +可为3,4,6,12,即x 为0,1,3,9, 则集合A 用列举法表示为{}0,1,3,9点睛:本题考查描述法与列举法的转换,列举法表示集合,数集的应用3.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.4.集合[]{}cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示)答案:2,33ππ⎧⎫⎨⎬⎩⎭ 解析:由已知得cos 2x ππ=,或cos 2x ππ=-,由此能得出结果. 详解: 集合[]{}cos(cos )0,0,x x x ππ=∈,cos 2x ππ∴=,或cos 2x ππ=-, 1cos 2x ∴=或1cos 2x =-, 3x π∴=或23x π=. []{}2cos(cos )0,0,,33x x x ππππ⎧⎫∴=∈=⎨⎬⎩⎭. 故答案为:2,33ππ⎧⎫⎨⎬⎩⎭. 点睛:本题主要考查的是三角函数以及列举法表示集合,是基础题.5.用描述法表示图中的阴影部分(包括边界)___________.答案:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭ 解析:根据阴影部分所在象限,确定xy 的范围,再结合图像,判断出,x y 的取值范围,由此求得可以表示出阴影部分的集合.详解:由于阴影部分所在象限为第一、三象限,且在,x y 轴上都有点,故0xy ≥;根据图像可知211,132x y -≤≤-≤≤,所以描述法表示图中的阴影部分(包括边界)为(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 故填:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 点睛:本小题主要考查用集合表示区域,考查数形结合的数学思想方法,属于基础题.三、解答题1.已知53,⎛ ⎝⎭和3)都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.2.若a ,b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭. 求:(1)a b +;(2)20222019a b +.答案:(1) 0; (2) 2;解析:(1)根据{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭可得出0a b +=, (2)由(1)得=-a b ,即1b a=-,根据元素的互异性可得1a =-, 1b =,代入20222019a b +计算即可. 详解: (1)根据元素的互异性,得0a b +=或0a =,若0a =,则b a无意义,故0a b +=; (2) 由(1)得=-a b ,即1b a =-,据元素的互异性可得:1b a a ==-,1b =, ∴()2022202220192019112a b +=-+=.点睛:本题考查集合中元素的互异性,属于基础题.3.在平面直角坐标系中,O 为坐标原点,对任意的点(),P x y ,定义OP x y =+,任取点()()1122,,,A x y B x y ,记()()''1221,,,A x y B x y ,若此时2222''OA OB OA OB +≥+成立,则称点,A B 相关.(1)分别判断下面各组中两点是否相关,并说明理由.①()()2,1,3,2A B -;②()()4,3,2,4C D -.(2)给定*N ,3n n ∈≥,点集(){},,,,n x y n x n n y n x y Z Ω=-≤≤-≤≤∈,求集合n Ω中与点()1,1A 相关的点的个数.答案:(1)见解析(2)245n +解析:(1)根据所给定义,代入不等式化简变形可得对应坐标满足的关系,即可判断所给两个点的坐标是否符合定义要求.(2)根据所给点集,依次判断在四个象限内满足的点个数,坐标轴上及原点的个数,即可求得集合n Ω中与点(1,1)A 相关的点的个数;详解:若点()11,A x y ,()22,B x y 相关,则()12,A x y ',()21,B x y ,而OP x y =+不妨设11220,0,0,0x y x y ≥≥≥≥ 则由定义2222OA OB OA OB ''+≥+可知()()()()222211221221x y x y x y x y +++≥+++ 化简变形可得()()12120x x y y --≥(1)对于①(2,1)A -,(3,2)B ;对应坐标取绝对值,代入可知(23)(12)0--≥成立,因此相关;②对应坐标取绝对值,代入可知(42)(34)0--<,因此不相关.(2)在第一象限内,(1)(1)0x y --≥,可知1x n ≤≤且1y n ≤≤,有2n 个点;同理可知,在第二象限、第三象限、第四象限也各有2n 个点.在x 轴正半轴上,点()1,0满足条件;在x 轴负半轴上,点1,0满足条件;在y 轴正半轴上,点0,1满足条件;在y 轴负半轴上,点0,1满足条件;原点()0,0满足条件;因此集合n Ω中共有245n +个点与点(1,1)A 相关.点睛:本题考查了集合中新定义的应用,对题意的理解与分析能力的要求较高,属于难题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(27)
1.1 集合的概念一、单选题1.下列各组中的M 、P 表示同一集合的个数是( )①{}3,1M =-,{(3,1)}P =-;②{(3,1)}M =,{(1,3)}P =;③{}21M y y x ==-∣,{}1P t t =∣④{}21M y y x ==-∣,{}2(,)1P x y y x ==-∣.A .0B .1C .2D .32.下列给出的对象中,能组成集合的是( )A .一切很大数B .方程210x -=的实数根C .漂亮的小女孩D .好心人3.集合{}2*|70,A x x x x N =-<∈,则*6|,B y N y A y ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为A .1个B .2个C .3个D .4个4.由实数,,|x x x -) A .2 B .3 C .4 D .55.下列集合中,表示方程组31x y x y +=⎧⎨-=⎩的解集的是A .{}2,1B .{}2,1x y ==C .(){}2,1D .(){}1,26.一次函数2y x =+和28y x =-+图象的交点组成的集合是( )A .{2,4}B .{2,4}x y ==C .(2,4)D .{(2,4)}7.下列集合恰有2个元素的集合是 ( )A .2{0}x x -=B .2{|}x y x x =-C .2{|0}y y y -=D .2{|}y y x x =-8.集合A =1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①x|x=2N ±1,N∈N};②x|x=(﹣1)N (2N ﹣1),N∈N};③x|x=(﹣1)N (2N+1),N∈N}.A .③B .①③C .②③D .①②③9.若{}21,a a ∈,则a 的值为( )A .0B .1-C .1D .±1二、多选题1.设集合{|M x x a ==,其中,}a b R ∈,则下列为集合M 元素的是( )A .0B 1C .3 D2.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5|Z k n k n =+∈,0k =,1,2,3,4,给出如下四个结论,其中,正确结论的是( )A .[]20211∈B .[]33-∈C .若整数a ,b 属于同一“类”,则[]0a b -∈D .若[]0a b -∈,则整数a ,b 属于同一“类”3.(多选题)大于4的所有奇数构成的集合可用描述法表示为( )A .x|x =2k -1,k∈N}B .x|x =2k +1,k∈N,k≥2}C .x|x =2k +3,k∈N}D .x|x =2k +5,k∈N}4.下列说法中不正确的是( )A .0与{0}表示同一个集合;B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};C .方程2(1)(2)0x x --=的所有解组成的集合可表示为{1,1,2};D .集合{45}x x <<∣可以用列举法表示. 5.下列结论不正确的是( )A .1N ∈B QC .*0N ∈D .3Z -∈三、填空题1.已知集合|1k M x x ⎧⎫=>-⎨⎬⎩⎭,且3M -∈,则k 的取值范围是____________. 2.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A,则实数m =________.3.已知集合{}=2,0,1,9A ,{}2|2,2B k k R k A k A =∈-∈-∉,,则集合B 中所有的元素之和为___________.4.已知集合{}0,1A =,{}2,2B a a =,其中a R ∈,我们把集合{}1212,,x x x x x A x B =+∈∈记作A B *,若集合A B *中的最大元素是21a +,则a 的取值范围是________.5.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国______________A ,美国__________A ,印度____________A ,英国_____________A ;(2)若2|A x x x ,则-1_____________A ;(3)若{}2|60B x x x =+-=,则3________________B ;(4)若{|110}C x x =∈N ,则8_______________C ,9.1____________C.四、解答题1.已知集合A =x∈R|ax 2+2x +1=0},其中a∈R.若1是集合A 中的一个元素,请用列举法表示集合A.2.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A ,B 等距离的点;(2)高中学生中的游泳能手.3.已知等差数列{}n a 的公差(]0,d π∈,数列{}n b 满足()sin n n b a =,集合{}|,n S x x b n N *==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n Tn b b +=,T 是不超过7的正整数,求T 的所有可能的值.参考答案一、单选题1.B解析:利用集合相等的概念判断.详解:在①中,}1{3M =-,是数集,{(3,1)}P =-是点集,二者不是同一集合,故①错误; 在②中,{(3,1)}M =,{(1,3)}P =表示的不是同一个点,故②错误;在③中,{}21[1,)M yy x ==-=-∞∣,{1}[1,)P t t x ==-=-+∞∣,二者表示同一集合,故③正确; 在④中,{}21M yy x ==-∣表示数集,{}2(,)1P x y y x ==-∣表示点集,故④错误. 故选:B.2.B解析:根据集合的概念,逐项判断,即可得出结果.详解:A 选项,很大数没有明确的定义,即元素不确定,不能构成集合;排除A ;B 选项,方程210x -=的实数根为±1,能构成集合;B 正确;C 选项,漂亮没有明确的定义,即元素不确定,不能构成集合,排除C ;D 选项,好心人没有明确的定义,即元素不确定,不能构成集合,排除D.故选:B.3.D详解:试题分析:,,所以集合中的元素个数为4个,故选D.考点:集合的表示4.A解析:分0x =,0x >,0x <三种情况讨论22,,|,x x x x x --素个数,即可求得集合中元素的最多个数.详解:||x ,||x =-,故当0x =时,这几个实数均为0;当0x >时,它们分别是,,,,x x x x x --;当0x <时,它们分别是,,,,x x x x x ---.最多表示2个不同的数,故集合中的元素最多为2个.故选:A点睛:本题考查集合的互异性,集合中元素的个数,属于基础题.5.C解析:解出方程组,方程组的解构成的集合,即有序数对构成的集合.详解:解方程组31x y x y +=⎧⎨-=⎩,得21x y =⎧⎨=⎩即(2,1), 所以方程组的解集(){}2,1.故选:C点睛:此题考查集合元素的辨析,正确解出方程组,方程组的解是有序数对,其解集是由有序数对构成的集合,容易出现概念混淆,把解集的形式弄错.6.D解析:联立两函数方程求出交点,用点的集合表示即可.详解:因为22482y x x y y x =+=⎧⎧⇒⎨⎨==-+⎩⎩, 所以两函数图象的交点组成的集合是{(2,4)}.故选:D点睛:本题考查用集合表示方程组的解,在表示点的集合时要采用合理的表示方法,属于基础题.7.C解析:化简集合即得结果详解:2{0}x x -=不是集合;2{|}x y x x R =-=,2{|0}{0,1}y y y -==,21{|}[,)4y y x x =-=-+∞,所以选C.点睛:本题考查描述法表示集合的含义,考查基本分析判定能力,属基础题.8.A解析:取N =0,1,2分别验证三个集合即可.详解:解:取N =0,x|x =2N ±1,N∈N}=0,1},故①错误;取N =0,x|x =(﹣1)N (2N ﹣1),N∈N}=﹣1},故②错误;取N =0,x|x =(﹣1)N (2N+1),N∈N}=1},取N =1,x|x =(﹣1)N (2N+1),N∈N}=﹣3},取N =2,x|x =(﹣1)N (2N+1),N∈N}=5},……,故③正确;故选:A .9.B解析:分1a =和21a =两种情况讨论,即得解.详解:若1a =,则2a a =,不合题意,舍去;若21a =,则1a =±,易知当1a =-时满足题意.故选:B点睛:本题主要考查元素与集合的关系,意在考查学生对该知识的理解掌握水平.二、多选题1.ABCD解析:根据集合M 表示的意义,分别验证即可;详解:解:因为{|M x x a ==,其中,}a b R ∈当00a b =⎧⎨=⎩时,0x =,所以0M ∈当11a b =-⎧⎨=⎩时,1x =1M ∈ 当30a b =⎧⎨=⎩时,3x =,所以3M ∈当1727a b ⎧=-⎪⎪⎨⎪=⎪⎩时,177x =-+=M 故选:ABCD点睛:本题考查元素与集合的关系,属于基础题.2.ACD解析:根据“类”的定义逐一判断四个选项的正误即可得正确选项.详解:对于A :因为202140451=⨯+,所以[]20211∈,故选项A 正确;对于B :因为()3512-=⨯-+,所以[]32-∈,故选项B 错误;对于C :若a 与b 属于同一类,则15a n k =+,25b n k =+,()[]1250(a b n n -=-∈其中1n ,2Z)n ∈,故选项C 正确;对于D :若[]0a b -∈,设5,Z a b n n -=∈,即5,Z a n b n =+∈,不妨令5,Z b m k m =+∈,0k =,1,2,3,4,则()555a m n k m n k =++=++,m ∈Z ,Z n ∈,所以a 与b 属于同一类,故选项D 正确;故选:ACD.3.BD解析:用列举法把四个选项对应的集合表示出来,即可验证.详解:对于A :{}{|}1,1,321x x k k ∈=-N =-,对于B :{}{|212}5,7,9x x k k k +∈≥=N =,, 对于C :{}{|23}3,5,7x x k k +∈=N =, 对于D :{}{|25}5,7,9x x k k +∈=N =,故选:BD4.ACD 解析:根据集合的定义和表示方法分别进行判断.详解:解: 0表示元素,不是集合,所以A 错误.根据集合元素的无序性可知,由1,2,3组成的集合可表示为{1,2,3}或{3,2,1},B 正确.根据集合元素的互异性可知,满足方程的解为{1,2},所以C 错误.满足45x <<的元素有无限多个,所以无法用列举法表示,所以D 错误.故选:ACD .5.BC解析:根据N 、Q 、N *、Z 表示的数集,结合元素与集合之间的关系即可做出判断. 详解:由N 表示自然数集,知1N ∈,故A 正确;Q Q ,故B 错;由N *表示正整数集,知*0N ∉,故C 错;由Z 表示整数集,知3Z -∈,故D 正确.故选:BC.三、填空题1.(,3)-∞解析:由集合元素与几何的关系即可得到答案.详解: 因为集合|1k M x x⎧⎫=>-⎨⎬⎩⎭,且3M -∈, 所以13k >--,解得3k <, 所以k 的取值范围是(,3)-∞.故答案为:(,3)-∞点睛:本题考查集合的基本定义,属基础题.2.3解析:根据集合与元素的关系,分类求得m 的值,然后利用集合元素的互异性检验取舍. 详解:由题意知,m =2或m 2-3m +2=2,解得m =2或m =0或m =3,经验证,当m =0或m =2时,不满足集合中元素的互异性,当m =3时,满足题意,故m =3.答案:33.2-解析:根据集合的定义求出集合B 后可得结论.详解:222k -=,2k =±,2k =时,20k A -=∈,因此2k =-;220k -=,k =221k -=,k =229k -=,k =所以{2,B =-,其中所有元素的和为2-.故答案为:2-.4.()0,2详解:解:∵{}0,1A =,{}2,2B a a =,∴集合A B *中的元素分别是22,2,1,21a a a a ++,∵最大元素是21a +,∴2121a a +<+,∴02a <<,故答案为:()0,2.点睛:本题主要考查集合中元素的特征与解不等式,注意对新定义的理解,属于基础题.5.(1),,,∈∉∈∉(2)∉(3)∉(4),∈∉解析:(1)根据国家的地理位置直接得到答案.(2)计算得到2|0,1A x x x ,再判断关系.(3)计算得到{}{}2|602,3B x x x =+-==-,再判断关系.(4)计算得到{}{|110}1,2,3,4,5,6,7,8,9,10C x x =∈≤≤=N ,再判断关系.详解:(1)根据国家的地理位置直接得到答案:中国A ∈,美国A ∉,印度A ∈,英国A ∉;(2)2|0,1A x x x ,故1A -∉;(3){}{}2|602,3B x x x =+-==-,故3A ∉;(4){}{|110}1,2,3,4,5,6,7,8,9,10C x x =∈≤≤=N ,故8,9.1A A ∈∉;故答案为:(1),,,∈∉∈∉;(2)∉;(3)∉;(4),∈∉点睛:本题考查了元素和集合的关系,属于简单题.四、解答题1.1,13A ⎧⎫=-⎨⎬⎩⎭解析:把1代入方程求得a ,然后再解方程得解集.详解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a×12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =-13,1}. 故答案为:1,13⎧⎫-⎨⎬⎩⎭. 点睛:本题考查集合的概念,属于简单题.2.(1)是,理由见解析;(2)不是,理由见解析.解析:(1)与定点A ,B 等距离的这些点是确定的,根据集合的确定性判断;(2)游泳能手没有一个固定的标准,即不满足集合的确定性.详解:(1)与定点A ,B 等距离的点可以组成集合,因为这些点是确定的.(2)高中学生中的游泳能手不能组成集合,因为组成它的元素是不确定的.点睛:本题主要考查了判断是否构成集合,一般从集合的确定性进行判断,属于基础题.3.(1)S ⎧⎪=⎨⎪⎪⎩⎭;(2)23d π=或d π=;(3)3,4,5,6T =解析:(1)根据正弦函数周期性的特点,可知数列{}n b 周期为3,从而得到S ;(2)S 恰好有两个元素,可知13b b =或者23b b =,求解得到d 的取值;(3)依次讨论3,4,5,6,7T =的情况,当3,4,5,6T =时,均可得到符合题意的集合S ;当7T =时,对于1,2,3k =,均无法得到符合题意的集合S ,从而通过讨论可知3,4,5,6T =.详解:(1)10a =,23d π= 223a π⇒=,343a π=,42a π= 1sin00b ∴==,223sin 32b π==,343sin 32b π==-,40b = 由周期性可知,n b 以3为周期进行循环33,0,22S ⎧⎫⎪⎪⇒=-⎨⎬⎪⎪⎩⎭(2)1sin 12b π==,2sin 2b d π⎛⎫=+ ⎪⎝⎭,3sin 22b d π⎛⎫=+ ⎪⎝⎭S 恰好有两个元素∴sin sin 222d ππ⎛⎫=+ ⎪⎝⎭或sin sin 222d d ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭即22d π=或2222d d πππ+++= d π⇒=或23d π=(3)由S 恰好有3个元素可知:3T ≥当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意;当4T =时,4n n b b +=,()sin 4sin n n a d a +=42n n a d a k π+=+或42n n a d k a π+=-因为{}n a 为公差0d >的等差数列,故42n n a d a k π+=+ 2k d π⇒=又d π≤,故1,2k =当1k =时,如图取10a =,{}0,1,1S =-,符合条件当5T =时,5n n b b +=,()sin 5sin n n a d a +=52n n a d a k π+=+或52n n a d k a π+=-因为{}n a 为公差0d >的等差数列,故52n n a d a k π+=+ 25k d π⇒= 又d π≤,故1,2k =当1k =时,如图取110a π=,3sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭,符合条件当6T =时,6n n b b +=,()sin 6sin n n a d a +=62n n a d a k π+=+或62n n a d k a π+=-因为{}n a 为公差0d >的等差数列,故62n n a d a k π+=+ 3k d π⇒=又d π≤,故1,2,3k = 当1k =时,如图取10a =时,33,0,22S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭,符合条件当7T =时,7n n b b +=,()sin 7sin n n a d a +=72n n a d a k π+=+或72n n a d k a π+=-因为{}n a 为公差0d >的等差数列,故72n n a d a k π+=+ 27k d π⇒=又d π≤,故1,2,3k =当1k =时,因为127,,,b b b 对应3个正弦值,故必有一个正弦值对应三个点,必然有2m n a a π-=,即()22,m n d d m n ππ-==-,即22=7m n ππ-,7,7m n m -=>,不符合条件; 当2k =时,因为127,,,b b b 对应3个正弦值,故必有一个正弦值对应三个点,必然有2m n a a π-=,即()22,m n d d m n ππ-==-,即24=7m n ππ-,m n -不是整数,故不符合条件;当3k =时,因为127,,,b b b 对应3个正弦值,故必有一个正弦值对应三个点,必然有2m n a a π-=或4π若()22,m n d d m n ππ-==-,即26=7m n ππ-,m n -不是整数, 若()44,m n d d m n ππ-==-,即46=7m n ππ-,m n -不是整数,故3k =不符合条件;综上:3,4,5,6T =点睛: 本题考查三角函数、数列、函数周期性的综合应用问题.解题的难点在于能够周期,确定等量关系,从而得到d 的取值,再根据集合S 的元素个数,讨论可能的取值情况,通过特殊值确定满足条件的T ;对于无法取得特殊值的情况,找到不满足条件的具体原因.本题对于学生的综合应用能力要求较高,属于难题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(99)
