制药工艺学重点

合集下载

制药工艺学复习

制药工艺学复习

制药工艺学复习1.制药工艺学是研究药物的工业生产过程的共性规律及其应用,包括制备原理、工艺路线、质量控制。

2.制药工艺研究的分类:实验室工艺研究(小试)(工艺路线选择与设计反应与产物合成的动力学及影响因素;质量控制标准与方法学)、中试放大研究(放大技术及其影响因素;工业化生产工艺研究与优化)和工业生产工艺研究(制定或修订生产工艺规程;工艺验证药品的安全有效生产制造)三个相互联系的阶段。

3.药物种类(按照制造技术):化学合成药物(synthetic drug);生物合成药物(biosynthetic drug);中药(traditional Chinese medicine)。

4.制药工艺过程分类(根据典型的药物生产过程):化学制药工艺(生产小分子量的化学合成药物为主,连续多步化学合成反应,然后分离纯化。

);生物技术制药工艺(生产分子量较大的蛋白质、核酸等及化学难以合成的或高成本的小分子量等生物合成药物,一步生物合成反应生成产物,随后生物分离纯化。

);中药制药工艺(生产中药,以提取、化工分离纯化多步单元操作组合为主。

);制剂工艺(生产最终的临床使用剂型,制剂专用设备(制剂工程技术)使原料药剂型化。

)。

5.化学药物合成可以分为全合成(由简单的化工原料经过一系列的化学合成和物理处理过程制得)和半合成(由已知的具有一定基本结构的天然产物经过化学结构改造和物理处理过程制得)两种。

6.化学制药工艺路线的设计方法:类型反应法、分子对称法、追溯求源法、模拟类推法。

追溯求源法中常见的切断部位:药物分子中C-N、C-S、C-O等碳-杂键的部位,通常是该分子的首先选择切断部位。

在C-C的切断时,通常选择与某些基团相邻或相近的部位作为切断部位,由于该基团的活化作用,是合成反应容易进行。

7.药物合成工艺路线的评价标准:理想工艺路线的特点:①化学合成途径简洁,即原辅材料转化为药物的路线要简短;②所需的原辅材料品种少且易得,并有足够数量的供应;③中间体容易提纯,质量符合要求,最好是多步反应连续操作;④反应在易于控制的条件下进行,如安全、无毒;⑤设备条件要求不苛刻;⑥“三废”少且易于治理;⑦操作简便,经分离、纯化易达到药用标准;⑧收率最佳、成本最低、经济效益最好。

制药工艺学知识点总结(药物化学)

制药工艺学知识点总结(药物化学)

制药工艺学知识点总结设计药物合成路线的方法:类型反应法、分子对称法、逐步综合法、追溯求源法(逆合成分析法)逆合成习题杂环章节①②③Hantzsch 吡啶合成法二、书本重要反应1. P15益康唑(为上面的第1题)2.P16克霉唑3. P20普萘洛尔4. P29盐酸苯海索5. P36美托洛尔6. P41 三氟拉嗪7. P47克霉唑8. P51 呋喃丙胺(即为上面的第7题)9. P75 罗格列酮,吡格列酮10. P82 乙胺嘧啶名词解释1.硫酸脱水值(Dehydrating value of sulfuric acid, D. V. S.):混酸硝化反应终了时废酸中硫酸和水的比值。

D. V. S.=混酸中的硫酸(%)/废酸中的水量(%)2.绿色化学:又称环境友好化学,环境无害化学或清洁化学,是指涉及和生产没有或只有尽可能小的环境负作用并且在技术上和经济上可行的化学品和化学过程。

3.原子经济性:高效的有机合成应最大限度的利用原料分子中的每一个原子,使之结合到目标分子中以实现最低排放甚至零排放。

原子经济性可用原子利用率来衡量。

原子利用率:原子利用率%=(预期产物的分子量/全部反应物的分子量总和)×100%4.环境因子(E):E因子是以化工产品生产过程中产生的废物量的多少来衡量合成反应对环境造成的影响。

E-因子=废物的质量(kg)/预期产物的质量(kg)环境商(EQ):环境商(EQ)是以化工产品生产过程中产生的废物量的多少、物理和化学性质及其在环境中的毒性行为等综合评价指标来衡量合成反应对环境造成的影响。

EQ = E×Q 式中E为E-因子,Q为根据废物在环境中的行为所给出的对环境不友好度。

5.离子液体:室温离子液体简称离子液体,就是在温和的条件下,这种液体完全是由离子构成的。

6.TEBA:苄基三乙基氯化铵(CH3CH2)3N+CH2PhC-TBA:四丁基碘化铵(C4H9)4N+I-或者四丁基硫氢化铵(C4H9)4N+HSO4-18-冠醚-6(简写18-C-6)二苯基18-冠醚-6 二环己基18-冠醚-67.D/L:表示分子的构型,根据与参考化合物D-或L-甘油醛的构型的实验化学关联而确定,常用于氨基酸和糖类的命名,但最好还是使用R和S表示。

