人教版七年级上学期数学期中考试试卷A卷
2023—2024学年人教版七年级上学期数学期中试卷(附答案)
2023—2024学年人教版七年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、2022的相反数是()A.B.﹣C.2022D.﹣20222、4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1033、一条东西走向的道路上,小明先向西走3米,记作“﹣3米”,他又向西走了4米,此时小明的位置可记作()A.﹣2米B.+7米C.﹣3米D.﹣7米4、下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c5、已知3x m y2与﹣2x4y n为同类项,则m+n=()A.2B.4C.6D.86、若|x﹣1|+x=1,则x一定满足()A.x<1B.x>1C.x≤1D.x≥17、多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2B.﹣2C.2或﹣2D.38、小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5,已知A=4x2﹣3x﹣6,请你帮助小明同学求出A﹣B应为()A.﹣x2+x+11B.3x2﹣4x﹣17C.5x2﹣4x﹣17D.5x2﹣2x+59、若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410、某种产品原价为100元,现因原料提价,因而厂家决定对产品进行提价,有以下两种方案;方案一,第一次提价10%,第二次提价30%;方案二,第一、二次提价均为20%.请问:哪种方案提价多()A.方案一B.方案二C.两种方案一样D.不能确定二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.12、若a与b互为倒数,m与n互为相反数,则(ab)2013+(m+n)2014的值为.13、已知|a+1|+(b﹣3)2=0,则a b=.14、在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.15、若代数式x﹣2y=﹣2,则代数式9+2x﹣4y=.16、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2)×(﹣36).18、先化简,再求值:3(x2﹣xy+y2)﹣2(y2﹣3xy+x2),其中x=﹣2,y=3.19、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.20、某检修小组在东西向的马路上检修线路,从A地出发,需到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)在行驶过程中,最远处离出发点A地有多远?(3)若每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.22、已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.23、(1)如图1所示,阴影部分由两个直角三角形组成,用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=6,h=4时,S的值.(3)在第(2)问的条件下,增加一个半圆的阴影,如图2所示,求整个阴影部分的面积S1的值.(π取3.14,结果精确到0.1)24、已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25、如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请用计算说明,并求出线段MN的长.2023—2024学年人教版七年级上学期数学期中试卷参考答案一、择题(每题只有一个正确选项,每小题3分,满分30分)1—10:DCDAC CBCDB二、填空题(每小题3分,满分18分)11、>12、1 13、-1 14、﹣9或3 15、5 16、(3n+1)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解:(1)0 (2)﹣1118、解:﹣519、解:(1)答案为:>,<,<;(2)﹣2b20、解:(1)B地在A地的东边18千米;(2)最远处离出发点25千米;(3)需补充的油量为9升.21、解:(1)x+y的值为:8或2;(2)|x﹣y|的值为:8;(3)x﹣y=±2或±8.22、解:(1)=7x+7y﹣11xy;当x+y=﹣,xy=1时,2A﹣3B=﹣17;(3).23、解:(1)S=(b﹣a)h=bh﹣;(2)当a=2,b=6,h=4时,S=×6×4﹣×2×4=12﹣4=8;(3)S1=S+×=8+×3.14×1=8+1.57=9.57≈9.6.∴整个阴影部分的面积S1的值为9.6.24、解:故答案为:﹣1;(2)﹣243;(3)﹣120.25、解:(1)答案为:﹣5;7;12;(2)点P所对应的数为﹣1016;(3)﹣17和﹣1别是点P运动了第23次和第8次到达的位置.。
2024-2025学年人教版七年级上学期数学期中质量检测卷(含答案)
新人教版七年级上期中质量检测卷(原卷+答案)[时量:120分钟 分值:120分]一、选择题(共10小题,每小题3分,共30分)1. ―6的相反数是( )A. 6B. ―6C. 16D. ―162. 某市某天的最高气温为8℃,最低气温为―9℃,则最高气温与最低气温的差为( )A. 17℃ B. 1℃C. ―17℃D. ―1℃3. 深圳图书馆北馆是深圳首批建设并完工的新时代重大文化设施,其建筑面积约为7.2万平方米,设计藏书量为800万册.其中800万用科学记数法表示为( )A. 8×102B. 8×105C. 8×106D. 0.8×1074. 用四舍五入法把数25.862精确到十分位,所得的近似数是( )A. 25.8B. 25.9C. 25.86D. 25.875. 下列计算正确的是( )A. 3a ―a =aB. ―2(x ―4)=2x +4C. ―(―32)=9D. 4+54×45―4+1=06. 下列各式―12xy ,0,1m ,2x +1,2x ―y 5中,整式有( )A. 1个 B. 2个 C. 3个D. 4个7. 小兰房间窗户的装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为( )A. ab ―π9a 2B. ab ―π18a 2C. ab ―π4b 2D. ab ―π8b 28. 若|a +3|+(b ―2)2=0,则(a +b )2025的值是( )A. 1B. ―1C. ―2024D. 无法计算9. 下列说法正确的是( )①有理数是整数和分数的统称;②一个数的绝对值的相反数一定是负数;③如果一个数的倒数等于它本身,则这个数是0和±1;④3ab 3的次数为4;⑥如果ab >0,那么a >0,b >0.A. ①②⑤B. ①④C. ①②④D. ③⑤10. 对于任意实数a和b,如果满足a3+b4=a+b3+4+23×4,那么我们称这一对数a,b为“友好数对”,记为(a,b).若(x,y)是“友好数对”,则2x―3[6x+(3y―4)]的值为()A. ―4B. ―3C. ―2D. ―1二、填空题(共6小题,每小题3分,共18分)11. ―3的倒数是.12. 已知点A,B在数轴上对应的数分别为―4和5,则A,B两点间的距离为.13. 比较大小:-34―35.(填“>”或“<”)14. 单项式―32πab5c27的系数是,次数是.15. 如果单项式3x m y与―5x3y n是同类项,那么mn=.16. 已知在多项式x2+3kxy―y2―9xy+10中不含xy项,则k=.三、解答题(共9小题,共72分)17. (6分)计算:(1)―12×(512+23―34)+5;(2)―12024+(―10)÷12×2―[2―(―3)3].18. (6分)计算:(1)―3(2a2b―ab2)―2(12ab2―2a2b);(2)4xy2―12(x3y+4xy2)―2[14x3y―(x2y―xy2)∖].19. (6分)已知A=3x2―x+2y―4xy,B=2x2―3x―y+xy.(1)化简:4A―6B;(2)当x+y=67,xy=―1时,求4A―6B的值.20. (8分)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10 kg为标准,超过的千克数记为正数,不足的千克数记为负数,称重记录如表:与标准质量的差值/kg―0.5―0.2500.250.30.5箱数1246n2(1)求n的值及这20箱樱桃的总质量;(2)实际上该水果店第一天以每千克25元销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损?盈利或亏损多少元?21. (8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想,它在整式的化简与求值中应用极为广泛.例如:已知2x2+3x=1,求代数式2x2+3x+2025的值.我们可以将2x2+3x作为一个整体代入:2x2+3x+2025=(2x2+3x)+2025=1+2025=2026.