1.1 集合的概念一、单选题1.设集合2{|2}M x R x =∈,1a =,则下列关系正确的是( )A .a MB .a M ∉C .{}a M ∈D .{}a M2.以下六个命题中:0{0}∈;{0}⊇∅;0.3Q ∉;0N ∈;{,}{,}a b b a ⊆;{}220,xx x Z -=∈∣是空集.正确的个数是( )A .4B .3C .5D .2 3.已知集合{(2)(2)0}M x x x x =+-=∣,则M =( ) A .{0,2}-B .{0,2}C .{0,2,2}-D .{2,2}- 4.下列集合表示正确的是A .2,4}B .2,4,4}C .1,3,3}D .漂亮女生} 5.已知集合{}1,2A =,{}1,1,1B a =-+且A B ⊆,则a =A .1B .0C .1-D .2 6.设集合A =(x ,y )|x 2+y 2=1},B =(x ,y )|x+y =1},则A∩B 中元素的个数是( )A .0B .1C .2D .37.方程组31x y x y +=⎧⎨-=-⎩的解集不能表示为. A .()3,1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=-⎩⎪⎪⎩⎭ B .()1,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭ C .{}1,2 D .(){},1,2x y x y ==8.下列对象能确定为一个集合的是( )A .第一象限内的所有点B .某班所有成绩较好的学生C .高一数学课本中的所有难题D .所有接近1的数9.给出下列关系,其中正确的个数为( )①0N ∈Q ⊄;③{}0=∅;④(),R =-∞+∞A .1B .0C .2D .3二、填空题1.已知集合{}2,1,0,1A =--,集合{},B y y x x A ==∈,则B =_______________.2.由||||(,)a b a b R a b +∈所确定的实数集合是________.3.给出下列关系:①12R ∈Q ;③3N *∈;④0Z ∈.其中正确的序号是______.4.若a∈1,a 2﹣2a+2},则实数a 的值为___________.5.已知集合A=1,2,a 2-2a},若3∈A,则实数a=______.三、解答题1.(1)已知{}221,251,1A a a a a =-+++,2A -∈,求实数a 的值; (2)已知集合{}2340A x R ax x =∈--=,若A 中有两个元素,求实数a 的取值范围.2.集合{|12}A x x =-≤≤,{|}B x x a =<.(1)若A B A =,求实数a 的取值范围;(2)若A B =∅,求实数a 的取值范围.3.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-.若2a =,求出A 中其他所有元素.参考答案一、单选题1.D解析:先求解集合M ,即可确定a 与M 的关系.详解:解:22x ,22x,{|22}M x R x ∴=∈, 又1a =,a M ∴∈,{}a M .故选:D.2.C解析:根据元素与集合间的关系、集合与集合间的关系可判定排除得到答案.详解:根据元素与集合间的关系可判定0{0}∈、0N ∈正确,0.3Q ∉不正确,根据集合与集合之间的关系可判定{0}⊇∅、{,}{,}a b b a ⊆、{}220,x x x Z -=∈∣是空集正确. 故选:C .3.C解析:直接利用方程的解法化简求解.详解:因为集合{(2)(2)0}{2,0,2}M xx x x =+-==-∣, 故选:C4.A解析:集合中的元素具有确定性、互异性、无序性,利用元素的三个特性对四个命题逐一的进行判断,能够得到答案.详解:对于选项A ,由集合的定义可知,一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合,显然A 项符合定义.故A 项正确.对于B 项和C 项,根据集合中元素的互异性可知,对于一个给定的集合,集合中的元素一定是不同的,故B 项和C 项错误.对于D 项,根据集合中元素的确定性可知,作为一个集合中的元素,必须是确定的,而D项中的元素显然不是确定的.故D项错误.点睛:本题主要考查集合的含义与表示,以及集合中元素的特性.5.A解析:由题知:12a+=,解得:1a=.详解:因为A B⊆,所以,解得:1a=.故选:A点睛:本题考查集合的子集关系,理解子集的概念是关键,属于简单题.6.C解析:可画出圆x2+y2=1和直线x+y=1的图象,从而可看出它们交点的个数,从而得出A∩B中的元素个数.详解:画出x2+y2=1和x+y=1的图象如下:可看出圆x2+y2=1和直线x+y=1有两个交点,∴A∩B的元素个数为2.故选:C.点睛:考查了描述法的定义,交集的定义及运算,数形结合解题的方法,考查了计算能力,属于容易题.7.C解析:由方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,得到解集中只含有一个元素,根据集合的表示方法,逐项判定,即可求解.详解:由题意,方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,其解集中只含有一个元素,根据集合的表示方法,其中A,B.D项表示都是正确的,其中选项C是表示由两个元素组成的熟记,不符合要求,所以不能表示为{}1,2.故选C.点睛:本题主要考查了集合的表示方法,其中解答中正确理解集合的表示方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.A解析:根据元素是否具备确定性逐项分析即可.详解:A .具备集合中元素的确定性,可以构成一个集合,故正确;B.“较好”不满足集合中元素的确定性,故错误;C.“难题”不满足集合中元素的确定性,故错误;D.“接近”不满足集合中元素的确定性,故错误.故选:A.点睛:本题考查集合中元素的特征,着重考查了集合中元素的确定性,难度较易.集合中元素的特征:确定性、无序性、互异性.9.C解析:根据元素与集合的关系,逐一分析①②③④,即可得答案.详解:对于①:0为自然数,所以0N∈,故①正确;Q,故②错误;对于③:0含有元素0,不是空集,故③错误;对于④:R为实数集,所以④正确;故选:C二、填空题1.{}0,1,2解析:根据题意,由列举法,即可得出结果.详解:因为{}2,1,0,1A =--, 所以{}{},0,1,2B y y x x A ==∈=. 故答案为:{}0,1,2.点睛:本题主要考查列举法表示集合,属于基础题型.2.{}202-,, 解析:根据a b 、的正负性分类讨论进行求解即可.详解:当0,0a b >>时,||||2a b a b a b a b +=+=; 当0,0a b ><时,||||0a b a b a b a b +=-=; 当0,0a b <>时,||||0a b a b a b a b +=-+=; 当0,0a b <<时,||||2a b a b a b a b+=--=-, 故答案为:{}202-,,3.①③④解析:根据元素与集合间的关系和特殊集合:有理数集,自然数集,整数集,实数集所含的元素可得选项.详解: 对于①: 12是分数,所有的分数都是实数,故①正确;对于③:3是自然数,故③正确;对于④:0是整数,故④正确;所以①③④正确,故选①③④.点睛:本题考查特殊集合:有理数集,自然数集,整数集,实数集所含的元素和元素与集合的关系,属于基础题.4.2解析:利用集合的互异性,分类讨论即可求解详解:因为a∈1,a 2﹣2a+2},则:a=1或a=a 2﹣2a+2,当a=1时:a 2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a 2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2点睛:本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题5.3或-1解析:根据3∈A 即可得出a 2-2a=3,解方程得到a 即可.详解:∵3∈A,A=1,2,a 2-2a},∴a 2-2a=3,解得a=-1或3故答案为-1或3.点睛:本题考查了列举法的定义,元素与集合的关系,考查了推理和计算能力,属于基础题.三、解答题1.(1)32a =-;(2)9016a a ⎧-<<⎨⎩或}0a >. 解析:(1)分析可得12a -=-或22512a a ++=-,结合集合中元素的互异性可求得实数a 的值;(2)根据已知条件得出09160a a ≠⎧⎨∆=+>⎩,即可解得实数a 的取值范围. 详解:(1)因为210a +>,故212a +≠-,因为2A -∈,则12a -=-或22512a a ++=-.①当12a -=-时,即当1a =-时,此时212512a a a -=++=-,集合A 中的元素不满足互异性;②当22512a a ++=-时,即22530a a ++=,解得32a =-或1a =-(舍), 此时512a -=-,21314a +=,集合A 中的元素满足互异性. 综上所述,32a =-;(2)因为集合{}2340A x R ax x =∈--=中有两个元素,则09160a a ≠⎧⎨∆=+>⎩, 解得916a 且0a ≠, 因此,实数a 的取值范围是9016a a ⎧-<<⎨⎩或}0a >.2.(1)2a >;(2)1a ≤-解析:(1)由A B A =,可得A B ⊆,即可列出不等关系,求出a 的取值范围;(2)由A B =∅,且B ≠∅,可列出不等关系,求出a 的取值范围.详解:(1)由集合{|12}A x x =-≤≤,{|}B x x a =<,因为A B A =,所以A B ⊆,则2a >,即实数a 的取值范围为2a >.(2)因为A B =∅,且B ≠∅,所以1a ≤-,故实数a 的取值范围为1a ≤-. 3.113,,23-- 解析:根据定义依次计算即可得答案.详解:解:因为若a A ∈,则11a A a +∈-, 所以当2a =时,11a a +=-12312A +=-∈-; 当3a =-时,11a a +=-131132A -=-∈+, 当12a =-时,11a a +=-11121312A -=∈+,当13a=时,11aa+=-1132113A+=∈-,综上A中其他所有元素为:11 3,,23 --.点睛:本题考查集合的元素的求解,是基础题.。
人教A版高中数学必修一1.1 集合的概念专练(含解析)(34)
1.1 集合的概念一、单选题1.已知集合M 的非空子集的个数是7,则集合M 中的元素的个数是( )A .3B .4C .2D .52.集合{,,}a b c 的真子集共有 个( )A .7B .8C .9D .103.以数集A=a ,b ,c ,d}中的四个元素为边长的四边形只能是( )A .平行四边形B .矩形C .菱形D .梯形4.设集合A =1,2,4},集合{|}B x x a b a A b A +∈∈==,,,则集合B 中的元素个数为() A .4 B .5 C .6 D .75.设,,则的元素个数是A .5B .4C .3D .无数个6.设集合{1}A x Z x =∈-,则A .A ∅∉B .C 2AD .{}2⊆A7.已知集合{}1,0,1M =-,{}0,1,2N =,则M N ⋃=A .{}1,0,1-B .{}1,0,1,2-C .{}1,0,2-D .{}0,18.集合(){},0,,x y xy x y ≤∈∈R R 是指( )A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点9.下列表示正确的是( )A .所有实数}R =B .整数集ZC .{}∅=∅D .1∈有理数}10.下面说法中正确的是( ).A .集合N +中最小的数是0B .若N a +-∉,则N a +∈C .若N a +∈,N b +∈,则a b +的最小值是2D .244x x +=的解集组成的集合是{}2x =.二、填空题1.设[]x 表示不超过x 的最大整数,用数组21100⎡⎤⎢⎥⎣⎦,22100⎡⎤⎢⎥⎣⎦,23100⎡⎤⎢⎥⎣⎦,……,2100100⎡⎤⎢⎥⎣⎦组成集合A 的元素的个数是________.2.已知集合|1k M x x⎧⎫=>-⎨⎬⎩⎭,且3M -∈,则k 的取值范围是____________. 3.若a∈1,a 2﹣2a+2},则实数a 的值为___________.4.已知{}201,2x x x ∈+--,则x =_____________5.用[]M A 表示非空集合A 中的元素个数,记[][][][][][][][],,M A M B M A M B A B M B M A M A M B ⎧-≥⎪-=⎨-<⎪⎩,若{}1,2,3A =,{}2|23B x x x a =--=,且1A B -=,则实数a 的取值范围为______. 三、解答题1.已知集合2{|320,}A x ax x a R =-+=∈,若集合A 中的元素至多有一个,求a 的取值范围.2.已知集合{}22,,A x x m n m n ==-∈Z .求证:偶数()42k k -∈Z 不属于集合A .3.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .4.已知集合(){}2230A x x a x a =-++=,{}20B x x x =-=,是否存在实数a ,使A ,B 同时满足下列三个条件:①A B ≠;②A B B ⋃=;③()A B ∅⋂?若存在,求出a 的值;若不存在,请说明理由.5.已知集合{}213A x x =-<+<,集合B 为整数集,令C A B =.(1)求集合C ;(2)若集合1,D a ,{2,1,0,1,2}C D ,求实数a 的值.参考答案一、单选题1.A解析:由若集合M 中的元素有n 个,则非空子集有217n -=个求解.详解:设集合M 中的元素的个数是n ,则217n -=,解得3n =.所以集合M 中的元素的个数是3,故选:A2.A解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:A3.D解析:直接利用集合元素的特征求解.详解:由集合元素的互异性得:以数集A=a ,b ,c ,d}中的四个元素为边长的四边形只能是梯形故选:D点睛:本题主要考查集合元素的特征,还考查了理解辨析的能力,属于基础题.4.C解析:集合A =1,2,4},集合{|}B x x a b a A b A +∈∈==,,,所以{}234568B =,,,,,,共6个元素. 故选C.5.C详解: 试题分析:依题意有,代入得到,故有个元素. 考点:绝对值不等式,元素与集合的关系.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是定义域还是值域,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.6.B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确考点:元素与集合的元素7.B详解:试题分析:由题意知{}1,0,1,2M N ⋃=-,故选B.【考点定位】本题考查集合的基本运算,属于容易题.8.D解析:由0xy ≤,可知00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩,进而可选出答案. 详解:因为0xy ≤,所以00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩, 故集合(){},0,,x y xy x y ≤∈∈R R 是指第二象限和第四象限内的所有点,以及在,x y 轴上的点,即不在第一、第三象限内的所有点.故选:D.点睛:本题考查集合的表示方法,属于基础题.9.D解析:本题可根据集合的性质得出结果.详解:A 项:因为符号“{}” 已包含“所有”的含义,所以不需要再加“所有”,A 不正确;B 项:Z 表示整数集,不能加“{}”,B 不正确;C 项:∅表示空集,不能加“{}”,C 不正确;D 项:1∈有理数},显然正确,D 正确,故选:D.10.C解析:根据正整数集的含义即可判断A ,B ,C 的正误,根据集合中列举法即可判断D 选项的正误.详解:A 选项,N +是正整数集,最小的正整数是1,A 错,B 选项,当0a =时,N a +-∉,且N a +∉,B 错,C 选项,若N a +∈,则a 的最小值是1,若N b +∈,则b 的最小值也是1,当a 和b 都取最小值时,a b +取最小值2,C 对,D 选项,由244x x +=的解集是{}2,D 错.故选:C .二、填空题1.76 解析:首先,令2100k k a ⎡⎤=⎢⎥⎣⎦(123100k =⋅⋅⋅,,,,),分析当22(1)1100100k k +-≥时,计算得到49.5k ≥,取50k =,即505152100a a a a ⋅⋅⋅,,,,都是集合A 的元素,即共有51个元素;另外,分析可知2110100a ⎡⎤==⎢⎥⎣⎦,24949240124100100a ==⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦=⎣⎦,故数01224⋅⋅⋅,,,,也是集合中的元素,共有25个,两种情况作和即可得到答案.详解: 令2100k k a ⎡⎤=⎢⎥⎣⎦(123100k =⋅⋅⋅,,,,), 当22(1)1100100k k +-≥时,即211100k +≥,解之得:49.5k ≥,取50k =,此时11k k a a +->,即505152100a a a a ⋅⋅⋅,,,,都是集合A 的元素,共有51个, 另外,2110100a ⎡⎤==⎢⎥⎣⎦,24949240124100100a ==⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦=⎣⎦,2505025100a ⎡⎤⎢⎥⎣⎦==, 所以数01224⋅⋅⋅,,,,也是集合中的元素,共有25个,255176+=, 所以集合A 中的元素共有76个.故答案为:76.点睛:本题主要考查了集合中元素的个数,解题关键在于根据已知条件建立不等关系式,并进行计算,考查分析能力和逻辑思维能力,属于中档题.2.(,3)-∞解析:由集合元素与几何的关系即可得到答案.详解: 因为集合|1k M x x⎧⎫=>-⎨⎬⎩⎭,且3M -∈, 所以13k >--,解得3k <, 所以k 的取值范围是(,3)-∞.