制药工艺学知识点总结高中

制药工艺学知识点总结高中

一、制药工艺学是指将原料药或中间体通过一系列的物理、化学、生物、药物配方、药物制备、包装和检验等技术过程,加工成符合药品注册批准文书要求的成品药的学科。

制药工艺学对药物生产的每一个环节都有着严格的要求,需要依靠科学合理的工艺流程和技术方法,确保生产出符合质量标准、安全有效的药品。

二、药物生产的工艺流程1.原料药的生产原料药生产是整个制药生产的基础,原料药的质量直接影响到成品药的质量。

原料药的生产包括原料药的合成、提纯、结晶、干燥等环节。

在原料药生产中,要特别注意反应条件的控制、反应过程的监控以及产品的提纯和析出等关键环节。

2.中间体的生产中间体在药物生产中起着至关重要的作用,它是原料药合成的核心环节。

中间体的生产工艺需要对合成路线、反应条件进行合理设计,并且要注意反应物的选择、反应条件的控制等方面。

3.成品药的制备成品药的制备是制药工艺学的最终环节,包括配方确定、制剂工艺的开发、生产工艺的设计、生产设备的选择等。

在成品药的制备过程中,需要重点关注药物的稳定性、溶解度、生物利用度等方面的问题。

三、药物生产中的质量控制1.原料药、中间体和成品药的质量控制药物的质量控制是制药工艺学的核心内容,包括对原料药、中间体和成品药的各个环节进行严格的质量控制。

需要对原辅料的质量、反应过程的控制、产品的纯度、含量、溶解度、稳定性等方面进行检验。

2.环境条件的质量控制药物生产过程中的环境条件对药物的质量有着直接的影响,因此需要对生产环境的洁净度、湿度、温度等条件进行严格的控制。

3.生产设备的质量控制生产设备对药物的质量也有着重要的影响,因此需要对生产设备进行定期检验和维护,确保设备的正常运转和质量稳定。

1.危险性品的防护在药物生产中会接触到一些危险性品,需要采取相应的防护措施,确保生产人员的安全。

2.工艺操作的安全控制药物生产工艺中的每一个环节都需要严格控制,确保操作的安全,防止事故的发生。

3.废物处理的安全控制废物处理对环境和人体健康都有着重要的影响,需要对废物处理进行严格控制,做到安全处理废物。

生物制药工艺学学习重点

生物制药工艺学学习重点

4、生物药物分类及每类药物的准确范畴(1)基因工程药物: 应用基因工程和蛋白质工程技术制造的重组活性多肽、蛋白质及其修饰物。

(2)基因药物: 以基因物质(RNA或DNA及其衍生物)作为治疗的物质基础,包括基因治疗用的重组目的DNA片段、重组疫苗、反义药物和核酶等(3)天然生物药物:①微生物药物:是一类特异的天然有机化合物,包括微生物的初级代谢产物、次级代谢产物和微生物结构物质,还包括借助微生物转化产生的药物或中间体。

如:抗生素、酶抑制剂、免疫抑制剂。

②生化药物:指从生物体(动物、植物、和微生物)中获得的天然存在的生化活性物质(或者合成、半合成的天然物质类似物),其有效成分和化学本质多数比较清楚,通常按其化学本质和药理作用分类命名。

(4)医学生物制品:用微生物(包括细菌、噬菌体、立克次体、病毒等)、微生物代谢产物、动物毒素、人或动物的血液或组织等加工制成的预防、治疗和诊断特定传染病或其它有关疾病的免疫制剂,主要指菌苗、疫苗、毒素、应变原与血液制品等。

1、凝聚作用和絮凝作用的原理各是什么?凝聚作用:指在某些电解质作用下,使胶体粒子的扩散双电层的排斥电位降低,破坏了胶体系统的分散状态,而使胶体粒子聚集的过程。

絮凝作用:当往胶体悬浮液中加入絮凝剂时,胶粒可强烈吸附在絮凝剂表面的功能团上,而且一个高分子聚合物的许多链节分别吸附在不同的颗粒的表面上,形成架桥联接,形成粗大的絮凝团沉淀出来,有助于过滤。

1.掌握萃取与反萃取,分配系数与分配比,萃取比和萃取率,分离因素的概念。

(1)萃取:料液与萃取剂接触后,料液中的溶质向萃取剂转移的过程(2)反萃取:将萃取液与反萃取剂(含无机酸或碱的水溶液或水)相接触,使某种被萃入有机相的溶质转入水相的过程。

(3)分配定律:一定温度、一定压力下,某一溶质在互不相溶的两种溶剂间分配时,达到平衡后;在两相中的活度之比为一常数,如果是稀溶液,可以用浓度代替活度,即:K 称为分配系数。

制药工艺学知识点总结初中

制药工艺学知识点总结初中

制药工艺学知识点总结初中一、制药工艺学的概念制药工艺学是指将药物原料经过一定的物理、化学和生物方法处理,制备成满足药用要求的药品的过程。

它是现代药物工业生产中的重要环节,是药品生产中最基础、最核心的环节之一。

二、制药工艺学的主要内容1. 药物原料的提取和精制药物原料一般来自于天然植物、动物或矿物,通过提取和精制,将其纯化为固体、液体或气体的药物原料。

2. 药物合成通过化学反应合成出具有特定治疗作用的药物。

包括有机合成、无机合成、生物合成等方法。

3. 药物制剂的生产工艺将药物原料或合成的药品与辅料按照一定的配方和工艺要求,制成适合于人或动物用药的物理状态和剂型。

4. 药品包装包装是药品生产中的重要环节,它不仅可以保护药品的安全性和稳定性,还可以方便药品的使用和储存,因此包装工艺也是制药工艺学中的重要内容之一。

5. 药品质量控制药品质量控制是制药工艺学中的核心内容之一,包括药品的理化性质、微生物检验、稳定性试验等。

6. 药品生产设备药品生产设备是实施药品生产工艺的主要条件之一,包括反应釜、干燥设备、填充设备、包装设备等。

7. 药品生产管理药品生产管理包括生产计划、生产过程监控、品质管理、安全管理等,它是保障药品生产质量和安全的重要环节。

三、制药工艺学的基本原理1. 质量原理质量是药品的生命,制药工艺学中的每个环节都要以质量为中心,保证药品质量的稳定性和可靠性。

2. 安全原理制药工艺学中的生产设备、工艺和工作人员都要遵循安全原则,确保生产过程的安全。

3. 经济原理制药工艺学中要尽可能地降低生产成本,提高生产效率,保证药品的合理价格。

4. 环保原理制药工艺学中的生产过程要符合环保要求,减少对环境的污染和破坏。

四、制药工艺学的发展方向1. 绿色制药随着环保意识的增强,绿色制药正逐渐成为制药工艺学的发展方向之一,通过绿色工艺和绿色原料,降低对环境的影响。

2. 智能制药智能制药借助先进的信息技术,实现药品生产过程的自动化、智能化,提高生产效率,减少生产成本。

制药工艺学重点

制药工艺学重点

名词解释第二章(1)工艺路线Technics route:A chemical synthetic drug can be synthesized through many routes, we often call the route with industrial production value as the technics route of the drug.一个化学合成药物往往可通过多种不同的合成途径制备,通常将具有工业生产价值的合成途径称为该药物的工艺路线。

(2)半合成semi synthesis:由具有一定基本结构的天然产物经化学结构改造和物理处理过程制得复杂化合物的过程。

(3)全合成total synthesis:以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得复杂化合物的过程。

(4)合成synthesis:是从原料出发,经过若干步反应,最后制备出产物,或目标物、目标分子(target molecule, TM)(5)合成子synthon:已切断的分子的各个组成单元,包括电正性、电负性和自由基形式。

(6)合成等价物synthetic equivalent:具有合成子功能的化学试剂,包括亲电物种和亲核物种两类。

第三章(1)Internal cause内因(物质的性能):It mainly refers to property of the matter, including atom combination condition, bond, structure, functional groups, etc, and its interaction. 主要指参与反应的分子中原子的结合态、键的性质、立体结构、功能基活性,各种原子和功能基之间的相互影响及理化性质等。

