人教版八年级数学下册《变量与函数》练习.docx

合集下载

人教版八年级下册数学 变量与函数练习题

人教版八年级下册数学 变量与函数练习题

变量和函数练习题1.某种树木的分枝生长规律如图所示,则其变量是()A年份 B分枝数 C生长规律 D年份和分枝数2.自由下落物体下落的高度h与下落的时间t之间的关系为A. h, tB. h, gC. t, gD. t3.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,变量是():A销量 B定价 C成本价 D销量和定价4.某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结果如下:你认为其自变量为( )A成本价B定价 C销量 D以上说法都不正确5.如果用总长为120m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为C(m),一边边长为a(m),那么S,C,a中是自变量的是( )A. SB. aC. C和aD.C6.小树的高度h(cm)和树龄x(年)之间的关系是h=20x+40,当树龄为5年时,小树的高度h为______cm.7.某公司的年生产值=2013年的生产值+增长的部分,已知2013年的生产值为15万元,公司计划从2014年开始,每年增加2万元,则年产值(从2013年开始)y (万元)与年数x (年),那么到2019年公司生产值是______万元.8.已知某一银行本息和=本金+利息,现存款100元,存款月利率为0.225%,利息=月利率×期数×本金,则本息和y(元)与存期x(月),当存款10个月,本息和为______元。

9.如果三角形的底边长为x,底边上的高为12,那么三角形的面积y可以表示为( )A.y=3xB.y=6xC.y=9xD.y=12x10.如图,△ABC的边BC长是8,BC边上的高AD′是4,点D在BC运动,设BD长为x,请写出△ACD的面积y与x之间的函数关系式y=______.11.如图,一块长为200m,宽为150m的长方形花园,中间白色部分是硬化的地面,四周是草坪,草坪是由四个完全相同的正方形和两个一样的半圆组成,当半圆的半径r(m)变化时,花园中间硬化的地面的面积S(m2)也随着发生变化.则S(m2)与r(m)的表达式为S=______.(按r的降幂排列)12.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是y= ______13.公路上依次有A,B,C三个汽车站,上午8:00时,小明骑自行车从A,B两站之间距离A站8km处出发,向C站匀速前进,他骑车的速度是16.5km/h,若A,B两站间的路程是26km,B,C两站的路程是15km.小明在上午9:00是否已经经过了B站?答:_____(填入“是”或“否”)14.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表(1)如果汽车油箱中剩余油量为46L,则汽车行驶了______h;(2)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶,能不能中途不加油的情况下能从高速公路起点开到高速公路终点,答:______(填入“能”或“不能”)15. 某学校团委“五四青年节”组织全校1640名师生为山区学校捐赠图书,全校共30个班,每班学生人数不少于48人且不超过52人,经宣传动员,其中教师平均每人捐赠图书2本,学生平均每人捐赠图书1本,平均每本图书价值25元.设该学校有x名教师,捐赠图书总价值为y元。

人教版八年级数学下册19.1.1《变量与函数(1) 》习题含答案

人教版八年级数学下册19.1.1《变量与函数(1) 》习题含答案

19.1 函数19.1.1 变量与函数第1课时《常量和变量》习题含答案1、一种练习本每本0.5元,x本共付y元钱,那么0.5和y分别是()A、常量、常量B、常量、变量C、变量、常量D、变量、变量2、在圆的周长公式C=2πr中,下列说法正确的是()A、π,r是变量,2是常量B、 C是变量,2,π,r是常量C、 r是变量,2,π,C是常量D、 C,r是变量,2,π是常量3、一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A、xB、h、xC、V 、xD、x、h、V均为变量4、以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t 秒之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、常量是4.9,变量是t,hB、常量是v0,2,变量是t,hC、常量是-4.9,v0,变量是t,h5、三角形的一边长为6cm,三角形的面积S(cm2)与这边上的高h(cm)之间的关系式为 .6、表格列出了一项实验的统计数据,表示小球从高度x(m)落下时,弹跳高度y(m)与小球高度x(m)的关系,据表写出y与x的关系式是 ,其中变量为,常量为 .7、一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离S(米),由下面式子S=10t+2t2,假如滑到坡底的时间为8秒,斜坡长为米,其中式子中的变量是,常量是.8、如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合.试求出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.第8题图x 50 80 100 150y 25 40 50 759、由图形列表如下,设图形的周长为L,梯形的个数为n,回答问题:梯形个数n 1 2 3 4图形的周长L 5 9 13 17(1)写出L与n的关系式.(2)在这个变化过程中,变量、常量各是什么?(3)有11个梯形时,图形的周长是多少?10、在一个半径为20cm的圆上,从中挖去一个圆,当挖去圆半径由小变大时,剩下的一个圆环面积也随之发生变化,若挖去的圆的半径为x(cm),圆环的面积y(cm2).(1)在这个变化过程中,变量、常量各是什么?(2)写出y与x的关系式;(3)当挖去的圆的半径由1cm变化到10cm时,圆环的面积将发生怎样的变化?参考答案1、B2、D3、D4、C5、S=3h6、y=0.5x,变量是x,y,常量是0.57、208,变量是s,t,常量是10,28、由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM=xcm.∵∠BAC=45°,∴S阴影=12·AM·h=12AM2=12x2,则y=12x2,0≤x≤10.其中的常量为12,变量为重叠部分的面积ycm2与MA的长度xcm.9、(1)L=4n+1(2)变量是L,n,常量是4,1(3)4510、(1)变量是:挖去的圆的半径x,圆的面积y;(2)y=400π-πx2(3)圆环的面积将由399πcm2减小到300πcm2.。

人教版八年级数学下册 变量与函数(配套练习附答案)

人教版八年级数学下册 变量与函数(配套练习附答案)
【点睛】本题考查的是函数图像,熟练掌握图像是解题的关键.
20.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:
情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;
情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.
(1)情境a,b所对应的函数图象分别是____,____(填写序号);
③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+ = ,纵坐标为120﹣60× =75,(故③正确);
④设快递车从乙地返回时的速度为y千米/时,则(y+60)( )=75,y=90,(故④正确).
故答案为①③④.
考点:一次函数的应用.
三、解答题:
19.下面的图象记录了某地1月份某天的温度随时间变化的情况,请你仔细观察图象后回答下面的问题.
2019年八年级数学下册变量与函数课堂练习
一、选择题:
1.下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A B. C. D.
【答案】C
【解析】
【分析】
根据函数的意义可求出答案.函数的意义反映在图象上简单的判定方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】根据函数的意义可;对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.
A B. C. D.
【答案】C
【解析】
由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断:
由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项‘故选C.

人教八年级数学下册-变量与函数(附习题)

人教八年级数学下册-变量与函数(附习题)

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?

人教版八年级数学下册 19.1 变量与函数 课后练习(含答案)

人教版八年级数学下册   19.1 变量与函数 课后练习(含答案)

2019年八年级数学下册变量与函数课后练习一、选择题:1、变量x,y有如下关系:①x+y=10;②y=;③y=|x-3;④y2=8x.其中y是x的函数的是( ).A.①②②③④B.①②③C.①②D.①2、在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量3、小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如图所示.小明选择的物体可能是()4、下列曲线中,不能表示y是x的函数的是( )5、下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①6、根据如图的程序,计算当输入值x=-2时,输出结果y为()A.1;B.5;C.7;D.以上都有可能;7、小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是()8、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x 之间的关系的大致图象是()9、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()10、清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校.图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系.下列说法错误的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分二、填空题:11、在函数y=中,自变量x的取值范围是.12、小明根据某个一次函数关系式填写了下面的这张表, 其中有一格不慎被墨迹遮住了,想想看,表中空格原来填的数是 .13、一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧剩下的高度h(cm)随燃烧时间t(时)变化,请写出函数关系式14、明星中学计划投资8万元购买学生用电脑,则所购电脑的台数n(台)与单价x(万元)之间的关系是,其中________是常量,_______是变量.15、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.16、如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.三、解答题:17、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?18、写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)某市居民用电价格是0.58元/度,居民生活应付电费y(元)与用电量x(度)之间满足y=0.58x.19、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?20、已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.21、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

人教版八年级下册数学变量与函数练习题

人教版八年级下册数学变量与函数练习题

人教版八年级下册数学变量与函数练习题最新Word 19.1.1 变量与函数练题一、单选题1.下列关系式中,不是 x 的函数的是()B。

y = x^22.下列关系式中,变量 x = -1 时,变量 y = 6 的是()B。

y = -3x + 33.在以 x 为自变量,y 为函数的关系式y = 5πx 中,常量为()B。

π4.已知两个变量之间的关系满足 y = -x + 2,则当 x = -1 时,对应的 y 的值()A。

35.长方形的周长是 12cm,其中一条边为 x cm (x。

0),面积为 y cm²,则这个长方形的面积 y 与边长 x 的关系可以表示为()C。

y = x(6 - x)6.关于函数 y = (x - 5),下列说法正确的是()A。

自变量 x 的取值范围是x ≥ 57.设路程 s (km),速度 v (km/h),时间 t (h),当 s = 50 时,t = ____。

B。

路程是常量,t 是 s 的函数8.弹簧挂上物体后会伸长,若一弹簧长度 (cm) 与所挂物体质量 (kg) 之间的关系如下表:物体的质量 (kg) 1 2 3 4 5弹簧的长度 (cm) 12 12.5 13 13.5 14则下列说法错误的是()C。

