随机事件的概率同步习题(含详细解答)
概率练习题含答案
第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B ) (2)事件的对立与互不相容是等价的。
(B ) (3)若()0,P A = 则A =∅。
(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。
(B ) (7)若P(A)P(B)≤,则⊂A B 。
(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
华东师大版九年级上册数学第25章《 随机事件的概率》分课时练习题及答案
数学九年级上学期《25.1在重复试验中观察不确定现象》同步练习一.选择题(共10小题)1.不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A.5B.10C.15D.202.在学习了“25.1.2”概率后,平平和安安两位同学做掷质地均匀的正方体骰子试验,它们共做了120次试验,试验的结果如下表:向上一面的点数123456出现的次数141812164020综合上表,平平说:“如果投掷600次,那么向上一面点数是6的次数正好是100次.”安安说:“一次实验中向上一面点数是5的概率最大”.你认为平平和安安的说法中正确的是()A.平平B.安安C.都正确D.都错误3.如果身边没有质地均匀的硬币,下列方法可以模拟掷硬币实验的是() A.掷一个瓶盖,盖面朝上代表正面,盖面朝下代表反面B.掷一枚图钉,钉尖着地代表正面,钉帽着地代表反面C.掷一枚质地均匀的骰子,奇数点朝上代表正面,偶数点朝上代表反面D.转动如图所示的转盘,指针指向“红”代表正面,指针指向“蓝”代表反面4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.实验的总次数、频数及频率三者的关系是()A.频数越大,频率越大B.频数与总次数成正比C.总次数一定时,频数越大,频率可达到很大D.频数一定时,频率与总次数成反比6.如果事件A发生的概率是,那么在相同条件下重复试验,下列陈述中,正确的是() A.说明做100次这种试验,事件A必发生1次B.说明事件A发生的频率是C.说明做100次这种试验中,前99次事件A没发生,后1次事件A才发生D.说明做100次这种试验,事件A可能发生1次7.为调查6个人中2个人生肖相同的概率,进行有放回地摸球试验,则()A.用12个球每摸6次为一次试验,看是否有2次相同B.用12个球每摸12次为一次试验,看是否有2次相同C.用6个球每摸12次为一次试验,看是否有2次相同D.用6个球每摸6次为一次试验,看是否有2次相同8.下面关于投针实验的说法正确的是()A.针与平行线相交和不相交的可能性是相同的B.针与平行线相交的概率与针的长度没有关系C.实验次数越多,估算针与平行线相交的概率越精确D.针与平行线相交的概率不受两平行线间距离的影响9.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是”,小明做了下列三个模拟实验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值.②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值.③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的实验中,合理的有()A.0个B.1个C.2个D.3个10.在布袋中装有两个大小一样,质地相同的球,其中一个为红色,一个为白色、模拟“摸出一个球是白球”的机会,可以用下列哪种替代物进行实验()A.“抛掷一枚普通骰子出现1点朝上”的机会B.“抛掷一枚啤酒瓶盖出现盖面朝上”的机会C.“抛掷一枚质地均匀的硬币出现正面朝上”的机会D.“抛掷一枚普通图钉出现针尖触地”的机会二.填空题(共6小题)11.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有千克种子能发芽.12.新品种玉米在相同条件下进行发芽试验,结果如表所示:试验的玉米粒数 100 200 500 1000 2000 5000(粒)发芽的粒数(粒) 94 191 474 951 1902 4748任取一粒玉米粒,估计它能发芽的概率是.(结果精确到0.01)13.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第一组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 20 4 1 1由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:.14.用计算器进行模拟实验,估计6人中有两人同一个月过生日的概率,在选定随机数范围后,每次实验要产生个随机数.15.在投针试验中,当平行线空隙a为定值时,针的长度L越大则针与平行线相交的概率越;当L为定值时,a越大则针与平行线相交的概率越.16.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n的值是.三.解答题(共4小题)17.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?18.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1.转盘上用文字注明颜色和扇形的圆心角的度数,2、结合转盘简述获奖方式,不需说明理由.)19.某校(1)班40个同学每10人一组,每人做10次抛掷两枚硬币的实验,想看看“出现两个正面”的频率是否会逐渐稳定下来,得到了下面40个实验结果.第一组学生学号101102103104105106107108109110两个正面成功次数1233333633第二组学生学号111112113114115116117118119120两个正面成功次数1132342333第三组学生学号121122123124125126127128129130两个正面成功次数1031333222第四组学生学号131132133134135136137138139140两个正面成功次数2214243233(1)学号为113的同学在他10次实验中,成功了几次?成功率是多少?他是他所在小组同学中成功率最高的人吗?(2)学号为116和136的两位同学在10次实验中成功率一样吗?如果他们两人再做10次实验,成功率依然会一样吗?(3)怎么计算每一组学生的集体成功率?哪一组成功率最高?20.王强与李刚两位同学在学习“概率”时,做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数123456出现次数69581610王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错.参考答案一.选择题1.A.2.D.3.C.4.C.5.D.6.D.7.A.8.C.9.D.10.C.二.填空题11.8.8.12.0.95.13.;.14.6.15.在投针试验中,当a为定值时,L越大则针与平行线相交的概率越大;当L为定值时,a越大则针与平行线相交的概率越小.16.10.三.解答题17.解:(1)全班共有50名学生,共有12名学生获奖,所以恰好能得到荣誉的机会为=;(2)恰好能当选三好生的机会为,能当选模范生的机会为=;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均为黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.18.解:(1)该抽奖方案符合厂家的设奖要求:分别用黄1、黄2、白1、白2、白3表示这5个球,从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,黄1)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,黄1)、(白1,黄2)、(白1.白2)、(白1,白3)、(白2,黄1)、(白2,黄2)、(白2,白1)、(白2,白3)、(白3,黄1)、(白3,黄2)、(白3,白1)、(白3,白2)共有20种,它们出现的可能性相同.所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36°的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.19.解:(1)由表格可得出:学号为113的同学在他10次实验中,成功了3次,成功率是:×100%=30%.根据该组中116号成功了4次,故他不是他所在小组同学中成功率最高的人.(2)根据学号为116和136的两位同学在10次实验中的成功次数相同,故学号为116和136的两位同学在10次实验中的成功率是一样的.如果他们两人再做10次实验,成功率不一定会一样.(3)根据集体成功率=成功的次数÷实验的总次数×100%.第一组成功率:(1+2+3+3+3+3+3+3+6+3)÷(10×10)×100%=30%;第二组成功率:(1+1+3+2+3+4+2+3+3+3)÷(10×10)×100%=25%;第三组成功率:(1+0+3+1+3+3+3+2+2+2)÷(10×10)×100%=20%;第四组成功率:(2+2+1+4+2+4+3+2+3+3)÷(10×10)×100%=26%;故第一组成功率最高.20.解:每个点数出现的机会是相等的,因而一次试验中出现向上点数为5的概率是,故王强的说法是错误的;出现的概率只是反映机会的大小,因而李刚的说法也是错误的.数学九年级上学期《25.2随机事件的概率》同步练习一.选择题(共14小题)1.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正方体骰子,落下后朝上的而点数是3D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球2.某学校组织知识竞赛,共设20道试题,其中有关中国优秀传统文化试题10道,实践应用题4道,创新能力题6道.小捷从中任选一道试题作答,他选中创新能力试题的概率是()A.B.C.D.3.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的4.