故答案为:(,3)-∞点睛:本题考查集合的基本定义,属基础题.3.2解析:利用集合的互异性,分类讨论即可求解详解:因为a∈1,a 2﹣2a+2},则:a=1或a=a 2﹣2a+2,当a=1时:a 2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a 2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2点睛:本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题4.2解析:讨论10x +=和220x x --=两种情况,再验证得到答案.详解:{}201,2x x x ∈+--当10x +=时,1x =-,代入验证知:{}{}21,20,0x x x +--=,不满足互异性,排除;当220x x --=时,2x =或1x =-(舍去),代入验证知:{}{}21,23,0x x x +--=,满足.故答案为:2点睛:本题考查了元素和集合的关系,没有验证互异性是容易发生的错误.5.04a ≤<或4a >.解析:根据已知条件容易判断出0a =符合,0a >时,由集合B 得到两个方程,2230x x a ---=或2230x x a --+=.容易判断出B 有2个或4个元素,所以判别式()4430a ∆=--<或()4430a ∆=-->,这样即可求出a 的范围.详解:(1)若0a =,得到2230x x --=,∴集合B 有2个元素,则1A B -=,符合条件1A B -=;(2)0a >时,得到223x x a --=±,即2230x x a ---=或2230x x a --+=;对于方程2230x x a ---=,()4430a ∆=++>,即该方程有两个不同实数根; 又1A B -=,B 有2个或4个元素;()4430a ∆=--<或()4430a ∆=-->;∴4a <或4a >.综上所述04a ≤<或4a >.故答案为04a ≤<或4a >.点睛:本题考查新定义问题,考查学生的创新意识,解决问题的方法利用新定义把“新问题”转化“老问题”.三、解答题1.0a =或98a ≥解析:分情况讨论,当0a =时,符合题意;当0a ≠时,由题意可知,关于x 的一元二次方程2320ax x -+=至多有一个根,0∆≤,求解即可. 详解:当0a =时,2320ax x -+=的解23x =,A 中只有一个元素23;当0a ≠时,若使得集合A 中的元素至多有一个.则需,关于x 的一元二次方程2320ax x -+=至多有一个根. 即99808a a ∆=-≤⇒≥综上所述,0a =或98a ≥点睛:本题考查根据集合中元素个数,求参数取值范围,注意分情况讨论,属于中档题.2.证明见解析解析:分m 、n 为同奇、同偶或一奇一偶三种情况讨论,结合平方差公式推出矛盾,从而得出所证结论成立.详解:假设()42k A k Z -∈∈,则存在m 、n Z ∈,使得()()2242k m n m n m n -=-=+-. ①当m 、n 都是奇数时,设121m m =+,()11121,n n m n Z =+∈,则()()()22222211*********m n m n m n m n -=+-+=-+-为4的倍数; ②当m 、n 都是偶数时,设22m m =,()2222,n n m n Z =∈,则()2222222222444m n m n m n -=-=-为4的倍数;③当m 、n 是一奇一偶时,设m 为奇数,n 为偶数,设321m m =+,()3332,n n m n Z =∈,则()()2222223333321441m n m n m n m -=+-=-++是奇数. 假设不成立,因此,()42k A k Z -∉∈.点睛:本题考查利用元素与集合关系的证明,合理分类是解题的关键,考查推理论证能力,属于中等题.3.(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.4.存在实数1a =-,使得A ,B 满足条件,详见解析解析:先求出集合B ,由A B B ⋃=得A B ⊆,由()A B ∅⋂得A ≠∅,再由A B ≠得{}0A =或{}1,分别代入集合A 中求得a 的值,再验证是否满足条件得解. 详解:假设存在实数a ,使A ,B 同时满足题设①②③三个条件,易知{}0,1B =.因为A B B ⋃=,所以A B ⊆,即A B =或A B .由条件①A B ≠,知A B .又()A B ∅⋂,所以A B ⋂≠∅,所以A ≠∅,所以{}0A =或{}1.当{}0A =时,将0x =代入方程()2230x a x a -++=,得20a =,解得0a =.而当0a =时,{}0,3A =,与{}0A =矛盾,舍去.当{}1A =时,将1x =代入方程()2230x a x a -++=,得220a a --=,解得1a =-或2a =.当1a =-时,{}1A =,符合题意;当2a =时,{}1,4A =,与{}1A =矛盾,舍去.综上所述,存在实数1a =-,使得A ,B 满足条件.故得解.点睛:本题考查集合间的包含关系和集合的交、并运算,关键在于由交、并运算结果得到两集合之间的包含关系,属于基础题.5.(1){2,1,0,1}--;(2)2a =.解析:(1)首先得到{}32A x x =-<<,再求C A B =即可.(2)根据2,1,0,1,2C D 即可得到答案. 详解:(1){}{}21332A x x x x =-<+<=-<<,因为集合B 为整数集,所以{}2,1,0,1C A B -=-=.(2)因为{}2,1,0,1C -=-,1,D a ,2,1,0,1,2C D , 所以2a =.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(98)
1.1 集合的概念一、单选题1.对于两个非空数集A 、B ,定义点集如下:A×B=(x ,y )|x∈A,y∈B},若A =1,3},B =2,4},则点集A×B 的非空真子集的个数是( )个. A .14B .12C .13D .112.不等式2332x x +>+的解集表示正确的是( )A .x 1> B .x 1< C .{}1x x > D .{}|1x x < 3.已知集合,,则中所含元素的个数为A .3B .6C .8D .10 4.已知集合2{,}M a a =,则实数a 满足的条件是A .a R ∈B .a 0≠C .a 1≠D .a 0≠且a 1≠5.i 是虚数单位,集合22,,1A i i i ⎧⎫=⎨⎬+⎩⎭中的元素之和为( ) A .1 B .0 C .2 D .36.已知集合{}{}1,0A x x B x x =<=<,则( ) A .{}0A B x x ⋂=< B .A B R = C .{}1A B x x ⋃=> D .A B =∅7.下列各组对象能构成集合的是( )A .新冠肺炎死亡率低的国家B .19世纪中国平均气温较高的年份C .一组对边平行的四边形D .x 的近似值8.下列说法中正确的是( )A .联合国所有常任理事国(共5个)组成一个集合B .宜丰二中年龄较小的学生组成一个集合C .{}1,2,3与{}2,1,3是不同的集合D .由1,0,5,1,2,5组成的集合有六个元素9.已知{}222,(1),33A a a a a =++++,若1A ∈,则实数a 构成的集合B 的元素个数是( )A .0B .1C .2D .3二、填空题1.判断(正确的打“√”,错误的打“×”)(1)山东新坐标书业有限公司的优秀员工可以组成集合.(______) (2)分别由元素0,1,2和2,0,1组成的两个集合是相等的.(______) (3)由-1,1,1组成的集合中有3个元素.(______)2.已知集合A=x|2x =a},当A 为非空集合时a 的取值范围是________. 3.集合是单元素集合,则实数=_______.4.已知集合[][],14,9A t t t t =+⋃++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是____________5.集合{}|23,x x x Z -<<∈可用列举法表示为______. 三、解答题1.已知集合A 满足条件:①1A ∉;②若a A ∈,则11A a∈-. (1)若2A ∈,求集合A ; (2)若a A ∈,求证:11A a-∈;(3)在集合A 中的元素能否只有一个实数?若有,求出此集合;否则,请说明理由;2.把下列集合用适当方法表示出来: (1){2,4,6,8,10}; (2){|37}x N x ∈<<;(3){}2|9A x x ==;(4){}|12B x N x =∈≤≤;(5){}2|320C x x x =-+=.3.设{}2,,(,)|()36a b Z E x y x a b y ∈=-+≤,点(2,1)E ∈,但(1,0)(3,2)E E ∉∉.求,a b 的值.参考答案一、单选题 1.A解析:根据A×B=(x ,y )|x∈A,y∈B},得到A×B 的元素的个数求解. 详解:∵A×B=(x ,y )|x∈A,y∈B},且A =1,3},B =2,4}, 所以A×B=(1,2),(1,4),(3,2),(3,4)}, 共有四个元素,则点集A×B 的非空真子集的个数是:24﹣2=14. 故选:A. 2.D解析:解不等式2332x x +>+得1x <,进而根据描述法表示集合即可. 详解:解不等式2332x x +>+得1x <,故解集可表示为:{}|1x x <. 故选:D 3.D解析:列举得集合,共含有10个元素. 4.D解析:根据集合元素的互异性,得到2a a ≠,即可求解,得到答案. 详解:由题意,集合2{,}M a a =,根据集合元素的互异性,可得2a a ≠,解得0a ≠且1a ≠. 故选:D. 点睛:本题主要考查了集合元素的互异性的应用,其中解答中熟记集合中元素的性质是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.B解析:试题分析:∵221,11i i i =-=-+,∴集合22,,1A i i i ⎧⎫=⎨⎬+⎩⎭中的元素之和为(1)(1)0i i +-+-=,故选B考点:本题考查了复数的运算及集合的概念点评:熟练掌握复数的四则运算是解决此类问题的关键,属基础题 6.A解析:分别根据集合交集与并集定义求解,再判断选择. 详解:因为{}{}1,0A x x B x x =<=<, 所以{}0A B x x ⋂=<,{}1A B x x ⋃=<, 故选A 点睛:本题考查集合交集与并集定义,考查基本分析求解能力,属基础题. 7.C解析:根据集合的定义判断即可. 详解:只要一组对边平行的四边形都在选项C 这个全体中,那么C 中所有对象能构成一个集合,而选项A 、B 、D 都没有明确的判定标准判定某个个体是否在全体中. 故选:C. 点睛:本题考查集合的概念及判断,属于简单题. 8.A解析:根据集合中的元素的性质逐一判断可得选项. 详解:年龄较小不确定,所以B 选项错误;{1,2,3}与{2,1,3}是相同的集合,故C 错误;由1,0,5,1,2,5组成的集合有4个元素,故D 错误; 故选:A. 点睛:本题考查集合中的元素的性质和判断两个集合是否是同一集合,属于基础题.9.B解析:让集合A 中每个元素等于1,求得a ,检验符号集合中元素的互异性,得a 的值,从而可得结论. 详解:①21a +=⇒1a =-,∴2(1)0a +=,2331a a ++=,则{}1,0,1A =,不可以, ②2(1)1a +=⇒0a =,∴22a +=,2333a a ++=,则{}2,1,3A =,可以, 或2a =-,∴20a +=,2331a a ++=,则{}0,1,1A =,不可以, ③2331a a ++=⇒1a =-,21a +=,2(1)0a +=,则{}1,0,1A =,不可以, 或2a =-,∴20a +=,2(1)1a +=,则{}0,1,1A =,不可以, ∴{0}B =, 故选:B . 点睛:本题考查集合的概念,掌握集合元素的互异性是解题关键.二、填空题1.× √ ×解析:(1)根据集合中元素的确定性,即可判定; (2)根据集合相等的定义,即可判定;(3)根据集合中的元素要满足互异性,即可求解. 详解:(1)因为“优秀”没有明确的标准,其不满足集合中元素的确定性,所以不能构成集合. (2)根据集合相等的定义知,两个集合相等.(3)因为集合中的元素要满足互异性,所以由-1,1,1组成的集合有2个元素-1,1. 故答案为:(1)×; (2)√; (3)×. 点睛:本题主要考查了集合及集合相等的概念,以及集合的元素的互异性的应用,其中解答中熟记集合及集合相等的概念,以及元素的互异性是解答的关键,属于基础题. 2.a≥0a 有解即可. 详解:解析要使集合A 为非空集合,则方程2x a =有解, 故只须a≥0. 故答案为:a≥03.0或2或18解析:试题分析:由题意可知方程2(6)20ax a x +-+=中,当0a =时16203x x -+=∴=,满足要求;当0a ≠时需满足0∆=()264202,18a a a ∴--⨯=∴=,所以实数为0或2或18 考点:方程的根的判定与集合元素4.1或3-解析:根据t 所处的不同范围,得到[],1a t t ∈+和[]4,9a t t ∈++时,aλ所处的范围;再利用集合A 的上下限,得到λ与t 的等量关系,从而构造出方程,求得t 的值.详解:0A ∉,则只需考虑下列三种情况:①当0t >时,[][],14,9a t t t t ∈+++11111,,941a t t t t ⎡⎤⎡⎤∴∈⎢⎥⎢⎥+++⎣⎦⎣⎦又0λ> ,,941a t t t t λλλλλ⎡⎤⎡⎤⇒∈⎢⎥⎢⎥+++⎣⎦⎣⎦A a λ∈ 914t t t t λλ⎧≥⎪⎪+∴⎨⎪≤+⎪+⎩且419t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪⎩可得:()()()()()()991414t t t t t t t t λλ⎧+≤≤+⎪⎨++≤≤++⎪⎩()()()914t t t t λ∴=+=++ 1t ⇒=②当90t +<即9t <-时,与①构造方程相同,即1t =,不合题意,舍去 ③当1040t t +<⎧⎨+>⎩即41t -<<-时 可得:11t t t t λλ⎧≥⎪⎪+⎨⎪≤+⎪⎩且4994t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪+⎩()()()149t t t t λ∴=+=++ 3t ⇒=-综上所述:1t =或3-点睛:本题考查利用集合与元素的关系求解参数的取值问题,关键在于能够通过t 的不同取值范围,得到a 与aλ所处的范围,从而能够利用集合的上下限得到关于λ的等量关系,从而构造出关于t 的方程;难点在于能够准确地对t 的范围进行分类,对于学生的分析和归纳能力有较高的要求,属于难题.5.1,0,1,2解析:直接利用列举法的定义解答即可. 详解:集合{}|23,x x x Z -<<∈可用列举法表示为1,0,1,2. 故答案为1,0,1,2 点睛:本题主要考查集合的表示,意在考查学生对这些知识的理解掌握水平.三、解答题1.(1)11,,22⎧⎫-⎨⎬⎩⎭;(2)略;(3)否,理由见解析解析:(1)利用a A ∈则11A a∈-,依次代入2a =和1a =-即可求得全部元素,从而得到集合A ;(2)由a A ∈得11A a∈-,进而得到1111A a∈--,整理可得结果;(3)假设集合A 中只有一个元素,则11a a=-,方程无解,可知假设错误,得到结论. 详解:(1)2A ∈ 1112A ∴=-∈- 11112A ∴=∈+ 又12112=- 11,,22A ⎧⎫∴=-⎨⎬⎩⎭(2)由a A ∈得:11A a∈-,则1111A a∈-- 又1111111111a a a a a aaa--====------ 11A a∴-∈ (3)假设集合A 中只有一个元素a A ∈,则11A a ∈- 11a a∴=-,方程无解 ∴假设错误,即集合A 中的元素不能只有一个实数点睛:本题考查集合与元素关系的应用,对于元素的求解,可采用循环代入的方式求得全部元素.2.(1)|2,x x k k Z =∈且15k ≤≤};(2){4,5,6};(3){}3,3-;(4){}1,2;(5){}1,2. 解析:根据集合的元素个数和元素特征选择列举法和描述法即可解出. 详解:(1)因为集合中的元素都是偶数,所以{2,4,6,8,10}=|2,x x k k Z =∈且15k ≤≤}. (2){|37}x N x ∈<<={4,5,6}.(3)由29x =得3x =±,因此{}{}2|93,3A x x ===-.(4)由x ∈N ,且12x ≤≤,得1x =或2x =,因此{}{}|121,2B x N x =∈≤≤=.(5)由2320x x -+=得1x =或2x =,.因此{}{}2|3201,2C x x x =-+==.3.1a b ==-解析:根据元素与集合的关系,由(2,1)E ∈,但(1,0)E ∉, (3,2)E ∉,建立,a b 的关系式,然后求解. 详解:因为点(2,1)E ∈, 2(2)36a b ∴-+≤ ①因为点(1,0)E ∉, 2(1)30a b ∴-+> ② 因为点(3,2)E ∉,2(3)312a b ∴-+> ③由①②得226(2)(1)a a -->--,解得32a >-;类似地由①③得12a <-.3122a ∴-<<-.a Z ∈,1a ∴=-.当1a =-时,由①得1b ≤-,由②得43b ≥-,由③得43b ≥-,所以413b -≤≤-. 因为b Z ∈,所以1b =-. 故答案为1a b ==-. 点睛:本题主要考查了元素与集合的关系的应用,以及不等式组的求解,属于中档题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(33)
1.1 集合的概念一、单选题1.设a ,b∈R,P =1,a }, Q =−1,−b },若P=Q ,求a+b 的值( )A .− 2B .0C .1D .22.设{}25A x x =≤≤,{}23B x a x a =≤≤+,若A B ⊆,则实数a 的取值范围是( )A .()()1,22,3⋃B .(],1-∞C .[)23,D .ϕ3.下面四个命题正确的是( )A .10以内的质数集合是0,3,5,7}B .“个子较高的人”不能构成集合C .方程x 2﹣2x+1=0的解集是1,1}D .偶数集为x|x=2k ,x∈N}4.若用列举法表示集合27(,)2y x A x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{1,3}x y =-= B .{(-1,3)} C .{3,-1} D .{-1,3}5.下列各组对象不能构成集合的是( )A .大于1且小于10的实数B .欧洲的所有国家C .广东省的省会城市D .早起的人 6.已知集合2||440}M x x x a =-+<且2M ∉,则实数a 的取值范围是A .(1,)+∞B .[1,)+∞C .(,1]-∞D .[0,1] 7.下列命题中正确的有( ) ①很小的实数可以构成集合;②集合{}21y y x =-与集合{}2(,)1x y y x =-是同一个集合;③集合{}(,)0,,x y xy x y R ≤∈是指第二和第四象限内的点集.A .0个B .1个C .2个D .3个 8.已知集合()()(){}22,310M x y x y =++-=,{}3,1N =-,则M 与N 的关系是( ).A .M NB .M N ⊆C .M N ⊇D .M ,N 无公共元素9.下列关系中,正确的个数为( )①0N ∈;②Q π∈Q ;④1Z -∈R .A .1B .2C .3D .4二、多选题1.下列命题正确的有( )A .A ⋃∅=∅B .()()()U U UC A B C A C B ⋃=⋃ C .A B B A ⋂=⋂D .()U U C C A A =三、填空题1.若}{21,,0x x ∈,则x =______. 2.若a∈4,5,6}且a∈6,7},则a 的值为______.3.设集合4,4A x Z x N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示为A =______. 4.若集合{}2|40,?A x x x k x R =++=∈中只有一个元素,则实数k 的值为_______. 5.给定集合A ,若对于任意,a b A ∈,有a b A +∈且a b A -∈,则称集合A 为闭集合,给出如下四个结论:①集合{4,2,0,2,4}A =--为闭集合;②正整数集是闭集合;③无理数集是闭集合;④集合{|3,}A x x k k ==∈Z 为闭集合.其中正确的是_________.(填序号)四、解答题1.用适当的方法表示下列集合.(1)由所有小于20的既是奇数又是质数的正整数组成的集合;(2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.2.求关于x 的方程28ax x =+的解集,其中a 是常数.3.已知集合{|24}A x x =≤<, {|3782}B x x x =-≥-,求A∩B,A∪B.参考答案一、单选题1.A解析:根据两集合相等,所有元素对应相等,即可求出a ,b 的值,即可得答案.详解:因为P=Q ,所以11b a =-⎧⎨=-⎩,解得11b a =-⎧⎨=-⎩, 所以2a b +=-,故选:A2.D解析:利用集合间的包含关系列出不等式组,求解即可.详解: 解:{}25A x x =≤≤,{}23B x a x a =≤≤+且A B ⊆,232235a a a a ≤+⎧⎪∴≤⎨⎪+≥⎩, 此不等式组无解.