请仿照上面的解题方法,完成下列问题:(1)已知2x2+3x=―1,求代数式2x2+3x+2028的值;(2)已知x+y=3,求代数式6(x+y)―3x―3y+2026的值.22. (9分)习近平总书记强调:“加强学校体育工作,推动青少年文化学习和体育锻炼协调发展,帮助学生在体育锻炼中享受乐趣、增强体质、健全人格、锻炼意志”.体育是教育的重要组成部分,其功能既包括锻炼身体、增强体质,也包括塑造品格、养成精神.某校为积极响应国家的号召,决定添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140元,跳绳每根定价30元.现有A,B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一根跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球60个,跳绳x根(x>60).(1)若在A网店购买,需付款元;若在B网店购买,需付款元.(均用含x的代数式表示)(2)当x=200时,通过计算说明此时在哪一家网店购买较为合算?(3)当x=200时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元.23. (9分)有理数a,b,c在数轴上的对应点位置如图所示:(1)用“>”或“<”填空:b―c0,b―a0,a+b0;(2) 化简:|b ―c |+|b ―a |―|c ―a |―|a +b |.24. (10分)我们规定:对于任何有理数a ,b ,使得a ―b =ab 成立的一对数a ,b 称为“积差等数对”,记为(a ,b ).例如:因为1.5―0.6=1.5×0.6,(―2)―2=(―2)×2,所以数对(1.5,0.6),(―2,2)都是“积差等数对”.(1) 下列数对是“积差等数对”的是 (填序号);①(1,12); ②(2,1); ③(―12,―1).(2) 若数对(m ,3)是“积差等数对”,求m 的值;(3) 若数对(a ,b )是“积差等数对”,求代数式4[3ab ―a ―2(ab ―2)]―2(3a 2―2b )+6a 2的值.25. (10分)已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ―7|+(n +2)2=0.(1) 求m ,n 的值;(2) 情境:有一个玩具火车AB 如图所示放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n ,则玩具火车AB 的长为 个单位长度.应用:如图,当玩具火车AB 匀速向右运动时,若火车从车头到车尾完全经过点M 需要2s ,则火车的速度为每秒 个单位长度.(3) 在(2)的条件下,当玩具火车AB 匀速向右运动,同时点P 和点Q 从点N ,M 出发,分别以每秒1个单位长度和2个单位长度的速度向左和向右运动,记玩具火车AB 运动后对应的位置为A 1B 1.点P ,Q 间的距离用a 表示,点B 1,A 间的距离用b 表示,是否存在常数k ,使得ka ―b 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1.A2.A3.C4.B5.C6.D7.D8.B9.B10.C二、填空题(共6小题,每小题3分,共18分)11.―1312.913.<14.―9π7; 815.316.3三、解答题(共9小题,共72分)17.(1) 解:原式=―12×512―12×23+12×34+5=―5―8+9+5=1.(2) 原式=―1+(―10)×2×2―[2―(―27)]=―1+(―40)―29=―70.18.(1) 解:原式=―6a 2b +3ab 2―ab 2+4a 2b=―2a 2b +2ab 2.(2) 原式=4xy 2―12x 3y ―2xy 2―2(14x 3y ―x 2y +xy 2)=4xy 2―12x 3y ―2xy 2―12x 3y +2x 2y ―2xy 2=―x 3y +2x 2y .19.(1) 解:原式=4(3x 2―x +2y ―4xy )―6(2x 2―3x ―y +xy )=12x 2―4x +8y ―16xy ―12x 2+18x +6y ―6xy=14x +14y ―22xy .(2) 当x +y =67,xy =―1时,4A―6B=14x+14y―22xy=14(x+y)―22xy―22×(―1)=14×67=12+22=34.20.(1)解:n=20―1―2―4―6―2=5.10×20+(―0.5)×1+(―0.25)×2+0.25×6+0.3×5+0.5×2=203(kg).答:n的值为5,这20箱樱桃的总质量是203kg.(2)25×203×60%+25×203×(1―60%)×70%―200×20=466(元).答:是盈利的,盈利466元.21.(1)解:∵2x2+3x=―1,∴原式=―1+2028=2027.(2)∵x+y=3,∴原式=6(x+y)―3(x+y)+2026=3(x+y)+2026=3×3+2026=9+2026=2035.22.(1)(30x+6600);(27x+7560)(2)解:当x=200时,A网店付款:30x+6600=30×200+6600=12600(元);B网店付款:27x+7560=27×200+7560=12960(元).∵12600<12960,∴在A网店购买较为合算.(3)当x=200时,先从A网店购买60个足球,送60根跳绳,再从B网店购买140根跳绳,共付款:60×140+140×30×90%=8400+3780=12180(元).∴当x=200时,先从A网店购买60个足球,送60根跳绳,再从B网店购买140根跳绳,这样购买更省钱.共付款12 180元.23.(1)<;>;<(2)解:∵b―c<0,b―a>0,c―a>0,a+b<0,∴|b―c|+|b―a|―|c―a|―|a+b|=c―b+b―a―c+a+a+b=a +b .24.(1) ①③(2) 解:∵(m ,3)是“积差等数对”,∴m ―3=3m ,解得m =―32,∴m 的值为―32.(3) 原式=4(3ab ―a ―2ab +4)―6a 2+4b +6a 2=12ab ―4a ―8ab +16―6a 2+4b +6a 2=4ab ―4a +4b +16.∵(a ,b )是“积差等数对”,∴a ―b =ab ,∴ 原式=4ab ―4(a ―b )+16=4ab ―4ab +16=16.25.(1) 解:∵|m ―7|+(n +2)2=0,∴m ―7=0,n +2=0,∴m =7,n =―2.(2) 3; 32(3) 存在,k =12,定值为32.设玩具火车AB 的运动的时间为t s ,则B 1A =32t +3.由题意,得点Q 表示的数是2t +7,点P 表示的数是―2―t ,∴PQ =2t +7―(―2―t )=9+3t ,∴ka ―b =k (9+3t )―(32t +3)=(9k ―3)+(3k ―32)t .∵ 常数k 使得ka ―b 的值与它们的运动时间无关,∴3k ―32=0,解得k =12,∴9k ―3=32.故当k =12时,常数k 使得ka ―b 的值与它们的运动时间无关,此时定值为32.。
2023-2024学年全国初一上数学人教版期中试卷(含答案解析)
一、选择题(每题1分,共5分)1. 在有理数中,下列哪个数是负数?A. 0B. 1/2C. 3/4D. 22. 一个等腰三角形的底边长是10cm,腰长是8cm,那么这个三角形的周长是多少?A. 18cmB. 26cmC. 28cmD. 36cm3. 下列哪个数是整数?A. 1/3B. 0.5C. 2D. 2.54. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/25. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么这个长方体的体积是多少?A. 24cm³B. 24cm²C. 12cm³D. 12cm²二、判断题(每题1分,共5分)1. 有理数包括整数和分数,对错?2. 等腰三角形的两腰相等,底边也相等,对错?3. 0既不是正数也不是负数,对错?4. 一个长方体的体积等于它的长、宽、高的乘积,对错?5. 任何数的平方都是正数,对错?三、填空题(每题1分,共5分)1. 一个等边三角形的周长是15cm,那么它的边长是__________cm。
2. 一个长方体的长、宽、高分别是5cm、4cm、3cm,那么它的体积是__________cm³。
3. 下列数中,最大的是__________:2, 0, 1/2, 3。
4. 一个等腰三角形的底边长是10cm,腰长是8cm,那么这个三角形的周长是__________cm。
5. 一个数的绝对值等于它本身,那么这个数是__________。
四、简答题(每题2分,共10分)1. 简述有理数的定义。
2. 简述等腰三角形的性质。
3. 简述长方体的体积计算公式。
4. 简述平方根的定义。
5. 简述分数的定义。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是4cm、3cm、2cm,求它的表面积。
2. 一个等腰三角形的底边长是10cm,腰长是8cm,求它的面积。
3. 一个数的平方是25,求这个数。