任意写出一个偶数和一个奇数,则这两数之和是偶数的概率是()A.1B.C.0D.无法确定5.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.6.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球7.在如图的四个转盘中,C,D转盘被分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.8.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.9.现有四张扑克牌:红桃A、黑桃A、梅花A和方块A.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1B.C.D.10.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.11.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为()A.36B.30C.24D.1812.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖13.从3、1、﹣2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是()A.B.C.D.14.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.B.C.D.二.填空题(共6小题)15.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于.16.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.17.“六⋅一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70②假如你去转动转盘一次,获得铅笔的概率大约是0.70;③如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;④转动转盘10次,一定有3次获得文具盒其中正确的是转动转盘的次数n1001502005008001000落在“铅笔”区域的次数m68108140355560690落在“铅笔”区域的频率0.680.720.700.710.700.6918.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.19.有五张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、平行四边形、矩形、菱形、正方形,从这五张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是.20.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.三.解答题(共5小题)21.一个盒子中装有红球n个和白球4个.从中随机摸出一个球是白球的概率是.(1)求红球的个数n.(2)若在盒子中再放入m个红球,使随机摸出一个球是红球的概率为,求m的值.22.(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:应聘者专业知识讲课答辩甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.23.在甲、乙两个不透明的布袋中,甲袋装有3个完全相同的小球,分别标有数字0,1,2;乙袋装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,小球上的数字记为x,再从乙袋中随机抽取一个小球,小球上的数字记为y,设点M的坐标为(x,y).(1)用树形图或列表法求出点M的所有等可能个数;(2)分别求点M在函数y=﹣x+1图象上的概率和点M在第四象限的概率.24.某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类)并将调查结果绘成如下不完整的统计图.根据两图提供的信息,回答下列问题:(1)最喜欢娱乐类节目的有人,图中x=;(2)请补全条形统计图;(3)根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;(4)在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.25.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?参考答案一.选择题1.C.2.B.3.A.4.C.5.D.6.C.7.A.8.C.9.B.10.A.11.C.12.A.13.B.14.B.二.填空题15..16..17.①②③.18..19..20..三.解答题21.解:(1)根据题意,得: =,解得:n=8;(2)根据题意,得:,解得:m=4.22.解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.23.解:(1)列表如下:012﹣1(0,﹣1)(1,﹣1)(2,﹣1)﹣2(0,﹣2)(1,﹣2)(2,﹣2)0(0,0)(1,0)(2,0)所以点M的所有等可能的个数是9;(2)满足点(x,y)落在函数y=﹣x+1图象上的结果有2个,即(2,﹣1),(1,0),所以点M(x,y)在函数y=﹣x+1图象上的概率是,因为点(1,﹣1),(2,﹣1),(1,﹣2)和(2,﹣2)落在第四象限,所以点M在第四象限的概率是.24.解:(1)∵被调查的总人数为6÷12%=50人,∴最喜欢娱乐类节目的有50﹣(6+15+9)=20,x%=×100%=18%,即x=18,故答案为:20、18;(2)补全条形图如下:(3)估计该校最喜欢娱乐类节目的学生有1800×=720人;(4)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为=.25.解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.。
华师大版九年级上册数学第25章 随机事件的概率 含答案
华师大版九年级上册数学第25章随机事件的概率含答案一、单选题(共15题,共计45分)1、盒子里有15个象棋子,其中有5个炮,4个马,6个象,任意摸一个,摸到()的可能性最大,摸到()的可能性最小.A.马,象B.炮,马C.象,马D.都有可能2、“车辆随机到达一个路口,遇到红灯”这个事件是( )A.不可能事件B.不确定事件C.确定事件D.必然事件3、下列事件中,是确定性事件的是()A.买一张电影票,座位号是8B.射击运动员射击一次,命中10环 C.明天会下雨 D.度量多边形的外角和,结果是520°4、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加成都市“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员小亮被抽到的概率是()A. B. C. D.5、东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A. B. C. D.6、某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的两名同学恰为一男一女的概率是()A. B. C. D.7、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.9、一个不透明的袋子中装有5个红球和3个白球,这些球的大小,质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的4个球中至少有一个球是白球B.摸出的4个球中至少有一个球是红球C.摸出的4个球中至少有两个球是红球D.摸出的4个球中至少有两个球是白球10、国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有一“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是()A. B. C. D.11、在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A. B. C. D.12、某校举行以“我为词霸”为主题的英语单词比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲.乙同学获得前两名的概率是()A. B. C. D.13、下列事件中,随机事件是()A.三角形中任意两边之和大于第三边B.太阳从东方升起C.明天会下雨D.一个有理数的绝对值为负数14、下列事件中,属于必然事件的是 )A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心 C.任意画一个三角形,其内角和是 D.抛一枚硬币,落地后正面朝上15、甲、乙两名同学在一次用频率去估计概率的实验中,绘出了某一结果出现的频率的折线图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被2整除的概率D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率二、填空题(共10题,共计30分)16、下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.投针次数n1000 2000 3000 4000 5000 10000 20000针与直线相交的次数454 970 1430 1912 2386 4769 9548 m针与直线相交的频率p=0.454 0.485 0.4767 0.478 0.4772 0.4769 0.4774下面有三个推断:①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454;②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477;③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769.