(2)External cause外因(反应条件):It mainly refers to reaction condition, including charge ratio, concentration and purity of reaction matter, feed order, reaction time, temperature反应时的配料比、温度、溶剂、催化剂、pH值、压强、反应时间、产物终点控制、产物后处理和设备状况等(3)反应物配料比:参加反应的各种物质间量的搭配关系,即反应物浓度。

制药工艺学资料

制药工艺学资料

制药工艺学复习资料名词解释1发酵制药:利用制药微生物的生长繁殖,通过发酵,代谢合成药物,然后从中分离提取,精制纯化,获得药品的过程。

2 干扰素:机体受到病毒感染时避免细胞产生的一组机构类似物,功能接近的细胞因子。

3 CHO:中国仓鼠、卵巢上皮样细胞系。

4 EPO:红细胞生成素。

5 前体:加入到发酵培养基中的某些化合物,被直接结合到目标产物分子中,而自身的结构无多大的变化。

6促进剂:促进产物生成的物质,但不是营养物,也不是前提的一类化合物。

7培养基:供微生物生长繁殖和代谢产物所需要的按一定比例配置的多种营养物的混合物。

8生长因子:维持微生物生长所必须的微量有机物质,不起碳源和氮源作用。

9消泡剂:降低泡沫的液膜强度和表面黏度,是泡沫破裂的化合物。

10 泡沫:气体分散在少量液体中,气体与液体之间被一层液膜隔开就形成了泡沫。

11发酵终点:最低成本获得最大生产能力的时间。

12 分批灭菌操作:配置好培养基输入发酵罐内,直接蒸汽加热,达到灭菌要求的温度和压力后持续一段时间,再冷却至佛教要求温度。

13 连续灭菌操作:培养基在发酵罐外经过一套灭菌设备连续的加热灭菌,冷却后送入已灭菌的发酵罐内的工艺过程。

14基因工程菌:微生物为操作对象,通过基因工程技术获得的表达的外源基因或过量或抑制表达自身基因的工程生物体。

15天然培养基:直接取自于动物组织提取液或体液作为培养基。

16 合成培养基:用化学成分明确的试剂配制的培养基。

17 无血清培养基:全部用已知成份组配,不加血清的合成培养基。

18生长基质:改变生长表面特性,促进细胞贴附的物质。

19 接触抑制:细胞在生长基质上分裂增殖,逐渐汇集成片,当每个细胞与其周围的细胞相。

互接触时,细胞就停止增殖。

20贴壁依赖性细胞:需要有适量带电荷固体或半固体支持表面才能生长的细胞。

21非贴壁依赖性细胞:不依赖固体支持物表面生长的细胞,可在培养液中悬浮生长。

22兼性贴壁依赖性细胞:对支持无的依赖性不严格,即可贴壁生长,也可悬浮生长。

化学制药工艺学复习参考资料

化学制药工艺学复习参考资料

化学制药工艺学复习参考资料第一节、绪论1、化学制药工业的特点:①品种多,更新速度快;②生产工艺复杂,需用原辅料繁多,而产量一般不大;③产品质量要求严格;④大多采用间歇式生产方式;⑤原辅材料和中间体不少是易燃、易爆、有毒性的;⑥“三废”多(废渣、废气、废液),且成分复杂,严重危害环境。

2、名词(清洁技术):用化学原理和工程技术来减少或消除造成环境污染的有害原辅材料、催化剂、溶剂、副产物;设计并采用更有效、更安全、对环境无害的生产工艺和技术。

3、清洁技术的目标:分离和再利用本来要排放的污染物,实现“零排放”的循环利用策略。

4、清洁技术当前研究内容:①原料的绿色化;②化学反应绿色化;③催化剂或溶剂的绿色化;④研究新合成的方法和新工艺路线。

5、名词(化学制药工艺学):药物开发和生产过程中,设计和研究经济、安全、高效的化学合成工艺路线的一门科学;也是研究工艺原理和工业生产过程,制定生产工艺规程,实现化学制药生产过程最优化的一门科学。

6、化学合成药物的生产工艺研究分为:实验室工艺研究、中试放大研究、工业生产工艺研究。

第二节、药物合成工艺路线的设计和选择1、名词(全合成):化学合成药物一般以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得,这种途径被称为全合成。

2、名词(半合成):具有一定结构的天然产物经化学结构改造和物理处理过程制得的。

3、IND:研究中新药。

4、(填空题):药物生产工艺路线是药物生产技术的基础和依据。

工艺路线的技术先进性和经济合理性,是衡量生产技术水平高低的尺度。

5、药物合成工艺路线设计,应从剖析药物的化学结构入手,然后根据其化学结构的特点采取相应的设计方法。

6、如何剖析药物的化学结构:①分清主要部分(主环)和次要部分(侧链),基本骨架与官能团;②研究分子中各部分的结合情况,找出易拆键的部位;③考虑骨架的组合方式,形成方法;④官能团的引入、转换和消除,官能团的保护与去保护等;⑤若为手型药物还需考虑手型中心的构建方法和整个工艺路线中的位置等问题。

制药工艺学重点整理

制药工艺学重点整理

制药工艺学重点整理第一章绪论一、化学合成药物生产得特点;1)品种多,更新快,生产工艺复杂;2)需要原辅材料繁多,而产量一般不太大;3)产品质量要求严格;4)基本采用间歇生产方式;5)其原辅材料与中间体不少就是易燃、易爆、有毒;6)三废多,且成分复杂。

二、GLP、GCP、GMP、GSP;◆GMP (Good Manufacturing Practice ):药品生产质量管理规范——生产◆GLP (Good Laboratory Practice ):实验室试验规范——研究◆GCP (Good Clinical Practice ):临床试用规范——临床◆GSP (Good Supply Practice):医药商品质量管理规范——流通◆GAP (Good Agricultural Practice):中药材种植管理规范三、药物传递系统(DDS)分类;◆缓释给药系统(sustained release drug deliverysystem,SR-DDS)◆控释给药系统(controlled release drug delivery system, CR-DDS )、◆靶向药物传递系统(tageting drug delivery system, T-DDS)、◆透皮给药系统(transdermal drug delivery system◆粘膜给药系统(mucosa drug delivery system)◆植入给药系统(implantable drug delivery system)第二章药物工艺路线得设计与选择四、药物工艺路线设计得主要方法;类型反应法、分子对称法、追溯求源法、模拟类推法、光学异构体拆分法;(名词解释) ◆类型反应法—指利用常见得典型有机化学反应与合成方法进行得合成设计。