故选:D.3.B解析:根据集合中元素的特征进行判断即可,对于A ,由于0不是质数,从而可得结论;对于B ,由集合元素的确定性判断即可;对于C ,由集合中元素的互异性判断;对于D ,由于偶数中也包含负偶数,所以可判断其正误详解:解:10以内的质数集合是2,3,5,7},故选项A 不正确;“个子较高的人”不能构成集合,“个子较高的人”不满足集合的确定性,故选项B 正确; 方程x 2﹣2x+1=0的解集是1,1},不满足集合的互异性,故选项C 不正确;偶数集为x|x=2k ,k∈Z},故选项D 不正确.故选:B.4.B解析:由题意知,集合A 代表点集,解方程组即可求解.详解:由272y x x y -=⎧⎨+=⎩可得13x y =-⎧⎨=⎩, 用列举法表示为:{(-1,3)},故选:B.5.D解析:由集合的性质:确定性判断选项中描述的元素是否能构成集合即可.详解:A :可表示为{|110}x x <<;B :所有欧洲国家};C :广州}都满足确定性;而D :早起的人不符合元素的确定性,不能构成集合.故选:D6.B解析:根据2M ∉,列出关于a 的不等式,解之可得答案.详解:解:由题意得:2||440}M x x x a =-+<且2M ∉,可得当2x =时,4840a -+≥,可得1a ≥,故选B点睛:本题主要考查元素与集合的关系及应用,相对简单.7.A解析:根据集合的概念即可判断.详解:对于①,集合具有确定性,故①错;对于②,集合相等必须元素的类型相同,而前者为数,后者为点的集合,故②错; 对于③,坐标轴上的点不属于任何一个象限,故③错;故选A点睛:本题主要考查集合的概念,属于基础题.8.D解析:根据集合M 的描述得集合M 是一个点集,而集合N 是一个数集,故得结论. 详解:因为(){}3,1M =-是点集,而{}3,1N =-是数集,所以两个集合没有公共元素,故选:D .点睛:本题考查集合中元素的特征,分清集合表示的是数集还是点集是解决本题的关键,属于基础题.9.B解析:逐一判断实数是否在常用集合中即可.详解:0是自然数,故0N ∈,①正确;π是无理数,故Q π∉,②错误;Q ,③错误;1-是整数,故1Z -∈,④正确;R ,⑤错误.故正确个数是2个.故选:B.点睛:本题考查了元素与集合的关系的判断,属于基础题.二、多选题1.CD解析:利用集合的交、并、补运算法则直接求解.详解:对A ,因为A A ⋃∅=,故A 错误;对B ,因为()()()U U U C A B C A C B ⋃=⋂,故B 错误;对C ,A B B A ⋂=⋂,故C 正确;对D ,()U U C C A A =,故D 正确.故选:CD .点睛:本题考查命题真假的判断,考查集合的交、并、补运算法则等基础知识,考查运算求解能力,属于基础题.三、填空题1.1-解析:本题可分为1x =、21x =两种情况进行讨论,然后结合集合的定义即可得出结果. 详解:因为}{21,,0x x ∈,所以1x =或21x =,若1x =,2x x =,不满足题意;若21x =,1x =-或1(舍去),则1x =-,此时集合为}{1,1,0-,满足题意,故答案为:1-.2.6详解:解:根据题意a∈4,5,6}∩6,7}=6};∴a=6.故答案为6.【点评】考查列举法表示集合的定义及形式,元素与集合的关系及表示,以及集合的交集的运算.3.{}0,2,3,5,6,8解析:N 是自然数集,Z 是整数集,所以对4x -分类取值、逐一计算即可.详解: 因为4,4Z x N x∈∈-,所以 41x -=时,4=4,34Z x N x∈=∈-; 44x -=时,4=1,04Z x N x∈=∈-; 42x -=时,4=2,24Z x N x∈=∈-; 41x -=-时,4=4,54Z x N x-∈=∈-; 44x -=-时,4=1,84Z x N x -∈=∈-;42x -=-时,4=2,64Z x N x-∈=∈-. 综上,{}0,2,3,5,6,8A =.点睛:本题考查对常用数集符号的认识,同时考查学生的推理和计算、分类讨论的能力.4.4解析:∵240x x k ++=由唯一的实根,∴164k 0∆=-=,解得:4k =,故答案为4.5.④解析:①②③中均可取反例证明集合不满足闭集合的条件,④中取()()11223,3a k k b k k =∈=∈Z Z ,可得,a b A a b A +∈-∈,从而证明④为闭集合.详解:①中取4,4a b =-=,则8a b A -=-∉,故①不成立;②中取1,3a b ==,此时2a b -=-,不是正整数,故②不成立;③中取11a b ==-2a b +=,不是无理数,故③不成立;④中取()()11223,3a k k b k k =∈=∈Z Z ,则()()12123,3a b k k A a b k k A +=+∈-=-∈,故④成立. 故答案为:④点睛:本题考查集合的概念,属于基础题.四、解答题1.答案见解析解析:(1)利用列举法表示集合;(2)利用描述法表示集合;(3)利用描述法表示集合;详解:解:(1)由所有小于20的既是奇数又是质数的正整数有3、5、7、11、13、17、19; 故由所有小于20的既是奇数又是质数的正整数组成的集合为{}3,5,7,11,13,17,19;(2)由所有非负偶数组成的集合为{}|2,x x n n N =∈;(3)直角坐标系内第三象限的点组成的集合为(){},|0,0x y x y <<点睛:本题考查集合的表示,属于基础题.2.答案不唯一,具体见解析解析:讨论2a =和2a ≠,直接可得解.详解:方程可转化为()28a x -=,当2a =时,这个方程无解;当2a ≠时,得82x a =-. 综上,当2a =时,方程的解集为∅;当2a ≠时,方程的解集为82a ⎧⎫⎨⎬-⎩⎭. 点睛:本题主要考查了分类讨论解方程,属于基础题.3.{|34}A B x x =≤<,{|2}A B x x ⋃=≥解析:先对集合B 进行化简,然后与集合A 分别取交集和并集即可. 详解:由题得:集合{}{}|3782|3B x x x x x =-≥-=≥,而集合{|24}A x x =≤<, 所以{|34}A B x x ⋂=≤<,{|2}A B x x ⋃=≥.点睛:本题考查了集合的交集与并集,以及不等式的求解运算,属于基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(72)
1.1 集合的概念一、单选题1.集合{,,}a b c 的真子集共有 个( )A .7B .8C .9D .10答案:A解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:A2.给出下列关系:①12R ∈R ;③3∈N -;④Q ∈.其中正确的个数为( )A .1B .2C .3D .4答案:B解析:①12R ∈R ,错误;③3∈N -,正确;④Q ∈,错误,所以正确的个数是两个,故选B.3.已知集合2{|320}A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是A .98⎧⎫⎨⎬⎩⎭B .90,8⎧⎫⎨⎬⎩⎭C .{0}D .20,3⎧⎫⎨⎬⎩⎭答案:B解析:由题意分方程为一次方程和二次方程两种情况分别求解.详解:由集合2{|320}A x ax x =-+=中有且只有一个元素,得a=0或0980a a ≠⎧⎨=-=⎩, ∴实数a 的取值集合是0, 98}故选B .点睛:本题考查实数的取值集合的求法,考查单元素集的性质等基础知识.4.已知集合A {1,=2,3,*n(n })N ⋯∈,集合()*12k B {j ,j ,j )k 2,k N =⋯≥∈是集合A 的子集,若11j ≤ 2j << ⋯ m j n <≤且i 1i j j m(i 1,+-≥=2,⋯⋯,k 1)-,满足集合B 的个数记为()n k m ⊕,则()732(⊕= )A .9B .10C .11D .12答案:B 解析:根据()n k m ⊕和()732⊕,可得n 7=,k 3=,m 2=,集合A {1,=2,3,4,5,6,7};集合{}123B j ,j ,j =,121j j 7≤<≤满足集合B 的个数列罗列出来,可得答案.详解:由题意可得n 7=,k 3=,m 2=,那么集合A {1,=2,3,4,5,6,7};集合{}123B j ,j ,j =,1231j j 7j ≤<<≤,i 1i j j 2+-≥满足集合B 的个数列罗列出来,可得:{1,3,5},{1,3,6},{1,3,7},{1,4,6},{1,4,7};{1,5,7},{2,4,6},{2,4,7},{2,5,7},{3,5,7},故选B .点睛:本题考查子集与真子集,并且即时定义新的集合,主要考查学生的阅读理解能力.5.已知集合{}1,2,3A =,集合(){},,B x y x A x y A =∈-∈,则符合条件的集合B 的子集个数为( )A .3B .4C .8D .10答案:C解析:列举出集合B 中的运算,利用子集个数公式可得出结果.详解:{}1,2,3A =,(){}()()(){},,2,1,3,2,3,1B x y x A x y A =∈-∈=, 因此,符合条件的集合B 的子集个数为328=.故选:C.点睛:本题考查集合子集个数的计算,解答的关键就是求出集合的元素个数,考查计算能力,属于基础题.6.已知集合{}0,1,2A =,{}B x N A =∈,则B =( ) A .{}0B .{}0,2C .10,,22⎧⎫⎨⎬⎩⎭D .{}0,2,4答案:B解析:由{}B x N A =∈0,1,2=解出x 检验即可. 详解:集合{}0,1,2A =,{}B x N A =∈0=得10x =1=得212x =;2=得32x =;又x ∈N ,故集合{}0,2B =故选:B .点睛:本题考查由元素与集合的关系求解具体集合,属于基础题7.由大于-3且小于11的偶数所组成的集合是( )A .x|-3<x<11,x∈Z}B .x|-3<x<11}C .x|-3<x<11,x=2k}D .x|-3<x<11,x=2k ,k∈Z}答案:D解析:逐一分析各个选项,用不等式表示题中描述的内容,在利用描述法即可得出答案. 详解:解:大于-3且小于11的偶数,可表示为-3<x<11,x=2k ,k∈Z,所以由大于-3且小于11的偶数所组成的集合是x|-3<x<11,x=2k ,k∈Z},故D 符合题意; 对于A ,集合表示的是大于-3且小于11的整数,不符题意;对于B ,集合表示的是大于-3且小于11的数,不符题意;对于C ,集合表示的是大于-3且小于11的数,,但不一定是整数,不符题意.故选:D.8.下列表述中正确的是A .{}0=∅B .{(1,2)}{1,2}=C .{}∅=∅D .0N ∈答案:D解析:根据∅的定义可排除A ;根据点集和数集的定义可排除B ;根据元素与集合关系排除C ,确认D 正确. 详解:∅不包含任何元素,故{}0≠∅,A 错误;(){}1,2为点集,{}1,2为数集,故(){}{}1,21,2=,B 错误;∅是集合{}∅中的一个元素,即{}∅∈∅,C 错误;N 表示自然数集,故0N ∈,D 正确.故选D点睛:本题考查集合的定义、元素与集合的关系、相等集合的概念等知识,属于基础题.9.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C二、填空题1.实数系的结构图如图所示,其中1,2,3三个方格中的内容依次是________,________,________.答案:有理数 整数 零解析:根据已知条件,本题需要填写结构图中的空余内容,需要明确图中的从属关系,因为实数分为有理数和无理数,有理数又分为整数和分数,整数又分为正整数、零、负整数,则本题答案可知.详解:根据所学知识可知,实数包括有理数和无理数,而有理数包括整数和分数,整数又可分为正整数、零和负整数.故答案为:有理数;整数;零.点睛:本题考查的是结构图的相关知识,解答本题的关键是明确实数的基本知识,属于基础题.2.若{}232,25,12x x x -∈-+,则x =________.答案:32-解析:根据元素与集合的关系分情况求得x 的值,然后利用集合的元素的互异性检验. 详解:由题意知,23x -=-或2253x x +=-.①当23x -=-时,1x =-.把1x =-代入,得集合的三个元素为3,3,12--,不满足集合中元素的互异性;②当2253x x +=-时,32x =-或1x =-(舍去),当32x =-时,集合的三个元素为7,3,122--,满足集合中元素的互异性.由①②知32x =-.故答案为:32-.3.用描述法表示图中阴影部分的点(含边界)的坐标的集合为______.答案:(x ,y )|xy≥0,且﹣1≤x≤2,12-≤y≤1}解析:利用图中的阴影部分的点的坐标满足的条件即为集合的元素的公共属性. 详解::图中的阴影部分的点设为(x ,y )则x ,y )|﹣1≤x≤0,12-≤y≤0或0≤x≤2,0≤y≤1}=(x ,y )|xy≥0且﹣1≤x≤2,12-≤y≤1}故答案为:(x ,y )|xy≥0,且﹣1≤x≤2,12-≤y≤1}.4.2{|420}A x ax x =-+=至多有一个元素,则a 的取值范围是___________.答案:{|2a a 或0}a =解析:由集合A 为方程的解集,根据集合A 中至多有一个元素,转化为方程至多有一个解求解.详解:当0a =时,方程2420ax x -+=,即为12x =,1{}2A =,符合题意;当0a ≠时,因为2420ax x -+=至多有一个解,所以△1680a =-,解得2a ,综上,a 的取值范围为:2a 或0a =.故答案为:{|2a a 或0}a =.点睛:本题主要考查集合元素的个数以及方程的解,还考查了分类讨论思想,属于基础题.5.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.答案:{}4,2,0,1,4--解析:根据集合中的元素的互异性,列出不等式组求解.详解:由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞, 即()()()()()(),44,22,00,11,44,M =-∞----+∞,所以{}4,2,0,1,4R C M =--.故答案为:{}4,2,0,1,4--点睛:此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.三、解答题1.集合论是德国数学家康托尔于19世纪末创立的,当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念,关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”,请你查阅相关资料,用简短的报告阐述你对这些评价的认识.答案:见解析解析:集合论是现代数学的基础,已渗透到数学的所有领域.详解:集合论,是数学的一个基本的分支学科,研究对象是一般集合.集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域.按现代数学观点,数学各分支的研究对象或者本身是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如自然数、实数、函数).从这个意义上说,集合论可以说是整个现代数学的基础.点睛:本题考查了对于集合论的一些认识,意在考查学生的理解应用能力.2.(1)已知{}{}3,54A x x B y y =>-=-<<,求A B ;(2)已知集合{}23,21,4A a a a =---,若3A -∈,试求实数a 的值。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(98)
1.1 集合的概念一、单选题1.下列四个集合中,是空集的是( )A .{}0B .{8x x >∣,且}5x <C .{}210x x ∈-=N ∣D .{}4x x >答案:B解析:根据空集的定义判断.详解:A 中有元素0,B 中集合没有任何元素,为空集,C 中有元素1,D 中集合,大于4的实数都是其中的元素.故选:B .2.下列常数集表示正确的是( )A .实数集RB .整数集QC .有理数集ND .自然数集Z答案:A解析:因为Z 表示整数集,Q 表示有理数集,R 表示实数集,N 表示自然数数集,所以A 正确,故选A.3.已知A 中元素x 满足x =3k -1,k∈Z,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A答案:C解析:判断一个元素是不是集合A 的元素,只要看这个元素是否满足条件31,x k k Z =-∈;判断一个元素是集合A 的元素,只需令这个数等于31k -,解出k ,判断k 是否满足k Z ∈,据此可完成解答.详解:当0k =时,311k -=-,故1A -∈,故选项A 错误;若11A -∈,则1131k -=-,解得103k Z =-∉,故选项B 错误; 令23131k k -=-,得0k =或1k =,即231k A -∈,故选项C 正确;当11k =-时,3134k -=-,故34A -∈,故选项D 错误;故选C.点睛:该题是一道关于元素与集合关系的题目,解题的关键是掌握集合的含义.4.若集合{}1,3A =,{}0,2B =-,则集合{}|,,z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2答案:C解析:根据题意求出{}{}|,,1,1,3z z x y x A y B =+∈∈=-即可得解.详解:集合{}1,3A =,{}0,2B =-,则集合{}{}|,,1,1,3z z x y x A y B =+∈∈=-共三个元素.故选:C点睛:此题考查求集合中的元素个数,关键在于读懂集合的新定义,根据题意求出集合中的元素.5.集合(){},0,,x y xy x y ≤∈∈R R 是指( )A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点答案:D解析:由0xy ≤,可知00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩,进而可选出答案. 详解:因为0xy ≤,所以00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩, 故集合(){},0,,x y xy x y ≤∈∈R R 是指第二象限和第四象限内的所有点,以及在,x y 轴上的点,即不在第一、第三象限内的所有点.故选:D.点睛:本题考查集合的表示方法,属于基础题.6.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .(x ,y )|x =0,y≠0或x≠0,y =0}B .(x ,y )|x =0且y =0}C .(x ,y )|xy =0}D .(x ,y )|x ,y 不同时为零}答案:C解析:根据坐标轴上的点特征判断选项.详解:A.表示x 轴和y 轴上的点,但不包含原点,故A 错误;B.集合中只有一个元素,就是原点,故错误;C.00xy x =⇔=或0y =,即表示坐标轴上点的集合,故C 正确;D.表示平面中的点,但不包含原点,故错误.故选:C.7.用描述法表示奇数集合:①A=a|a =2k+1,k∈Z}②B=a|a =2k ﹣1,k∈Z}③C=2b+1|b∈Z}④D=d|d =4k±1,k∈Z}.上述表示方法正确的个数是( )A .1B .2C .3D .4答案:C解析:由整数的整除性,可得A 、B 都表示奇数集,D 表示除以4余1的整数或表示除以4余3的整数.由此不难得到本题的答案.详解:由题意得:①②表示奇数集合,③的表示方法错误,④D=x|x =4k±1,k∈z},表示除以4余1的整数或除以4余3的整数,∵一个奇数除以4之后,余数不是1就是3,故④表示奇数集合;故选:C .8.已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1}B .{0}C .{0,1,1}-D .{0,1}答案:D 解析:对参数分类讨论,结合判别式法得到结果.详解:解:①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a =-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D .9.下列关系中正确的个数是( ) ①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.二、多选题1.(多选题)大于4的所有奇数构成的集合可用描述法表示为( )A .x|x =2k -1,k∈N}B .x|x =2k +1,k∈N,k≥2}C .x|x =2k +3,k∈N}D .x|x =2k +5,k∈N}答案:BD解析:用列举法把四个选项对应的集合表示出来,即可验证.详解:对于A :{}{|}1,1,321x x k k ∈=-N =-,对于B :{}{|212}5,7,9x x k k k +∈≥=N =,, 对于C :{}{|23}3,5,7x x k k +∈=N =, 对于D :{}{|25}5,7,9x x k k +∈=N =,故选:BD 2.(多选题)已知集合A 中元素满足x =3k -1,k∈Z,则下列表示正确的是( )A .-2∈AB .-11∉AC .3k 2-1∈AD .-34∉A答案:BC解析:直接对四个选项代入x =3k -1进行计算,即可得到正确答案.