其中合理的推断的序号是:________.17、从一副扑g牌中拿出6张:3张“J”、2张“Q”、1张“K”,洗匀后将它们背面朝上.从中任取1张,恰好取出________的可能性最大(填“J”或“Q”或“K”).18、春节前夕,小丽的奶奶给孩子们准备了一些红包,这些红包的外观相同,其中有个红包装的是元,有个红包装的是元,剩下的红包装的是元.若小丽从中随机拿出一个红包,里面装的是元的红包的概率是,则装有元红包的个数是________.19、为了弘扬中华传统文化,营造书香校园文化氛围,12月1 1日,兴义市新屯学校举行中华传统文化知识大赛活动.该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是________20、已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则使电路形成通路的概率是________.21、一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中3个红球,且从布袋中随机摸出1个球,摸出的球是红球的概率是,则白球的个数是________22、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)200 500 800 2000 12000成活数(m)187 446 730 1790 10836成活的频率0.935 0.892 0.913 0.895 0.903根据表中数据,估计这种幼树移植成活率的概率为________(精确到0.1).23、有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n,则抽取的n既能使关于x的方程(n+3)x2+(n+1)x+ =0有实数根,又能使以x为自变量的反比例函数y=的图象在每个象限内y 随x的增大而增大的概率为________.24、从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是________.25、在一个不透明的袋子里装有独立包装的口罩,其中粉色口罩有3个、蓝色口罩有2个,这些口罩除了颜色外全部相同,从中随机依次不放回拿出两个口罩,则两个口罩都是粉色的概率是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?28、有三张正面分别写有数字1,3,4的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,把方程组的解记为平面直角坐标系中点A的坐标(x,y),求点A在第四象限的概率。
中考数学复习 《简单随机事件的概率》练习题含答案
中考数学复习 简单随机事件的概率一、选择题1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( A )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( D )A .甲组B .乙组C .丙组D .丁组【解析】根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选D. 3.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( B )A.17B.37C.47D.574.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )A.15B.14C.13D.125.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( D )A.12B.14C.18D.116【解析】根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,两个转盘的指针都指向2的概率为116.6.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是( C )A.12B.13C.49D.59【解析】大正方体表面涂色后分割成27个小正方体,容易知道恰好有两面涂有颜色的正方体有12个,P =1227=49.二、填空题7.“明天的太阳从西方升起”这个事件属于__不可能__事件.(选填“必然”“不可能”或“不确定”)8.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 __13__.9.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率__19__.10.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为__14__.【解析】大于6的为7,8两块扇区,而一共有8块扇区,P =28=14.11.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为15,那么口袋中小球共有__15__个.【解析】设小球共有x 个,则3x =15,解得x =15.12.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏__不公平__.(填“公平”或“不公平”)【解析】奇偶情况数不对等,不公平.三、解答题13.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是129.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.解:(1)290×129=10(个),290-10=280(个),(280-40)÷(2+1)=80(个),280-80=200(个).故袋中红球的个数是200个(2)80÷290=829.答:从袋中任取一个球是黑球的概率是8 2914.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是__不可能__事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.解:(2)画树状图:即小张同学得到猪肉包和油饼的概率为212=1615.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)小明为厂家设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)如图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(转盘上用文字注明,简述获奖方式)解:(1)该抽奖方案符合厂家的设奖要求:分别用黄1、黄2、白1、白2、白3表示这5个球,从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,黄1)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,黄1)、(白1,黄2)、(白1,白2)、(白1,白3)、(白2,黄1)、(白2,黄2)、(白2,白1)、(白2,白3)、(白3,黄1)、(白3,黄2)、(白3,白1)、(白3,白2),共有20种,它们出现的可能性相同.所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(A)=220=110,即顾客获得大奖的概率为10%,获得小奖的概率为90%(2)本题答案不唯一,如图所示,将转盘中圆心角为36°的扇形区域涂上黄色,其余区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖。
高考数学随机事件的概率专题复习训练(含答案)
高考数学随机事件的概率专题复习训练(含答案)概率是对随机事情发作的能够性的度量,下面是随机事情的概率专题温习训练,请考生练习。
一、选择题
1.以下说法中一定正确的选项是()
A.一名篮球运发动,号称百发百中,假定罚球三次,不会出现三投都不中的状况
B.一粒骰子掷一次失掉2点的概率是,那么掷6次一定会出现一次2点
C.假定买彩票中奖的概率为万分之一,那么买一万元的彩票一定会中奖一元
D.随机事情发作的概率与实验次数有关
[答案] D
[解析] A错误,会有三投都不中的状况发作;B错误,能够6次都不出现2点C错误,概率是预测值,而该随机事情不一定会出现.
2.以下说法正确的选项是()
A.任何事情的概率总是在(0,1)之间
B.频率是客观存在的,与实验次数有关
C.随着实验次数的添加,频率普通会越来越接近概率
D.概率是随机的,在实验前不能确定
[答案] C
[解析] 频率是n次实验中,事情A发作的次数m与实验总次数n的比值,随着实验次数的增多,频率会越来越接近概率.
3.给出以下四个命题:
集合{x||x|0}为空集是肯定事情;
y=f(x)是奇函数,那么f(0)=0是随机事情;
假定loga(x-1)0,那么x1是肯定事情;
对顶角不相等是不能够事情.
其中正确命题的个数是()
A.4
B.1
C.2
D.3
[答案] D
[解析] |x|0恒成立,正确;
奇函数y=f(x)只要在x=0有意义时才有f(0)=0,
正确;
由loga(x-1)0知,当a1时,x-11即x
随机事情的概率专题温习训练分享到这里,更多内容请关注高考数学试题栏目。
人教版九年级上册:25.1《随机事件与概率》同步练习卷 含答案