主要包括各类有机化合物得通用合成方法,功能基得形成、转换,保护得合成反应单元。

对于有明显类型结构特点以及功能基特点得化合物,可采用此种方法进行设计。

制药工艺学复习重点

制药工艺学复习重点

名词解释:一.①半合成:由具有一定基本结构的天然产物经化学结构改造和物理处理过程制得复杂化合物的过程。

②全合成:以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得复杂化合物的过程。

二.①基元反应:反应物分子在碰撞中一步直接转化为生物分子的反应。

②非基元反应:反应物分子经过若干步,即若干个基元反应才能转化为生成物的反应。

三.①简单反应:由一个基元反应组成的化学反应。

②复杂反应:由两个以上基元反应组成的化学反应,又可分为可逆反应、平行反应和连续反应。

四.①生化需氧量(BOD):是指在一定条件下微生物分解水中有机物时所需的氧量。

②化学需氧量(COD):是指在一定条件下用强氧化剂使污染物氧化所消耗的氧量,单位mg/L. 五.①临界菌体浓度:是氧传递速率随菌体浓度变化曲线和摄氧速率随菌体浓度变化曲线的交叉点处的菌体浓度。

②临界氧浓度:是不影响呼吸或产物合成的最低溶解氧浓度。

一般在0.02到0.005m mol/L之间,发酵液的溶解氧浓度大于比浓度。

可能的简答题:一.反应浓度与配料比的确定:①可逆反应可采取增加反应物之一的浓度,或从反应系统中不断除去生成物之一的办法,以提高反应速度和增加产物的收率;②当反应生成物的生成量取决于反应液中某一反应物的浓度时,则增加其配料比。

最适合的配料比应是收率较高,同时又是单耗较低的某一范围内;③若反应中,有一反应不稳定,则可增加其用量,以保证有足够的量参与主反应;④当参与主、副反应的反应物不尽相同时,应利用这一差异,增加某一反应的用量,以增加主反应的竞争力。

二.温度对速率的影响:①反应速度随温度的升高而逐渐加快,他们之间是指数关系,这类反应最常见;②有爆炸极限的化学反应,反应开始时温度影响小,当达到一定温度极限时,反应即以爆炸速度进行;③温度不高时k随T的增高而加速,但达到某一高温以后,再生高温度,反应速度反而下降。

④温度升高,反应速度反而下降。

三.影响催化剂活性的因素:①温度:温度对催化剂活性影响较大,温度太低,催化剂的活性很小,反应速度很慢;②助催化剂:是一类能改善活性组分的催化性能的物质;③载体:在多数情况下,常常把催化剂负载于某种惰性物质上,这种惰性物质称为载体;④催化剂中毒:催化剂在使用过程中,因某些物理和化学作用破坏了催化剂原有的组织和构造,催化剂会降低或丧失活性,这种现象称为催化剂衰退或催化剂失活。

化学制药工艺学~重点

化学制药工艺学~重点

化学制药⼯艺学~重点化学制药⼯艺学:是药物研究开发过程中,与设计和研究先进、经济、安全、⾼效的化学药物合成⼯艺路线有关的⼀门学科,也是研究⼯艺原理和⼯业⽣产过程、制定⽣产⼯艺规程,实现化学制药⽣产过程最优化的⼀门科学。

化学合成药物:具有治疗、缓解、预防和诊断疾病,以及具有调节机体功能的有机化合物称作有机药物,其中采⽤化学合成⼿段,按全合成或半合成⽅法研制和⽣产的有机药物称为有机合成药物,也叫做化学合成药物。

全合成:由结构简单的化⼯原料经过⼀系列化学反应过程制成。

半合成:具有⼀定基础结构的天然产物经过结构改造⽽制成。

化学制药⼯业:利⽤基本化⼯原料和天然产物,通过化学合成,制备化学结构,确定具有治疗、诊断、预防疾病或调节改善机体功能等作⽤的化学品的产业。

NCEs新化学实体:新发现的具有特定⽣物活性的新化合物。

先导化合物:也成原型药,是通过各种途径和⼿段得到的具有某种⽣物活性的化学结构,具有特定药理活性,⽤于进⼀步的结构改造和修饰,是现代新药研究的前提。

⼿性药物:是指药物的分⼦结构中存在⼿性因素,⽽且由具有药理活性的⼿性化合物组成的药物,其中只含单⼀有效对映体或者以有效对映体为主。

中试放⼤:在实验室⼩规模⽣产⼯艺路线打通后,采⽤该⼯艺在模拟⽣化条件下进⾏的⼯艺研究,以验证放⼤⽣产后原⼯艺的可⾏性,保证研发和⽣产时的⼯艺⼀致性。

化学稳定性:催化剂能保持稳定的化学平衡和化学状态。

耐热稳定性:在反应条件下,能不因受热⽽破坏其理化性质,同时在⼀定温度内,能保持良好的稳定性。

机械稳定性:固体催化剂颗粒具有⾜够的抗摩擦、冲击重压和温度、相变引起的种种应⼒的能⼒。

外消旋混合物:当各个对映体的分⼦在晶体中对其相同种类的分⼦有较⼤亲和⼒时,那么只有⼀个(+)分⼦进⾏结晶,则将只有(+)分⼦在其上增长,(-)分⼦情况与此相同,每个晶核中只含有⼀种对映体结构。

外消旋化合物:当同种对映体之间⼒⼩于相反对映体的晶间⼒时,两种相反的对映体总是配对的结晶,即在每个晶核中包含两种对映体结构,形成计量学意义上的化合物,称为外消旋化合物。

制药工艺设计学考试重点

制药工艺设计学考试重点

第一章绪论√新药的定义是什么?《中华人民共和国药品管理法实施条例》规定的新药是指:未曾在中国境内上市销售的药品;未曾在中国境内生产过的药品;已生产过的药品,凡增加新的适应症、改变给药途径和改变剂型的都属新药。

举例说明有哪些新药研究开发途径①NCE,New Chemical Entity, 新化学实体,突破性新药研究开发。

②“me-too”模仿性新药创制,即在不侵犯别人知识产权的情况下,对新出现的、很成功的突破性新药进行较大的化学结构改造,寻求作用机理相同或相似,并具有某些优点的新化合物。