详解:令3k-1=-2,解得k=-13,-13∉Z,∴-2∉A;令3k-1=-11,解得k=-103,-103∉Z,∴-11∉A;∵k2∈Z,∴3k2-1∈A;令3k-1=-34,解得k=-11,-11∈Z,∴-34∈A.故选:BC3.下列每组对象,能构成集合的是()A.中国各地最美的乡村B.直角坐标系中横、纵坐标相等的点C.一切很大的数D.清华大学2020年入学的全体学生答案:BD解析:根据集合中的元素具有确定性逐个判断即可详解:解:对于A,最美标准不明确,不具有确定性,所以不能构成集合;对于B,直角坐标系中横、纵坐标相等的点就在一、三象限的平分线上,是确定的,所以可以构成集合;对于C,一切很大的数不具有确定性,所以不能构成集合;对于D,清华大学2020年入学的全体学生是确定的,能构成集合,故选:BD4.设P是一个数集,且至少含有两个元素.若对任意的a,b∈P,都有a+b,a-b,ab,ab∈P(除数b≠0),则称P是一个数域,例如有理数集Q是一个数域,有下列说法正确的是()A.数域必含有0,1两个数;B.整数集是数域;C.若有理数集Q M⊆,则数集M必为数域;D.数域必为无限集.答案:AD解析:根据数域的定义逐项进行分析即可.详解:数集P有两个元素m,N,则一定有m-m=0,mm=1(设m≠0),A正确;因为1∈Z,2∈Z,12Z∉,所以整数集不是数域,B不正确;令数集M Q =⋃,则1M ∈,但1M ,所以C 不正确;数域中有1,一定有1+1=2,1+2=3,递推下去,可知数域必为无限集,D 正确. 故选:AD5.(多选)已知集合{}220A x ax x a =-+=中至多含有一个元素,则实数a 可以取( )A .1a ≥B .0a =C .1a ≤-D .11a -≤≤答案:ABC 解析:根据集合至多含有一个元素,得到方程220ax x a -+=至多有一个根,讨论0a =,0a ≠两种情况,分别求出对应的a 的范围,即可得出结果.详解: 因为集合{}220A x ax x a =-+=中至多含有一个元素,即方程220ax x a -+=至多有一个根,当0a =时,方程可化为方程20x -=,解得0x =,满足题意;当0a ≠时,若方程无解,则()22224440a a ∆=--=-<,解得1a >或1a <-;若方程220ax x a -+=只有一个根,则()22224440a a ∆=--=-=,解得1a =±,综上实数a 的范围为1a ≥或0a =或1a ≤-;即ABC 都正确,D 错误.故选:ABC.点睛:本题主要考查集合中元素个数求参数的问题,属于基础题型.三、填空题1.下列说法中,正确的有________.(填序号)①单词book 的所有字母组成的集合的元素共有4个;②集合M 中有3个元素a ,b ,c ,其中a ,b ,c 是△ABC 的三边长,则△ABC 不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.答案:②解析:根据集合的元素的互异性判定①错误;根据集合的元素的互异性判定②正确;根据集合的元素的无序性可判定③错误.详解:①不正确. book 的字母o 有重复,共有3个不同字母,元素个数是3.②正确. 集合M 中有3个元素a ,b ,c ,所以a ,b ,c 都不相等,它们构成的三角形三边不相等,故不可能是等腰三角形.③不正确. 小于10的自然数不管按哪种顺序排列,里面的元素都是0,1,2,3,4,5,6,7,8,9这10个数,集合是相同的,和元素的排列顺序无关.故答案为:②.2.已知集合[][],14,9A t t t t =+⋃++,0A ∉,存在正数λ,使得对任意a A ∈,都有A a λ∈,则t 的值是____________答案:1或3-解析:根据t 所处的不同范围,得到[],1a t t ∈+和[]4,9a t t ∈++时,aλ所处的范围;再利用集合A 的上下限,得到λ与t 的等量关系,从而构造出方程,求得t 的值. 详解:0A ∉,则只需考虑下列三种情况:①当0t >时,[][],14,9a t t t t ∈+++ 11111,,941a t t t t ⎡⎤⎡⎤∴∈⎢⎥⎢⎥+++⎣⎦⎣⎦又0λ> ,,941a t t t t λλλλλ⎡⎤⎡⎤⇒∈⎢⎥⎢⎥+++⎣⎦⎣⎦A a λ∈ 914t t t t λλ⎧≥⎪⎪+∴⎨⎪≤+⎪+⎩且419t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪⎩ 可得:()()()()()()991414t t t t t t t t λλ⎧+≤≤+⎪⎨++≤≤++⎪⎩ ()()()914t t t t λ∴=+=++ 1t ⇒=②当90t +<即9t <-时,与①构造方程相同,即1t =,不合题意,舍去③当1040t t +<⎧⎨+>⎩即41t -<<-时 可得:11t t t t λλ⎧≥⎪⎪+⎨⎪≤+⎪⎩且4994t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪+⎩()()()149t t t t λ∴=+=++ 3t ⇒=-综上所述:1t =或3-点睛:本题考查利用集合与元素的关系求解参数的取值问题,关键在于能够通过t 的不同取值范围,得到a 与a λ所处的范围,从而能够利用集合的上下限得到关于λ的等量关系,从而构造出关于t 的方程;难点在于能够准确地对t 的范围进行分类,对于学生的分析和归纳能力有较高的要求,属于难题.3.如果集合A =x|ax 2-2x -1=0}只有一个元素则a 的值是_____________答案:0或-1解析:当0a =时,12A ⎧⎫=-⎨⎬⎩⎭符合题意;当0a ≠时,一元二次方程判别式440,1a a ∆=+==-.4.集合{}28160A x kx x =-+=∣,若集合A 中只有一个元素,则由实数k 的值组成的集合为________.答案:{}0,1解析:分0k =和0k ≠两种情况,分别讨论集合A ,进而可求出答案.详解:当0k =时,方程28160kx x -+=可化为8160x -+=,解得2x =,满足题意;当0k ≠时,要使集合{}28160A xkx x =-+=∣中只有一个元素, 则方程28160kx x -+=有两个相等的实数根,所以64640k ∆=-=,解得1k =,此时集合{4}A =,满足题意.综上所述,0k =或1k =,即实数k 的值组成的集合为{}0,1.故答案为:{}0,1.点睛:本题考查单元素的集合,注意讨论方程28160kx x -+=中k 是否为0,属于基础题.5.已知集合{}2,1,0,1P =--,集合{},Q y y x x P ==∈,则Q =______.答案:{}2,1,0解析:将2,1,0,1x =--分别代入y x =中,得到y 的值,即可求得集合Q ,得到答案. 详解:由题意,将2x =-,1-,0,1分别代入y x =中,得到2,1,0y =,所以{}2,1,0Q =.故答案为{}2,1,0.点睛:本题主要考查了集合的表示方法及应用,着重考查了推理与运算能力,属于基础题.四、解答题1.试用恰当的方法表示下列集合.(1)使函数12y x =-有意义的x 的集合; (2)不大于12的非负偶数;(3)满足不等式*(3)2x x -≤∈N 的解集;(4)由大于10小于20的所有整数组成的集合.答案:(1){|2}x x ∈≠R ;(2){0,2,4,6,8,10,12}或{|2,x x n n =∈N 且7}n <;(3){1,2,3,4,5}或{}*|5,x x x ≤∈N ;(4){|1020}x x ∈<<Z 或{11,12,13,14,15,16,17,18,19}. 解析:(1)用描述法表示;(2)、(3)、(4)既可用描述法也可用列举法.详解:(1)要使函数12y x =-有意义,必须使分母20x -≠,即2x ≠. 因此所求集合用描述法可表示为{|2}x x ∈≠R .(2)∵不大于12是小于或等于12,非负是大于或等于0,∴不大于12的非负偶数集用列举法表示为{0,2,4,6,8,10,12}.用描述法表示为{|2,x x n n =∈N 且7}n <.(3)满足()*32x x -≤∈N 的解是1,2,3,4,5. 用列举法表示为{1,2,3,4,5},用描述法表示为{}*|5,x x x ≤∈N . (4)设大于10小于20的整数为x ,则x 满足条件x ∈Z 且1020x <<.故用描述法可表示为{|1020}x x ∈<<Z ,用列举法表示为{11,12,13,14,15,16,17,18,19}.点睛:本题考查集合的表示方法,属于基础题.2.设2y x ax b =-+,{}|0A x y x =-=,{|0}B x y ax =-=,若{3,1}A =-,试用列举法表示集合B .答案:{33B =---+解析:将2y x ax b =-+带入集合A 的方程化简整理,由{3,1}A =-利用韦达定理求出参数,a b ,再利用一元二次方程的解法求解集合B.详解:将2y x ax b =-+代入集合A 中的方程并整理得2(1)0x a x b -++=.因为{3,1}A =-,所以方程2(1)0x a x b -++=的两根为-3,1,由韦达定理得311,31,a b -+=+⎧⎨-⨯=⎩ 解得3,3,a b =-⎧⎨=-⎩所以233y x x =+-.将233y x x =+-,3a =-代入集合B 中的方程并整理得2630x x +-=,解得3x =--或3x =-+{33B =---+.点睛:本题考查了集合的表示方法,准确的利用韦达定理求参数是解题的关键,属于一般难度的题.3.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-.若2a =,求出A 中其他所有元素.答案:113,,23-- 解析:根据定义依次计算即可得答案.详解:解:因为若a A ∈,则11a A a +∈-, 所以当2a =时,11a a +=-12312A +=-∈-; 当3a =-时,11a a +=-131132A -=-∈+, 当12a =-时,11a a +=-11121312A -=∈+, 当13a =时,11a a +=-1132113A +=∈-, 综上A 中其他所有元素为:113,,23--. 点睛:本题考查集合的元素的求解,是基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(55)
1.1 集合的概念一、单选题1.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .302.设集合{|11,}A x x a x =-<-<∈R ,{|15,}B x x x =<<∈R ,若A B =∅,则实数a 的取值范围是( ) A .06a ≤≤B .2a ≤或4aC .0a ≤或6a ≥D .24a ≤≤3.已知集合{}21,21,1P a a =-+-,若0P ∈,则实数a 的取值集合为( )A .1,12⎧⎫--⎨⎬⎩⎭B .{}1,1-C .1,12⎧⎫-⎨⎬⎩⎭D .1,1,12⎧⎫--⎨⎬⎩⎭4.已知集合{}220A x ax x a =-+=中至多含有一个元素,则实数a 的取值范围( )A .[]1,1-B .[1,)(,1]+∞-∞-C .[]{}1,10-D .{}[)1,,10(]+∞-∞-5.设集合{}0A x x =>,则( ) A .A φ∈B .1A ∉C .1A ∈D .1A ⊆6.点的集合(){},0M x y xy =≥是指 A .第一象限内的点集 B .第三象限内的点集.C .第一、第三象限内的点集D .不在第二、第四象限内的点集.7.集合{}21,A x x x Z =-<<∈中的元素个数为( ) A .1B .2C .3D .48.对集合1,5,9,13,17}用描述法来表示,其中正确的是( ) A . x |是小于18的正奇数} B .{}|41,5x x k k Z k =+∈<且C .{}|43,,5x x s s N s =-∈≤且D .{}|43,,5x x s s N s *=-∈≤且9.设{}1,2,3,4P =,{}4,5,6,7,8Q =,定义(){},|,,P Q a b a P b Q a b *=∈∈≠,则P Q *中元素的个数为( ) A .4 B .5 C .19 D .20二、填空题1.如果{}{},1,2a b =,则a b=_______.2.已知集合A =a +2,(a +1)2,a 2+3a +3},且1∈A,则2017a 的值为_________. 3.定义集合运算:{}|,,A B z z xy x A y B ⊗==∈∈,设,,则集合A B ⊗的所有元素之和为______________.4.列举法表示方程()22x 2a 3x a 3a 20-++++=的解集为______.5.已知x R ∈,[]x 表示小于x 的最大整数,{}[]x x x =-,令{}{}M x 0x 100,1x =≤≤=,则M 中元素之和为________. 三、解答题1.已知集合{2,5,12}A x x =-+,且3A -∈,求x 的值.2.设2y x ax b =-+,{}|0A x y x =-=,{|0}B x y ax =-=,若{3,1}A =-,试用列举法表示集合B .3.已知由实数组成的集合A ,1A ∉,又满足:若x A ∈,则11A x∈-. (1)设A 中含有3个元素,且2,A ∈求A ;(2)A 能否是仅含一个元素的单元素集,试说明理由;(3) A 中含元素个数一定是*3()n n N ∈个吗?若是,给出证明,若不是,说明理由.参考答案一、单选题 1.C 详解: 因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.考点:1.集合的相关知识,2.新定义题型.2.C解析:由题意可得{|11,}A x a x a x R ,∵11a a +>-,∴A ≠∅,又A B =∅,用数轴表示集合A 、B ,即可求出结果. 详解:由11x a -<-<得11a x a -<<+.∵11a a +>-,∴A ≠∅,用数轴表示集合A 、B 如图所示,或由数轴可知,11a +≤或15a -≥,所以0a ≤或6a ≥.故选:C. 点睛:本题主要考查了集合间的子集关系,以及数形结合的应用,属于基础题. 3.C解析:分别令210a +=和210a -=,求得a 后,验证是否满足集合元素的互异性即可得到结果. 详解:当210a +=时,12a =-,此时2314a -=-,满足题意; 当210a -=时,1a =或1-;若1a =,213a +=,满足题意;若1a =-,211a +=-,不满足互异性,不合题意;∴实数a 的取值集合为1,12⎧⎫-⎨⎬⎩⎭.故选:C . 点睛:本题考查根据元素与集合关系求解参数值的问题,易错点是忽略求得参数值后,需验证集合中元素是否满足互异性. 4.D解析:将问题转化为方程220ax x a -+=至多只有一个根,对a 分0a =和0a ≠两种情况讨论,即可求解. 详解:解:由题意,原问题转化为方程220ax x a -+=至多只有一个根,当0a =时,方程为20x -=,解得0x =,此时方程只有一个实数根,符合题意; 当0a ≠时,方程220ax x a -+=为一元二次方程, 所以2440a ∆=-≤,解得1a ≤-或1a ≥.综上,实数a 的取值范围为{}(][,11),0-∞-+∞. 故选:D . 5.C解析:由10,>可判断1A ∈,进而得解. 详解:集合{}0A x x =>,10,1A >∴∈故选: C 点睛:本题考查元素与集合的关系,是基础题. 6.D解析:0xy ≥指x 和y 同号或至少一个为零,结合象限的概念可得结果. 详解:0xy ≥指x 和y 同号或至少一个为零,故为第一或第三象限内的点或坐标轴上的点.即不为第二、第四象限内的点,故选D . 点睛:本题主要考查对集合的概念和表示的理解,属于基础知识的考查. 7.B解析:表示出集合A 中的元素,即可得出个数. 详解:{}{}21,1,0A x x x Z =-<<∈=-, ∴集合A 中有2个元素.故选:B. 点睛:本题考查集合元素个数的求解,属于简单题. 8.D解析:对照四个选项一一验证:对于A : x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,即可判断; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且即可判断; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且即可判断;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且即可判断.详解:对于A : x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,,故A 错误; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且,故B 错误; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且,故C 错误;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且,故D 正确.故选:D 9.C解析:采用列举法,分别列举1a =、2、3、4时,集合P Q *中的元素,即可求解. 详解:当1a =时,集合P Q *中元素为()1,4,()1,5,()1,6,()1,7,()1,8共5个, 当2a =时,集合P Q *中元素为()2,4,()2,5,()2,6,()2,7,()2,8共5个, 当3a =时,集合P Q *中元素为()3,4,()3,5,()3,6,()3,7,()3,8共5个, 当4a =时,集合P Q *中元素为()4,5,()4,6,()4,7,()4,8共4个, 所以集合P Q *中共有555419+++=个, 故选:C.二、填空题 1.12或2解析:根据已知条件可得出a 、b 的值,即可得出结果. 详解:因为{}{},1,2a b =,则12a b =⎧⎨=⎩或21a b =⎧⎨=⎩,因此,12a b =或2.故答案为:12或2. 2.1解析:对集合A 中的元素分情况讨论,结合集合中元素的互异性可求得结果. 详解:当a +2=1时,a =-1,此时有(a +1)2=0,a 2+3a +3=1,不满足集合中元素的互异性; 当(a +1)2=1时,a =0或a =-2,当a =-2,则a 2+3a +3=1,舍去,经验证a =0时满足;当a 2+3a +3=1时,a =-1或a =-2,由上知均不满足,故a =0,则2017a =1. 故答案为:1 3.54解析:试题分析:由新定义运算可知集合A B ⊗中所有的元素是由集合,中的元素的乘积得到的,所有元素依次为0,4,5,8,10,12,15,求和得54 考点:新定义集合问题4.{}a 1,a 2++解析:根据题意,求出方程的解,用集合表示即可得答案. 详解:根据题意,方程()22x 2a 3x a 3a 20-++++=变形可得()()x a 1x a 20⎡⎤⎡⎤-+-+=⎣⎦⎣⎦,有2个解:1x a 1=+,2x a 2=+, 则其解集为{}a 1,a 2++; 故答案为{}a 1,a 2++. 点睛:本题考查集合的表示方法,关键是求出方程的解,属于基础题. 5.5050解析:本题首先可根据题意确定集合{}0,1,2,3,4,,100M =,然后根据等差数列求和公式即可得出结果. 详解:因为{}[]x x x =-,0x 100≤≤,{}1x =, 所以集合{}0,1,2,3,4,,100M =, 则M 中元素之和为010001210010150502, 故答案为:5050. 点睛:本题考查求集合中所有元素的和,能否确定集合中包含的元素是解决本题的关键,考查等差数列求和公式,考查推理能力与计算能力,是中档题.三、解答题 1.1-或8-解析:由题意知A 集合中必有元素-3,则23x -=-或53x +=-,求得1x =-或8x =-,分别代入集合A 验证是否能构成集合. 详解:∵3A -∈,∴23x -=-或53x +=-,∴1x =-或8x =-.当1x =-时,{3,4,12}A =-,满足集合元素的互异性,∴1x =-符合题意; 当8x =-时,{10,3,12}A =--,也满足集合元素的互异性,∴8x =-也符合题意. 综上,x 的值为1-或8-. 点睛:本题考查根据元素与集合的关系求参数,属于基础题.2.{33B =---+解析:将2y x ax b =-+带入集合A 的方程化简整理,由{3,1}A =-利用韦达定理求出参数,a b ,再利用一元二次方程的解法求解集合B. 详解:将2y x ax b =-+代入集合A 中的方程并整理得2(1)0x a x b -++=. 因为{3,1}A =-,所以方程2(1)0x a x b -++=的两根为-3,1,由韦达定理得311,31,a b -+=+⎧⎨-⨯=⎩解得3,3,a b =-⎧⎨=-⎩所以233y x x =+-.将233y x x =+-,3a =-代入集合B 中的方程并整理得2630x x +-=,解得3x =--或3x =-+{33B =---+.点睛:本题考查了集合的表示方法,准确的利用韦达定理求参数是解题的关键,属于一般难度的题.3.(1)12,1,2A ⎧⎫=-⎨⎬⎩⎭;(2)不存在这样的A ,理由见解析;(3)是,证明见解析.解析:(1)根据题意得,1112A =-∈-,()11112A =∈--,故11,,22A ⎧⎫=-⎨⎬⎩⎭; (2)假设集合A 是单元数集合,则210x x -+=,根据矛盾即可得答案; (3)根据已知条件证明x ,11x-,11x -是集合A 的元素即可.详解:解:(1)因为若x A ∈,则11A x∈-,2,A ∈, 所以1112A =-∈-,()11112A =∈--,12112A =-∈, 所以11,,22A ⎧⎫=-⎨⎬⎩⎭.(2)假设集合A 是仅含一个元素的单元素集合,则11x x=-,即:210x x -+=, 由于30∆=-<,故该方程无解, 所以A 不能是仅含一个元素的单元素集.(3)因为1A ∉,x A ∈,则11A x∈-,则1111111x A x x x-==-∈--, 所以111x Ax x =∈--,故该集合有三个元素,下证x ,11x-,11x -互不相等即可.假设11x x =-,则210x x -+=,该方程无解,故x ,11x-不相等, 假设11x x-=,则210x x -+=,该方程无解,故x ,11x -不相等,假设1111x x =--,则210x x -+=,该方程无解,故11x-,11x -不相等. 所以集合A 中含元素个数一定是*3()n n N ∈个. 点睛:本题考查集合与元素的关系,其中第三问解题的关键在于根据已知证明x ,11x-,11x -互不相等且属于集合A 即可.考查运算求解能力与逻辑推理能力,是中档题.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(31)