人教版九年级上册:25.1《随机事件与概率》同步练习卷一.选择题1.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件2.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼3.下列成语或词语所反映的事件中,发生的可能性大小最小的是()A.守株待兔B.旭日东升C.瓜熟蒂落D.夕阳西下4.下列关于概率的描述属于“等可能性事件”的是()A.交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B.掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C.小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D.小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的概率5.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球6.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球7.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件8.掷一枚硬币3次有两次正面向上,一次反面向上,则第4次掷正面向上的可能性()A.100%B.C.D.9.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.10.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.11.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.B.C.D.12.这是一个古老的传说,讲一个犯人利用概率来增加他得到宽恕的机会.给他两个碗,一个里面装着5个黑球,另一个里面装着除颜色不同外其它都一样的5个白球.把他的眼睛蒙着,然后要选择一个碗,并从里面拿出一个球,如果他拿的是黑球就要继续关在监狱里面,如果他拿的是白球,就将获得自由.在蒙住眼睛之前允许他把球混合,重新分装在两个碗内(两个碗球数可以不同).你能设想一下这个犯人怎么做,使得自己获得自由的机会最大?则犯人获得自由的最大机会是()A.B.C.D.13.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.二.填空题14.“a是实数,|a|≥0”这一事件是事件.15.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意摸出3个球,则事件“摸出的球至少有1个红球”是事件(填“必然”、“随机”或“不可能”)16.有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是.17.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:由乙抛掷,同时出现两个正面,乙得1分;抛出一正一反,甲得1分.谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大18.班会课上,小强与班上其他32名同学每人制作了一张贺卡放在一个盒子里,小强从盒子中任意地取一张.恰好抽到自己制作的那张贺卡的可能性为.19.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于.20.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.21.如图,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是.三.解答题22.现有4个红球,请你设计摸球游戏.(1)使摸球事件是个不可能事件;(2)使摸球事件是个必然事件.23.甲乙两人玩一种游戏:共20张牌,牌面上分别写有﹣10,﹣9,﹣8,…,﹣1,1,2,…,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者为胜.(1)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢?(2)结果等于4的可能性有几种?把每一种都写出来.24.小明周末要乘坐公交车到植物园游玩,从地图上查找路线发现,几条线路都需要换乘一次.在出发站点可选择空调车A、空调车B、普通车a,换乘站点可选择空调车C,普通车b、普通车c,且均在同一站点换乘.空调车投币2元,普通车投币1元.(1)求小明在出发站点乘坐空调车的概率;(2)求小明到达植物园恰好花费3元公交费的概率.25.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?26.在边长为4的正方形平面内,建立如图1所示的平面直角坐标系.学习小组做如下实验:连续转动分布均匀的转盘(如图2)两次,指针所指的数字作为直角坐标系中P点的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标).(1)转盘转动共能得到个不同点,P点落在正方形边上的概率是;(2)求P点落在正方形外部的概率.参考答案一.选择题1.解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.2.解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.3.解:A.守株待兔所反映的事件可能发生也可能不发生,是不确定事件,符合题意;B.旭日东升,是必然事件,发生的可能性为1,不符合题意;C.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;D.夕阳西下,是必然事件,发生的可能性为1,不符合题意;故选:A.4.解:∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴它不属于“等可能性事件”,∴选项A不正确;∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴它不属于“等可能性事件”,∴选项B不正确;∵“直角三角形”三边的长度不相同,。
初三数学中考复习随机事件的概率专项综合练习题含答案
初三数学中考复习随机事件的概率专项综合练习题含答案1.从一副洗匀的普通扑克牌中随机抽取一张,那么抽出红桃的概率是( ) A.154 B .1354 C.113 D .142. 以下事情中,是肯定事情的是( )A .将油滴入水中,油会浮会水面上B .车辆随机到在一个路口,遇到红灯C .假设a 2+b 2,那么a =bD .掷一枚质地平均的硬币,一定正面向上3.以下事情中的不能够事情是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交能信号灯的路口,遇到红灯D .恣意画一个三角形,其内角和是360°4. 如图,共有12个大小相反的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其他的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是( )A.47 B .37 C.27 D .175. 一个不透明的盒子里有n 个除颜色外其他完全相反的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,恣意摸出一个球记下颜色后再放回盒子,经过少量重复摸球实验后发现,摸到黄球的频率动摇在30%,那么估量盒子中小球的个数n 为( )A .20B .24 C.28 D .306. 在课外实际活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法预算正面朝上的概率,其实验次数区分为10次、50次、100次,200次,其中实验相对迷信的是( )A .甲组B .乙组C .丙组D .丁组7. 从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率为( )A.15 B .25 C.35 D .458.某品牌电插座抽样反省的合格率为99%,那么以下说法中正确的选项是( )A .购置20个该品牌的电插座,一定都合格B .购置1000个该品牌的电插座,一定有10个不合格C .即使购置一个该品牌的电插座,也能够不合格D .购置100个该品牌的电插座,一定有99个合格9.九一(1)班在参与学校4×100m 接力赛时,布置了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决议,那么甲跑第一棒的概率为( )A .1B .12 C.13 D .1410. 一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其他都相反.从袋中恣意找出1个球,是黄球的概率为( )A.12 B .15 C.310 D .71011. 小明恣意掷一枚平均的硬币,前9次都是正面朝上,当他掷第10次时,你以为正面朝上的概率是_____.12. 在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差异,从袋子中随机摸出一个球,那么摸出白球的概率是_____.13. 我国魏晋时期数学家刘徽首创〝割圆术〞计算圆周率.随着时代开展,如古人们依据频率估量概率这一原理,常用随机模拟的方法对圆周率π停止估量,用计算机随机发生m 个有序数对(x ,y)(x ,y 是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其外部.假设统计出这些点中到原点的距离小于或等于1的点有n 个,那么据此可估量π的值为_______.(用含m ,n 的式子表示)14. 在一个不透明的箱子里装有白色、蓝色、黄色的球共20个,除颜色外,外形、大小、质地等完全相反,小明经过屡次摸球实验后发现摸到白色、黄色球的频率区分动摇在10%和15%,那么箱子里蓝色球的个数很能够是______个.15. ⊙O 的两条直径AC 、BD 相互垂直,区分以AB 、BC 、CD 、DA 为直径向外作半圆失掉如下图的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,那么P 1P 2=______. 16. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差异,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.17. 在3×3的方格纸中,点A 、B 、C 、D 、E 、F 区分位于如下图的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,那么所画三角形是等腰三角形的概率是________;(2)从A 、D 、E 、F 四个点中先后恣意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).18. 