③已知药物的化学结构修饰以及单一对映体或异构体的研究和开发(延伸性研究开发)。

④应用生物技术开发新的生化药物。

⑤现有药物的药剂学研究开发。

⑥新技术路线和新工艺的研究开发。

√药物的临床研究分为几期,每期的研究内容是什么?《药物临床试验质量管理规范》(GCP)第Ⅰ期:在正常健康人体上进行,初步的临床药理学及人体安全性评价试验。

观察人体对于新药的耐受程度和药物代谢动力学,为制定给药方案提供依据。

第Ⅱ期:随机盲法对照临床试验。

对新药有效性及安全性作出初步评价,推荐临床给药剂量。

第Ⅲ期:扩大的多中心临床试验。

遵循随机对照原则,进一步评价有效性、安全性(新药试产后的安全性观察期) 。

第Ⅳ期:新药上市后监测。

在广泛使用条件下考察疗效和不良反应(注意罕见不良反应),评价在普通或者特殊人群中使用的利益与风险关系以及改进给药剂量等。

√什么是GMP, GLP,GCP,GSP?GMP (Good Manufacture Practice) 《药品生产质量管理规范》GLP (Good Laboratory Practice) 《药品非临床研究质量管理规范》 or 《实验室试验规范》GCP( Good Clinical Practice) 《药物临床试验质量管理规范》 or 《临床试用规范》GSP( Good Supply Practice ) 《药品经营质量管理规范》 or《医药商品质量管理规范》√GMP的中心指导思想是什么?任何药品质量形成是设计和生产出来的,而不是检验出来的。

制药工艺学复习

制药工艺学复习

一、名词解释1.工艺路线:一般情况下,一个化学合成药物往往可有多种合成途径。

具有工业生产价值的合成途径,称为药物的工艺路线或技术路线。

2.半合成:由已知具有一定基本结构的天然产物经化学改造和物理处理过程制得。

例:紫杉醇、头孢类抗生素。

3.全合成:化学合成药物一般由结构比较简单的化工原料经过一系列化学合成和物理处理过程制得。

例:磺胺嘧啶、阿司匹林。

4.类型反应法:指利用常见的典型有机化学反应与合成方法进行的合成设计。

主要包括各类有机化合物的通用合成方法,功能基的形成与转化的单元反应,人名反应等。

5.追溯求源法:从药物分子的化学结构出发,将其化学合成过程一步一步地逆向推导进行追溯寻源的方法,也称倒推法。

6.分子对称法:有许多具有分子对称性的药物可用分子中相同两个部分进行合成。

7.模拟类推法:对化学结构复杂的药物即合成路线不明显的各种化学结构只好揣测。

通过文献调研,改进他人尚不完善的概念来进行药物工艺路线设计。

可模拟类似化合物的合成方法。

故也称文献归纳法。

(注意:与文献中已有的路线对比,比较其差异。

)8.“一勺烩”工艺:在合成步骤改变中,若一个反应所用的溶剂和产生的副产物对下一步反应影响不大时,可将两步或几步反应按顺序,不经分离,在同一个反应罐中进行,习称“一勺烩”或“一锅合成”。

(one pot preparation)9.溶剂化效应:溶剂化效应指每一个溶解的分子或离子,被一层溶剂分子疏密程度不同地包围着的现象。

(这是溶质离子和溶剂偶极分子间相互作用的结果。

该过程形成离子与溶剂分子的络合物,并放出大量的热而降低位能。

溶剂化作用改变了溶剂和离子的结构。

)10.催化剂的活性:就是催化剂的催化能力,是评价催化剂好坏的重要指标。

在工业上,催化剂的活性常用单位时间内单位重量(或单位表面积)的催化剂在指定条件下所得的产品量来表示。

(催化剂的性能:催化剂的活性、选择性、稳定性)11.催化剂的选择性:就是催化剂对复杂反应有选择地发生催化作用的性能。

制药工艺学考点

制药工艺学考点

考试题型:1、单选题2、名词解释(专业术语)3、简答题(答重点就好)4、综合题(简单工艺、大的综述)第一章绪论1、制药产业链:从药物的研发到上市销售,要经历很多环节和过程,这就构成了制药产业链。

2、工艺过程:是由直接关联单元操作的次序与操作条件组成,包括化学合成反应或生物合成反应过程、分离纯化过程与质量控制。

3、辅助过程:包括基础设施的设计和布局、动力供应、原料供应、包装、储运、三废处理等。

4、制药工艺学:是研究药的工业生产过程的共性规律及其应用的一门学科,包括制备原理、工艺路线和质量控制。

5、化学制药工艺:是化学合成药物的生产工艺原理、工艺路线设计、选择和改造,在反应器内进行反应合成药物的过程。

生物制药工艺:是以生物体和生物反应过程为基础,依赖于生物机体或细胞的生长繁殖及其代谢过程,在反应器内进行生物反应合成过程,进而生产制造出商品化药物。

中药制药工艺:指以中医药理论为指导,根据中药处方,运用现代工业化生产将中药材饮片制成一定规格制剂的技术过程。

6、基因工程技术制药:是在体外通过重组DNA技术,对生物的遗传物质基因进行剪切、拼接、重新组合,与适宜的载体连接,构成完整的基因表达系统,然后导入宿主生物细胞内,与原有遗传物质整合或以质粒形式单独在细胞中繁殖,并表达活性蛋白质、多肽或核酸等药物。

7、制剂工艺:研究药物剂型、进行制剂的设计和制备技术的过程。

8:、全合成制药:是由简单的化工原料经过一系列的化学合成和物理处理,生产药物的过程。

半合成制药:是由已知的具有一定基本结构的天然产物经过化学结构改造和物理处理,生产药物的过程。

9、手性制药:利用手性化合物的不同对映异构体的不同的生物活性,开发出药效高、副作用小的药物。

10、PAT(processing analysis technology ):在线过程分析技术API (Active Pharmaceutical Ingredient) :原料药NCE:新化学实体(具有特定生物活性的新化合物)GMP:药品生产质量管理规范11、制药工艺学的研究内容:制药工艺学是综合应用化学、生物、机械设备与工程单元操作等课程的专业知识,深化理解并掌握工艺原理,充分考虑药品的特殊性,针对生产条件、所需环境等的具体要求,研究药物制造原理、生产技术、工艺路线与过程优化、工艺放大与质量控制,从而分析和解决药物生产过程的实际问题。