1.1 集合的概念一、单选题1.若集合{}2|(2)210A x k x kx =+++=有且仅有1个真子集,则实数k 的值是( ).A .2-B .1-或2C .1-或2±D .1-或2-答案:C解析:集合A 中有且只有1个真子集,等价为集合A 只有一个元素,然后分20k +=、20k +≠两种情况讨论即可.详解:集合2{|(2)210}A x k x kx =+++=有且仅有1个真子集,∴集合A 只有一个元素. 若20k +=,即2k =-时,方程等价为410x -+=,解得14x =,满足条件.若20k +≠,即2k ≠-时,则方程满足△0=,即244(2)0k k -+=,220k k ∴--=,解得2k =或1k =-. 综上:2k =-或2k =或1k =-.故选:C2.已知集合{(2)(2)0}M xx x x =+-=∣,则M =( ) A .{0,2}-B .{0,2}C .{0,2,2}-D .{2,2}-答案:C 解析:直接利用方程的解法化简求解.详解:因为集合{(2)(2)0}{2,0,2}M xx x x =+-==-∣, 故选:C3.已知集合M=6*,5aN a ⎧∈⎨-⎩且}a Z ∈,则M 等于( ) A .2,3}B .1,2,3,4}C .1,2,3,6}D .1-,2,3,4}答案:D解析:由元素具有的性质,5a -是6的正约数,由此可得a 的值.详解:因为集合M=6*,5a N a⎧∈⎨-⎩且}a Z ∈,,所以5-a 可能为1,2,3,6, 即a 可能为4,3,2,1-.所以M=1-,2,3,4},故选:D.点睛:本题考查集合的概念,确定集合的元素是解题关键.元素所具有的性质是解题的根据.4.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5C .37D答案:D解析:首项R 代表实数集,Q 代表有理数集,对四个数判断是无理数即可.详解:由题意知a 是实数,但不是有理数,故a 应为无理数,故a .故选:D点睛:本题主要考查了元素与集合的关系,涉及了专用数集符号,属于基础题.5.下列表示正确的是A .0N ∈B .12N ∈C .R π∉D .0.333Q ∉答案:A解析:要判断表示是否正确,掌握N 、R 和Q 各数集的定义,并能够用正确的符号表示元素和集合的关系.详解:对于A ,0是自然数,所以0N ∈,故A 正确;对于B ,12是分数,但不满足12N ∈,故B 不正确; 对于C ,π是无理数,属于实数,即有R π∈,故C 不正确;对于D ,0.333是有理数,即有0.333Q ∈,故D 不正确;故选:A点睛:本题考查了判断元素和集合之间的关系是否正确,需要熟练掌握各数集的范围,而且能够用属于符号正确表示元素和集合之间的关系,本题较为简单.6.下列命题中的真命题是( )A是有理数B .是实数C .e 是有理数D .0 不是自然数答案:B解析:根据数集的定义,实数的运算判断.详解:和 e 都是无理数;0 是自然数. 故选:B .7.设集合{}{}1,3,5,7,9,27M N x x ==>,则MN =( ) A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9答案:B解析:求出集合N 后可求M N ⋂.详解:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.8.下列说法正确的是A .我校爱好足球的同学组成一个集合B .{}1,2,3是不大于3的自然数组成的集合C .集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合D .由1,0,12,325个元素答案:C解析:根据集合中的元素具有:确定性,互异性,无序性对选项逐一判断可得正确选项. 详解:对于选项A:不满足集合中的元素的确定性,所以A 错误;对于选项B:不大于3的自然数组成的集合是{0,1,2,3},所以B 错误;对于选项C:由于集合中的元素具有无序性,所以集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合,所以C 正确;;对于选项D 12,集合中的元素具有互异性,所以由1,0,12,32有4个元素, 所以D 错误;故选C.点睛:本题考查了集合中的元素的特征:确定性,无序性,互异性,属于基础题.9.下面有四个语句:①集合N*中最小的数是0;②-a ∉N ,则a∈N;③a∈N,b∈N,则a+b 的最小值是2;④x 2+1=2x 的解集中含有两个元素.其中说法正确的个数是( )A .0B .1C .2D .3答案:A解析:根据题意依次判断即可.详解:因为N*是不含0的自然数,所以①错误;取∉N , ∉N ,所以②错误;对于③,当a=b=0时,a+b 取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A二、填空题1.若a ,b R ∈,且0a ≠,0b ≠,则a b ab a b ab ++的可能取值所组成的集合中元素的个数为________.答案:2解析:对,a b 分三种情况讨论:1、0,0a b >>;2、,a b 两者中一正一负;3、0,0a b <<,对每一种情况分别求,,a b ab a b ab 的值,从而可得a b ab a b ab ++的值,可得答案. 详解:当0,0a b >>时,0ab > ,所以1,1,1a b ab a b ab ===,所以3a b ab a b ab++=; 当,a b 两者中一正一负时,0ab < ,所以0,1a b ab a b ab +==-,所以1a b ab a b ab ++=-; 当0,0a b <<时,0ab > ,所以1,1,1a b ab a b ab =-=-=,所以1a b ab a b ab++=-;所以a b ab a b ab++的取值可能是3或-1,组成的集合中的元素为3,-1.即元素的个数为2. 故答案为:2.点睛:本题考查集合的元素的个数,注意对每一种情况进行讨论,集合的元素具有互异性,属于基础题.2.已知集合{}22(,)3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为_____.答案:9解析:根据列举法,写出集合中元素,即可得出结果.详解:将满足223x y +≤的整数,x y 全部列举出来,即(1,1),(1,0),(1,1),(0,1)-----(0,0),(0,1),(1,1),(1,0),(1,1)-,共有9个.故答案为:9.点睛:本题主要考查判断集合中元素个数,属于基础题型.3.若{}20x N x mx *∈+<恰有三个元素,则实数m 的取值范围为___________.答案:[)4,3--解析:根据题意可知34m <-≤,解出即可.详解:{}20x Nx mx *∈+<恰有三个元素,{}{}{}2001,2,3x N x mx x N x m **∴∈+<=∈<<-=, 34m ∴<-≤,即43m -≤<-.故答案为:[)4,3--.点睛:本题考查根据集合元素个数求参数,其中涉及一元二次不等式的求解,属于基础题.4.已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.答案:2或32解析:由题意知M 中各元素为描述中方程的解,由集合的性质讨论23,x x 是否相等即可求实数a . 详解:由题意知:2{|()(1)0}M x x a x ax a =--+-=中元素,即为2()(1)0x a x ax a --+-=的解, ∴0x a -=或210x ax a -+-=,可知:1x a =或23x x a +=∴当23x x ≠时,23a =;当23x x =时,332a =,∴2a =或32a =,故答案为:2或32点睛:本题考查了集合的性质,根据集合描述及元素之和,结合互异性讨论求参数,属于基础题.5.已知{}201,2x x x ∈+--,则x =_____________答案:2解析:讨论10x +=和220x x --=两种情况,再验证得到答案.详解:{}201,2x x x ∈+--当10x +=时,1x =-,代入验证知:{}{}21,20,0x x x +--=,不满足互异性,排除;当220x x --=时,2x =或1x =-(舍去),代入验证知:{}{}21,23,0x x x +--=,满足.故答案为:2点睛:本题考查了元素和集合的关系,没有验证互异性是容易发生的错误.三、解答题1.已知集合(){}2|220A x x a x a =-++=,{}22,5,512B a a =+-.(1)若3A ∈,求实数a 的值;(2)若{}5B C A =,求实数a 的值.答案:(1)3a =(2)6a =-解析:(1)化简得到()(){}|20A x x x a =--=和3A ∈,代入计算得到答案.(2)根据题意得到2512a a a +-=,计算得到2a =或6a =-,再验证互异性得到答案. 详解:(1)因为3A ∈,()(){}|20A x x x a =--=,所以3a =.(2)因为{}5B C A =,所以A 中有两个元素,即{}2,A a =,所以2512a a a +-=,解得2a =或6a =-,由元素的互异性排除2a =可得6a =-.点睛:本题考查了根据元素与集合的关系,集合的运算结果求参数,意在考查学生对于集合性质的综合应用.2.坐标平面内抛物线y=x 2-2上的点的集合;答案:答案见解析解析:利用描述法即可求解.详解:由集合的表示法,抛物线y=x 2-2上的点用描述法:{}2(,)|2x y y x =-.3.若集合A=x ∣28160kx x -+=}中只有一个元素,试求实数k 的值,并用列举法表示集合A.答案:实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =解析:集合A=x∣28160kx x -+=}中只有一个元素,即方程28160kx x -+=只有一个解,再讨论当0k =时,当0k ≠时方程的解的个数,再求集合A 即可.详解:解:由集合A=x∣28160kx x -+=}中只有一个元素,即方程28160kx x -+=只有一个解,①当0k =时,方程为8160x -+=,解得2x =,即{}2A =;②当0k ≠时,方程28160kx x -+=只有一个解,则2(8)4160k ∆=--⨯⨯=,即1k =, 即方程为28160x x -+=,解得4x =,即{}4A =,综合①②可得:实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =.点睛:本题考查了方程的解的个数问题,重点考查了分类讨论的数学思想方法,属基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(56)
1.1 集合的概念一、单选题1.给出下列关系式:①23Q ⊆;②{}210xx x ∅⊆++=∣;③{}2{(1,4)}(,)23x y y x x -⊆=--∣;④{2}[2,)xx <=+∞∣,其中正确关系式的个数是( ) A .0 B .1 C .2 D .32.下列集合的表示方法正确的是( )A .第二、四象限内的点集可表示为(x ,y)|xy≤0,x∈R,y∈R}B .不等式x -1<4的解集为x<5}C .全体整数}D .实数集可表示为R 3.设集合,则A .B .C .D .4.设集合A 只含有一个元素a ,则下列各式正确的是A .0∈AB .a ∉AC .a∈AD .a =A 5.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .36.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合A B ※ 的所有元素个数为( )A .2B .3C .4D .57.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( )A .3,6,9B .6,9,12C .9,12,15D .6,12,15 8.下列关系正确的是( )A .0N *∈B .Q π∈C .0∈∅D 2R9.设59{137}U A B =,,,,,,为U 的子集,若{}{}3)7U A B C A B ==,(,()}()19{U U C A C B =,,则下列结论正确的是 A .5,5A B ∉∉ B .5,5A B ∉∈ C .5,5A B ∈∉ D .5,5A B ∈∈二、填空题1.已知集合{}220A x R ax x =∈++=,若A 为单元素集合,则a =__________.2.已知集合{}220A x x x a =-+,且1A ∉,则实数a 的取值范围是________.3.若2∈–2x ,x 2–x},则x=___________. 4.已知集合A =x|125x-∈N,x∈N},则用列举法表示为__________________. 5.集合{}2340A x ax x =--=的子集只有两个,则a 值为____________.三、解答题1.若集合M={}31,x x m m Z =+∈P={}32,y y n n Z =+∈,x 0∈M,y 0∈P,求00x y 与集合M 、P 的关系2.用列举法表示下列集合: (1)不大于10的非负偶数集; (2)自然数中不大于10的质数集; (3)方程x 2+2x –15=0的解.3.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且两集合相等,求a ,b 的值.参考答案一、单选题 1.C解析:利用元素与集合的关系,集合与集合间的关系直接求解. 详解:对于①23Q ∈,元素与集合间的关系为属于关系,不是包含关系,故①错误; 对于②空集是任何集合的子集,故②正确;对于③,{}2{(1,4)}(,)23x y y x x -⊆=--∣点(1,4)-为抛物线223y x x =--上的点,故③正确; 对于④{2}[2,)xx <⊆+∞∣,故④错误; 所以正确的个数为2个. 故选:C. 2.D 详解:A. 第二、四象限内的点集可表示为(x ,y)|xy<0,x∈R,y∈R},故A 不正确;B. 不等式x -1<4的解集为{|5}x x <,故B 不正确;C. 全体整数}不用大括号即可,故C 不正确;D. 实数集可表示为R ,正确. 故选D.3.B解析:根据元素与集合的关系,可知是集合中的元素,则,故选B.4.C 详解:分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种.5.A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案. 详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0. 故选A . 点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题. 6.B解析:求出集合 A B ※ 的所有元素,即得解. 详解:当1,2x y ==时,1(12)1z =⨯-=-; 当1,3x y ==时,1(13)2z =⨯-=-; 当2,2x y ==时,2(22)0z =⨯-=; 当2,3x y ==时,2(23)2z =⨯-=-. 所以集合 A B ※ 的共有3个元素. 故选:B 点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平. 7.B解析:先去掉绝对值,转化为两个方程,针对方程根的情况进行讨论. 详解:解:关于x 的方程26(0)x x a a -=>等价于260x x a --=①,或者260x x a -+=②.由题意知,P 中元素的和应是方程①和方程②中所有根的和.0a >,对于方程①,()2(6)413640a a ∆=--⨯⨯-=+>.∴方程①必有两不等实根,由根与系数关系,得两根之和为6.而对于方程②,364a ∆=-,当9a =时,0∆=可知方程②有两相等的实根为3, 在集合中应按一个元素来记,故P 中元素的和为9;当9a >时,∆<0方程②无实根,故P 中元素和为6;当09a <<时,方程②中0∆>,有两不等实根,由根与系数关系,两根之和为6, 故P 中元素的和为12. 故选:B . 8.D解析:由元素与集合的关系逐个分析判断即可 详解:对于A ,因为0不是正整数,所以0N *∉,所以A 错误, 对于B ,因为π是无理数,所以Q π∉,所以B 错误,对于C ,因为空集是不含任何元素的集合,所以0∉∅,所以C 错误,对于DR ,所以D 正确, 故选:D 9.C解析:根据{}()()()19U U U C A C B C A B ==,,得出{3,5,7}A B =,依次判断选项即可选出答案. 详解:因为{}()()()19U U U C A C B C A B ==,, 所以{3,5,7}A B =.即:集合A 、B 中至少有一个集合含有5. A 选项:5,5A B ∉∉,错误.B 选项:5,5A B ∉∈,{}5)7UC A B =∈(,不符合题意.D 选项:5,5A B ∈∈,{}53A B ∈=,不符合题意. 故选:C 点睛:本题考查集合的交,并,补集的运算,认真审题是解决本题的关键,属于简单题.二、填空题 1.0或18解析:分0a =和0a ≠两种情况讨论,根据方程220ax x ++=只有一根可得出关于实数a 的等式,由此可解得实数a 的值. 详解:当0a =时,{}{}{}220202A x R ax x x x =∈++==+==-,合乎题意;当0a ≠时,要使A 为单元素集合,只需180a ∆=-=,解得18a =. 综上所述:0a =或18. 故答案为:0或18. 2.解析:令,由题意,得,解得.考点:元素与集合的关系.3.2解析:利用元素2和集合之间的关系,求值。
1.1 集合的概念(学生版)