在弹簧能承受的范围内,当物体的质量为 7kg 时,弹簧的长度为 16cm9.如果一盒圆珠笔有 12 支,售价 18 元,用 y (元) 表示圆珠笔的售价,x 表示圆珠笔的支数,那么 y 与 x 之间的解析式为()。

D。

y = 1.5x10.弹簧挂上物体后会伸长,测得一弹簧的长度 y (cm) 与所挂重物的质量 x (kg) 有下面的关系,那么弹簧总长 y (cm) 与所挂重物 x (kg) 之间的关系式为()C。

y = 0.5x + 12二、填空题略。

11.在函数y= x+4中,自变量x的取值范围是所有实数。

12.某等腰三角形的周长是50cm,底边长是x cm,腰长是y cm,则根据等腰三角形的性质,可以得到y=25-x/2.13.函数y= (x+1)/(2x+1)中,自变量x的取值范围是所有实数除了x=-1/2.14.变量y与x之间的函数关系式是y=1/(2x-1),当自变量x=-2时,函数y=2.15.f(3)=10.16.老人系数为0.6的人的年龄是68岁。

八年级数学下册《第十九章-变量与函数》练习题及答案(人教版)

八年级数学下册《第十九章-变量与函数》练习题及答案(人教版)

八年级数学下册《第十九章变量与函数》练习题及答案(人教版)一、选择题1. 某辆速度为v(km/ℎ)的车从甲地开往相距s(km)的乙地,全程所用的时间为t(ℎ),在这个变化过程中,( )A. s是变量B. t是常量C. v是常量D. s是常量3. 2005年第一期国债存期3年,年利率规定为p%,不计复利,若购买x元这一期国债,三年后可得利息y=3px%元.在这里y,p,x中,变量有( )A. 0个B. 1个C. 2个D. 3个4. 已知y与x之间有下列关系:y=x2−1.显然,当x=1时y=0;当x=2时,y=3.在这个等式中( )A. x是变量,y是常量B. x是变量,y是常量C. x是常量,y是变量D. x是变量,y是变量6. 某电影放映厅周六放映一部电影,当天的场次、售票量、售票收入的变化情况如表所示.在该变化过程中,常量是( )场次售票量(张)售票收入(元)15020002100400031506000415060005150600061506000A. 场次B. 售票量C. 票价D. 售票收入二、填空题7. 在一个过程中,固定不变的量称为______ ,可以取不同的值的量称为______ .8. 谚语“冰冻三尺非一日之寒”体现了冰的厚度随时间变化的一个变化过程,在该变化过程中因变量是______.9. 饮食店里快餐每盒5元,买n盒需付S元,则其中常量是______ ,变量是______ .10. 正方形的面积S与边a之间的关系式为______ ,其中变量是______ .11. 在圆的面积和半径之间的关系式S=πr2中,S随着r的变化而变化.其中,______ 是常量,______ 是变量.12. 每个同学购买一本课本,课本的单价是4.5元,总金额为y(元),学生数为n(个),则变量是______ ,常量是______ .13. 已知摄氏温度C与华氏温度F之间的对应关系为C=59(F−32)℃,则其中的变量是,常量是.14. 在△ABC中,它的底边为a,底边上的高为ℎ,则三角形的面积S=12aℎ.若ℎ为定长,则此式中,变量是______ ,常量是______ .15. 在扇形的弧长公式l=nπR180中,当圆心角n一定时,变量是______ .16. 某公司2007年年终财务报表显示,该公司2007年年终每股净利润为m元.年报公布后的某日,该公司的股票收盘价为x元,所以这天收盘后该股票的市盈率为y=xm,在这三个字母中其中常量是______ ,变量是______ .17. 在利用电热水壶烧水的过程中,电热水壶里的水的温度随烧水时间的长短而变化,这个问题中因变量是______,自变量是______.18. 阅读并完成下面一段叙述:(1)某人持续以a米/分的速度经t分时间跑了s米,其中常量是______ ,变量是______ .(2)在t分内,不同的人以不同的速度a米/分跑了s米,其中常量是______ ,变量是______ .(3)s米的路程不同的人以不同的速度a米/分各需跑的时间为t分,其中常量是______ ,变量是______ .(4)根据以上三句叙述,写出一句关于常量与变量的结论:______ .三、解答题19. 已知每千克化工原料的售价为120元,若x(元)表示购买m千克化工原料的总价钱.(1)写出m与x的函数关系式;(2)说出其中的变量与常量.20. 我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?21. 齿轮每分钟120转,如果n 表示转数,t 表示转动时间.(1)用n 的代数式表示t ; (2)说出其中的变量与常量.22. 写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n =6t ;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s =40t .23. 海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T 表示时刻,ℎ表示水深. T(时) 0 3 6 9 12 ℎ(米)57.45.12.64.524. 某电信公司提供了一种移动通讯服务的收费标准,如下表:项目 月基本服务费 月免费通话时间 超出后每分收费 标准 40元150分0.6元则每月话费y(元)与每月通话时间x(分)之间有关系式y ={40(0≤x ≤150)0.6x −50(x >150),在这个关系式中,常量是什么?变量是什么?参考答案1.【答案】D2.【答案】B3.【答案】C4.【答案】D5.【答案】C6.【答案】C7.【答案】常量;变量8.【答案】冰的厚度23.【答案】解:字母T,ℎ表示的是变量.因为水深ℎ随着时间T的变化而变化.24.【答案】解:在0≤x≤150中,y,40是常量,x是变量;在x>150时,0.6,50是常量,x,y是变量.。

八年级数学:变量与函数-练习(含答案)

八年级数学:变量与函数-练习(含答案)