2024—2025学年人教版七年级数学上册期中考试试卷
七年级上册数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.将“1410000000”用科学记数法表示正确的是()A.14.1×108B.1.41×109C.0.141×1010D.1.41×10102.下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣27与(﹣2)73.下列表示数轴的方法正确的是()A.B.C.D.4.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.16毫米,则质量最差的零件是()A.第一个B.第二个C.第三个D.第四个5.下列有理数大小关系判断正确的是()A.﹣(﹣)>﹣|﹣|B.0>|﹣10|C.|﹣3|<|+3|D.﹣1>﹣0.016.下列说法正确的有()A.是整式B.是单项式C.不是整式D.是多项式7.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|a|一定是负数8.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.﹣3C.7或﹣3D.不能确定9.如图所示,点在数轴上,则将m、n、0、﹣m、﹣n从小到大排列正确的是()A.﹣m<﹣n<0<m<n B.m<n<0<﹣m<﹣nC.﹣n<﹣m<0<m<n D.m<n<0<﹣n<﹣m 10.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个二、填空题(6小题,每题3分,共18分)11.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.12.2024的倒数是.13.单项式的系数是14.若关于a,b的代数式﹣3a3b x与9a y b是同类项,则x y的值是15.已知x与y互为相反数,m与n互为倒数,且|a|=3,则=.16.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是第II卷七年级上册数学期中模拟考试试卷人教版2024—2025学年七年级上册姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算(1);(2).18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.20.足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门.请问在这段时间内,对方球员有几次挑射破门的机会?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,如表是该市自来水收费价格的价目表(注:水费按月结算)每月用水量单价不超过6立方米的部分2元/立方米超过6立方米但不超过10立方米的部分4元/立方米超过10立方米的部分8元/立方米(1)若某户居民2月份用水4立方米,则应缴纳水费元.(2)若某户居民3月份用水a(6<a<10)立方米,则该用户3月份应缴纳水费多少元(用含a的代数式表示,并化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x立方米,求该户居民4,5月份共缴纳水费多少元.(用含x的代数式表示,并化成最简形式)22.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.23.数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2+2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2﹣2a=2,则2a2﹣4a=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2+3a﹣3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为5,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.24.两个边长分别为a和b的正方形按如图1放置,记未叠合部分(阴影)的面积为S1.在图1大正方形的右下角再摆放一个边长为b的小正方形(如图2),记两个小正方形叠合部分(阴影)的面积S2.(1)用含a,b的代数式分别表示S1,S2.(2)若a=5,b=3,求S1+S2的值.(3)若S1+S2=64,求图3中阴影部分的面积S3.25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.。
人教版七年级数学上学期期中达标测试卷(A卷)及答案
人教版七年级第一学期期中数学试卷及答案【满分:120分】一、选择题:(本大题共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的)1.云南省统计局3月16日发布,2021年前两个月,云南省外贸进出口总额545.80亿元,同比增长86.2%.其中,出口363.57亿元,同比增长275.6%,进口182.27亿元,同比下降7.1%.若出口同比增长率记作+275.6%,则进口同比增长率记作( )A.-7.1B.-7.1%C.182.27D.+7.1%2.下列互为倒数的是( )A.3和13B.-2和2C.3和13-D.-2和123.下列说法正确的是( )A.0不是正数,是负数B.0不是负数,是正数C.0既不是正数,也不是负数D.0既是正数,也是负数4.下列说法正确的是( )A.ab c +是二次三项式B.多项式2223x y +的次数是4C.0是单项式D.(0)b a a ≠是整式 5.若x 的相反数是3,||5y =,则x y +的值为( )A.-8B.2C.8或-2D.-8或26.图①为2019年7月份的日历表,某同学任意框出了其中的四个数字,如图②,若用m 表示框中相应位置的数字,则“?”位置的数字可表示为( )A.1m +B.5m +C.6m +D.7m +7.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.20060x -B.14015x -C.20015x -D.14060x -8.下列说法:①任何非零有理数的平方都大于0;②互为相反数的两个数的同一偶次方相等;③任何数都不等于它的相反数;④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的只有( )A.①②④B.①③C.②③④D.①②9.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( ) A.3 B.6 C.8 D.910.形如x m y n 的式子叫做二阶行列式,其运算法则用公式表示为x m xn ym y n =-,依此法则计算24(3)12-的结果为( ) A.17 B.-17 C.1 D.-111.有理数a 、b 在数轴上的位置如图所示,且a b <,下列各式中正确的个数是( )①0a b +<;②0b a ->;③11b a>-;④30a b ->;⑤0a b -->.A.2个B.3个C.4个D.5个12.多项式2835x x -+与多项式323457x mx x --+相减后不含二次项,则m 的值为( )A.-2B.2C.0D.1 二、填空题:(每小题3分,共18分)13.我县去年接待旅游人数约为89000人,89000这个数据用科学记数法表示为__________.14.若多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,则mn =_________.15.若有理数m ,n 满足2||(150)201m n +-+=,则n m -=________.16.一组数:2,1,3,x ,11,y ,128,…,其中任意三个连续的数a ,b ,c 满足2c a b =-,例如第三个数.那么这组数中x ,y 分别为__________.17.已知关于x ,y 的单项式42a mx y 与的和等于0,则324m a b ++=___________.18.已知一个多项式与的和等于2537x x +-,则这个多项式是_____.三、解答题(本大题共8小题,共计66分,解答题应写出演算步骤或证明过程)19.(6分)已知下列各有理数:5,-3.5,0,,2,32-. (1)画出数轴,在数轴上标出这些数对应的点;(2)用“>”把这些数连接起来.2321=-254b x y +228x x -1220.(6分)将下列各数填在相应的集合里.-3.8,-20%,4.3,,24,0,,23-. 整数集合:{ …};分数集合:{ …};正数集合:{ …};负数集合:{ …}.21.(8分)每年“双11”天猫商城都会推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在三家天猫店铺中选择一家购买原价均为1000元/条的被子若干条.