制药工程师考试备考——制药工艺学要点

制药工程师考试备考——制药工艺学要点

制药工程师考试备考——制药工艺学要点制药工程师考试备考是每位学习制药工程的学生都要面对的重要任务。

而制药工艺学作为制药工程的基础课程,是备考中必须重点掌握的内容之一。

本文将从制药工艺学的基本概念、主要内容和实践应用等方面,为大家总结制药工艺学的要点。

一、制药工艺学的基本概念制药工艺学是制药工程学科的核心内容之一,它研究的是药物的生产过程和药物生产中的各种工艺问题。

制药工艺学的研究对象包括药物的原料、生产工艺、设备和工艺控制等方面。

通过对药物的生产过程进行深入研究,制药工艺学可以为药物的生产提供科学依据,确保药物的质量和安全性。

二、制药工艺学的主要内容1. 药物的生产工艺药物的生产工艺是制药工艺学的核心内容之一。

它包括药物的合成方法、制剂工艺和包装工艺等方面。

药物的合成方法是指通过化学反应将原料转化为活性药物的过程。

制剂工艺则是指将活性药物与辅料进行混合、加工、制备成制剂的过程。

包装工艺则是指将制剂进行包装,以保证药物的质量和安全性。

2. 药物的原料药物的原料是制药工艺学的另一个重要内容。

药物的原料包括药物的活性成分和辅料等。

活性成分是指药物中具有治疗作用的成分,而辅料则是指用于制剂工艺中的辅助物质。

制药工艺学需要研究药物的原料来源、性质、质量要求等方面的问题,以确保药物的质量和疗效。

3. 工艺设备和工艺控制工艺设备和工艺控制是制药工艺学中不可忽视的内容。

工艺设备是指用于药物生产过程中的各种设备和仪器,它们对药物的生产效率和质量具有重要影响。

工艺控制则是指对药物生产过程进行监控和调控,以确保药物的质量和稳定性。

制药工艺学需要研究工艺设备的选择、设计和操作,以及工艺控制的方法和技术,以提高药物的生产效率和质量。

三、制药工艺学的实践应用制药工艺学的研究成果在制药工程实践中有着广泛的应用。

首先,制药工艺学可以为药物的生产提供科学依据,确保药物的质量和安全性。

其次,制药工艺学可以优化药物的生产工艺,提高生产效率和经济效益。

化学制药工艺学重点

化学制药工艺学重点

探秘化学制药工艺学:从原料到成品化学制药工艺学作为药物制备的核心科学,是将药品原料加工转化成成品药品的关键环节。

此过程中,需要经历众多的步骤和控制条件,方能保证产出的药品符合安全、有效、稳定的要求。

第一步:原料的筛选与采购制药工艺的第一步是选择适合的原料,并从可靠供应商采购。

其重要性在于不同的原料质量和来源会直接影响到后续的加工和质量控制,对于高要求的药品制剂来说,良好的原料选择会直接影响到制药的成败。

第二步:研磨与混合对于绝大多数的药品原料来说,需要经过粉碎和混合,以便于成品的均匀性和分散性。

而不同的原料材质和形状则需要不同的研磨机器和处理工艺,同时还需要在混合过程中控制不同物料的比例和搅拌时间以确保均匀性。

第三步:溶解与混合把已研磨和混合好的原料与溶剂相结合,形成药品溶液。

不同的原料组成和药品类型需要不同的溶解剂选择以及溶解剂和药品配比的控制。

同时在溶解和混合的过程中,需要控制温度和时长等参数,确保化学反应的进行和溶液的理化特征满足药品质量标准。

第四步:分离与萃取在混合后的药品溶液中,可能会存在多种不同的化合物和成分。

通过分离和萃取工艺,可以将目标成分和杂质分离出来。

分离的方法包括但不限于晶体分离、蒸馏分离、离子交换和色谱分离等。

第五步:纯化与干燥在分离和萃取过程中,可能会残留一些杂质和溶剂。

纯化工艺则是通过物理和化学方式,将药品成分提纯到达药品标准。

然后进行粉末和干燥等后续加工,以便于药品制剂的包装和保存。

综上所述,化学制药工艺学的重要性在于它将不同种类、不同质量的药品原料加工、提纯、分离、萃取,最终实现成品药品的标准化生产。

了解和掌握好这些步骤和技术,可以有效提高药品生产的效率和质量水平,进一步保障患者的健康和安全。

制药工艺学

制药工艺学

一判断题1. 对于尖顶型反应来说,反应条件要求苛刻,稍有变化就会使收率下降,副反应增多。

尖顶型反应往往与安全生产技术有关,三废防治、设备条件等密切相关。

2. 工业生产倾向采用平顶型反应工艺操作条件要求不甚严格,稍有差异也不至于严重影响产品质量和收率,可减轻操作人员的劳动强度。

3. 汇聚方式和直线方式两种装配方式4. 头孢菌素和青霉素是两类β内酰胺类抗生素β内酰胺环是该抗生素发挥生物活性的必须基团,可以开环发生酰化作用,干扰细菌的转肽酶,阻断其交联作用,使细菌不能合成细胞壁而破裂死亡,最终抑制细菌生长5. 头孢菌素与青霉素比较,过敏反应发生率低,药物间彼此不引起交叉过敏反应。

不是所有的微生物都可用于制药,只有药物产生菌才有可能进行工业化发酵,培养制备药物,另外,也可以利用微生物或产生的酶进行生物转化制药,与化学合成制药相结合,相辅相成实现制药。

6. 根据微生物的代谢产物类型,可把发酵分为初级代谢产物发酵,和次级代谢产物发酵。

前者应用于生产氨基酸,核苷酸,维生素,有机酸等。

后者应用于生产抗生素等产品.7. 动物细胞吸收谷氨酰胺后进入氨基酸代谢,经过脱氨转氨等作用合成其他非必须氨基酸,大多数谷氨酰胺通过脱氨生成谷氨酸,并释放氨。

8. 对于连续反应器,有两种理想的流动模型,一种是反应器内的流体在各个方向完全混合均匀称为全混流反应器,其主要特征是反应物加入到反应器中同时反映产物也离开反应器,并保持反应体积不变,其过程是一物系中组成不随时间改变的定态过程。

另一种则是通过反应器的所有物料以相同的方向速度向前推进,在流体流动方向上完全不混合,而在垂直于流体流动方向的截面上则完全混合,所有微元体在反应器所停留的时间都是相同的,这种流动模型称为平推流,活塞流或柱塞流反应器。