八年级数学:变量与函数练习(含答案)一、选择题:1.下列关于圆的面积S与半径R之间的函数关系式S=πR2中,有关常量和变量的说法正确的是()A.S,R2是变量,π是常量 B.S,R是变量,2是常量C.S,R是变量,π是常量 D.S,R是变量,π和2是常量2.据调查,北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0.1x+800(0≤x≤4000) B.y=0.1x+1200(0≤x≤4000)C.y=-0.1x+800(0≤x≤4000) D.y=-0.1x+1200(0≤x≤4000)3.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集的数据如下:请你根据上述数据分析判断,水银柱的长度L(mm)与体温计的读数t℃(35≤t≤42)之间存在的函数关系式为()A.L=110t-66 B.L=11370t C.L=6t-3072D.L=39552t二、填空题4.小明带10元钱去文具商店买日记本,已知每本日记本定价2元,则小明剩余的钱y(元)与所买日记本的本数x(元)之间的关系可表示为y=10-2x.在这个问题中______是变量,_______是常量.5.在函数y=12x-中,自变量x的取值范围是______.6.某种活期储蓄的月利率是0.16%,存入10000元本金,按国家规定,取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y(元)与所存月数x之间的函数关系式为________.三、解答题7.求下列函数中自变量x的取值范围;(1)y=2x2+1;(2)y=13x.8.写出下列各问题中的函数关系式(不需标明自变量的取值范围):(1)小明绕着一圈为400m的跑道跑步,求小明跑的路程s(m)与圈数n之间的函数关系式;(2)已知等腰三角形的周长为36,腰长是x,底边上的高是6,若把面积y看作腰长x的函数,试写出它们的函数关系式.四、思考题9.某旅客带了30公斤的行李乘飞机,按规定,旅客最多可免费携带20公斤的行李,超重部分每公斤按飞机票价的1.5%购买行李票,现该旅客购买了120元的行李费,求他的飞机票价格.B卷:提高题一、七彩题1.(一题多解题)按如图所示堆放钢管.(1)填表:(2)当堆到x层时,求钢管总数y关于层数x的函数关系式.二、知识交叉题2.(科外交叉题)一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米,到达坡底时,小球速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求几秒时小球的速度为16米/秒.三、实际应用题3.山东省是水资源比较贫乏的省份之一,为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定用水收费标准如下:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年3,4月份的用水量和水费如下表所示:用水量(立方米)水费(元)月份3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费为y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的函数关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?四、经典中考题4.(2008,齐齐哈尔,4分),函数中,自变量x的取值范围是_______.C卷:课标新型题一、探究题1.(结论探究题)某商场计划投入一笔资金采购一批商品并转手出售,经市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获得10%;如果月末出售可获利30%,但要付出仓储费用700元.请问根据商场的资金状况,如何购销获利较多?二、说理题2.某移动通讯公司开设两种业务,“全球通”:先缴50元月租费,然后每通话1跳次,再付0.4元;“神州行”:不缴月租费,每通话1跳次,付话费0.6元(本题的通话均指市内通话).若设一个月内通话x跳次,两种方式的费用分别为y1和y2元.(跳次:1min为1跳次,不足1min按1跳次计算,如3.2min为4跳次)(1)分别写出y1,y2与x之间的函数关系式;(2)一个月内通话多少跳次时,两种方式的费用相同?(3)某人估计一个月内通话300跳次,应选择哪种合算?参考答案A卷一、1.C 点拨:解题的关键是对π和R2中的指数如何处理.判断变量和常量的根据就是看它们是否可改变,显然π是不改变的,是常量,圆的面积是随半径R的变化而变化的,故S和R 为变量,当R变化时R2也变化,R2中的指数2与变量和常量无关.2.D 点拨:存车费总收入y=电动车存车总费用+普通车存车总费用=0.3×(4000-x)+0. 2x=-0.1x+1200,其中0≤x≤4000.故应选D.3.C 点拨:由图表可知L随t的变化而变化,通过变化规律,可以得到L与t之间的关系式为L=56.5+6(t-35),即L=6t-3072(35≤t≤42).二、4.x,y;10,2 点拨:因为所买日记本数x是可以变化的,小明余下的钱y也是变化的,故y与x是变量,而10和2是保持不变的,故它们是常量.5.x≠2 点拨:分式12x-有意义,须令x-2≠2,得x≠2.6.y=10000+12.8x(x≥0且x为整数)点拨:本息和=本金+利润,本金=10000元,利息=本金×月利率×月数×(1-20%)=10000×0.16%·x·0.8=12.8x,所以y=10000+12.8x.三、7.解:(1)自变量x的取值范围是全体实数;(2)因为3-x≠0,所以x≠3,即自变量x的取值范围是x≠3.8.解:(1)s=400n.(2)y=-6x+108.点拨:(1)总路程=一圈的长度×圈数;(2)由题意可知,等腰三角形的底边长为(36-2x),所以y=12×(36-2x)×6,即y=-6x+108.四、9.解法一:(从方程的角度解)设他的飞机票价格为x元,根据题意,得(30-20)·x·1.5%=120,所以x=800.解法二:(从函数的角度解)设飞机票价格为k元,则行李票的价格y(元)与所带行李的公斤数x(公斤,x>20)之间的函数关系为y=(x-20)·k·1.5%,已知x=30时,y=120,代入关系式,得120=(30-20)·k·1.5%,解得k=800.答:略.点拨:解法一和解法二实质上是一致的,只不过考虑问题的角度不同,解法一是解法二的特殊情况.B卷一、1.解法一:(1)当x=1时,y=1;当x=2时,y=1+2=3;当x=3时,y=1+2+3=6;当x=4时,y=1+2+3+4=10;…;当x=x时,y=1+2+3+4+…+x=12x(x+1).(2)y=12x(x+1)=12x2+x12(x≥1且为整数).解法二:如图所示,将原题图倒置过来与原图一起拼成平行四边形,利用其面积计算公式可得到结论y=12x(x+1),即y=12x2+12x.(1)题表中依次填为:1,3,6,10,12x2+12x.(2)y=12x·(x+1)=12x2+12x.(x≥1且为整数)点拨:仔细分析总数与层数之间的关系是解决这类图形问题常用方法之一.二、2.解:(1)v=2t;(2)当t=3.5时,v=2×3.5=7,即3.5秒时小球的速度为7米/秒;(3)当v=16时,16=2t,t=8,即8秒时小球的速度为16米/秒.点拨:本题是函数关系式与物理学科的知识交叉题,也就是函数关系式在物理学科中的实际应用.三、3.解:(1)当x≤6时,y=ax;当x>6时,y=6a+c(x-6).将x=5,y=7.5代入y=ax,得7.5=5a,将x=9,y=27代入y=6a+c(x-6),得27=6a+3c.解得a=1.5,c=6.所以y=1.5x(x≤6),y=6x-27(x>6);(2)将x=8代入y=6x-27,得y=21,所以5月份的水费是21元.四、4.x≤3且x≠1C卷一、1.解:设商场投资x元,在月初出售可获利y1元,到月末出售出获利y2元.根据题意,得y1=15%x+10%(1+15%)x=0.265x,y2=30%x-700=0.3x-700.(1)当y1=y2时,0.265x=0.3x-700,所以x=20000;(2)当y1<y2时,0.265x<0.3x-700,所以x>20000;(3)当y1>y2时,0.265x>0.3x-700,所以x<20000.所以当商场投资20000元时,两种销售方法获利相同;当商场投资超过20000元时,第二种销售方式获利较多;当商场投资不足20000元时,第一种销售方式获利较多.点拨:要求哪种销售方式获利较多,关键是比较在自变量的相同取值范围内,两个函数值的大小,除上述方法外,也可以采用作差的方法解决.二、2.解:(1)y1=50+0.4x,y2=0.6x;(2)两种方式的费用相同时,y1=y2,即50+0.4x=0.6x,解得x=250.即一个月内通话250跳次,两种方式的费用相同;(3)某人一个月估计通话300跳次,则全球通的费用为:y1=50+0.4×300=170(元),神州行的费用为:y2=0.6×300=180(元),因为y1<y2,所以选择“全球通”合算.点拨:“话费问题”是日常生活中常见的问题,电话费与通话时间也是一种函数关系,要用函数的思想来加以说理解决.本题体现了分类思想,分两种情况来分析问题是解决此题的关键.。

人教版八年级数学下册同步练习:变量与函数

人教版八年级数学下册同步练习:变量与函数

精品基础教育教学资料,仅供参考,需要可下载使用!19.1.1 变量与函数知识要点:1. 一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.2.常量:其值在变化过程中始终保持不变的量叫常量.3.变量:其值在变化过程中会发生变化的量叫变量 一、单选题1.对圆的周长公式2C r π=的说法正确的是( ) A .π,r 是变量,2是常量 B .C ,r 是变量,π,2是常量 C .r 是变量,2,π,C 是常量D .C 是变量,2,π,r 是常量2.一辆汽车以50 km/h 的速度行驶,行驶的路程s km 与行驶的时间t h 之间的关系式为s =50 t ,其中变量是( ) A .速度与路程B .速度与时间C .路程与时间D .三者均为变量3.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )A .B .C .D .4.某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( ) 数量x(千克 )1 2 3 4 ··· 售价y(元)8+0.416+0.824+1.232+1.6··· A .y=8.4xB .y=8x+0.4C .y=0.4x+8D .y=8x5.矩形的周长为18cm ,则它的面积S (2cm )与它的一边长x (cm )之间的函数关系式是( )A .S=x(9-x)(0<x<9)B .S=x(9+x)(0<x≤9)C .S=x(18-x)(0<x≤9)D .S=x(18+x)(0<x<9)6.变量x 与y 之间的关系式y =12x 2﹣2,当自变量x =2时,因变量y 的值是( ) A .﹣2 B .﹣1C .0D .17.函数y=12x -的自变量x 的取值范围是( ) A .x≠2B .x <2C .x≥2D .x >28.一辆汽车以50/km h 的速度行驶,行驶的路程()s km 与行驶的时间t(h)之间的关系式为50s t =,其中变量是( ) A .速度与路程 B .速度与时间C .路程与时间D .速度9.函数2015y x= 中,自变量x 的取值范围是( ) A .x >0B .x <0C .x ≠0的一切实数D .x 取任意实数10.根据图示的程序计算计算函数值,若输入的x 值为3/2,则输出的结果为( )A .7/2B .9/4C .1/2D .9/2二、填空题11.图书馆现有1500本图书供学生借阅,如果每个学生一次借3本,则剩下的数y (本)和借书学生人数x (人)之间的函数关系式是_____________.12.圆的面积公式2S R π=中,变量是________ ,常量是________.13.齿轮每分钟转120转,如果用n 表示转数,t(min)表示时间,那么用t 表示n 的关系式为n =________. 14.长方形的周长为24cm ,其中一边长为()x cm ,面积为()2y cm ,则y 与x 的关系可表示为___.三、解答题15.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x/kg0 1 2 3 4 5弹簧长度y/cm18 20 22 24 26 28①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?16.已知池中有600m3的水,每小时抽50m3.(1)写出剩余水的体积Vm3与时间th之间的函数表达式;(2)写出自变量t的取值范围;(3)8h后,池中还剩多少水?(4)多长时间后,池中剩余100m3的水?17.求出下列函数中自变量x的取值范围(1)114y x=+(2)31xyx+=+(3)21y x=+(4)531yx-=-18.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.19.如图所示,正方形ABCD的边长为4 ,E、F分别是BC、DC边上一动点,E、F同时从点C 均以1 的速度分别向点B、点D运动,当点E与点B重合时,运动停止.设运动时间为(),运动过程中△AEF的面积为,请写出用表示的函数关系式,并写出自变量的取值范围.答案1.B2.C3.C4.A5.A6.C7.D8.C9.C 10.C 11.y=1500-3x 12.S 、R π 13.120t14.()12y x x =-15.(1)上表反映了弹簧长度与所挂物体质量之间的关系; 其中所挂物体质量是自变量;(2)当所挂物体重量为3千克时,弹簧长24厘米; 当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32(厘米). 16.解:(1)由已知条件知,每小时抽50立方米水, 则t 小时后放水50t 立方米, 而水池中总共有600立方米的水, 那么经过t 时后,剩余的水为600﹣50t ,故剩余水的体积V 立方米与时间t (时)之间的函数关系式为:V=600﹣50t ; (2)由于t 为时间变量,所以 t≥0 又因为当t=12时将水池的水全部抽完了. 故自变量t 的取值范围为:0≤t≤12; (3)根据(1)式,当t=8时,V=200 故8小时后,池中还剩200立方米水; (4)当V=100时,根据(1)式解得 t=10. 故10小时后,池中还有100立方米的水. 17.(1)114y x =+, 自变量x 的取值范围是全体实数;(2)y 根据题意得,3010x x +≥⎧⎨+≠⎩∴3x ≥-,且1x ≠-.∴自变量x 的取值范围是3x ≥-,且1x ≠-.(3)y =根据题意得,2x+1≥0,解得,21x ≥-; ∴自变量x 的取值范围是21x ≥-; (4)531y x -=- 根据题意得,310x -≠, ∴13x ≠, ∴自变量x 的取值范围是13x ≠. 18.解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米), ∴行驶路程x (千米)与剩余油量Q (升)的关系式为Q=35﹣0.125x ; (2)当x=60时,Q=35﹣0.125×60=27.5(升), 答:当x=60(千米)时,剩余油量Q 的值为27.5升; (3)他们能在汽车报警前回到家, (35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家. 19.设运动时间为x (s ),∵点E ,F 同时从点C 出发,以每秒21cm 的速度分别向点B ,D 运动, ∴CE=x ,CF=x ,BE=4-x ,DF=4-x ,∴△AEF 的面积=正方形ABCD 的面积-△ABE 的面积-△ADF 的面积-△ECF 的面积, 即:y=16-•AB•BE -•AD•DF -•EC•FC=16-•4•(4-x )-•4•(4-x )-•x•x =.。