已知三家店铺在非活动期间,均在原价基础上优惠20%销售,活动期间在此基础上再分别给予以下优惠:A 店铺:“双11”当天购买可以再享受8折优惠.B 店铺:商品每满800元可使用店铺优惠券50元,时每满400元可使用天猫商城“双11”购物津贴券50元,同时“双11”当天下单每单还可立减60元.例如:购买2条被子需支付8002502504601240⨯-⨯-⨯-=(元).C 店铺:“双11”当天下单可享立减活动,①每条立减100元(10条以内,不包括10条);②每条立减160元(10条及10条以上).享受“立减”优惠后还可用“花呗”付款,即先付总购物款的一半,剩余半可先存银行(年利率为2%),一年后再还清余下的货款.(1)“双11”当天,若在A 店铺购买8条被子,需支付_______元,若在B 店铺购买8条被子,需支付________元,若在C 店铺购买8条被子,一年后全部清共用去_________元.(2)若张阿姨在“双11”当天下单,且购买了a 条被子,请分别用含a 的代数式表示在这三家店铺的购买费用.22.(8分)化简:()22232224a a ab a ab ⎡⎤---+⎣⎦.莉莉的化简过程:原式(22222232224)34484a a ab a ab a a ab a ab ab =--++=-++-=-.莉莉的化简过程正确吗?如果不正确,请给出正确的化简过程.23.(8分)计算:(1)151 84(3)74612⎡⎤-⨯--+÷⎢⎥⎣⎦; (2)2213133(24)3468⎛⎫⎛⎫-⨯-+-+⨯- ⎪ ⎪⎝⎭⎝⎭. 24.(8分)嘉淇准备完成题目:化简:(268x x ++)()2652x x -++.发现系数“”印刷不清楚.(1)她把“”猜成3,请你化简:()22368(652)x x x x ++-++;(2)她妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几. 207--35⎛⎫-- ⎪⎝⎭25.(10分)定义:(,)f a b 是关于a ,b 的多项式,如果(,)(,)f a b f b a =,那么(,)f a b 叫做“对称多项式”.例如,如果22(,)f a b a a b b =+++,则22(,)f b a b b a a =+++,显然,(,)(,)f a b f b a =,所以此时(,)f a b 是“对称多项式”.(1)22(,)2f a b a ab b =-+是“对称多项式”,试说明理由;(2)请写出一个“对称多项式”(,)f a b (不多于四项);(3)如果1(,)f a b 和2(,)f b a 均为“对称多项式”,那么12(,)(,)f a b f a b +一定是“对称多项式”吗?如果一定,请说明理由;如果不一定,请举例说明.26.(12分)已知m ,x ,y 满足:23(5)|2|05x m -+-=,213y a b +-与23a b 是同类项,求整式()()222223639x xy y m x xy y -+--+的值.答案以及解析1.答案:B解析:若出口同比增长率记作+275.6%,则进口同比增长率记作-7.1%,故选:B.2.答案:A 解析:解:1313⨯=,则3和13互为倒数.故选:A. 3.答案:C解析:根据题意,0既不是正数也不是负数;故选:C.4.答案:C解析:A 中,ab c +是二次二项式,所以A 选项说法错误;B 中,多项式2223x y +的次数是2,所以B 选项说法错误;C 中,0是单项式,所以C 选项说法正确;D 中,(0)b a a≠是字母的商的形式,故不是整式,所以D 选项说法错误.故选C.5.答案:D解析:x 的相反数是3,3x ∴=-,5y =,5y ∴=±,8x y ∴+=-或2,故选D.6.答案:C解析:根据m 左边的数是1m -,1m -下面的数是17m -+,可知“?”位置的数字为176m m -+=+,故选C.7.答案:C解析:因为学校租用45座的客车x 辆,则余下20人无座位,所以师生的总人数为4520x +.又因为租用60座的客车则可少租用2辆,所以乘坐最后一辆60座客车的人数为452060(3)45206018020015x x x x x +--=+-+=-.故选C.8.答案:D解析:①因为任何非零有理数的平方都是正数,所以任何非零有理数的平方都大于0,故①正确; ②因为负数的偶次幂也是正数,所以互为相反数的两个数的同一偶次方相等,故②正确; ③例如0的相反数是0,故③错误;④当0a >,0b <,a 的倒数大于b 的倒数,故④错误.综上,正确的有①②,故选:D.9.答案:C 解析:单项式12m a b -与212n a b 的和仍是单项式,∴单项式12m a b -与212n a b 是同类项,12m ∴-=,2n =,3m ∴=,328m n ∴==.故选C.10.答案:D 解析:根据题意得,224(3)421(3)89112-=⨯-⨯-=-=-,故选D. 11.答案:C解析:根据数轴上a ,b 两点的位置可知,0b a <<,b a >,①根据有理数的加法法则,可知0a b +<,故正确;②b a <,0b a ∴-<,故错误;③||||a b <,11||||a b >∴, 01b <,10a-<,11||b b =,11||a a -=, 根据两个负数比较大小,绝对值大的反而小,11b a∴>-,故正确; ④()33a b a b -=+-,30a >,0b ->,30a b ∴->,故正确;⑤a b ->,0a b ∴-->.故①③④⑤正确,选C.12.答案:A解析:()()2328353457x x x mx x -+---+2328353457x x x mx x =-+-++-323(84)22x m x x =-+++-,多项式2835x x -+与多项式323457x mx x --+相减后不含二次项,840m ∴+=,2m ∴=-,故选A.13.答案:解析:,48.910⨯48.98900010=⨯故答案为:.14.答案:0或8 解析:多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,20n ∴-=,1||3m n +-=,2n ∴=,2m n -=±,当2m n -=时,4m =;当2m n -=-时,0m =,0mn ∴=或8.15.答案:1解析:根据题意得,10m +=,20150n -=,解得1m =-,2015n =,所以2015(1)1n m -=--=.故答案为:1.16.答案:-2,-7解析:2132x =-=-,2(2)117y =--=-.17.答案:-6解析:因为单项式42a mx y 与254b x y +的和等于0,所以24m =-,2a =,54b +=,解得2a =,1b =-,2m =-,所以3246446m a b ++=-+-=-..18.答案:23117x x +-解析:()()2222253728537283117x x x x x x x x x x +---=+--+=+-.19.答案:(1)如图所示.(2)由图可知,13520 3.522>>>>->-. 20.答案:整数集合:{24,0,23-,…};分数集合:{-3.8,-20%,4.3,207--,35⎛⎫-- ⎪⎝⎭,…}; 正数集合:{4.3,24,35⎛⎫-- ⎪⎝⎭,…}; 负数集合:{-3.8,-20%,207--,23-,…}. 21.答案:(1)5120;5140;5544由题意可得,在A 店铺购买8条被子,需支付810000.80.85120⨯⨯⨯=(元). 在B 店铺购买8条被子,需支付810000.85085016605140⨯⨯-⨯-⨯-=(元).48.910⨯在C 店铺购买8条被子,年后全部付清共用去11[810000.88100][810000.88100](12%)554422⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯-=(元). 故答案为5120,5140,5544.(2)由题意可得,在A 店铺购买a 条被子,需支付10000.80.8640a a ⨯⨯=(元). 在B 店铺购买a 条被子,需支付10000.85050260(65060)a a a a ⨯--⨯-=-(元). 当010a <<时,在C 店铺购买a 条被子,至一年后全部付清共用去:1[10000.8100](112%)6932a a a ⨯-⨯⨯+-=(元); 当10a ≥时,在C 店铺购买a 条被子,一年后全部付清共用去1[10000.8160](112%)633.62a a a ⨯-⨯⨯+-=(元). 22.答案:莉莉的化简过程不正确.正确的化简过程:原式()22232224a a ab a ab =--++22223442834a a ab a ab a ab =-+--=--.23.答案:(1)原式358471246⎛⎫=---+⨯ ⎪⎝⎭ 3584121271246=+⨯+⨯-⨯ 8491084=++-19=.(2)原式131392424249468⎛⎫=-⨯+-⨯+⨯-⨯ ⎪⎝⎭11849=--+-24=-.24.答案:(1)()()22368652x x x x ++-++22236865226x x x x x =++---=-+.(2)()()2268652x x x x ++-++=2268652x x x x ++---=(25)6x -+.该题标准答案的结果是常数,∴50-=,∴5=.25.答案:(1)因为22(,)2f a b a ab b =-+,所以22(,)2f b a b ab a =-+,所以(,)(,)f a b f b a =,故22(,)2f a b a ab b =-+是“对称多项式”.(2)(,)f a b a b =+(答案不唯一).(3)不一定.举例:1(,)f a b a b =+,2(,)f b a a b =--,都是“对称多项式”,而12(,)(,)0f a b f a b +=,是单项式,不是多项式.所以12(,)(,)f a b f a b +不一定是对称多项式(举例不唯一).26.答案:因为23(5)|2|05x m -+-=,所以5x =,2m =. 因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =. 所以()()222223639x xy y m x xy y -+--+()()2222236239x xy y x xy y =-+--+2222222366218412x xy y x xy y x xy y =-+-+-=---.因为5x =,,所以原式224552122158=-⨯-⨯-⨯=-.2y =。