为了调查甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1) 一?(2) 现将停止两种小麦优秀种类杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株停止配对,以预估全体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰恰都等于各自平均株高的概率. 参考答案:1---10 BDBBD DCADC11. 1212. 1313. 4n m14. 1515. 2π16. 解:如下图:一切的能够有12种,契合题意的有2种,故两次均摸到红球的概率为:212=16. 17. 解:(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,有△ABC ,△DBC ,△EBC ,△FBC ,但只要△DBC 是等腰三角形,所以P(所画三角形是等腰三角形)=14; (2)用〝树状图〞或应用表格列出一切能够的结果:∵以点A ∴P(所画的四边形是平行四边形)=412=13.18. 解:(1)∵x 甲=63+66+63+61+64+616=63, ∴s 2甲=16×[(63-63)2×2+(66-63)2+2×(61-63)2+(64-63)2]=3; ∵x 乙=63+65+60+63+64+636=63, ∴S 2乙=16×[(63-63)2×3+(65-63)2+(60-63)2+(64-63)2]=73; ∵s 2乙<s 2甲. ∴乙种小麦的株高长势比拟划一;(2)列表如下:的有6种, ∴所抽取的两株配对小麦株高恰恰都等于各自平均株高的的概率为636=16.。
高中试卷-10.1随机事件与概率 同步练习(Word版含解析)(含答案)
随机事件与概率习题1.下列现象:①连续两次抛掷同一个骰子,两次都出现2点;②走到十字路口,遇到红灯;③异性电荷相互吸引;④抛一石块,下落.其中是随机现象的个数是( )A.1B.2C.3D.42.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”3.两枚相同的正方体骰子,六个面分别标有数字1,2,3,4,5,6,同时掷两枚骰子,则两枚骰子朝上面的数字之积能被6整除的概率为( )A.1136B.518C.13D.5124.围棋盒子中有多粒黑子和多粒白子,已知从中取出2粒都是黑子的概率为15,从中取出2粒都是白子的概率是17.那么从中任意取出2粒不是同一色的概率是( )A.15B.17C.1235D.23355.我国古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是( )A.310B.25C.12D.356.一个不透明袋子中装有5个球,其中有3个红球,2个白球,这些球除颜色外完全相同.若一次从中摸出2个球,则至少有1个红球的概率为( )A.910B.35C.310D.1107.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23B.35C.25D.158.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.139.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则“关于x 的一元二次方程2220x ax b ++=有实根”的概率是( )A.56B.34C.23D.4510.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两弹都击中飞机},B ={两弹都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列说法不正确的是( )A.A DÜ B.BD =ÆC.A C D+= D.A C B D+=+11.下列事件中必然事件为_________,不可能事件为_________,随机事件为_________(填序号).①13个人中至少有两个人生肖相同;②车辆随机到达一个路口,遇到红灯;③函数log (01)a y x a =<<在定义域内为增函数;④任意买一张电影票,座位号是2的倍数.12.现有7名数理化成绩优秀者,分别用1A ,2A ,3A ,1B ,2B ,1C ,2C 表示,其中1A ,2A ,3A 的数学成绩优秀,1B ,2B 的物理成绩优秀,1C ,2C 的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则1A 和1B 不全被选中的概率为________________.13.从一副扑克牌(去掉大、小王,共52张)中随机选取一张,给出如下四组事件:①“这张牌是红心”与“这张牌是方块”;②“这张牌是红色牌”与“这张牌是黑色牌”;③“这张牌牌面是2,3,4,6,10之一”与“这张牌是方块”;④“这张牌牌面是2,3,4,5,6,7,8,9,10之一”与“这张牌牌面是A ,K ,Q ,J 之一”.其中互为对立事件的有____________.(写出所有正确的编号)14.某市派出甲、乙两支球队参加全省足球冠军赛.甲、乙两队夺取冠军的概率分别是37和14,则该市足球队夺得全省足球冠军的概率为______________.15.某校社团活动开展得有声有色,深受学生欢迎,每届高一新生都踊跃报名加入,极大地推动了学生的全面发展.现已知高一某班60名同学中有4名男同学和2名女同学参加心理社团,现从这6名同学中随机选取2名同学代表社团参加校际交流(每名同学被选到的可能性相同).(1)在该班随机选取1名同学,求该同学参加心理社团的概率;(2)求从6名同学中选出的2名同学代表至少有1名女同学的概率.答案解析1.答案:B解析:①②是随机现象,③④是确定性现象.故选B.2.答案:C解析:从装有两个红球和三个黑球的口袋里任取两个球,在A 中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A 不符合题意;在B 中,“至少有个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B 不符合题意;在C 中,“恰好有-个照球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C 符合题意;在D 中,“至少有一个黑球”与“都是红球”是对立事件,故D 不符合题意.故答案为C.3.答案:D解析:易知基本事件总数为6636´=,朝上面的数字之积能被6整除的基本事件有(1,6),(6,1),(2,3),(3,2),(2,6),(6,2),(3,4),(4,3),(3,6),(6,3),(4,6),(6,4),(5,6),(6,5),(6,6),共15个,\所求概率1553612P ==.故选D.4.答案:D解析:设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,则事件A 与B 互斥。
人教版九年级数学上册《25.1随机事件与概率》同步练习题(附答案)
人教版九年级数学上册《25.1随机事件与概率》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.下列事件是必然事件的是()A.抛掷一枚硬币,硬币落地时正面朝上B.两个无理数相加,结果仍是无理数C.任意打开九年级上册数学教科书,正好是97页D.两个负数相乘,结果必为正数.2.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A.摸出的三个球中至少有一个红球B.摸出的三个球中有两个球是黄球C.摸出的三个球都是红球D.摸出的三个球都是黄球3.一个不透明的盒子中装有15个除颜色外无其他差别的小球,其中有2个黄球和3个绿球,其余都是红球,从中随机摸出一个小球,恰好是红球的概率为()A.B.C.D.4.袋中有白球3个,红球若干个,他们只有颜色上的区别.从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的个数可能是()A.2个B.3个C.4个D.4个或4个以上5.张大伯有事想打电话,但由于年龄的缘故,电话号码(萧山区的家庭电话号码是8位),只记得8899*179那么他随意拨了一个数码补上,恰好打通的概率是()A.1 B.C.D.6.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是( )A.B.C.D.17.某商场为了吸引顾客,设计了如图所示的可自由转动的转盘,当指针指向阴影部分时,顾客可获得一份奖品,那么顾客获奖的概率为()A.B.C.D.8.如图,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.四个实数,和,π中,任取一个数是无理数的概率为.10.从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是.11.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.3,摸出白球的概率是0.4,那么摸出黑球的概率是.12.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为.13.如图,甲、乙、丙3人站在网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行的概率是.三、解答题:(本题共5题,共45分)14.从3名八年级男生和n名九年级男生中任选1名参加市第十二届运动会,其中选出学生为九年级男生的概率为,则n的值是多少?15.中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?16.如图,从一个大正方形中截去面积为3cm²和12cm²的两个小正方形,若随机向大正方形内投一粒米,求米粒落在图中阴影部分的概率.17.在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件?(1)随机从第一个布袋中摸出一个玻璃球,该球是黄色、绿色或红色的;(2)随机的从第二个布袋中摸出两个玻璃球,两个球中至少有一个不是绿色的;(3)随机的从第三个布袋中摸出一个玻璃球,该球是红色的;(4)随机的从第一个布袋中和第二个布袋中各摸出一个玻璃球,两个球的颜色一致.18.