人教版八年级数学下《19.1.1变量与函数》练习含答案

人教版八年级数学下《19.1.1变量与函数》练习含答案

《变量与函数》练习一、选择——基础知识运用1.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A.x B.h C.V D.x、h、V均为变量3.设路程s,速度v,时间t,在关系式s=vt中,说法正确的是()A.当s一定时,v是常量,t是变量B.当v一定时,t是常量,s是变量C.当t一定时,t是常量,s,v是变量D.当t一定时,s是常量,v是变量4.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量。

上述判断正确的有()A.1个B.2个C.3个D.4个5.已知y与x之间有下列关系:y=x2-1.显然,当x=1时,y=0;当x=2时,y=3。

在这个等式中()A.x是变量,y是常量B.x是变量,y是常量C.x是常量,y是变量D.x是变量,y是变量二、解答——知识提高运用6.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是,变量是。

7.汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt。

如果汽车以每时60km 的速度行驶,那么在s=vt中,变量是,常量是;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是,常量是;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是,常量是。

8.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐。

潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,h表示水深。

上述问题中,字母T,h表示的是变量还是常量,简述你的理由。

9.写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s=40t。

八年级数学(下)第十九章《变量与函数》同步练习题(含答案)

八年级数学(下)第十九章《变量与函数》同步练习题(含答案)

八年级数学(下)第十九章《变量与函数》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.对于圆的面积公式S =πR 2,下列说法中,正确的为 A .π是自变量 B .R 2是自变量 C .R 是自变量D .πR 2是自变量【答案】C【解析】因为在2πS R =中,π是圆周率,故π是常数,S 与R 是变量,其中R 是自变量,故选C . 2.长方形的周长为24 cm ,其中一边长为x cm (其中x >0),面积为y cm 2,则y 与x 的关系式为 A .2y x =B .(24)y x x =-C .2(12)y x =-D .(12)y x x =-【答案】D【解析】长方形的一边是x cm ,则另一边长是(12-x )cm .则y 与x 的关系式为y =(12-x )x .故选D . 3.下列图象中,表示y 是x 的函数的有A .1个B .2个C .3个D .4个【答案】B【解析】第一个图象,对每一个x 的值,都有唯一确定的y 值与之对应,是函数; 第二个图象,对每一个x 的值,都有唯一确定的y 值与之对应,是函数; 第三个图象,对给定的x 的值,有两个y 值与之对应,不是函数;第四个图象,对给定的x 的值,有两个y 值与之对应,不是函数.综上所述,表示y 是x 的函数的有第一个、第二个,共2个.故选B . 4.下列变量之间的关系不是函数关系的是 A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边与面积D .球的体积与球的半径【答案】C【解析】A 项中,长方形的宽一定,是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也变,是函数关系;B 项中,正方形的周长与面积是两个变量,给出一个周长的值C ,边长即为4C,相应地面积为2()4C S ==216C ,是函数关系; C 项中,底边与面积虽是两个变量,但面积公式中底边上的高也是变量,即存在三个变量,不是函数关系;D 项中,球的体积与其半径是函数关系,故选C .5.物体从足够高的地方做自由落体运动,下降的高度h 与时间t 满足关系式h =12gt 2,则3秒后物体下落的高度是(g 取10) A .15米B .30米C .45米D .60米【答案】C【解析】把t =3代入函数关系式得:h =12×10×32=45(米),故选C . 6.设路程s ,速度v ,时间t ,在关系式s =vt 中,说法正确的是 A .当s 一定时,v 是常量,t 是变量 B .当v 一定时,t 是常量,s 是变量 C .当t 一定时,t 是常量,s ,v 是变量D .当t 一定时,s 是常量,v 是变量【答案】C【解析】A 、当s 一定时,s 是常量,v 、t 是变量,故原题说法错误; B 、当v 一定时,v 是常量,t 、s 是变量,故原题说法错误; C 、当t 一定时,t 是常量,s ,v 是变量,说法正确;D 、当t 一定时,t 是常量,v 、s 是变量,故原题说法错误,故选C . 二、填空题:请将答案填在题中横线上.7.饮食店里快餐每盒5元,买n 盒需付S 元,则其中常量是__________,变量是__________. 【答案】5;n ,S【解析】由题意可知,在上述问题中,常量是:5;变量是:n 、S ,故答案为:5;n 、S .8.随着我国人口增长速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中__________是自变量,__________是因变量;(2)你预计该地区从__________年起入学儿童的人数不超过2000人. 【答案】(1)年份,入学儿童人数;(2)2019【解析】(1)因为该表格中的数据近似地呈现了某地区入学儿童人数随年份的变化趋势, 所以年份是自变量,入学儿童人数是因变量, 故答案为:年份,入学儿童人数.(2)因为每年的入学儿童人数都比上一年减少190人, ∴(2520-2000)÷1903≈,2016+3=2019(年). 所以2019年起入学儿童的人数不超过2000人.故答案为:2019. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 9.求下列函数中的自变量x 的取值范围. (1)y =3x 2-2; (2)y =;(3)y =(4)3y x =-. 【解析】(1)x 为全体实数.(2)被开方数4-x ≥00≠,所以x <4. (3)被开方数x +2≥0,所以x ≥-2. (4)由被开方数5-x ≥0,得x ≤5. 由分母x -3≠0,得x ≠3, 所以x ≤5且x ≠3. 10.已知函数y =2x -3.(1)求当x =-4时的函数值; (2)当x 为何值时,函数值为0?【解析】(1)当x =-4时,y =2x -3=2×(-4)-3=-11,即当x =-4时的函数值为-11. (2)当y =0时,0=2x -3,解得32x=,即当32x=时,函数值为0.11.写出下列各问题所满足的关系式,并指出各个关系式中,哪些是常量,哪些是变量.(1)每本练习本0.6元,购买练习本所需的钱数m(元)与购买的本数n(本)之间的关系式;(2)用总长度为27 m的篱笆刚好围成一个矩形场地,矩形的面积S(m2)与一边长x(m)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时间x(分钟)之间的关系式.【解析】(1)m=0.6n;0.6是常量,m,n是变量.(2)S=x(272-x);272是常量,S,x是变量.(3)y=20-0.2x;20,0.2是常量,x,y是变量.12.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m,到达坡底时,小球速度达到40 m/s.(1)求小球速度v(m/s)与时间t(s)之间的函数关系式;(2)求t的取值范围;(3)求3.5 s时小球的速度;(4)当t为何值时,小球的速度为16 m/s?【解析】(1)小球由静止开始在斜坡上向下滚动,滚动时间为1 s时,速度v=2×1=2(m/s);滚动时间为2 s时,速度v=2×2=4(m/s)……,滚动时间为t s时,速度v=2t(m/s),∴v与t之间的函数关系式为v=2t.(2)根据已知条件分析可知,小球的速度v的最小值为0 m/s,最大值为40 m/s,即0≤v≤40,用2t代替v,得0≤2t≤40,即0≤t≤20.(3)求3.5 s时小球的速度,实质是求t=3.5时的函数值.(4)当v=16时,求自变量t的值,解方程即可.。