人教版七年级上学期期中考试数学试卷及答案(共7套)
人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。
2024-2025学年人教版(2024)七年级数学上册期中测试卷
2024-2025学年人教版(2024)七年级数学上册期中测试卷1.某品牌酸奶外包装上标明“净含量:”.随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量190195203200A.原味B.草莓味C.香草味D.巧克力味2.的相反数是()A.B.C.D.3.绝对值大于且小于的所有负整数的和为()A.B.C.D.4.下列说法:①若m满足,则;②若,则;③若,则是正数;④若三个有理数a,b,c满足,则,其中正确的是有()个A.1B.2C.3D.45.如图所示的“杨辉三角”告诉了我们展开式的各项系数规律,如:第三行的三个数,恰好对应展开式中各项的系数;第四行的四个数恰好对应的系数.根据数表中前四行的数字所反映的规律计算:()A.B.C.D.6.计算机利用的是二进制数,它共有两个数码0,1.将一个十进制数转化为二进制,只需把该数写出若干个数的和,依次写出1或0即可.如为二进制下的五位数,则十进制1025是二进制下的()A.10位数B.11位数C.12位数D.13位数7.下列各式中,不是代数式的是()A.B.C.D.8.已知,,且,则的值为()A.1B.5C.1或5D.1或9.按下图所示的程序进行计算,若输入的数是4,则输出的数是()A.1B.C.D.10.如图,阶梯图的每个台阶上都标有一个数,数列呈现一定的符号变化规律和绝对值的变化规律,请计算()A.1013B.1011C.0D.以上都不对11.气象台记录了某地一周七天的气温变化情况(如下表).星期一二三四五六日气温变化其中正数表示这天与前一天相比气温上升的温度,负数表示这天与前一天相比气温下降的温度.已知上周日的气温是,根据表中数据,请你判断该地本周最低气温是_____.12.定义一种新运算:对于任意实数、,满足,当,时,的最大值为______.13.已知一个数减去2.4的差的绝对值为0,那么这个数是______.14.若规定运算,则______.15.若,则的值是_________.16.丽丽写了一个三位数,个位上的数是最小的质数,十位上的数是最小的合数,且这个三位数是3的倍数,这个数最大是_________.17.明明用500元去买篮球,每个篮球a元.若他买了6个篮球,还剩_____元;若,买6个篮球还剩_______元.18.如图是一个计算程序,若输入a的值为,则输出的结果________.19.计算:(1);(2)20.先化简,再求值:,其中,.21.已知x是最大的负整数的相反数,a是的倒数,b的绝对值是2,且.求的值.22.已知互为相反数,互为倒数,,求的值.23.将如图所示的长为,宽为,高为的大理石运往某地用以建设革命历史博物馆.(1)求每块大理石的体积;(结果用科学记数法表示)(2)如果一列火车总共运送了块大理石,共约重千克,求每块大理石约重多少千克?(结果用科学记数法表示)24.外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“”,低于40单的部分记为“”,如表是该外卖小哥一周的送餐量:星期一二三四五六日选餐量(单位:单)(1)送餐最多的一天比送餐最少的一天多送______单;(2)求该外卖小哥这一周平均每天送餐多少单?(3)外卖小哥每天的工资由底薪40元加上送单补贴构成.送单补贴的方案如下:每天送餐量不超过40单的部分,每单补贴4元;超过40单的部分,每单补贴8元.求该外卖小哥这一周工资收入多少元?25.【阅读理解】整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,把某些式子或图形看成一个整体,进行整体处理.它作为一种思想方法在数学学习中有广泛的应用,因为一些问题按常规不容易求某一个(或多个)未知量时,根据题目的结构特征,把某一组数或某一个代数式看作一个整体,找出整体与局部的联系,从而找到解决问题的新途径.例如,求的值,我们将作为一个整体代入,则原式.【教材原题】如图,若,求长方形A与B的面积差.【尝试应用】当时,代数式的值为m,当时,求代数式的值;(用含m的代数式表示)【拓展应用】A,B两地相距60千米,某日,甲从A地出发前往B地,同时,乙从B地出发前往A地.已知甲每小时行a千米,乙每小时行b千米,经过2小时,甲、乙二人相遇.直接写出甲、乙两人相距20千米的时间.26.【概念学习】定义新运算:求若干个相同的有理数(均不等于)的商的运算叫做除方.比加,等,类比有理数的乘方,我们把写作,读作“的圈次方”,写作,读作“的圈次方”.一般地,把记作:,读作“的圈次方”.特别地,规定:.【初步探究】(1)直接写出计算结果:;;(2)若为任意正整数,下列关于除方的说法中,正确的有;(横线上填写序号)A.任何非零数的圈次方都等于B.任何非零数的圈次方都等于它的倒数C.圈次方等于它本身的数是或D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数E.互为相反数的两个数的圈次方互为相反数F.互为倒数的两个数的圈次方互为倒数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:;(4)计算:.。
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个整数的积都是整数。
()3. 任何两个无理数的积都是无理数。
()4. 任何两个实数的和都是实数。
()5. 任何两个实数的积都是实数。
()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。
2. 两个整数的积是______数。
3. 两个无理数的积是______数。
4. 两个实数的和是______数。
5. 两个实数的积是______数。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明整数的定义。
3. 请简要说明无理数的定义。
4. 请简要说明实数的定义。
5. 请简要说明有理数和无理数的区别。
五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。
2. 请分析并解释为什么π是无理数。
七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。
人教版数学初一上学期期中试卷及答案指导(2024-2025学年)
2024-2025学年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、计算下列算式的结果:(3×(4+5)−7)A. 17B. 18C. 19D. 202、已知线段AB的长度为6cm,点C在线段AB上,且AC的长度为AB长度的一半,则BC的长度是多少?A. 2cmB. 3cmC. 4cmD. 5cm3、小华买了一支铅笔和一支橡皮,一共花了5.6元。
已知铅笔的价格是橡皮的3倍,那么橡皮的价格是多少元?选项:A、1.2元B、1.8元D、3.6元4、一个长方形的长是宽的2倍,如果长方形的长和宽各增加5cm,那么长方形的面积将增加多少平方厘米?选项:A、25cm²B、30cm²C、40cm²D、50cm²5、已知一个正方形的边长为(3)厘米,如果将这个正方形的边长增加(2)厘米,那么新的正方形面积增加了多少平方厘米?A.(10)B.(12)C.(14)D.(16)6、如果一个等腰三角形的底边长度为(8)厘米,底角各为(70∘),那么这个等腰三角形的顶角是多少度?A.(20∘)B.(30∘)C.(40∘)D.(50∘)7、一个长方形的长是12cm,宽是5cm,那么它的周长是多少平方厘米?B、60cmC、30cm²D、50cm²8、一个正方形的对角线长度是10cm,那么这个正方形的面积是多少平方厘米?A、50cm²B、100cm²C、25cm²D、20cm²9、下列哪一个等式展示了分配律的应用?A、(3×(4+5)=3×4+3×5)B、(3+(4+5)=(3+4)+5)C、(3×4×5=5×4×3)D、(3+4+5=4+5+3) 10、如果一个正方形的边长增加3厘米,则它的面积增加了多少平方厘米?假设原正方形边长为x厘米。