第1课时 集合的概念1.有下列各组对象:①接近于0的数的全体;①比较小的正整数的全体;①平面上到点O 的距离等于1的点的全体;①直角三角形的全体.其中能构成集合的个数是( )A .2B .3C .4D .5 2.已知集合A 由x <1的数构成,则有( )A .3①AB .1①AC .0①AD .-1①A3.集合A 中只含有元素a ,则下列各式一定正确的是( )A .0①AB .a ①AC .a ①AD .a =A4.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( )A .矩形B .平行四边形C .菱形D .梯形5.已知集合A 含有三个元素2,4,6,且当a ①A ,有6-a ①A ,则a 为( ) A .2B .2或4C .4D .06.若x ①N ,则满足2x -5<0的元素组成的集合中所有元素之和为________.7.已知①5①R ;①13①Q ;①0①N ;①π①Q ;①-3①Z .正确的个数为________. 8.已知x ,y 都是非零实数,z =x |x |+y |y |+xy |xy |可能的取值组成集合A ,则( ) A .2①A B .3①A C .-1①A D .1①A9.已知集合A 中含有三个元素1,a ,a -1,若-2①A ,则实数a 的值为( )A .-2B .-1C .-1或-2D .-2或-310.集合A 中含有三个元素2,4,6,若a ①A ,且6-a ①A ,那么a =________.11.由实数x ,-x ,|x |,x 2及-3x 3所组成的集合,最多含有________个元素.12.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且M =N .求a ,b 的值.13.设A 为实数集,且满足条件:若a ①A ,则11-a ①A (a ≠1).求证:(1)若2①A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.14.已知方程ax 2-3x -4=0的解组成的集合为A .(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.第2课时 集合的表示1.集合A ={x ①Z |-2<x <3}的元素个数为( )A .1B .2C .3D .42.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( ) A.⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧ x +y =3,x -y =-1 B.⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧x =1,y =2C .{1,2}D .{(1,2)}3.集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合4.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )A.{}x |x 是小于18的正奇数B.{}x |x =4k +1,k ①Z ,且k <5C.{}x |x =4t -3,t ①N ,且t ≤5D.{}x |x =4s -3,s ①N *,且s ≤55.集合M ={(x ,y )|xy <0,x ①R ,y ①R }是( ) A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集6.集合{x ①N |x 2+x -2=0}用列举法可表示为________.7.将集合{(x ,y )|2x +3y =16,x ,y ①N }用列举法表示为________.8.有下面四个结论:①0与{0}表示同一个集合;①集合M ={3,4}与N ={(3,4)}表示同一个集合;①方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};①集合{x |4<x <5}不能用列举法表示.其中正确的结论是________(填写序号).9.已知x ,y 为非零实数,则集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪m =x |x |+y |y |+xy |xy |为( ) A .{0,3}B .{1,3}C .{-1,3}D .{1,-3}10.已知集合A ={}x |x =2m -1,m ①Z ,B ={}x |x =2n ,n ①Z ,且x 1,x 2①A ,x 3①B ,则下列判断不正确的是( )A .x 1·x 2①AB .x 2·x 3①BC .x 1+x 2①BD .x 1+x 2+x 3①A11.已知集合A ={x |x =3m ,m ①N *},B ={x |x =3m -1,m ①N *},C ={x |x =3m -2,m ①N *},若a ①A ,b ①B , c ①C ,则下列结论中可能成立的是( )A .2 006=a +b +cB .2 006=abcC .2 006=a +bcD .2 006=a (b +c )12.已知集合A ={1,2,3},B ={(x ,y )|x ①A ,y ①A ,x +y ①A },则B 中所含元素的个数为________.13.定义集合A -B ={x |x ①A ,且x ①B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -23<0,则集合A -B =________.14.已知集合A ={x ①R |ax 2+2x +1=0},其中a ①R .若1是集合A 中的一个元素,请用列举法表示集合A .15.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2014+b 2014.16.若P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ①P ,b ①Q },用列举法表示集合P +Q .。
人教A版高中数学必修一1.1 集合的概念专练(含解析)(87)
1.1 集合的概念一、单选题1.设集合}{12A x x =<<,}{B x x a =<,若A ⊆B ,则a 的取值范围是( ) A .}{2a a ≥B .}{1a a ≤C .}{1a a ≥D .}{2a a ≤2.给出下列关系: ①12∈R; ②2∈Q; ③|﹣3|∈N; ④|-3|∈Z; ⑤0∉N ,其中正确的个数为( ) A .1B .2C .3D .43.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为( ) A .4 B .6 C .7 D .104.已知下列四对数值是方程组22113y x x y =+⎧⎨+=⎩的解集是( ) A .(){}3,2 B .(){}3,2-C .()(){}2,3,3,2--D .(){}3,2-5.已知集合A =x∈R|x-,则下列各式正确的是( )A .3∈A 且-3∉AB .3∈A 且-3∈AC .3∉A 且-3∉AD .3∉A 且-3∈A6.已知{}|330A x N x =∈->,则下列成立的是( ) A .1A ∈B .0A ∈C .1A -∈D .0.5A ∈7.下列表示正确的是 A .0N ∈B .12Z ∈C .3N -∈D .Q π∈8.已知集合2{|1},A x x a A =>∈, 则 a 的值可以为 A .-2B .1C .0D .-19.下面能构成集合的是 ( ) A .大于3小于11的偶数 B .我国的小河流 C .高一年级的优秀学生D .某班级跑得快的学生10.设非空数集M 同时满足条件:①M 中不含元素-1,0,1;②若a∈M,则11aa+-∈M.则下列结论正确的是( ) A .集合M 中至多有2个元素 B .集合M 中至多有3个元素 C .集合M 中有且仅有4个元素 D .集合M 中至少有4个元素 二、填空题1.已知集合{}22,2A m m m =++,若3A ∈,则m 的值为___________.2.若集合{}240,A x x x k x R =++=∈中只有一个元素,则实数k 的值为_______.3.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >; ③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +.其中所有真命题的序号为__________.4.已知集合{}22,2,A a a a =--,若2A ∈,则a =__________.5.用列举法表示集合10|,1M m Z m Z m ⎧⎫=∈∈⎨⎬+⎩⎭=________. 三、解答题1.已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x. (1)若-3∈A,求a 的值; (2)若x 2∈B,求实数x 的值; (3)是否存在实数a ,x ,使A =B .2.用列举法写出集合{||1||2|7}A x x x =∈-+-=N .3.判断下列命题是否正确,若不正确,请说明理由. (1)集合{}2,4,6与集合{}4,2,6表示同一集合; (2)集合(){}2,3与集合(){}3,2表示同一集合; (3)集合{}3x x >与集合{}3t t >表示同一集合;(4)集合{}2,y y x x R =∈与集合(){},2,x y y x x R =∈表示同一集合;4.方程ax=b 是关于x 的方程.当a 、b 满足什么条件时,该方程的解集是有限集?当a 、b 满足什么条件时,该方程的解集是无限集?5.设A 是由满足不等式x<6的自然数组成的集合,若a∈A 且3a∈A,求a 的值.参考答案一、单选题 1.A解析:由题意,用数轴表示集合的关系,从而求解. 详解:}{12A x x =<<,}{B x x a =<,由数轴表示集合,作图如下:由图可知2a ≥,即a 的取值范围是}{2a a ≥ 故选:A 2.D解析:根据元素与集合的关系可逐项判断. 详解:根据元素与集合的关系: ①12∈R,正确; ②2∈Q,正确; ③|﹣3|=3∈N,正确; ④|-3|=3∈Z,正确; ⑤0∉N ,错误, 故正确的个数为4. 故选:D . 3.D解析:根据题中条件,由列举法写出集合B 中的所有元素,即可得出结果. 详解:因为集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,当0x =时,0y =;则()0,0是集合B 中的元素;当1x =时,0y =或1y =,则()1,0,()1,1是集合B 中的元素;当2x =时,0y =或1y =或2y =,则()2,0,()2,1,()2,2是集合B 中的元素;当3x =时,0y =或1y =或2y =或3y =,则()3,0,()3,1,()3,2,()3,3是集合B 中的元素. 即B 中所含元素的个数为10个. 故选:D. 4.C解析:将y 用1x +表示,由此求解出方程组的解,然后用列举法表示出解集. 详解:因为()22113x x ++=,解得2x =或3x =-, 所以方程组的解为23x y =⎧⎨=⎩或32x y =-⎧⎨=-⎩,所以解集为()(){}2,3,3,2--, 故选:C. 5.D解析:利用元素与集合的关系直接求解. 详解:集合A =x∈R|x-∉A又D . 点睛:本题考查元素与集合的关系的判断,考查元素与集合的关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 6.B解析:集合{}|330A x N x =∈->=0},即可得出结论. 详解:集合{}|330A x N x =∈->=x N ∈ |x <1}=0}, 则0∈A, 故选:B . 点睛:本题考查集合的含义与表示,考查了元素与集合的关系,比较基础.解析:利用元素与集合的关系直接求解. 详解:在A 中,0∈N,故A 正确; 在B 中,12Z ∉,故B 错误; 在C 中,﹣3∉N ,故C 错误; 在D 中,π∉Q ,故D 错误. 故选:A . 点睛:本题考查命题真假的判断,考查元素与集合的关系等基础知识,考查运算求解能力,是基础题. 8.A解析:先解不等式得{}|11A x x x =><-或,再由元素与集合的关系逐一判断即可得解. 详解:解:解不等式21x >,解得1x >或1x <-, 即{}|11A x x x =><-或, 又2,1,0,1A A A A -∈∉∉∉, 则a 的值可以为-2, 故选A. 点睛:本题考查了二次不等式的解法,重点考查了元素与集合的关系,属基础题. 9.A解析:结合集合中元素的特征,对选项逐个分析可选出答案. 详解:由题意,对于A ,大于3小于11的偶数为4,6,8,10,可以构成集合; 对于B ,我国的小河流不能构成集合,不符合集合中元素的确定性; 对于C ,高一年级的优秀学生不能构成集合,不符合集合中元素的确定性; 对于D ,某班级跑得快的学生不能构成集合,不符合集合中元素的确定性. 故选:A. 点睛:本题考查集合,注意集合中元素的特征:“确定性”、“互异性”、“无序性”,属于基础10.D解析:由若a∈M,则11aa+-∈M,依次计算可求出集合M中的元素详解:因为a∈M,11aa+-∈M,所以111111aaaa++-+--=-1a∈M,所以1111aa+---=11aa-+∈M,又因为11111aaaa-++--+=a,所以集合M中必同时含有a,-1a ,11aa+-,11aa-+这4个元素,由a的不确定性可知,集合M中至少有4个元素.故选:D二、填空题1.3 2 -解析:根据题意,分别讨论23m+=与223m m+=的情况,结合互异性即可求出m的值. 详解:由题意知,当23m+=,即1m=时,223m m+=,此时集合A中有重复元素3,所以1m=不符合题意;当223m m+=,即32m=-或1m=(舍)时,23m+≠,符合题意.综上,32m=-.故答案为:32 -.2.4解析:∵240x x k ++=由唯一的实根, ∴164k 0=-=, 解得:4k = 故答案为:4 3.①③解析:根据题意可得①③正确,通过举反例可得②④错误. 详解:对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误; 对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =, 则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.4.1或2;解析:由2A ∈,可得22a =或22a a -=,注意要满足集合元素的互异性,即可得解. 详解:由{}22,2,A a a a =--,2A ∈,若22a =,1a =,20a a -=, 此时{}2,2,0A =-,符合题意; 若22a a -=,则2a =,1a =-, 当1a =-时,22a =-,不符题意, 当2a =时,{}2,4,2A =-,符合题意, 综上可得:1a =或2a =. 故答案为:1或2.5.-11,-6,-3,-2,0,1,4,9}. 解析:利用题目条件,依次代入,使101Z m Z m ∈∈+,,从而确定出m 的值,即可得到答案 详解:101Z m Z m ∈∈+,, 1m ∴+为10的因数则11251010521m +=----,,,,,,, 014911632m ∴=----,,,,,,,则答案为{}116320149----,,,,,,, 点睛:本题主要考查了集合的表示法,理清题意,找出满足条件的因数是关键,考查了学生分析问题解决问题的能力,属于基础题.三、解答题1.(1)a =0或-1;(2)x =-1;(3)不存在.解析:(1)若3A -∈,则33a -=-或213a -=-,再结合集合中元素的互异性,能求出a 的值. (2)当x 取0,1,1-时,都有2x B ∈,集合中的元素都有互异性,由此能求出实数x 的值. (3)210a +≠,若30a -=,则3a =,{0A =,5,10}B ≠,若210a -=,则12a =,{0A =,52-,5}4B ≠,由此求出不存在实数a ,x ,使A B =. 详解:解:(1)集合A 中有三个元素:3a -,21a -,21a +,3A -∈,33a ∴-=-或213a -=-,解得0a =或1a =-,当0a =时,{3A =-,1-,1},成立; 当1a =-时,{4A =-,3-,2},成立.a ∴的值为0或1-.(2)集合B 中也有三个元素:0,1,x .2x B ∈, 当x 取0,1,1-时,都有2x B ∈,集合中的元素都有互异性,0x ∴≠,1x ≠-,1x ∴=-.∴实数x 的值为1-.(3)210a +≠,若30a -=,则3a =,{0A =,5,10}B ≠, 若210a -=,则12a =,{0A =,52-,5}4B ≠, ∴不存在实数a ,x ,使A B =.点睛:本题主要考查元素与集合的关系、集合相等的定义等基础知识,考查运算求解能力,是基础题.2.{5}A =解析:利用绝对值的几何意义求出x ,根据x N ∈,用列举法表示即可. 详解:因为|1||2|7x x -+-=的几何意义是数轴上的点x 到1和2的距离之和为7, 故5x =或2-,又x N ∈,所以5,{5}x A =∴=. 点睛:本题考查绝对值的几何意义和集合的表示法;正确求出方程的解是求解本题的关键;属于基础题.3.(1)正确;(2)错误;(3)正确;(4)错误解析:(1)根据元素的无序性可知两集合为同一集合;(2)集合为点集,元素不同,不是同一集合;(3)两集合均表示大于3的所有实数的集合,为同一集合;(4)两集合分别为数集和点集,不是同一集合. 详解:(1)集合元素具有无序性,{}2,4,6与{}4,2,6元素完全相同,故为同一集合,正确 (2)两集合为点集,()2,3与()3,2表示的点不同 (){}(){}2,33,2∴≠∴两集合表示的不是同一集合,命题错误(3){}3x x >与{}3t t >均表示大于3的所有实数的集合 {}{}33x x t t ∴>=> 即两集合表示的是同一集合,命题正确(4){}2,y y x x R =∈为数集;(){},2,x y y x x R =∈为点集∴两集合表示的不是同一集合,命题错误点睛:本题考查同一集合的判定,关键是明确只有元素完全相同时,两集合为同一集合;易错点是忽略点集和数集的区别.4.当a≠0时,或a=0且b≠0时,解集是有限集;当a=b=0时,解集是无限集. 解析:解方程ax=b ,对a 、b 直接分类讨论即可. 详解:当a≠0时,方程的解为ba,有一个解,有限集; 当a=0且b≠0时,方程无解,解集为空集,有限集; 当a=b=0时,方程有无数个解,则解集为无限集.5.a=0或1.详解:试题分析:试题解析:∵a∈A且3a∈A,∴a<6且3a<6,∴a<2.又∵a是自然数∴a=0或1.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(97)
1.1 集合的概念一、单选题1.已知集合M 满足{}{}11,2,3M ≠⊆⊂,则满足条件的集合M 的个数是( ) A .2 B .3C .4D .5答案:B解析:直接列举出所有符合条件的集合M 即可. 详解:因为集合M 满足{}{}11,2,3M ≠⊆⊂, 所以满足条件的集合M 有:{}{}{}1,2,1,2, 即集合M 的个数是3, 故选:B.2.集合{}2|--6=0M x x x =,则以下错误的是( )A .-2∈MB .3∈MC .M =-2,3}D .M =-2,3答案:D解析:解一元二次方程,得到方程的解集,再逐个判断. 详解:{}{}2|60=2,3M x x x =--=-,2M ∴-∈,且3M ∈.∴A 、B 、C正确,D 项集合的表示方法错误.故选:D.3.下面几组对象可以构成集合的是 A .视力较差的同学B .2018年的中国富豪C .充分接近2的实数的全体D .大于–2小于2的所有非负奇数答案:D解析:利用集合元素的确定性对选项逐一分析,由此判断出正确选项. 详解:集合的元素需要满足确定性.对于A,B,C 三个选项来说,研究对象无法确定,所以不能组成集合.对于D 选项,大于2-小于2的所有非负奇数为1,可以构成集合.故本小题选D. 点睛:本小题主要考查集合元素的确定性,属于基础题.4.下列各式,①1{0,1,2}∈;②{0,1,2}∅⊆;③{0,}{1}1,2∈;④0N ∈;⑤Q π∈.其中错误的个数是( ) A .1个 B .2个C .3个D .4个答案:B解析:根据元素与集合,集合与集合之间的包含关系,即得解. 详解:由于①1{0,1,2}∈;②{0,1,2}∅⊆;③{1}{0,1,2}⊆;④0N ∈;⑤Q π∉,因此其中错误的有2个. 故选:B 点睛:本题考查了元素与集合,集合与集合之间的包含关系,考查了学生的概念理解能力,属于基础题.5.已知集合{|21,}A x x m m ==-∈Z ,{|2,}B x x n n ==∈Z ,且123,,x x A x B ∈∈,则下列判断不正确的是( ) A .12x x A ⋅∈ B .23x x B ⋅∈C .12x x B +∈D .123x x x A ++∈答案:D解析:集合A 表示奇数集,集合B 表示偶数集,所以12,x x 是奇数,3x 是偶数,奇数加奇数为偶数可判断D 选项错误. 详解:集合A 表示奇数集,集合B 表示偶数集, ∴12,x x 是奇数,3x 是偶数,∴12x x ⋅为奇数,23x x ⋅为偶数,12x x +为偶数,123x x x ++为偶数. 故选:D 点睛:本题考查元素与集合的关系,解题的关键是充分运用奇数、偶数相加或相乘的性质,属于基础题.6.集合{0,6,8}A =的非空..子集的个数为( ) A .3 B .6C .7D .8答案:C解析:根据含有n 个元素的集合有21n -个非空子集,计算可得. 详解:解:集合{0,6,8}A =含有3个元素,含有3个元素的集合的非空子集个数为3217-=. 故选:C . 点睛:本题考查集合的非空子集,属于基础题.7.下列各组中的两个集合M 和N ,表示相等集合的是( ) A .{},{3.14159}M N π==B .{2,3},{(2,3)}M N ==C .{11,},{1}M xx x N N =-<≤∈=∣ D .{},{,1,M N ππ==答案:D解析:根据两个集合中元素是否相同可得正确的选项. 详解:A 中,3.14159π≠,故两个集合不相等;B 中,N 为点的集合,M 为数的集合,两个集合不相等;C 中,{}0,1M =,{}1N =,两个集合不相等;D 中,{N π=,故两个集合相等. 故选:D. 点睛:本题考查两个集合相等的判断,一般依据两者元素是否相同来判断,也可以根据两者相互包含来判断,本题属于容易题. 8.下列说法正确的是( )A .0∉N B∈Q C .π∉R D答案:D解析:根据字母代表的集合即可判断元素与集合的关系. 详解:因为0是自然数,故A 是无理数,故B 错误;因为π是实数,故C 错误;因为2=是整数,故D 正确.故选:D 点睛:本题主要考查了常用数集的符号表示,元素与集合的关系,属于容易题.9.用列举法表示集合{}2210xx x -+=∣为( ) A .{1,1} B .{1} C .{1}x =D .{}2210x x -+=答案:B解析:求方程2210x x -+=的解即可. 详解:方程2210x x -+=的解是1x =,所以集合{}{}22101xx x -+==∣, 故选:B 二、多选题1.