2021年人教版数学八年级下册19.1.1《变量与函数》精选练习 (含答案)

2021年人教版数学八年级下册19.1.1《变量与函数》精选练习 (含答案)

19.1.1《变量与函数》精选练习一、选择题1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数2.函数中自变量的取值范围是()A. B. C. D.3.函数y=+x-2的自变量x的取值范围是( )A.x≥2B.x>2C.x≠2D.x≤24.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm6.在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒7.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )A. B. C. D.9.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是( )A.①②B.③④C.②③D.①④10.某蓄水池的横断面示意图如图,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A. B. C. D.11.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()A. B.C. D.12.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A. B. C. D.二、填空题13.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价 .14.直角三角形两锐角的度数分别为x,y,其表达式为y=90-x,其中变量为__________,常量为__________.15.使式子有意义的x的取值范围是_____.16.已知函数y=x2-9,当x=5时,y=_______;反之,当y=16时,x=______.17.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数表达式是_________________.18.关于x,y的关系式:(1)y-x=0;(2)x=2y;(3)y2=2x;(4)y-x2=x,其中y是x的函数的是 .三、解答题19.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图:(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)分段描述汽车在第0分种到第28分钟的行驶情况;(3)汽车在点A的速度是多少?在点C呢?20.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.21.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y (m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.22.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.23.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少. 24.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格。

【人教版】八年级数学下册《变量与函数》测试卷及答案

【人教版】八年级数学下册《变量与函数》测试卷及答案

变量与函数一、选择题 (每小题4分,共12分)1.某型号的汽车在路面上的制动距离s=错误!未找到引用源。

,其中变量是( )A.s,vB.s,v2C.sD.v2.(2013·泸州中考)函数y=错误!未找到引用源。

自变量x的取值范围是( )A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠33.根据如图所示程序计算函数值,若输入的x的值为错误!未找到引用源。

,则输出的函数值为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

二、填空题(每小题4分,共12分)4.(2012·巴中中考)函数y=错误!未找到引用源。

中,自变量x的取值范围是.5.购买一些签字笔,单价3元,总价为y元,签字笔为x支,y随x变化的关系式y= , 是自变量, 是的函数.6.某水果批发市场香蕉的价格如表:购买香蕉数(kg) 不超过20kg20kg以上但不超过40kg40kg以上每kg价格8元7元6元若小强购买香蕉xkg(x大于40kg)付了y元,则y关于x的函数解析式为.(写出自变量的取值范围)三、解答题(共26分)7.(8分)下表给出了橘农王林去年橘子的销售额y(元)随橘子卖出质量x(kg)的变化的有关数据:卖出质量(kg) 1 2 3 4 5 6 7 8 9销售额(元) 2 4 6 8 10 12 14 16 18(1)上表反映了哪两个变量之间的关系?并写出函数的解析式.(2)哪个是自变量?哪个是自变量的函数?(3)当橘子卖出5kg时,销售额是多少?(4)估计当橘子卖出50kg时,销售额是多少?8.(8分)已知一根长为20m的铁丝围成一个长方形,若宽为x,长为y:(1)求出y关于x的函数解析式.(2)写出自变量x的取值范围.(3)求当x=4时所对应的函数值.【拓展延伸】9.(10分)如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,开始时点A与点M重合,让△ABC向右移动,最后让点A与点N重合,试写出重叠部分面积y(cm2)与线段MA的长度x(cm)之间的函数解析式,并写出自变量的取值范围.答案解析1.【解析】选A.∵制动距离s=错误!未找到引用源。

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题一、选择题1.在圆的面积公式S =πr 2中,常量是(B )A .SB .πC .rD .S 和r2.小王计划用100元钱买乒乓球,所购买乒乓球的个数W(单位:个)与单价n(单位:元/个)的关系式W =100n 中(A )A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是(D )A .金额B .数量C .单价D .金额和数量4.一个长方形的面积是10 cm 2,其长是a cm 2,宽是b cm 2,下列判断错误的是(B )A .10是常量B .10是变量C .b 是变量D .a 是变量5.下列关系式中,y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -56.下列变量间的关系不是函数关系的是(C )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径7.已知两个变量之间的函数关系式为y=-x+2,则当x=-1时,对应的y的值为(B)A.1 B.3C.-1 D.-38.在函数y=1x+3+4-x中,自变量x的取值范围是(D)A.x<4 B.x≥4且x≠-3C.x>4 D.x≤4且x≠-39.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是(D)A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是(C)A .5B .10C .19D .2111.函数y =2x -4的自变量x 的取值范围是(D )A .x <2B .x ≤2C .x >2D .x ≥2二、填空题12.如图,圆锥的底面半径r =2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是V ,h(圆锥体积公式:V =13πr 2h).13.某地某一时刻的地面温度为10 ℃,高度每增加1 km ,温度下降4 ℃,则有下列说法:①10 ℃是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(℃)与高度x(km )的关系式为y =10-4x.其中正确的是(D )A .①②③B .②③④C .①③④D .①②③④14.n 边形的内角和α°的公式是α=(n -2)·180,其中变量是n ,α,常量是2,180.15.用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是N =4n +2,其中常量是4,2,变量是N ,n .16.若92号汽油的售价为6.8元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,x是自变量,y是x的函数,其解析式为y=6.8x.17.函数y=1x-6中,自变量x的取值范围是x≠6.18.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y=2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x应满足的条件是x≥2__400且x为整数.19.对于函数y=6xx+3,当y=2时,x=32.20.若物体运动的路程s(米)与时间t(秒)的函数关系式为s=3t2+2t+1,则当t=4秒时,该物体运动的路程为57米.21.函数y=x+2x中,自变量x的取值范围是x≥-2且x≠0.22.函数y=x-2+(x-3)0中,自变量x的取值范围是x≥2且x≠3.三、解答题23.写出下列问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.24.如图,已知m∥n,直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,设BC边的长为x,△ABC的面积为S,请用含x的式子表示S,并指出式子中的常量与变量.解:S=12×3x=32x.常量:3 2;变量:S,x.25.已知水池中有800立方米的水,每小时抽水50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0≤t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.。

数学八下变量与函数习题(含答案解析)

数学八下变量与函数习题(含答案解析)

变量与函数作业1. 半径是R 的圆的周长= 2剂,下列说法正确的是( )A. C、、R 是变量B. C 是变量,2、、R 是常量C. R 是变量,2、、C 是常量D. C、R 是变量,2、是常量【答案】D【解析】本题考查的是变量和常量,在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.根据变量和常量的概念解答即可.在半径是R 的圆的周长= 2剂中,C 和R 是变量,2 和是常量.故选D.2. 弹簧挂上物体后会伸长,测得一弹簧的长度(cm)与所挂物体的质量(kg)有下面的关系:下列说法中,不正确的是( )A. x 与y 都是变量,且x 是自变量,y 是因变量B. 所挂物体质量为4 kg 时,弹簧长度为12 cmC. 弹簧不挂重物时的长度为0 cmD. 所挂物体质量每增加1 kg,弹簧长度增加0.5 cm【答案】C【解析】. 与y 都是变量,且x 是自变量,y 是因变量,故A 正确;B.所挂物体质量为4 kg 时,弹簧长度为12 cm,故B 正确;C.弹簧不挂重物时的长度为10 cm,故C 错误;D.物体质量每增加1 kg,弹簧长度y 增加0.5 cm,故D 正确.故选C.3. 如图,在一个边长为10 cm 的正方形的四个角上,都剪去大小相同的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化中,自变量、因变量各是什么?(2)若小正方形的边长为cm(0 < < 5),图中阴影部分的面积为cm2,请直接写出y 与x 之间的关系式;并求出当= 3 cm时,阴影部分的面积y.【答案】解:(1)在这个变化中,自变量是小正方形的边长、因变量是阴影部分的面积;(2)与x 之间的关系式为= 102 − 42 = 100 − 42,当= 3 cm 时,阴影部分的面积= 100 − 4 × 32 = 64 cm2.【解析】(1)根据常量与变量的定义即可求解;(2)用正方形的面积减去四周四个小正方形的面积列式即可得出y 与x 之间的关系式,再代值计算即可得解.本题考查了函数关系式,常量与变量,函数求值,是基础题,熟练掌握长方形面积公式是解题的关键.。