2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
2024-2025学年期中测试卷 七年级上册数学 人教版(2024)(第1~4章)
2024-2025学年期中测试卷七年级上册数学人教版(2024)(第1~4章)1.多项式的次数是()A .4B .5C .6D .92.“个3相加”可以用代数式表示为()A.B.C.D .3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A .B.C.D .4.下列说法中,正确的是()A.2与互为倒数B.2与互为相反数C .0的相反数是0D .2的绝对值是5.若x 是3的相反数,,则的值为()A.B.C .或D .5或16.老师在黑板写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,形式如图:,则所捂的二次三项式为()A.B.C .D.7.下列式子中,成立的是()A.B.C .D .8.有理数m、n 在数轴上的对应点如图所示,则下列各式子正确的是().A.B.C .D .9.有一个数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,依次继续下去,第2025次输出的结果是()A.1B.2C.4D.810.如图1,将一个边长为m的正方形纸片剪去两个小长方形,得到一个“S”图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为()A.B.C.D.11.下列书写:①;②;③;④;⑤;⑥千克中,正确的是:______.(填写序号即可)12.数轴上到的距离是3的数是________.13.黄河是中华民族的母亲河,发源于巴颜喀拉山北麓,注入渤海,长度约为5464000米,将数据5464000用科学记数法表示为______.14.已知两个单项式与是同类项,则的值是_____________.15.当时,整式的值为2023,则当时,整式的值为______.16.如图,在数轴上,点表示1,现将点沿数轴做如下移动:第一次将点向左移动3个单位长度到达点,第2次将点向右平移6个单位长度到达点,第3次将点向左移动9个单位长度到达点则第6次移动到点;按照这种规律移动下去,至少移动________次后该点到原点的距离不小于41.17.用数轴上的点表示下列各数,并按照由小到大的顺序用“”号把它们连接起来:,,,0,.18.计算(1);(2).19.先化简下式,再求值:,其中,.20.已知互为倒数,互为相反数,.(1)根据已知条件回答:______,______,______;(2)求的值.21.(1)已知,小明在计算时,误将其按计算,结果得到.求多项式,并计算出的正确结果.(2)已知,.若多项式的值与字母的取值无关,求、的值.22.某电器商销售一种微波炉和电磁炉,微波炉每台定价元,电磁炉每台定价元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁妒都按定价的付款.现某客户要到该卖场购买微波炉2台,电磁炉台.(1)若该客户按方案一购买,需付款_________元.(用含的代数式表示),若该客户按方案二购买,需付款_________元.(用含的代数式表示)(2)若时,通过计算说明此时按哪种方案购买较为合算?23.探究活动:(1)将图①中阴影部分裁剪下来,重新拼成图②一个长方形,则图②长方形的长表示为______,宽为______.(2)则图②中阴影部分周长表示为______知识应用:运用(2)题你得到的代数式解决以下问题(3)计算:已知,则阴影部分周长是多少?24.数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合,研究数轴我们发现了很多重要的规律,如果数轴上点、在数轴上分别表示有理数、,那么、两点之间的距离表示为.例如数轴上表示4和的两点之间的距离可表示为.(1)如图,已知数轴上点A表示的数为,点B表示数为2,则线段的长度是______.(2)x表示任意一个有理数,利用数轴回答下列问题:若,则________;的最小值是________.(3)如图,一条笔直的高速公路边有四个村庄A、B、C、D和某乡镇O,四个村庄A、B、C、D分别位于某乡镇O左侧,左侧,右侧,右侧.现需要在该公路边上建一个便民服务点P,那么这个便民服务点P建在何处,才能使服务点P到四个村庄A、B、C、D总路程最短?最短路程是多少?试说明理由.。
2024年最新人教版初一数学(上册)期中试卷及答案(各版本)
2024年最新人教版初一数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. (a + b) × cB. a + b × cC. a ÷ b + cD. a +b ÷ c5. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 梯形D. 圆形二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 任何两个偶数之和都是偶数。
()3. 任何两个奇数之积都是奇数。
()4. 任何两个偶数之积都是偶数。
()5. 任何两个相同的数之积都是偶数。
()三、填空题5道(每题1分,共5分)1. 任何数与0相乘的积都是______。
2. 任何数与1相乘的积都是______。
3. 任何数与1相乘的积都是______。
4. 任何数与0相加的和都是______。
5. 任何数与1相加的和都是______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述整数的定义。
3. 请简述分数的定义。
4. 请简述小数的定义。
5. 请简述实数的定义。
五、应用题:5道(每题2分,共10分)1. 计算下列各式的值:(1) 3 × (4 + 2) 5 ÷ 1(2) (6 3) × (2 + 1)(3) 2 × (3 + 4) ÷ 2 1(4) (7 + 2) ÷ (3 1)(5) 4 × (5 2) + 3 ÷ 12. 解下列方程:(1) 3x 4 = 11(2) 2x + 5 = 9(3) 5x 7 = 8(4) 4x + 3 = 19(5) 6x 9 = 33. 解下列不等式:(1) 3x 4 > 7(2) 2x + 5 < 9(3) 5x 7 ≥ 8(4) 4x + 3 ≤ 19(5) 6x 9 ≠ 34. 已知一个正方形的边长为a,求它的面积和周长。
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1. 2023的倒数是 ( )A. - 2023B. 2023C.12023D.−12023【答案】C2. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃【答案】B3. 下列各式中,与3x²y³是同类项的是( )A. 6x⁵B.3x³y²C.−12x2y3D.−14x5【答案】C4.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为( )A.4×10⁵B.4×10⁶C.40×10⁴D.0.4×10⁶【答案】A5. 下列是根据等式的性质进行变形,正确的是 ( )A. 若x=y, 则x+5=y-5B. 若a-x=b+x, 则a=bC. 若 ax= ay, 则x=yD. 若x2=y2,则x=y【答案】D6. 下列各式正确的是 ( )A. - |-5|=5B. - (-5)=-5C. |-5|=-5D. - (-5)=5【答案】D7. 下列说法错误的是( )A.2x²−3xy−1是二次三项式B. - x+1的项是-x、 1C.−x²y的系数是-1D.−2ab²是二次单项式【答案】D8. 已知有理数a,b在数轴上对应的点的位置如图所示,则下列结论正确的是( )A. b>a>0B. b>0>aC. a+b>0D. a-b>0【答案】B9. 解方程x+14=x−5x−112时,去分母正确的是( )A.3 (x+1)=x - (5x-1)B.3 (x+1)=12x-5x-1C.3 (x+1)=12x - (5x-1)D.3x+1=12x-5x+1【答案】C10. 已知整数a₁, a₂, a₃, a₄, 满足下列条件:a₁=0,a₂=−|a₁+1|,a₃=−|a₂+2|,a₄=−|a₃+3|,依此类推, 则a₁₀₀₁的值为( )A. - 500B. - 501C. - 1000D. - 1001【答案】A二、填空题(本题共6小题,每小题3分,共18分)11. 点A在数轴上的位置如图所示,则点A 表示的数的相反数是 .【答案】-212. 比较大小:−65¯−34(填“>” 、“<” 或“=” ).【答案】<13. 已知关于x的方程 mx+2=x的解是x=6, 则m的值为 .【答案】2 314. 已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2−a+b2024+x=¯.【答案】215. 若2m--n=2, 则代数式6+4m-2n 值为 .【答案】1016. 