如图,端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客每购买200元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准红、黄、绿的区域,顾客就可以分别获得50元、20元、10元的奖金,对准无色区域则无奖金(转盘等分成16份).(1)小明购物180元,他获得奖金的概率是多少?(2)小德购物210元,那么获得奖金的概率是多少?(3)现商场想调整获得10元奖金的概率为,其他金额的获奖率不变,则需要将多少个无色区域涂上绿色?参考答案:1.D 2.D 3.D 4.A 5.D 6.C 7.D 8.B9.10.11.0.312.13.14.由题意得:解得:n=10答:n的值是1015.解:∵20个商标中2个已翻出,还剩18张,18张中还有3张有奖的,∴第三次翻牌获奖的概率是:16.解:∵两个空白正方形的面积分别为12 cm²和3 cm²∴边长分别为cm和cm∴大正方形的边长为cm∴大正方形的面积为cm²∴阴影部分的面积为27-12-3=12 cm²∴米粒落在图中阴影部分的概率.17.解:(1)一定会发生,是必然事件;(2)一定会发生,是必然事件;(3)一定不会发生,是不可能事件;(4)可能发生,也可能不发生,是随机事件.18.(1)解:180 < 200小明购物180元,不能获得转动转盘的机会小明获得奖金的概率为0;(2)解:小德购物210元,能获得一次转动转盘的机会获得奖金的概率是(3)解:设需要将个无色区域涂上绿色则有解得:,所以需要将1个无色区域涂上绿色。
随机事件的概率同步习题(含详细解答)
随机事件的概率一. 选择题1 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上均不对【答案】C【解析】 本题要区分“互斥”与“对立”二者的联系与区别,主要体现在 :(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C .2.甲乙两人独立的解同一道题,甲乙解对的概率分别是21,p p ,那么至少有1人解对的概率 是 ( D )A.21p p +B.21p p ⋅C.211p p ⋅-D.)1()1(121p p -⋅--【答案】D【解析】:这是考虑对立事件,两人都没做对的概率为12(1)(1)p p -⋅-,至少有1人做对为)1()1(121p p -⋅--3.甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为 A .16B .14C .13D .12【答案】:D 乙【解析】:甲,乙两队分别分到同组的概率为113P =,不同组概率为123P =,又∵各队取胜概率为12,∴甲、乙两队相遇概率为1211133222P +⨯⨯==,故选D .4.(2010·辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )(A )12 (B)512 (C)14 (D)16【答案】B. 【解析】所求概率为21135343412⨯+⨯=。
《随机事件与概率》同步练习及答案.doc
《随机事件与概率》同步练习及答案知识点⒈在一定条件下可能发生的事件,叫随机事件。
2 在一定条件下,一定发生的事件称为,不可能发生的事件称为,这两类事件都称为确定事件。
3一般地,随机事件发生大是有大小的,不同的随机事件发生的可能性的大小。
9969、选择题1.下列事件中,是确定性事件的是()A.明日有雷阵雨B.小明的自行车轮胎被钉子扎坏C.小红买体育彩片D.抛掷一枚正方体骰子,出现点数7点朝上2.下列事件中,属于不确定事件的有()○1太阳从西边升起;○2任意摸一张体育彩票会中奖;○3掷一枚硬币,有国徽的一面朝下;○4小勇长大后成为一名宇航员。
A.○1○2○3B.○1○3○4C.○2○3○4D.○1○2○43.下列成语所描述的事件是必然事件的是()A.水中捞月B.守株待兔C.水涨船高D.画饼充饥4.下列说法正确的是()A.随机的抛掷一枚质地均匀的硬币,落地后反面一定朝上B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C.某彩票的中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套正在播放《新闻联播》5.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数。
下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件6.一个不透明的布袋中有30个球,每次摸一个,摸一次就一定摸到红球,则红球有()A.15个 B. 20个 C. 29个D.30个二、填空题7.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____。
8.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性_____。
9.小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中_____的可能性较小。
随机事件及其概率习题及解答
第一章 随机事件及其概率习题及解答习题1.个人随机地围一圆桌而坐,求甲、乙两人相邻而坐的概率.n 2.从一付扑克牌(52张)中任意抽取两张,求下列各事件的概率(1)恰好两张同一花色;(2)恰好两张都是红色牌;(3)其中恰好有一张A;(4)其中至少有一张A.3.甲、乙两人掷均匀硬币,其中甲掷1n +次,乙掷次,求甲掷出正面的次数大于乙掷出正面次数的概率.n 4. 袋中装有号的球各一只,采用(1)有放回;(2)无放回式摸球,试求在第k 次摸球时首次摸到1号球的概率。
N ,,2,1 5.有两个形状相同的罐,第一个中有球2白1黑,第二个中有球2白2黑,某人从任一罐中任取1个球,已知取出的是白球,求是从第一个中取出的概率。
6.假设每个人的生日在任何月份内是等可能的。
已知某单位中至少有一个人的生日在一月份的概率不小于0.96,问该单位有多少人?7.某人从甲地到乙地,乘火车、轮船、飞机的概率分别为0.2,0.4,0.4,乘火车迟到的概率为0.5,乘轮船迟到的概率为0.2,乘飞机不会迟到。
问这个人迟到的概率是多少?如果他迟到了,问他乘轮船的概率是多少?8.10个零件中有3个次品,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得合格品的概率。
9.某人投篮,命中率为0.8,现独立投五次,求最多命中两次的概率。
10.某班有个学生,上体育课时老师发给每人一根绳子进行跳绳练习,跳了10分钟后把绳子放在一堆,进行别的练习,后来每人又随机拿了一根绳子进行练习,问至少有一个学生拿到自己原先使用的绳子的概率.N 11.设一枚深水炸弹击沉一潜水艇的概率为13,击伤的概率为12,击不中的概率为16.并设击伤两次也会导致潜水艇下沉.求施放4枚深水炸弹能击沉潜水艇的概率.12.甲、乙两人进行乒乓球比赛,每局甲胜的概率为.问对甲而言,采用三局二胜制有利,还是采用五局三胜制有利.设各局胜负相互独立.,1/p p ≥2习题解答1.解 令A ={甲、乙两人相邻而坐},设想圆桌周围有1,这个位置,由于该问题属于圆排列问题,所以不妨认为甲坐1号位置,那么2,,n n A 发生当且仅当乙坐2号或号位置,从而n1,2,()2,21n P A n n =⎧⎪=⎨>⎪−⎩. 2.解(1)235.025221314=C C C (2)245.0252226=C C (3)145.025214814=C C C (4)149.01252248=−C C 3.解 令A ={甲掷出正面的次数大于乙掷出正面次数},B ={甲掷出反面的次数大于乙掷出反面次数},由硬币的均匀性知,,容易看出,()()P A P B =,A B S AB ==∅∪,由此可知1()2P A =. 4.解:设}1{号球次摸到第i A i =(1))|()|()|()()(1212211121121−−−−=k k k k k k A A A A P A A A A P A A P A P A A A A PNN N N N N N N N N k 1111111⋅⎟⎠⎞⎜⎝⎛−=⋅−−⋅−=− (2))|()|()|()()(1212211121121−−−−=k k k k k k A A A A P A A A A P A A P A P A A A A PNk N k N k N N N N N 1)1(1)2()1(121=−−⋅−−−−−−⋅−= 5.设=“取到第i 个罐中的球”,i A 2,1=i ,B =“取到白球”,则21)()(21==A P A P ,32)|(1=A B P ,2142)|(2==A B P 则全概率公式)|()()|()()(2211A B P A P A B P A P B P = 12721213221=×+×= 由bayes 公式有741273221)()|()()|(111=×==B P A B P A P B A P 6.解:设该单位有个人,=“第个人生日在一月份”,则n i A i ),,2,1(n i =121)(=i A P ),,2,1(n i =。
随机事件的概率(解答题)
随机事件的概率(解答题)1. 一个袋中装有6个大小相同的球,编号分别为1,2,3,4,5,6,从袋中同时摸出2个球,以ξ表示所摸出的2个球中最大的号码. (Ⅰ)写出随机变量ξ的分布列; (Ⅱ)求出随机变量ξ的均值.2. 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数。
(1)求ξ的分布列; (2)求ξ的数学期望;3.ξ. (Ⅰ)求该运动员两次都命中7环的概率; (Ⅱ)求ξ分布列; (Ⅲ) 求ξ的数学希望.4. 甲、乙、丙3人投篮,投进的概率分别是13, 25 , 12.(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望E ξ.5. 某同学参加法律知识竞赛,共有4道试题,他答对每道题的概率都是,32且回答各题相互独立. 竞赛规定: 参赛者未答题前有底分300分,每答对一题得100分,答错扣100分,一开始即连答错3道题就失去资格自动下场.(1 ) 求此同学答题数目ξ的分布列和数学期望; (2 ) 求此同学最后得分η的分布列和数学期望;(3 ) 若另有5名同学都与此名同学水平相当,求他们6人中到最后能留在场上的人数ζ的期望和方差.6. 甲、乙、丙、丁四人独立回答同一道数学问题,其中任何一人答对与否,对其它人答题结果无影响。