2020—2021年人教版初中数学八年级下册函数与变量例题+同步练习题及答案(精品试题).docx

2020—2021年人教版初中数学八年级下册函数与变量例题+同步练习题及答案(精品试题).docx

第01课函数与变量同步练习题【例1】如图的图象表示一辆汽车的速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在哪段时间保持匀速行驶?时速是多少?(3)汽车在哪段时间停止?可能发生了什么情况?(4)请大致描述这辆汽车的行驶情况.【例2】下表是某公共电话亭打长途电话的几次收费记录:时间1 2 3 4 5 6 7(分)电话费0.6 1.2 1.8 2.4 3.0 3.6 4.2(元)(1)上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?【例3】根据下面的运算程序,回答问题:(1)若输入x=﹣3,请计算输出的结果y的值;(2)若输入一个正数x时,输出y的值为12,请问输入的x值可能是多少?【例4】小明同学骑自行车去郊外春游,图中表示的是他离家的距离y(千米)与所用的时间(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?【例5】周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如图所示,(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时;(2)求线段CD所表示的函敛关系式;(3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程,课堂同步练习一、选择题:1、在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量2、函数中自变量x的取值范围是( )A.x≥﹣2B.x≥﹣2且x≠1C.x≠1 D.x≥﹣2或x≠13、函数的自变量x的取值范围为()A.x≠1B.x>-1C.x≥-1 D.x≥-1且x≠14、如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )5、如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是( )A.凌晨4时气温最低为-3 ℃B.14时气温最高为8 ℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降6、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )A. B. C. D.7、父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致相吻合的图象是( )A. B. C. D.8、下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①9、清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校. 图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系. 下列说法错误的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分10、一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()11、如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()12、为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B-E-D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点AB.监测点BC.监测点C D.监测点D二、填空题:13、在关系式V=30-2t中,V随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,V=0.14、在函数中,自变量x 的取值范围是.15、函数的自变量x的取值范围是.16、若函数则当函数值y=8 时,自变量x 的值等于17、小明早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.18、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换①f(m,n)=(m,-n),如f(2,1)=(2,-1);②g(m,n)=(-m,-n),如g(2,1)=(-2,-1).按照以上变换有:f[g(3,4)]=f (-3,-4)=(-3,4),那么g[f(-3,2)]= 。

人教版八年级数学下册 变量与函数同步练习卷(含解析)

人教版八年级数学下册 变量与函数同步练习卷(含解析)