如图所示为一个数值运算程序,当输入大于1的正整数x时,输出的结果为8,则输入的x值为【答案】2或3##3或2三、解答题(本题共9个小题, 第17、18、19题每题6分, 第20、21题每题8分, 第22、23每题9分, 第24、25每题10分, 共72分)17. 计算: −1²⁰²³+(−2)³×5−(−28)÷4+|−2|.【详解】原式=-1-40+7+2,=-32.18. 解方程:(1) 3(x-3)=x+1(2)x+24−2x−36=2【详解】(1) 解: 3x-9=x+1,3x-x=9+1,2x=10,x=5;(2) 解:3(x+2)−2(2x−3)=24,3x+6−4x+6=24,−x=12,x=−12.19. 先化简, 再求值:3y²−x²+2(2x²−3xy)−3(x²+y²)的值,其中.x=2,y=−3.【详解】解:3y²−x²+2(2x²−3xy)−3(x²+y²)=3y²−x²+4x²−6xy−3x²−3y²=−6xy:当x=2,y=−3时,原式:=−6×2×(−3)=36.20. 已知关于x的多项式2mx³−2x²+3x−(2x³+nx)不含三次项和一次项,求((m−n)³的值.【详解】解:2mx³−2x²+3x−(2x³+nx)=2mx³−2x²+3x−2x³−nx=(2m−2)x³−2x²+(3−n)x,由题意,得:2m−2=0,3−n=0所以m=1, n=3.则(m−n)³=(−2)³=−8.21. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过(1) 该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2) 求该外卖小哥这一周总共送餐多少单?【小问1详解】14−(−8)=14+8=22 (单),即该外卖小哥这一周送餐量最多的一天比最少的一天多22单;【小问2详解】50×7+(−3+4−5+14−8+7+10)=350+19=369369 (单),即该外卖小哥这一周一共送餐369单.22. 如图所示:已知a,b,c在数轴上的位置(1) 化简:|a+b|−|c−b|+|b−a|(2) 若a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,求−a+2b+c−(a+b−c)的值.【小问1详解】解: 由数轴可得: c<b<0<a,∴a+b>0,c-b<0,b-a<0,∴原式=a+b+c-b-b+a=2a-b+c.【小问2详解】∵a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,c<0,∴a=2,b=-1,c=-2,∴-a+2b+c-(a+b-c)=-a+2b+c-a-b+c=-2a+b+2c=-4-1-4=-9.23. 已知A=2a²−a−ab,B=a²−b+ab.(1) 化简A-2B;(2) 若A-2B的值与a的取值无关, 求A-2B的值.【小问1详解】解: A-2B=(2a²−a−ab)−2(a²−b+ab)=2a²−a−ab−2a²+2b−2ab=-a+2b-3ab;【小问2详解】解: 由(1) 得:A−2B=−a+2b−3ab=(−1−3b)a+2b,∵A-2B的值与a的取值无关,∴--1-3b=0,,解得:b=−13∴A−2B=2b=−2324. 如图,在数轴上点A表示数a,点B表示数b,且(a+5)²+|b−16|=0.(1) 填空:a=;(2) 若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3) 若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD -5AD的值始终是一个定值,求此时m的值.【小问1详解】解:∵(a+5)²+|b−16|=0,∴a+5=0,b−16=0,∴a=−5,b=16,故答案为: - 5, 16:【小问2详解】解:设点C在数轴上表示的数为x,①点C在点A的左侧时,∵AC=−5−x,BC=16−x,AC+BC=29。
河南省安阳市2023-2024学年七年级上学期期中教学质量检测数学试卷(含答案)
2023-2024学年第一学期期中教学质量检测七年级数学(A)(人教版)1~2章注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.答卷前请将装订线内的项目填写清楚。
一二三总分等级题号1~1011~151617181920212223分数一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.的绝对值是()A.B.C.D.20242.2023年10月,河南安阳红旗渠机场实现通航,设计满足年旅客吞吐量550000人次,对促进安阳及周边地区经济和社会发展具有重要意义.将数据“550000”用科学记数法表示为()A.B.C.D.3.向南走,记为走,那么走,表示()A.向南走B.向南走C.向北走D.向北走4.数轴上表示数的点和数的点的距离是()A.B.2C.D.45.用四舍五入法对2.604取近似值,精确到0.01的结果是()A.2.6B.2.61C.2.600D.2.606.整式的系数和次数分别是()A.B.C.D.2,67.下列运算正确的是()A.B.C.D.8.下面计算正确的是()A.B.C.D.9.有理数在数轴上的对应点的位置如图所示,下列各式结果最大的是()A.B.C.D.10.如图,小李在某运动中,设定了每天的步数目标为8000步,该用目标线上方或下方的柱状图表示每天超过或少于目标数的步数,如3日,小李少于目标数500步,则从2日到5日这四天小李平均每天走()A.8260步B.8694步C.8010步D.8000步二、填空题(每小题3分,共15分)11.每个班级需要套桌椅,则3个班级共需______套桌椅.12.点在数轴上表示数,点向右移动4个单位长度得到点,则点表示的数为______.13.若的倒数是,则的相反数是______.14.整式的值是2,则的值是______.15.第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是,表示ICME-14的举办年份,则八进制数2024换算成十进制数是)______(注:).三、解答题(本大题共8个小题,共75分)16.(10分)下列式子中:(1)哪些是单项式?哪些是多项式?分别填入所属的圈中.单项式多项式(2)多项式中哪个次数最高?并写出该多项式的项.17.(9分)计算:(1);(2);(3).18.(9分)右面是某平台2023国庆期间河南热门景点前两名,在某个时间段内,共售出张龙门石窟门票和张少林寺门票.90元/张80元/张(1)在该时间段内,该平台这两种门票共售出多少元?(2)当时,该平台这两种门票共售出多少元?19.(9分)下面有四张卡片,其上分别写有相应的有理数.(1)求最大数与最小数的差.(2)若再添上一个有理数,使得五个有理数的和为0,求.20.(9分)已知式子.(1)当时,化简.(2)若的值与无关,求.21.(9分)延时课上,数学兴趣小组研究一道思考题,计算:.得出两种思路:思路1.思路2.所以.(1)思路1______(填“正确”或“错误”).(2)请你类比正确的思路计算:.22.(10分)灵宝苹果,河南省三门峡市灵宝市特产,全国农产品地理标志.现有16箱灵宝苹果,以每箱10千克为标准,超过标准的质量记作正数,不足标准的质量记作负数,称量记录如下:与标准质量的差(单位:千克)01 2.5箱数142324(1)这16箱苹果中,最重的一箱比最轻的一箱重______千克.(2)与标准质量相比,这16箱苹果总计超过或不足多少千克?(3)若以每千克20元的价格售出,求这16箱苹果一共可以卖多少元?23.(10分)如图两点之间相距3个单位长度,两点之间相距7个单位长度,点、在数轴上表示的数分别为.(1)若以为原点,求.(2)若以为原点,求.(3)现有一动点从点开始沿数轴的正方向运动到达点停止:(1)设点到两点的距离之和为,求的最小值;(2)设点到三点的距离之和为,直接写出的最大值与最小值.2023-2024学年第一学期期中教学质量检测七年级数学(A)(人教版)参考答案1-5 ABDBD6-10 BDDBA11.12.213.202314.15.104416.解:(1)单项式:2023多项式:(2)项:和17.解:(1)原式(2)原式(3)原式18.解:(1)(2)当时,代入可知:(元)19.解:(1);(2)这四个数的和是:,则根据相反数的意义,20.解:(1)当时,(2)若的值与无关,则令,即21.解:(1)错误;(2),所以.22.解:(1)5.5(2)(千克),答:不足1千克.(3)(元)解:(1)(2)(3)①当点在两点之间时,为定值,此时;当点在两点之间时,两点之间的距离大于,即大于3,故的最小值是3;②最大值17,最小值10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上学期数学期中考试试卷A卷
姓名:________ 班级:________ 成绩:________
考试须知:
1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
一、选择题 (共16题;共32分)
1. (2分) (2019九上·锦州期末) 如图,一个空心圆柱体,其左视图正确的是()
A .