已知{}2A x x px q x =++=,()(){}2111B x x p x q x =-+-+=+,当{}2A =时,则集合B 中实数x可能的取值为( )A .4B .3C .3D .4答案:BC解析:由条件可知方程2x px q x ++=有两个相等的实根,并且2x =,列式求,p q 的值,再代入集合B ,求方程的实数根. 详解:由{}2A =,得方程2x px q x ++=有两个相等的实根,且2x =.从而有()2422140p q p q ++=⎧⎪⎨--=⎪⎩解得34p q =-⎧⎨=⎩ 从而()(){}213141B x x x x =---+=+.解方程()()213141x x x ---+=+,得3x =± 故选:BC 点睛:本题考查集合元素与一元二次方程实数根的关系,重点考查计算能力,属于基础题型.2.已知集合()(){}221110A x a x a x =-+++=中有且仅有一个元素,那么a 的可能取值为( ) A .1- B .1C .53D .0答案:BC解析:讨论二次项系数210a -=或210a -≠,当210a -≠时,0∆=即可求解. 详解:()()221110ax a x -+++=当210a -=时,即21a =,解得1a =±, 当1a =时,代入方程解得12x =,满足题意; 当1a =-时,方程无解,不满足题意;当210a -≠时,即1a ≠±,0∆=,即()()221410a a +--=,整理可得()()3510a a -+=,解得53a =,满足题意; 故选:BC 点睛:本题考查了由集合元素个数求参数值,考查了分类讨论的思想,属于基础题.3.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈.给出如下四个命题,其中正确命题的有( ) A .若1m =,则{}1S = B .若12m =-,则114m ≤≤ C .若12l =,则0m ≤ D .112m -≤≤答案:ABC解析:根据已知条件列出不等关系转化为不等式问题解决,即可判断各选项的正误. 详解:对于A 选项,若1m =,则2211x l x l ≤≤⇒≤≤, 根据当x S ∈时,有2x S∈,可得21l l l ≥⎧⎨≤⎩,得101l l ≥⎧⎨≤≤⎩,可得1l =,故{}1S =,A 对;对于B 选项,若12m =-,则214m =,则214l ll⎧≤⎪⎨≤⎪⎩,解得114l ≤≤,B 对;对于C 选项,若12l =,则12S x m x ⎧⎫=≤≤⎨⎬⎩⎭,即2102m m m ≤≤⇒≤≤,C 对; 对于D 选项,若1m =-,1l =时,此时{}11S x x =-≤≤符合题意,D 错. 故选:ABC .4.考察下列每组对象哪几组能够成集合?( ) A .比较小的数 B .不大于10的偶数 C .所有三角形 D .高个子男生答案:BC解析:集合中的元素具有确定性,由此能求出结果.在A 中,比较小的数,没有确定性,故A 不能构成集合; 在B 中,不大于10的偶数,有确定性,故B 能构成集合; 在C 中,所有三角形,具有确定性,故C 能构成集合; 在D 中,高个子男生,没有确定性,故D 不能构成集合. 故选:BC .5.下列表示正确的是( ) A .0N ∈ B .27Z ∈C .3Z -∉D .Q π∉答案:AD解析:由数集的定义、元素与集合的关系依次判断选项即可. 详解:对于A ,0是自然数,则0N ∈,故A 正确;对于B ,27不是整数,则27Z ∉,故B 错误;对于C ,3-是整数,则3Z -∈,故C 错误; 对于D ,π是无理数,则Q π∉,故D 正确; 故选:AD. 三、填空题1.被3除余数等于1的自然数集合,用描述法可表示为______.答案:{}|31,x x k k N =+∈解析:先表示出满足条件的自然数,再用集合表示,即可得出结果. 详解:因为被3除余数等于1的自然数为31,=+∈x k k N , 所以其对应的集合用描述法可表示为:{}|31,x x k k N =+∈. 故答案为{}|31,x x k k N =+∈ 点睛:本题主要考查集合的表示,熟记集合的表示法即可,属于基础题型.2.方程组2231x y x y -=⎧⎨-=⎩的解用列举法表示为____________.答案:{}(53),解析:解方程组,然后用列举法表示即可.解:由2231x y x y -=⎧⎨-=⎩,解得53x y =⎧⎨=⎩,所以方程组2231x y x y -=⎧⎨-=⎩的解用列举法表示为{}(53),. 故答案为:{}(53),. 3.以下元素的全体不能够构成集合的是______(用题号填空). ①中国古代四大发明 ②地球上的小河流 ③方程210x -=的实数解 ④周长为10cm 的三角形答案:②解析:根据集合的定义即可得到结果. 详解:由集合定义可知,①③④均为确定的对象构成的整体,能够构成集合 ②中的“小河流”无明确标准,不是确定的对象,不能够构成集合 本题正确结果:② 点睛:本题考查集合的定义,属于基础题.4.设1234,,,a a a a 是4个互不相同的实数,且{}{}|,1411,21,30,39,49i j x x a a i j =+≤<≤=,则集合{}1234,,,a a a a =____________.答案:{}1,10,20,29解析:不妨设1234a a a a <<<,集合{}|,14i j x x a a i j =+≤<≤中至多有6个数,确定i j a a +中的最小和最大的数,再确定次小与次大的数,然后还有两个相等为中间的数,由此可得解. 详解:不妨设1234a a a a <<<,则在集合{}|,14i j x x a a i j =+≤<≤中,12a a +最小,34a a +最大,即1211a a +=,3449a a +=,第二小的数是13a a ,第二大的数是24a a +,即1321a a +=,2439a a +=,从而有142330a a a a +=+=,由1211a a +=,3449a a +=,1321a a +=,2439a a +=,142330a a a a +=+=,可解得11a =,210a =,320a =,429a =,故答案为:{}1,10,20,29本题考查求集合中的元素,解题时根据集合的定义,把i j a a +排列,再根据集合的定义得出结论后可求解.考查了逻辑推理能力,运算求解能力.5.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈,给出如下四个命题:①若1m =,则{}1S =;②若12m =-,则114l ≤≤;③若12l =,则0m ≤;④若1l =,则10m -≤≤或1m =;其中正确命题的序号为____________答案:①②③④解析:由题分析:1m l -≤≤≤1,若x S ∈则2x x l ≤≤,对每个选项列不等式组分析.详解:非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈, 若1l >,则2l l >,2l S ∉,所以1l ≤,若1m <-,则21m m >>,2m S ∉,所以1m ≥-,所以1m l -≤≤≤1,且当x S ∈时,有211x x x l -≤≤≤≤≤1,,非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈, ①若1m =,根据1m l -≤≤≤1,则1l =,所以{}1S =; ②若12m =-,214m S =∈,则114l ≤≤;③若12l =, 221212m m m m ⎧≤⎪⎪⎪≤⎨⎪⎪≥⎪⎩,解得:0m ≤;④若1l =,2211m m m m≤⎧⎪≤⎨⎪≥⎩,解得:10m -≤≤或1m =;故答案为:①②③④ 点睛:此题考查集合中元素特征的辨析,其中涉及解不等式及相关知识辨析. 四、解答题1.用列举法表示下列集合:(1){}2|9A x x ==;(2){}|12B x N x =∈≤≤ ;(3){}2|320C x x x =-+=.答案:(1){}3,3- ;(2) {}1,2;(3){}1,2. 解析:(1)解方程29x =即可; (2)根据x ∈N 求解;. (3)接方程2320x x -+=即可; 详解:(1)由29x =得3x =±,,因此{}{}2|93,3A x x ===-.(2)由x ∈N ,且12x ≤≤,,,得1,2x =,因此{}{}|121,2B x N x =∈≤≤=.(3)由2320x x -+=得1,2x =,.因此{}{}2|3201,2C x x x =-+==.点睛:本题主要考查集合的表示方法以及一元二次方程的解法,还考查了运算求解的能力,属于基础题. 2.已知集合2|(1)320A x a x x ,若A ≠∅,求实数a 的取值范围.答案:18a ≥-解析:根据题意可知方程有解,讨论二次项是否等于零即可求解. 详解:①当1a =时, 23A ⎧⎫=≠∅⎨⎬⎩⎭;②当1a ≠时,由0∆≥得98(1)0a +-≥,得18a ≥-且1a ≠, 综上,18a ≥- 点睛:本题考查了集合中的元素个数求参数值,考查了分类讨论的思想,属于基础题. 3.用另一种形式表示下列集合: (1)绝对值不大于3的整数};(2)所有被3整除的数};(3)x|x=|x|,x∈Z且x<5};(4)x|(3x-5)(x+2)(x2+3)=0,x∈Z}.答案:(1)见解析;(2)见解析;(3)见解析;(4){}2-解析:根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可得到答案.详解:(1)绝对值不大于3的整数还可以表示为x||x|≤3,x∈Z},也可表示为-3,-2,-1,0,1,2,3};(2)x|x=3n,n∈Z}(说明:被3除余1的整数}可表示为x|x=3n+1,n∈Z});(3)∵x=|x|,∴x≥0.又∵x∈Z且x<5,∴x|x=|x|,x∈Z且x<5}还可表示为0,1,2,3,4};(4)-2}.(特别注意x∈Z这一约束条件)点睛:本题主要考查了集合的列举法描述法表示集合的基本概念,及元素与集合的关系,其中正确集合的表示方法是解答的关键,着重考查了分析问题和解答问题的能力.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(34)
1.1 集合的概念一、单选题1.对于两个非空数集A 、B ,定义点集如下:A×B=(x ,y )|x∈A,y∈B},若A =1,3},B =2,4},则点集A×B 的非空真子集的个数是( )个.A .14B .12C .13D .11答案:A解析:根据A×B=(x ,y )|x∈A,y∈B},得到A×B 的元素的个数求解.详解:∵A×B=(x ,y )|x∈A,y∈B},且A =1,3},B =2,4},所以A×B=(1,2),(1,4),(3,2),(3,4)},共有四个元素,则点集A×B 的非空真子集的个数是:24﹣2=14.故选:A.2.已知集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,集合{}2,,0B a a b =+,若A B A B =,则20202020a b +的值为( ) A .1B .0C .1-D .±1答案:A 解析:根据条件可得集合A=B ,根据集合相等,可求得b 的值,根据集合的互异性可求得a 的值,即可得答案.详解:因为A B A B =,所以A=B ,则0b a=,即b=0,所以{}{}2,0,1,,0a a a =,根据集合的互异性, 所以21a =,解得1a =-或1a =(舍)所以202020202020(1)01a b +=-+=,故选:A3.方程组149x y x y +=⎧⎨-=⎩的解集是( ) A .()2,1-B .()1,2-C .(){}1,2-D .(){}2,1-答案:D解析:利用代入法和消元法即可求解.详解:149x y x y +=⎧⎨-=⎩①②,两式相加可得510x =,所以2x =, 将2x =代入1x y +=可得1y =-,所以21x y =⎧⎨=-⎩, 所以方程组149x y x y +=⎧⎨-=⎩的解集是(){}2,1-, 故选:D4.已知集合{1,3,4,5}A =,集合2{}450|B x Z x x =∈--<,则A B 的子集个数为A .2B .4C .8D .16答案:C详解:试题分析:由2450x x --<,解得15x -<<,所以{}0,1,2,3,4B =,所以{}1,3,4A B ⋂=,所以A B ⋂的子集个数为328=,故选C . 考点:1、不等式的解法;2、集合的交集运算;3、集合的子集.5.方程组 x-3y 10{x y 20+=++= 的解集为( ) A .71{}44,B .71-44⎧⎫⎨⎬⎩⎭, C .7144⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭, D .71--44⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭,答案:D解析:求方程组的解,再写出集合的形式即可.详解:解方程组31020x y x y -+=⎧⎨++=⎩, 得7414x y ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以该方程组的解集为7{(4-,1)}4-.故选:D.点睛:本题考查用集合表示方程组解的问题,考查对概念的理解,属于基础题.6.下列关系正确的是( )A .3∈y|y=x 2+π,x∈R}B .(a ,b)}=(b ,a)}C .(x ,y)|x 2-y 2=1}(x ,y)|(x 2-y 2)2=1} D .x∈R|x 2-2=0}=答案:C解析:试题分析:2{y |y x x R}{y |y }ππ∈≥=+,=,∵3<π,∴23{y |y x π∉=+}.(a ,b)}与(b ,a)}中元素不相同,∴(a,b)}与(b ,a)}不一定相等.(x ,y)|(x 2-y 2)2=1}=(x ,y)|x 2-y 2=1或x 2-y 2=-1},∴C 是正确的.x∈R|x 2-2=0}=2,-2}≠.考点:元素与集合、集合与集合的关系点评:此类问题要先确定集合,再进行判断.7.给出下列62R 3Q ,③0N ∉4N ,⑤Q π∈,⑥2Z -∉,其中正确命题的个数为( )A .1B .2C .3D .4答案:A解析:利用元素与集合的关系可判断①②③④⑤⑥的正误.详解:R 、Q 、N 、Z 分别表示实数集、有理数集、自然数集、整数集, 所以,22R ∈3Q ,0N ∈42N ∈,Q π∉,22Z -=∈, 因此,①正确,②③④⑤⑥不正确,故选:A .8.方程组11x y x y +=⎧⎨-=-⎩的解集是( ) A .{0x =,1}y =B .{0,1}C .{(0,1)}D .{(,)|0x y x =或1}y =答案:C解析:运用加减消元法,求出方程组的解,最后运用集合表示.详解:方程组11x y x y +=⎧⎨-=-⎩, 两式相加得,0x =,两式相减得,1y =.∴方程组的解集为{(0,1)}.故选:C .点睛:本题主要考查集合的表示方法:列举法和描述法,注意正确的表示形式,区分数集和点集.9.{}|10P m m =-<<,2{|440Q m R mx mx =∈+-<对于任意实数x 恒成立},则下列关系中立的是A .P Q ≠⊂B .Q P ≠⊂C .P Q =D .P Q φ=答案:A解析:首先化简集合Q ,2440mx mx +-<对任意实数x 恒成立,则分两种情况:(1)0m =时,易知结论成立,(2)0m <时,2440mx mx +-=无根,则由∆<0求得m 的范围. 详解:{}2|440Q m R mx mx x =∈+-<对任意实数恒成立, 对m 分类:(1)0m =时,40-<恒成立;(2)0m <时,需要2(4)160m m ∆=+<,解得10m -<<,综合(1)(2)知10m -<≤,所以{}|10Q m m =-<≤,因为{}|10P m m =-<<,所以P Q ≠⊂,故选A. 点睛:该题考查的是有关判断集合间的关系的问题,涉及到的知识点有恒成立问题对应参数的取值范围的求法,真子集的概念问题,属于简单题目.二、填空题1.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20192020a b +=______________.答案:1-解析:根据集合相等,结合集合的互异性,即可求得,a b ,则问题得解.详解: 要使得b a 有意义,则0a ≠,由集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,故可得0b =,此时{}2{,0,1},,0a a a =, 故只需1a =或21a =,若1a =,则集合{}2,,0{1,1,0}a a =不满足互异性,故舍去.则只能为1,0a b =-=.则201920201a b +=-.故答案为:1-.点睛:本题考查集合相等求参数,以及集合的互异性,属综合基础题.2.已知{}1234,,,U a a a a =,集合A 是集合U 中的两个元素所组成的集合,且同时满足下列三个条件:①若1a A ∈,则2a A ∈;②若3a A ∉,则2a A ∉;③若3a A ∈,则4a A ∉.求集合A .答案:{}23,A a a =解析:从1a 开始分析各个元素是否是A 中元素,结合各个条件的等价命题推理出结论. 详解:假设1a A ∈,则2a A ∈.又若3a A ∉,则2a A ∉,∴3a A ∈,与集合A 中有且仅有两个元素不符,∴假设不成立,∴1a A ∉.假设4a A ∈,则3a A ∉,则2a A ∉,且1a A ∉,与集合A 中有且仅有两个元素不符,∴假设不成立,∴4a A ∉.故集合{}23,A a a =,经检验知符合题意.故答案为:{}23,A a a =.3.集合A=x|x=2k ,k∈Z},B=x|x=2k+1,k∈Z} ,C=x|x=4k-1,k∈Z},若m∈A, n∈B,则m+n∈ ___________(选填A 、B 、C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 集合的概念练习题
一、选择题 1.下列表示正确的是( )
A. φ=﹛0﹜
B. 0∈φ
C. ﹛b,a ﹜=﹛a,b ﹜
D. ﹛(1,2)﹜=﹛1,2﹜
2.由|-2|,2
2,1,2构成的集合中元素有( ) A.4个 B. 3个 C. 2个 D. 1个
3.下列关系正确的是 ( )
A.-5∈N
B.5∈R
C. 51∈Z
D.2
5∈ Q 4.由小于9的正奇数构成的集合中,元素的个数是 ( )
A. 4
B. 5
C. 6
D. 7
5.集合M={(x,y )︳xy ≤0,x ∈R,y ∈R}的意义是( )
A.第二、四象限内的点
B. 第二象限内的点
C. 第四象限内的点
D. 不在第一、三象限内的点
6.下列表示同一集合的是( )
A. M={(2,1),(3,2)}, N={(1,2),(2,3)}
B. M={2,1}, N={1,2}
C. M={y ︳y= x 2 +1,x ∈R}, N={y ︳y= x 2 +1,x ∈N}
D. M={(x,y)︳y= x 2 -1,x ∈R}, N={y ︳y= x 2 -1,x ∈R}
7. 用性质描述法表示直角坐标平面内第二象限内的点的全体构成的集合,正确的是( ).
A. {(x,y)︳x>0,且y>0}
B. {(x,y)︳x>0,且y<0}
C. {(x,y)︳x<0,且y>0}
D. {(x,y)︳x<0,且y<0}
8.集合A={a,b,c}的所有子集的个数为( )
A. 8
B. 7
C. 6
D.5
9.下列关系正确的是( )
A. {5}∈R
B. {5}{1,5}
C. 5{1,5}
D.{5} R
10.五个关系式:①{a,b}⊆{a,b}; ②{a,b}={b,a} ; ③0∈{0};
④ ⑤, 其中正确的个数为( ) A. 5 B. 4 C. 3 D. 2
11.符合 {a,b} ⊆ A {a,b,c,d} 的集合的个数为( )
A. 3个
B. 4个
C. 5个
D. 6个
二、填空题
1.集合A= 用描述法可表示为_______
2.已知集合M={x 2-x<0}中元素的个数为______
3.已知集合M={(x,y)︳x+y=1,x ∈N,y ∈N},用列举法表示集合M=_______.
4.集合A={x ︳x=4k+1,k ∈Z},则 -1___A, -7____A
5.已知集合A={-2,3},集合B={x ︳x 2-ax+b=0},且A=B,则a=_____,b=______
6.数集{a,a 2 -a}中实数 a 所满足的条件为_______
7.已知集合A={a ∈Z ︳N a
∈-56},则A 中元素的个数是_______ 8.已知集合P={x ∈N ︳x ≤10},由其中所有质数构成的集合为_______
三、用适当的符号(∈,∉,=, ⊂≠ , ⊃≠ )填空:
(7分) (1)a { a ,b ,c };
1234,,,2345⎧⎫⎨⎬⎩⎭
{0}=φ{0}
∈φ
(2){ 4,5,6 } { 6,5,4 };
(3){ a } { a,b,c };
(4){ a, b,c } { b,c };
(5) { 1,2,3 };
(6)5 { 5 };
(7){x | x是矩形 } {x | x是平行四边形 };
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。