二名词解释题1.化学制药工艺:是化学合成药物的生产工艺原理、工艺路线的设计、选择和改造,在反应器内进行反应合成药物的过程。

2.化学全合成工艺:是由简单的化工原料经过一系列的化学合成和物理处理,生产药物的过程。

生物制药工艺学重点

生物制药工艺学重点
土、碳酸钙。
应用最广泛的是活性炭及大孔树脂吸附剂。
(二)活性炭的选择 活性炭是非极性吸附剂,在水溶液中吸附力 最强,在有机溶剂中吸附力较弱。
极性基团多>极性基团少; 芳香族>脂肪族; 分子量大>分子量小; 碱性→中性吸附,酸性解吸;酸性→中性吸
附,碱性解吸;
未达平衡前,吸附量随温度提高而增加。
(五)温度 一般在室温进行。
三、基本操作
(一)中性盐的选择
硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸
钠 (二) pH的选择
选择蛋白质等电点
(三)温度、时间的控制
尽可能在低温下操作 盐析后需要静臵一段时间,保证完全沉淀
(四)饱和度及其计算
饱和溶液的体积占混合溶液总体积的百分 数
有机溶剂沉淀法与盐析法比较: 有机溶剂易挥发,无残留; 沉淀物与母液间密度差较大,易分离; 容易使蛋白质变性;
成本高,溶剂易燃易爆。
第三节 其他沉淀法
一、等电点沉淀法
在等电点时水化膜被破坏,分子间引力增 加,溶解度降低。
二、高分子聚合物沉淀法 可使蛋白质水合作用减弱而发生沉淀
三、表面活性剂沉淀法
形成络合物 四、聚电解质沉淀法 絮凝剂 盐析和降低水化
五、不可逆的沉淀去除法
(一)金属离子沉淀法 (二)有机酸沉淀法 (三)其他
适用于少量乳浊液或乳化不严重的乳浊液。
吸附法破乳 利用吸附介质对油水吸附能力差异进行破乳。 碳酸钙或无水碳酸钠作为吸附剂。
高压电破乳
机理较复杂,破坏扩散双电层
加热
布朗运动加速,絮凝速度加快,降低黏度,聚 结速度加快,利于膜的破裂。 产物对热稳定。 稀释法
加入连续相,使乳化剂浓度降低而减轻乳化。
第二节 影响溶解能力的因素
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制药工艺学重点整理第一章绪论一、化学合成药物生产的特点;1)品种多,更新快,生产工艺复杂;2)需要原辅材料繁多,而产量一般不太大;3)产品质量要求严格;4)基本采用间歇生产方式;5)其原辅材料和中间体不少是易燃、易爆、有毒;6)三废多,且成分复杂。

二、GLP、GCP、GMP、GSP;◆GMP (Good Manufacturing Practice ):药品生产质量管理规范——生产◆GLP (Good Laboratory Practice ):实验室试验规范——研究◆GCP (Good Clinical Practice ):临床试用规范——临床◆GSP (Good Supply Practice):医药商品质量管理规范——流通◆GAP (Good Agricultural Practice):中药材种植管理规范三、药物传递系统(DDS)分类;◆缓释给药系统(sustained release drug deliverysystem,SR-DDS)◆控释给药系统(controlled release drug delivery system, CR-DDS )、◆靶向药物传递系统(tageting drug delivery system, T-DDS)、◆透皮给药系统(transdermal drug delivery system◆粘膜给药系统(mucosa drug delivery system)◆植入给药系统(implantable drug delivery system)第二章药物工艺路线的设计和选择四、药物工艺路线设计的主要方法;类型反应法、分子对称法、追溯求源法、模拟类推法、光学异构体拆分法;(名词解释)◆类型反应法—指利用常见的典型有机化学反应与合成方法进行的合成设计。

主要包括各类有机化合物的通用合成方法,功能基的形成、转换,保护的合成反应单元。

对于有明显类型结构特点以及功能基特点的化合物,可采用此种方法进行设计。

◆分子对称法—有许多具有分子对称性的药物可用分子中相同两个部分进行合成。

◆追溯求源法—从药物分子的化学结构出发,将其化学合成过程一步一步地逆向推导进行追溯寻源的方法,也称倒推法。

首先从药物合成的最后一个结合点考虑它的前驱物质是什么和用什么反应得到,如此继续追溯求源直到最后是可能的化工原料、中间体和其它易得的天然化合物为止。

药物分子中具有C-N,C—S,C—O等碳杂键的部位,是该分子的拆键部位,即其合成时的连接部位。

◆模拟类推法—对化学结构复杂的药物即合成路线不明显的各种化学结构只好揣测。

通过文献调研,改进他人尚不完善的概念来进行药物工艺路线设计。

可模拟类似化合物的合成方法。

故也称文献归纳法。

必需和已有的方法对比,并注意对比类似化学结构、化学活性的差异。

五、全合成、半合成;(名词解释)◆全合成-化学合成药物一般由结构比较简单的化工原料经过一系列化学合成和物理处理过程制得。

◆半合成—由已知具有一定基本结构的天然产物经化学改造和物理处理过程制得。

六、衡量生产技术高低的尺度;药物生产工艺路线的技术先进性和经济合理性,是衡量生产技术高低的尺度。

七、进行药物的化学结构整体及部位剖析的要点;在设计药物的合成路线时,首先应从剖析药物的化学结构入手,然后根据其结构特点,采取相应的设计方法。

◆对药物的化学结构进行整体及部位剖析时,应首先分清主环与侧链,基本骨架与功能基团,进而弄清这功能基以何种方式和位置同主环或基本骨架连接。

◆研究分子中各部分的结合情况,找出易拆键部位。

键易拆的部位也就是设计合成路线时的连接点以及与杂原子或极性功能基的连接部位。

◆考虑基本骨架的组合方式,形成方法;◆功能基的引入、变换、消除与保护;◆手性药物,需考虑手性拆分或不对称合成等。

八、外消旋体的一般性质;在化学药物合成中,若在完全没有手征性因素存在的分子中,则所得产物(或中间体)是由等量的左旋体(-)与右旋体(+)组成的外消旋体。

分为混合物、化合物、固溶体三类。

在晶态的情况下,对映体分子之间的晶间力的相互作用有明显的差异。

(+)分子对(+)分子的关系、(-)分子对(-)分子的关系、(-)分子对(+)分子的关系◆外消旋混合物:当各个对映体的分子在晶体中对其相同种类的分子具有较大的亲和力时,那么只要有一个(+)-分子进行结晶,则将只有(+)-分子在上面增长。

(-)-分子的情况相似。

◆外消旋化合物:当一个对映体的分子对其相反的对映体的分子比对其相同种类分子具有较大的亲和力时,相反的对映体即将在晶体的晶胞中配对,而形成在计量学意义上的真正的化合物。

◆外消旋固体溶液:在某些情况下,当一个外消旋体的相同构型的分子之间和相反构型分子之间的亲和力相差很小时,则此外消旋体所形成的固体,其分子的排列是混乱的。

于是得到的是外消旋固体溶液。

外消旋固体溶液与两个对映体在许多方面的性质都是相同的。

区分方法:加入纯的对映体1)熔点上升,则为外消旋混合物;2)熔点下降,则为外消旋化合物;3)熔点没有变化,作为外消旋固体溶液.❖外消旋混合物为各自独立存在的对映体,故可以利用对映体溶解度差异采取诱导结晶拆分法。