B .
C .
D .
2. (2分)将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开()条棱.
A . 3
B . 5
C . 7
D . 9
3. (2分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()
A .
B .
C .
D .
4. (2分) (2018七上·江都期中) 下列说法中,正确的是()
A . 两个有理数的和一定大于每个加数
B . 3与-互为倒数
C . 0没有倒数也没有相反数
D . 绝对值最小的数是0
5. (2分)(2018·龙港模拟) 的相反数是()
A .
B . ﹣
C . ﹣
D .
6. (2分) (2018七上·长春期中) 在3,0,,这四个数中,最大的数是()
A . 3.
B . 0.
C . .
D . .
7. (2分) (2019七上·义乌月考) 下列四个数中,在-2到0之间的数是()
A . -3
B . -1
C . 1
D . 3
8. (2分) (2018八上·北京月考) 若x,y满足|x﹣3|+(y﹣6)2=0,则以x,y的值为两边长的等腰三角形的周长为()
A . 12
B . 14
C . 15
D . 12或15
9. (2分) (2018七上·康巴什期中) 如图所示,下列判断正确的是()
A . a+b>0
B . a﹣b>0
C . ab>0
D . |b|<|a|
10. (2分) (2018七上·灌阳期中) 已知|x-2 |+|y+ |=0,则xy=()
A .
B . 1
C . 0
D .
11. (2分) (2018七上·昌图期末) 下列说法正确的是()
A . 线段可以比较长短
B . 射线可以比较长短
C . 直线可以比较长短
D . 直线比射线长
12. (2分) (2019七上·香洲期末) 如图,某同学沿直线将三角形的一个角(阴影部分)剪掉后,发现剩下部分的周长比原三角形的周长小,能较好地解释这一现象的数学知识是()
A . 两点确定一条直线
B . 线段是直线的一部分
C . 经过一点有无数条直线
D . 两点之间,线段最短
13. (2分) (2019七下·海港期中) 下列命题是假命题的是()
A . 垂线段最短
B . 过一点有且只有一条直线与已知直线垂直
C . 两点确定一条直线
D . 过一点有且只有一条直线与已知直线平行
14. (2分)如图,∠AOC和∠BOD都是直角,如果∠AOB=140◦则∠DOC的度数是()
A . 30
B . 40
C . 50
D . 60
15. (2分)如果4张扑克按图1的形式摆放在桌面上,将其中一张旋转180°后,扑克的放置情况如图2所示,那么旋转的扑克从左起是()
A . 第一张
B . 第二张
C . 第三张
D . 第四张
16. (2分)如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n=()
A . n•180°
B . 2n•180°
C . (n﹣1)•180°
D . •180°
二、填空题 (共3题;共3分)
17. (1分) (2018七下·桂平期末) 如图,将直角三角形AOB绕点0旋转得到直角三角形COD,若∠AOB=90°,∠BOC=130°,则∠AOD的度数为________.
18. (1分)用一个长3cm宽2cm的长方形纸卷一个圆柱,则圆柱的侧面积为________,底面周长
为________.
19. (1分) (2016八上·六盘水期末) 计算; ; ;
的值,总结存在的规律,运用得到的规律可得: =________
(注:)
三、解答题 (共7题;共85分)
20. (15分) (2019七上·保山月考) 计算
(1)
(2)
(3)
(4)
21. (10分) (2018七上·南宁期中) 计算:
①9﹣(﹣11)+(﹣21)
②(﹣﹣)×24.
③﹣1+(﹣2)3+|﹣3|÷ ;
④﹣×[﹣32×(﹣)2﹣2].
22. (10分) (2018七上·酒泉期末) 如图,∠AOB=∠COD=900,OC平分∠AOB,∠BOD=3∠DOE.
(1)∠DOE的度数;
(2)试求∠COE的度数;
23. (15分) (2018七上·海淀月考) 在数轴上,动点A从原点O出发向负半轴匀速运动,同时动点B从原点O出发向正半轴匀速运动,动点B的速度是动点A的速度的两倍,经过5秒后A、B两点间的距离为15个单位长度,
(1)直接写出动点B的运动速度;
(2)若5秒后,动点A立即开始以原来的速度大小向正半轴运动,动点B继续按照原来的方式运动,问再经过多长时间OB=3OA(其中OB表示点B到原点的距离,OA表示点A到原点的距离)?
24. (5分) (2018七上·唐山期中) 织一种布100米用料18千克,用电80度,已知原料每吨22500元,每度电0.5元,现在织1米布的报酬是0.38元,问1米布的成本是多少元?
25. (15分) (2019七上·龙岗月考) 结合数轴与绝对值的知识回答下列问题:
(1)探究:
①数轴上表示5和2的两点之间的距离是________.
②数轴上表示−2和−6的两点之间的距离是________.
③数轴上表示−4和3的两点之间的距离是________.
(2)归纳:
一般的,数轴上表示数m和数n的两点之间的距离等于|m−n|.
应用:
如果表示数a和3的两点之间的距离是7,则可记为:|a−3|=7,那么a=________.
(3)若数轴上表示数a的点位于−4与3之间,求|a+4|+|a−3|的值.
26. (15分) (2017七上·济源期中) 已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题
(1)请直接写出a、b、c的值.a=________,b=________,c=________
(2) a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
参考答案一、选择题 (共16题;共32分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
二、填空题 (共3题;共3分) 17-1、
18-1、
19-1、
三、解答题 (共7题;共85分) 20-1、
20-2、
20-3、
20-4、
21-1、22-1、22-2、23-1、
23-2、24-1、
25-1、25-2、25-3、
26-1、26-2、26-3、。