人教版八年级下册:19.1 函数 同步练习卷一、选择题1.小李驾车以70km/h 的速度行驶时,他所走的路程()km s 与时间()h t 之间可用公式70s t =来表示,则下列说法正确的是( ) A .数70和s ,t 都是变量 B .s 是常量,数70和t 是变量 C .数70是常量,s 和t 是变量D .t 是常量,数70和s 是变量2.函数2y x =-的自变量x 的取值范围是( ) A .2x ≠B .2x <C .2x >D .2x ≥3.下列关系式中y 不是x 的函数是( ) A .()0y x x =±> B .()20y x x =-> C .2yxD .()()20y x x =>4.当2x =时,函数的21y x =-+值是( ) A .2B .2-C .12D .12-5.刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(15t >)之间的函数关系为( ) A .501350y t =-+ B .50150y t =- C .401350y t =-+D .101350y t =-+6.如图所示能表示y 是x 的函数是( )A .B .C .D .7.下列关系不是函数关系的是 ( ) A .长方形的宽一定时,它的长与面积. B .正方形的周长与面积.D.等腰三角形顶角的度数与底角的度数.8.点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩y cm,下列说法正确的有()A.蜡烛每分钟燃烧0.6cmB.y与x的关系式为y=22﹣4xC.第23分钟时,蜡烛还剩12.8cmD.第51分钟时,蜡烛燃尽9.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后.用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.10.甲、乙两地之间是一条直路,在全民健身活动中,王强跑步从甲地往乙地,李刚骑自行车从乙地往甲地,两人同时出发,李刚先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发0.5小时后相遇B.李刚到达目的地时两人相距8kmC.甲乙两地相距12kmD.王强比李刚晚0.75h到达目的地11.对于圆的周长公式c=2πr,其中自变量是______,因变量是______.12.在男子1000米的长跑中,运动员的平均速度v=1000,则这个关系式中自变量是___.t13.等边三角形的边长为x,此三角形的面积S表示成x的函数为______.14.校园里栽下一棵小树高1.8m,以后每年长0.4m,则n年后的树高L与年数n之间的关系式为______.15.已知A,B两地相距80km,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲、乙离开A地的路程s(km)与时间(h)的函数关系的图象,则甲与乙的速度之差为______,甲出发后经过______小时追上乙.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,则下列说法中正确的序号为______.①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米/分钟;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度三、解答题17.科学家认为二氧化碳2CO的释放量越来越多是全球变暖的原因之一.下表1950~1990年全世界所()释放的二氧化碳量:年份1950 1960 1970 1980 1990CO释放量/百万吨6002 9475 14989 19287 22588 2(2)说一说这两个变量之间的关系.18.如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化. ①在这个变化中,自变量、因变量分别是______、______;②如果高为()cm h 时,体积为()3cm V ,则V 与h 的关系为______;③当高为5cm 时,棱柱的体积是______;④棱柱的高由1cm 变化到10cm 时,它的体积由______变化到______.19.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时候达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园,如图是他们离家路程()km s 与小明离家时间()h t 的关系图,请根据图回答下列问题:(1)图中自变量是____________,因变量是____________; (2)小明家到滨海公园的路程为______________km ;(3)小明从家出发____________小时后爸爸驾车出发,爸爸驾车经过_____________小时追上小明.20.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:提出概念所用时间257101213141720()x对概念的接受能力47.853.556.359.059.859.959.858.355.0()y(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是7分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?21.小华骑自行车上学,当他骑了一段路时,想起要买本书,于是又这回到刚经过的某书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图,根据图中提供的信息回答下列问题:(1)小华家到学校的路程是______m,小华在书店停留了_____min.(2)在整个上学的途中哪个时间段小华的骑车速度最快?最快的速度是多少?(3)本次上学途中,小华一共骑行了多少米?(4)如果小华到校后立刻以300m/min的速度回家,请在原图上画出小华回家所用时间与离家距离的关系图象.22.甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.参考答案1.C根据常量和变量的定义(在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量)即可得. 【详解】解:在70s t =中,数70是常量,s 和t 是变量, 故选:C . 【点睛】本题考查了常量和变量,熟记定义是解题关键. 2.D 【解析】 【分析】根据二次根式有意义的条件求解即可. 【详解】 解:∵20x -≥ ∴2x ≥ 故选D 【点睛】本题考查了二次根式有意义的条件,函数的定义,掌握二次根式有意义的条件是解题的关键. 3.A 【解析】 【分析】根据函数的定义逐项分析即可. 【详解】在选项B,C,D 中,每给x 一个值,y 都有1个值与它对应,所以B,C,D 中y 是x 的函数, 在A 中,给x 一个正值,y 有2个值与之对应,所以y 不是x 的函数. 故选A 【点睛】本题考查了函数的定义,掌握函数的定义是解题的关键.一般的,在一个变化过程中,假设有两个变量x 、y ,如果对于任意一个x 都有唯一确定的一个y 和它对应,那么就称x 是自变量,y 是x 的函数. 4.B将2x=代入函数解析式即可求得.【详解】当2x=时,21yx=-+2221-+==-故选B【点睛】本题考查了已知自变量的值,求函数的值,正确的计算是解题的关键.5.A【解析】【分析】由题意可得前半程所需时间为15分钟,则剩下路程所需时间为(t﹣15)分,再由1200﹣y=600+50(t ﹣15),可求函数关系式.【详解】解:∵以每分钟40米的速度行走了前半程,∴以每分钟40米的速度行走了600米,∴600÷40=15(分),∴剩下路程所需时间为(t﹣15)分,∴1200﹣y=600+50(t﹣15),整理得y=﹣50t+1350,故选:A.【点睛】本题考查函数关系式,能够通过题中条件获取信息,并能将所得信息转化为数学关系式是解题的关键.6.D【解析】【分析】对于自变量的每一个确定的值,函数值有且只有一个值与之对应,根据函数的概念即可求出答案.【详解】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以能表示y是x的函数是:.故选:D.【点评】本题主要考查了函数的概念.函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.7.C【解析】【分析】根据函数的概念可直接进行排除选项.【详解】长方形的面积=长×宽,当宽一定时,它的长与面积成函数关系故A正确;正方形面积=正方形的周长的平方的十六分之一,故B正确;等腰三角形的面积=底边长×底边上的高×0.5,当底边上的高不确定时,等腰三角形的底边长与面积不成函数关系,故C不正确;等腰三角形顶角的度数是180与底角的度数2倍的差,等腰三角形顶角的度数与底角的度数成函数关系,故D正确.故选C.【点睛】本题主要考查函数的概念,熟记掌握函数的概念是解题的关键.8.C【解析】【分析】根据题意可得这根蜡烛总长度是22cm,燃烧10分钟后变短了4cm,可得每分钟燃烧410cm,据此可得各选项答案.【详解】解:A、燃烧10分钟后变短了4cm,可得每分钟燃烧4100.4cm,故不正确,不合题意;B、点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩C、第23分钟时,蜡烛还剩y=22﹣0.4×23=12.8cm,故正确,符合题意;D、第51分钟时,蜡烛还剩y=22﹣0.4×51=1.6cm,故不正确,不合题意;故选:C.【点睛】本题主要考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式,利用函数解析式解答问题.9.D【解析】【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得离家的距离.【详解】解:20分钟到报亭离家的距离随时间的增加而增加;看报10分钟,离家的距离不变;15分钟回家离家的距离随时间的增加而减少,故D选项符合题意.故选:D【点睛】本题考查了函数图象,根据横轴和纵轴表示的量,得出时间与离家距离的关系是解题关键.10.B【解析】【分析】根据图象可得两地之间的距离,再分别算出两人的行进速度,据此可得各项数据进而判断各选项.【详解】解:由图可知:当时间为0h时,两人相距12km,即甲乙两地相距12km,故C不符合题意.当时间为0.5h时,甲乙两人之间距离为0,即此时两人相遇,故A不符合题意;∵李刚比王强先到目的地,∴王强全程花费的时间为1.5h,∴王强的速度为12÷1.5=8km/h,∵12÷0.5=24km/h,∴李刚的速度为16km/h,∴李刚到达目的地时两人相距0.75×8=6km,王强比李刚晚0.75h到达目的地,故B选项符合题意,D选项不符合题意;故选B.【点睛】本题考查了动点问题的函数图象,解题时要充分理解题意,读懂函数图象的意义.11.r c【解析】【详解】试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r=,其中自变量是r,因变量是C.故答案为,.r C12.t【解析】【分析】分析:根据函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,我们就说y是x的函数,其中x是自变量.据此解答即可.【详解】解:在男子1000米的长跑中,运动员的平均速度v=1000t,则这个关系式中自变量是t,故答案为:t.【点睛】本题考查了函数的定义,理解掌握函数的定义是解体的关键.13.2=S【解析】【分析】作出三角形的高,利用直角三角形的性质及勾股定理可求得高,那么三角形的面积=12×底×高,把相关数值代入即可求解.【详解】解:如图,ABC为等边三角形,边长为x,作AD⊥BC于点D,则∠ADB=90°,∵ABC 为等边三角形 ∴BD =CD =12BC =12x在Rt △ABD 中,∠ADB =90°,AB =x ,BD =12x ∴223AD AB BD x =- ∴2113322S BC AD x =⨯⋅⋅==,∴S 表示成x 的函数为23=S x . 故答案为:23=S x . 【点睛】本题考查三角形的面积的求法,找到等边三角形一边上的高是重点. 14.L =0.4n +1.8 【解析】 【分析】由小树每年长0.4m,则n 年长0.4n m,再由栽下时小树高1.8 m,据此求解即可. 【详解】解:∵每年长0.4m ∴n 年长0.4n m ∵栽下时小树高1.8 m∴n 年后的树高L 与年数n 之间的关系式为 L =0.4n +1.8. 故答案为: L =0.4n +1.8. 【点睛】本题主要考查了列函数关系式,正确理解题意是解题的关键 15.1003km /h 1.8 【解析】 【分析】根据题意和函数图象中的数据可以计算出甲乙的速度,从而可以解答本题.解:由题意和图象可得,乙到达B 地时甲距A 地120km , 甲的速度是:120÷(3-1)=60km /h , 乙的速度是:80÷3=803km /h , ∴甲与乙的速度之差为60-803=1003km /h , 设乙出发后被甲追上的时间为x h , ∴60(x -1)=803x ,解得x =1.8, 故答案为:1003km /h ,1.8. 【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 16.①②④ 【解析】 【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可. 【详解】解:小明中途休息用了60−40=20分钟,故①正确;小明休息前爬山的速度为2800÷40=70(米/分钟),故②正确; 小明在上述过程中所走的路程为3800米,故③错误;小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,故④正确; 故答案为:①②④. 【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 17.(1)2CO 释放量与年份;(2)2CO 释放量的随着年份的增加而增大 【解析】 【分析】(1)分别根据变量、因变量的定义分别得出即可; (2)根据图表分析得出答案.解:(1)上标反映的是2CO 释放量与年份之间的关系; (2)2CO 释放量的随着年份的增加而增大. 【点睛】本题考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键.18.①高、棱柱的体积;②100V h =;③3500cm ;④3100cm ,31000cm 【解析】 【分析】①在这个变化中,棱柱的体积随着高的变化而变化可知自变量、因变量; ②根据棱柱的体积公式:h V S =可得答案;③利用待定系数法把高为5cm 代入函数关系式即可;④利用待定系数法把高为1cm 代入函数关系式,高为10cm 代入函数关系式计算即可. 【详解】解:∵棱柱的体积=底面积×高, ∴长方体的体积随着高的变化而变化,①在这个变化中,自变量、因变量分别是高、棱柱体积, 故答案为:高、棱柱体积; ②由题意得:1010100V h h =⨯⋅=, 故答案为:100V h =; ③由②得31005=500cm V =⨯, 故答案为:3500cm ; ④∵100V h =, ∴V 随h 的增大而增大,∴当1cm h =,3100cm V =,当10cm h =,31000cm V =∴棱柱的高由1cm 变化到10cm 时,它的体积由3100cm 变化到31000cm , 故答案为:3100cm ,31000cm 【点睛】本题主要考查了因变量和自变量,求因变量,函数关系式等,熟练掌握棱柱的体积公式是解题的关键. 19.(1)时间t ; 离家路程s (2)30(3)2.5;23【解析】 【分析】(1)根据图象进行判断,即可得出自变量与因变量; (2)根据图象中数据即可得到路程;(3)根据图象直接可得到爸爸驾车出发的时间;先算出小明坐公交车到滨海公园的平均速度和爸爸驾车的平均速度,设爸爸出发后x h 追上小明,根据在x 这段时间内,爸爸通过的路程比小明乘公交车通过的路程多12km 列出方程,解方程即可. (1)由图可得,自变量是时间t ,因变量是离家路程s ; 故答案为:时间t ;离家的路程s . (2)由图可得,小明家到滨海公园的路程为30km ; 故答案为:30. (3)由图可得,小明出发2.5小时后爸爸驾车出发; 爸爸驾车的平均速度为()3030km/h 3.5 2.5=-,小明乘公交车的平均速度为:()3012=12km/h 4 2.5--, 设爸爸出发后x h 追上小明,根据题意得:301212x x -=,解得:23x =. 故答案为:2.5;23h . 【点睛】本题考查了路程时间的图象,以及行程问题的数量关系的运用,解答时理解清楚图象的意义是解答此题的关键.20.(1)提出概念所用的时间x 和对概念的接受能力y 两个变量之间的关系,提出概念所用时间x 是自变量,对概念的接受能力y 是因变量;(2)56.3;(3)提出概念所用时间为13分钟时,学生的接受能力最强;(3)当2x 13<<时,y 值逐渐增大,学生的接受能力逐步增强;当13x 20<<时,y 值逐渐减小,学生的接受能力逐步降低 【解析】 【分析】(1)根据自变量与因变量的定义即可求解;(2)根据表格中数据即可求解;(3)根据表格中13x时,y的值最大是59.9,即可求解;(4)根据表格中的数据即可求解.【详解】解:()1提出概念所用的时间x和对概念的接受能力y两个变量;提出概念所用时间x是自变量,对概念的接受能力y是因变量.()2当x7=时,y56.3=,所以当提出概念所用时间是7分钟时,学生的接受能力是56.3.()3当13x时,y的值最大是59.9,所以提出概念所用时间为13分钟时,学生的接受能力最强.()4由表中数据可知:当2x13<<时,y值逐渐增大,学生的接受能力逐步增强;当13x20<<时,y值逐渐减小,学生的接受能力逐步降低.【点睛】准确理解函数的概念:在运动变化过程中有两个变量x和y,对于x的每一个值,y都有唯一确定的值与之对应,y是x的函数,x是自变量.21.(1)1500,4;(2)从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:2700m;(4)5min,图见解析【解析】【分析】(1)根据图象可以直接求得;(2)求得各段的速度,然后进行比较即可;(3)求得各段的路程,然后求和即可;(4)求得回来时所用的时间,即可补充图象.(1)小华到学校的路程是1500m,在书店停留的时间是12﹣8=4(min).故答案是:1500,4;(2)从开始到6分钟的速度是12006=200m/min,从6分钟到8分钟的速度是:120060086-=-300m/min;从12分钟到14分钟的速度是:15006001412-=-450m/min.则从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:1200+600+(1500﹣600)=2700(m);(4)小华回家的时间是1500300=5(min)..【点睛】本题考查了函数的图象,正确根据图象理解运动过程是关键.22.(1)100千米/小时;(2)100千米;(3)1.3小时或1.7小时【解析】【分析】(1)根据题意列算式即可得到结论;(2)根据题意求出n的值以及甲车的速度为即可解答;(3)求出甲车的速度以及乙车返回前的速度,再根据题意列方程解答即可.【详解】解:(1)m=300÷(180÷1.5)=2.5,∴乙车从A地到达B地所用的时间为2.5小时,∴乙车从B地返回A地所用时间:5.5-2.5=3(小时),∴乙车从B地到达A地的速度:300÷3=100(千米/小时);(2)n=300÷[(300﹣180)÷1.5]=3.75,甲车的速度为:(300﹣180)÷1.5=80(千米/时),故乙车到达B地时甲车距A地的路程为:80×(3.75﹣2.5)=100(km);(3)甲车的速度为80千米/时,乙车返回前的速度为:180÷1.5=120(千米/时),设乙车返回前甲、乙两车相距40千米时,乙车行驶的时间为x小时,根据题意得:80x+120x=300﹣40或80x+120x=300+40,解得x=1.3或x=1.7,故乙车返回前甲、乙两车相距40千米时,甲车行驶的时间为1.3小时或1.7小时.【点睛】本题考查了函数的图象、有理数的混合运算、一元一次方程的应用,理解题意,能从图象中获取相关联信息,行程问题的数量关系的运用是解答的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
桑水出品
《变量与函数》练习
一、选择——基础知识运用
1.下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x的函数的是()A.(1)B.(2)C.(3)D.(4)
2.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为()
A.y=10x B.y=25x C.y= 2
5
x D.y=
5
2
x
3.如图,y是x的函数图像的是()A.
B.
C.
D.
4.下列说法正确的是()
A.变量x、y满足y2=x,则y是x的函数
B.变量x、y满足x+3y=1,则y是x的函数
C .代数式4
3πr 3是它所含字母r 的函数
D .在V=43
πr 3中,4
3
是常量,r 是自变量,V 是r 的函数
5.已知x=3-k ,y=2+k ,则y 与x 的关系是( )
A .y=x-5
B .x+y=1
C .x-y=1
D .x+y=5
6.已知两个变量x 和y ,它们之间的3组对应值如下表,则y 与x 之间的函数关系式可能是( ) x -1 0 1 y
-3
-4
-3
A .y=3x
B .y=x-4
C .y=x2-4
D .y=3
x
二、解答——知识提高运用
7.圆柱的底面半径为10cm ,当圆柱的高变化时圆柱的体积也随之变化,
(1)在这个变化过程中自变量是什么?因变量是什么?
(2)设圆柱的体积为V ,圆柱的高为h ,则V 与h 的关系是什么? (3)当h 每增加2,V 如何变化? 8.某镇居民生活用水的收费标准如表。