❖而外消旋化合物和外消旋固体溶液则为完全相同的一种晶体;因此对这两类消旋体,需要采取先形成非对映异构体,再进行拆分。

九、不对称合成:系指手征性分子或前手征性分子在形成新的手征性中心的反应过程中,占优势地生成某一立体构型产物,而其非对映异构体的生成量却很少。

第三章药物工艺路线的评价与选择十、药物合成工艺路线的装配方式:“直线方式”和“汇聚方式”(常用)十一、理想的药物工艺路线;①化学合成途径简洁,即原辅材料转化为药物的路线要简短;②所需的原辅材料品种少且易得,并有足够数量的供应;③中间体容易提纯,质量符合要求,最好是多步反应连续操作;④反应在易于控制的条件下进行,如安全、无毒;⑤设备条件要求不苛刻;⑥“三废”少且易于治理;⑦操作简便,经分离、纯化易达到药用标准;⑧收率最佳、成本最低、经济效益最好。

十二、相转移催化反应、常用的相转移催化剂,影响相转移催化的因素;相转移催化(PTC),它是有机合成中最引人瞩目的新技术。

在水-有机相两相反应中加入相转移催化剂,作用是使一种反应物由一相转移到另一相参加反应,促使一个可溶于有机溶剂的底物和一个不溶于此溶剂的离子型试剂两者之间发生反应。

常用的相转移催化剂可分为鎓盐类(由中心原子、中心原子上的取代基和负离子三部分组成,中心原子一般为P、N、As、S等原子。

适用于液-液和固-液体系,价廉、无毒。

常用的有TEBAC三乙基卞基氯化铵、TOMAC三辛基甲基氯化铵、四丁基硫酸氢铵)、冠醚类及非环多醚类三大类。

影响相转移催化反应的主要因素有:催化剂、搅拌速度、溶剂和水含量等1.催化剂1)分子量比较大的鎓盐比分子量小的鎓盐具有较好的催化效果。

2)具有一个长碳链的季铵盐,其碳链愈长,效果愈好。

3)对称的季铵离子比具有一个碳链的季铵离子的催化效果好,例如四丁基铵离子比三甲基十六烷基铵离子的催化效果好。

4)季磷盐的催化性能稍高于季铵盐,季磷盐的热稳定性也比相应的铵盐高。

5)含有芳基地铵盐不如烷基铵盐的催化效果好。

常用的有TEBAC三乙基卞基氯化铵TOMAC三辛基甲基氯化铵2.搅拌速度3.溶剂在固液相转移催化过程中,最常用的溶剂是苯、二氯甲烷、氯仿以及乙腈等。

乙腈可以成功用于固液相系统,却不能用于液液系统,因为它和水互溶。

在液液相转移系统中,即反应物为液体时,常用该液体作为有机相使用。

原则上许多有机溶剂都可以用,但是溶剂与水不互溶,以确保离子对不发生水合作用,即溶剂化。

十三、相转移催化反应历程;季铵盐在两相反应中的作用,是使水相中的负离子(Y-)与季铵盐正离子(Q+)结合生成离子对[Q+Y-],并有水相转移到有机相,在有机相中极迅速地与卤代烃作用生成RY和[Q+X-], 新形成的[Q+X-]回到水相,再与负离子Y-结合成离子对后转到有机相。

由于通常应用高亲脂性的催化剂,这样Q+在水相不以明显得浓度存在。

如Q+保留在有机相,而只是负离子通过界面进行交换,如下列的更为简单的历程。

十四、药物结构剖析的方法。

同进行药物的化学结构整体及部位剖析的要点;第四章药物工艺研究与优化十五、影响药物合成反应的7个因素;◆反应物浓度与配料比:参与反应的各物料相互间物质量的比例称为配料比。

通常物料以摩尔为单位,则称为投料的摩尔比。

生产上常使用重量为物料数量单位,其比例称为重量比。

◆溶剂:化学反应的介质、传热的介质◆催化:酸碱催化、金属催化、相转移催化、酶催化等,加速化学反应、缩短生产周期、提高产品的纯度和收率。

◆传热:药物合成工艺研究需要考察反应时的温度对反应的影响,选择合适的温度范围。

◆反应时间及反应终点的监控:适时地控制反应终点,可以确定反应的时间◆纯化技术:蒸馏、过滤、萃取、重结晶、吸附、膜分离等。

◆中间体的质量控制方法:所有中间体都必须制定相应的质量控制项目,并建立有效的质量分析方法。

十六、溶剂化作用及其对反应的影响;正是由于离子或极性分子处于极性溶剂中时,在溶质和溶剂分子之间,能发生溶剂化作用。

在溶剂化过程中,物质放出热量而降低位能。

溶剂化(水化),指每一个溶解的分子或离子,被一层溶剂分子疏密程度不同地包围着。

由于溶质离子对溶剂分子施加特别强的力,溶剂层的形成是溶质离子和溶剂分子间作用力的结果。

如果反应过渡状态(活化络合物)比反应物更容易发生溶剂化。

随着反应物或活化络合物位能下降(ΔH),反应活化能也降低,故反应加速,溶剂的极性越大,对反应越有利。

反之,如果反应物更容易发生溶剂化,则反应物的位能降低(ΔH),相当于活化能增高,于是反应速度降低。

十七、催化剂的定义及其作用形式;某一种物质在化学反应系统中能改变化学反应速度,而本身在化学反应前后化学性质没有变化,这种物质称之为催化剂。

正催化、负催化、自动催化作用机理1)催化剂能降低反应活化能,增大反应速度。

2)催化剂具有特殊的选择性。

十八、影响催化剂活性的因素;◆温度:温度对催化剂活性影响很大,温度太低时,催化剂的活性小,反应速度很慢,随着温度上升,反应速度逐渐增大,但达到最大反应速度后,又开始降低。

绝大多数催化剂都有活性温度范围。

◆助催化剂:在制备催化剂时,往往加入少量物质(<10%),这种物质对反应的活性很小,但却能显着提高催化剂活性、稳定性或选择性。

◆载体(担体):常把催化剂负载在某种惰性物质上,这种物质称为载体。

常用的载体活性碳、硅藻土等。

使用载体可以使催化剂分散,从而使有效面积增大,既可以提高其活性,又可以节约其用量。

同时还可以增加催化剂的机械强度,防止其活性组分在高温下发生熔结现象,影响催化剂的使用寿命。

◆毒化剂:对于催化剂的活性有抑制作用的物质,叫做毒化剂或催化抑制剂。

相关文档
最新文档