已知甲答对的概率为31,乙、丙、丁答对的概率均为21,设有ξ人答对此题,请写出随机变量ξ的概率分布及期望。
7. 盒中有10张卡中,卡片上有2张标有数字1,有3张标有数字2,还有5张标有数字3。
取出一张记下标号后放回,再取一张记下标号,共取两次,记两次取出的卡片的标号和为ξ. (I )求随机变量ξ的分布列; (Ⅱ)求随机变量ξ的期望E ξ.8. 如图,一辆车要直行通过某十字路口,这时前方刚好由绿灯转为红灯.该车前面已有4辆车依次在同一车道上排队等候(该车道只可以直行或左转行驶).已知每辆车直行的概率为32,左转行驶的概率31.该路口红绿灯转换间隔均为1分钟.假设该车道上一辆直行的车驶出停车线需要10秒,一辆左转行驶的车驶出停车线需要20秒.求: (1)前面4辆车恰有2辆左转行驶的概率为多少?(2)该车在第一次绿灯亮起的1分钟内能通过该十字路口的概率(汽车驶出停车线就算通过路口).(3)假设每次由红灯转为绿灯的瞬间,所有排队等候的车辆都同时向前行驶,求该车在这十字路口候车..时间的数学期望. 9. 某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点至10点这段时间内,外线电话同时打入情况如下表所示:(1)求至少一路电话不能一次接通的概率;(2)在一周五个工作日内,如果有三个工作日的这段时间(8点至10点)内至少一路 电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话不能一次接通的概率表 示公司形象的“损害度”,求上述情况下公司形象的“损害度”;(Ⅱ)求一周五个工作日的这段时间(8点至10点)内,电话同时打入数ξ的期望。
11.1 随机事件的概率 练出高分(含答案解析)
§11.1随机事件的概率A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增加,有() A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数差的绝对值逐渐减小D.f(n)在某个常数附近摆动并趋于稳定答案 D解析随着n的增大,频率f(n)会在概率附近摆动并趋于稳定,这也是频率与概率的关系.2.一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则() A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件答案 D解析根据互斥与对立的意义作答,A∩B={出现点数1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C=Ω(Ω为基本事件的集合),故事件B,C是对立事件.3.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为()A.0.3 B.0.5 C.0.8 D.0.7答案 D解析由互斥事件概率加法公式知:重量在(40,+∞)的概率为1-0.3-0.5=0.2,∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.4.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为() A.①B.②C.③D.④答案 B解析因为至少有1个白球和全是黑球不可能同时发生,且必有一个发生,属于对立事件.二、填空题(每小题5分,共15分)5.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率为0.28,若红球有21个,则黑球有________个.答案15解析1-0.42-0.28=0.30,21÷0.42=50,50×0.30=15.6.非空集合A、B满足A B,在此条件下给出以下四个命题:①任取x∈A,则x∈B是必然事件;②若xD∈/A,则x∈B是不可能事件;③任取x∈B,则x∈A是随机事件;④若xD∈/B,则xD∈/A是必然事件.上述命题中正确命题的序号是________.答案①③④解析由A B可知存在x0∈B而x0D∈/A,所以,“若xD∈/A,则x∈B是不可能事件”是假命题;命题①③④都是真命题.7.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为__________,________.答案0.970.03解析断头不超过两次的概率P 1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P 2=1-P 1=1-0.97=0.03. 三、解答题(共22分)8. (10分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,黑球或黄球的概率是512,绿球或黄球的概率也是512.求从中任取一球,得到黑球、黄球和绿球的概率分别是多少?解 从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A ,B ,C ,D ,则事件A ,B ,C ,D 彼此互斥,所以有P (B +C )=P (B )+P (C )=512,P (D +C )=P (D )+P (C )=512,P (B +C +D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14.故从中任取一球,得到黑球、黄球和绿球的概率分别是14,16,14.9. (12分)我国已经正式加入WTO ,包括汽车在内的进口商品将最多把关税全部降低到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.解 方法一 设“进口汽车恰好4年关税达到要求”为事件A ,“不到4年达到要求”为事件B ,则“进口汽车不超过4年的时间内关税达到要求”就是事件A +B ,显然A 与B 是互斥事件,所以P (A +B )=P (A )+P (B )=18%+(1-21%-18%)=79%.方法二 设“进口汽车在不超过4年的时间内关税达到要求”为事件M ,则M 为“进口汽车5年关税达到要求”,所以P (M )=1-P (M )=1-21%=79%.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件.那么( )A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 答案 B解析 根据互斥事件和对立事件的概念可知互斥事件不一定是对立事件,对立事件一定是互斥事件.2. 已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A.16,16B.12,23C.16,23D.23,12答案 C解析 “甲胜”是“和棋或乙胜”的对立事件,所以“甲胜”的概率为1-12-13=16.设“甲不输”为事件A ,可看做是“甲胜”与“和棋”这两个互斥事件的和事件,所以P (A )=16+12=23.(或设“甲不输”为事件A ,可看做是“乙胜”的对立事件,所以P (A )=1-13=23) 3. 在一次随机试验中,彼此互斥的事件A 、B 、C 、D 的概率分别是0.2、0.2、0.3、0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件 B .B +C 与D 是互斥事件,也是对立事件 C .A +C 与B +D 是互斥事件,但不是对立事件 D .A 与B +C +D 是互斥事件,也是对立事件 答案 D解析 由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.故选D. 二、填空题(每小题5分,共15分)4. 某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况 如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________. 答案 35 1315解析 “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P =11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”. 故他属于不超过2个小组的概率是 P =1-86+7+8+8+10+10+11=1315.5. (2012·江苏)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 答案 35解析 这10个数分别为1,-3,9,-27,81,…,(-3)8,(-3)9,小于8的数有6个,所以P (小于8)=610=35.6. 某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了条形统计图(如下图所示),则该中学参加本次数学竞赛的人数为________,如果90分以上(含90分)获奖,那么获奖的概率大约是________.答案 32 0.437 5解析 由题图可知,参加本次竞赛的人数为4+6+8+7+5+2=32;90分以上的人数为7+5+2=14,所以获奖的频率为1432=0.437 5,即本次竞赛获奖的概率大约是0.437 5.三、解答题7. (13分)小明打算从A 种和B 种两种花样滑冰动作中选择一种参加比赛.已知小明选择A种动作的概率是选择B 种动作的概率的3倍,若小明选择A 种动作并正常发挥可获得10分,没有正常发挥只能获得6分;若小明选择B 种动作则一定能正确发挥并获得8分.据平时训练成绩统计,小明能正常发挥A 种动作的概率是0.8. (1)求小明选择A 种动作的概率;(2)求小明比赛时获得的分数不低于8分的概率.解 (1)设小明选择A 种动作的概率为P (A ),选择B 种动作的概率为P (B ),由题意知P (A )=3P (B ),P (A )+P (B )=1,解得P (A )=0.75.(2)依题意知:小明比赛时可能的得分为6分、8分、10分. 小明得8分的概率为P 1=0.25,得10分的概率为P 2=0.75×0.8=0.6. 因此小明比赛时获得的分数不低于8分的概率P =P 1+P 2=0.25+0.6=0.85.