月用水量x (立方米)
0<x ≤8
8<x ≤16 x >16 收费标准y (元/立方米) 1.50
2.5
4
(1)y 是关于x 的函数吗?为什么?
(2)小王同学家9月份用水10立方米,10月份用水8立方米,两个月合计应付水费多少元? 9.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式,并写出自变量x 的取值范围。

10.如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y 。

(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围; (2)点P 在什么位置时,阴影部分的面积等于20?
11.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为x cm ,它的面积为y cm 2。

(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内? (2)用表格表示当x 从1变到9时(每次增加1),y 的相应值; (3)从上面的表格中,你能看出什么规律?
(4)猜想一下,怎样围能使得到的长方形的面积最大?最大是多少?
(5)估计一下,当围成的长方形的面积是22cm 2时,x 的值应在哪两个相邻整数之间?
12.直角三角形ABC 中,∠ABC=90°,AC=10,BC=6,AB=8.P 是AC 上的一个动点,当P 在AC 上运动时,设PC=x ,△ABP 的面积为y 。

(1)求y 与x 之间的关系式。

(2)点P 在什么位置时,△ABP 的面积等于△ABC 的面积的1
3。

参考答案
一、选择——基础知识运用
1.【答案】D
【解析】根据对于x 的每一个取值,y 都有唯一确定的值与之对应, (1)y=x ,(2)y=x 2,(3)y=x 3满足函数的定义,y 是x 的函数, (4)|y|=x ,当x 取值时,y 不是有唯一的值对应,y 不是x 的函数, 故选:D 。

2.【答案】D
【解析】25÷10= 5
2(元)
所以购买钢笔的总钱数y (元)与支数x 之间的关系式为: y= 5
2x 。

故选:D 。

3.【答案】C
【解析】∵对于x 的每一个取值,y 都有唯一确定的值,
而A 、B 、D 的图像上两个或三个点的横坐标相同,也就是说对于x 的每一个取值,y 的值不唯一, 故选:C 。

4.【答案】B
【解析】A 、y 与x 不是唯一的值对应,所以A 错误; B 、当x 取一值时,y 有唯一的值与之对应,所以B 正确; C 、代数式,故错误;
D 、在V=4
3
πr 3中,4
3
π是常量,r 是自变量,V 是r 的函数,故错误。

故选B 。

5.【答案】D
【解析】∵x=3-k ,y=2+k , ∴x+y=3-k+2+k=5. 故选:D 。

6.【答案】C
【解析】A .y=3x ,根据表格对应数据代入得出y ≠3x ,故此选项错误; B .y=x-4,根据表格对应数据代入得出y ≠x-4,故此选项错误; C .y=x2-4,根据表格对应数据代入得出y=x2-4,故此选项正确;
D.y= 3
x
,根据表格对应数据代入得出y≠
3
x
,故此选项错误。

故选:C。

二、解答——知识提高运用
7.【答案】(1)由于圆柱的高变化时圆柱的体积也随之变化,所以自变量是圆柱的高h,因变量是圆柱的体积V;
(2)圆柱的体积V与圆柱的高的关系式是:V=100πh;
(3)由于V=100π(h+2)=100πh+200π;所以当h每增加2时,V增加200πcm3。

8.【答案】(1)存在两个变量:用水量x和收费标准y(单价),对于x每取一个值,都有唯一确定的y值与之相对应,符合函数的定义,
∴y是关于x的函数。

(2)1.5×8+(10-8)×2.5+1.5×8=29(元)。

答:两个月合计应付水费29元。

9.【答案】填表如下:
依题意得:y=1+2+3+…+x= x(x+1)
2
(x≥1)。

10.【答案】(1)设PB=x,长方形ABCD中,AB=4,BC=8,
则图中阴影部分的面积为:y= 1
2
(4-x+4)×8=32-4x(0<x≤4)。

(2)当y=20时,20=32-4x,
解得x=3,
即PB=3。

11.【答案】(1)y=(20÷2-x)×x=(10-x)×x=10x-x2;
x是自变量,0<x<10;
(2)当x从1变到9时(每次增加1),y的相应值列表如下:
(3)从上面的表格中,可以看出的规律:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来,y的值在由大变小的过程中,变小的速度越来越块;③当x取距5等距离的两数时,得到的两个y值相等;
(4)当长方形的长与宽相等即x为5时,y的值最大,最大值为25cm2;
(5)由表格可知,当围成的长方形的面积是22cm2时,x 的值应在3~4之间或6~7之间. 12.【答案】解:(1)如图,作PD ⊥AB ,
∴△ADP ∽△ABC , ∴
PD BC
= AP AC
,即PD 6
= 10-x 10

解得,PD=
30-3x 5,
∴S △ABP= 12
AB×PD=12
×8×30-3x 5 = -12
5
x+24,
∴y 与x 之间的关系式为:y=-125
x+24; (2)由题意,S △ABC= 1
2×6×8=24,
∵△ABP 的面积等于△ABC 的面积的1
3

∴S △ABP=13
S △ABC=1
3
×24=8,
即-12
5
x+24=8,
解得,x=20
3

∴点P 在距点C 20
3
处。

相关文档
最新文档