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件的概率一.选择题1把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件甲分得红牌”与“乙分得红牌”是( )A.对立事件 B .不可能事件C.互斥但不对立事件 D .以上均不对【答案】C【解析】本题要区分互斥”与对立”二者的联系与区别,主要体现在:(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.事件甲分得红牌”与乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.2. 甲乙两人独立的解同一道题,甲乙解对的概率分别是p i,p2,那么至少有1人解对的概率是(D )A. P1 P2B. P1 P2C. 1 P1 P2D.1 (1 P1)(1 P2)【答案】D【解析】:这是考虑对立事件,两人都没做对的概率为(1 P1) (1 P2),至少有1人做对为1 (1 P1)(1 P2)3. 甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为A .D.【答案】:D乙1 2【解析】:甲,乙两队分别分到同组的概率为R=丄,不同组概率为R=-,又T3 3各队取胜概率为1,二甲、乙两队相遇概率为P=1 ---,故选D.2 3 3 2 2 22 4. (2010 •辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为-33和-,两个零件是否加工为一等品相互独立,4概率为( )1 5 1(A) - (B) —(C) - (D)2 12 4【答案】B.【解析】所求概率为2113 =-3 4 3 4 12。
5. (2010 •北京)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( )4 3 2 1(A) 4(B) 3(C) 2(D)15 5 5 5【答案】选D分析:先求出基本事件空间包含的基本事件总数n,再求出事件“ b a”包含的基本事件数m,从而P(A) m。
n【解析】{(a,b)|a {1,2,3,4,5}, b {1,2,3}},包含的基本事件总数n 15。
事3 1件“ b a”为{(1,2),(1,3),(2,3)},包含的基本事件数为m 3。
其概率P —- 015 56. (2011全国课标文(6))有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,贝U这两位同学参加同一个兴趣小组的概率为(1 12 3(A) (1)( B)丄(C) - (D)- 3 2 3 4【答案】A【解析】甲,乙两位同学参加3个小组的所有可能性有3X 3二9 (种),其中甲,乙两人参加同一小组情况有3种,故甲,乙两人参加同一个兴趣小组的概率为P 3 19 37. (2012高考安徽文10)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于12 3 4(A) 1 (B) - ( C) 3(D)-则这两个零件中恰有一个一等品的165 5 5 5【答案】B【解析】1个红球,2个白球和3个黑球记为a 1,b 1,b 2,C 1,C 2,C 3 从袋中任取两球共有印力;a i ,b 2;a i ,c ,;a i ,C 2;a i ,C 3;b l ,b 2;bl,^;b,,C 2;b,,C 3i5种;b 2, C 1;b 2,C 2; b 2,03; C 1,02; C 1,03; C 2,03满足两球颜色为一白一黑有6种,概率等于§ -1558. (2010辽宁)(3)两个实习生每人加工一个零件•加工为一等品的概率分别为2和3,两个零件是 3 4否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为1 5 1 1 (A ) (B) (C) (D)—2 12 4 6【答案】B【解析】记两个零件中恰好有一个一等品的事件为 A ,则2 113 5P(A)=P(A 1)+ P(A 2)= + =—3 4 3 4 12二. 填空题1. (2009湖北卷文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别 是0.8、0.6、0.5,则三人都达标的概率是 _____________ ,三人中至少有一人达标 的概率是 __________ 。
【答案】0.240.76【解析】三人均达标为0.8 X 0.6 X 0.5=0.24,三人中至少有一人达标为 1-0.24=0.762 (2010 •福建高考)某次知识竞赛规则如下:在主办方预设的 5个问题中,选 手若能连续回答出两个问题,即停止答题,晋级下一轮。
假设某选手正确回答每 个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了 4个问题就晋级下一轮的概率等于 _______________________ 。
【答案】0.128【解析】依题意得:该选手第一个问题可以答对也可以答错, 第二个问题一定回答错误,第三、四个问题一定答对,所以其概率P 1 0.2 0.8 0.8 0.128.三. 解答题1. (2010四川文数)(17)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为-.甲、乙、丙三位同6学每人购买了一瓶该饮料。
(I)求三位同学都没有中奖的概率;(U)求三位同学中至少有两位没有中奖的概率 .分析:由题设可知三位中奖的概率,由相互独立事件同事发生求得都没有中奖的 概率。
先算出都没中奖和只有一人中奖的概率,再由对立事件求得。
解:(I)设甲、乙丙中奖的事件分别为 A, B, C,那么P(A) P(B) ——————3 3P(A B C) P(A) P(B) P(C) ( )35 2. (2011 湖南文 18).某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时) 与该河上游在六月份是我降雨量 X (单位:毫米)有关,据统计,当 X=70 时,Y=460; X 每增加10,Y 增加5.已知近20年X 的值为:140, 110, 160,70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160.(I)完成如下的频率分布表近20年六月份降雨量频率分布表(n)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并 将频率是为概率,求今年六月份该水力发电站的发电量低于 490 (万千 瓦时)或超过530 (万千瓦时)的概率.分析:由已知易填表。
再由视为概率求得所求结果。
解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为 200毫米的(II ) P (“发电量低于490万千瓦时或超过530万千瓦时”)P(Y 490或 Y 530) P(X 130或 X 210) P(X 70) P(X 110) P(X 220) 1 3 2 320 20 20 10.故今年六月份该水力发电站的发电量低于 490 (万千瓦时)或超过530 (万 千瓦时)的概率为—.103、(2011 四川文 17). 本着健康、低碳的生活理念,租自行车骑游的人越来越多•某1P (c )6125216答:三位同学都没有中奖的概率是125216(H) 1 P(A B C ABCABC ABC)(6)25 27答:三位同学中至少有两位没有中奖的概率为25 27自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)•有甲、乙人互相独立来该租车点租车骑游(各租一车一次)•设甲、乙不超过两小时还车的概率分别为1、1 ;两小时以上且不超过三小时还车的概率分别为1、1 ;两人租车4 2 2 4时间都不会超过四小时.(I)分别求出甲、乙在三小时以上且不超过四小时还车的概率;(U)求甲、乙两人所付的租车费用之和小于6元的概率. 分析:利用相互独立事件、互斥事件等概念及相关概率计算解:(I)分别记甲、乙在三小时以上且不超过四小时还车为事件A、B,则1 1 1P(A) 1 4 - 4,P(A)答:甲、乙在三小时以上且不超过四小时还车的概率分别为1、 1.4 4(U)记甲、乙两人所付的租车费用之和小于6元为事件C,则P(C)(1 1)(1 1 1 I)(1 1 丄丄丄1)?4 2 4 4 2 2 2 4 4 2 4 4 4答:甲、乙两人所付的租车费用之和小于6元的概率为-44. (2011全国课标文19)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:B配方的频数分布表(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y (单位:元)与其质量指标值t的关系式为2, t 94y 2,94 t 1024,t 102估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.分析:(I)由表可计算出A和B配方优质产品的频率即可。
由所给的函数关系式即可算出平均一件的利润。
解析:(I)由试验结果知,用A配方生产的产品中优质的频率为经芒=0.3 ,100 所以用A 配方生产的产品的优质品率的估计值为0.3.32 10由试验结果知,用B配方生产的产品中优质品的频率为乂上0.42,所100 以用B配方生产的产品的优质品率的估计值为0.42(U)由条件知用B配方生产的一件产品的利润大于0当且仅当其质量指标值t >94由试验结果知,质量指标值t >94勺频率为0.96,所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为(4 ( 2) 54 2 42 4) 2.68 (元)1005. (2010陕西文数19)为了解学生身高情况,某校以10%勺比例对全校700名学生按性别进行出样检查, 测女A得身高情况的统计图如下:男生(I)估计该校男生的人数;(U)估计该校学生身高在170~185cm之间的概率;(川从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率。