2019-2020年高中数学 圆锥曲线的共同性质教案 苏教版选修1-1

合集下载

2019-2020学年度最新高中数学苏教版选修1-1课件:2.5圆锥曲线的共同性质课件(23张)-优质PPT课件

2019-2020学年度最新高中数学苏教版选修1-1课件:2.5圆锥曲线的共同性质课件(23张)-优质PPT课件

c
a
解:由题意可得:
( x c)2 y2 c
a2 x
a
c
(a2-c2)x2+a2y2=a2(a2-c2)
即:(c2-a2)x2-a2y2=a2(c2-a2)
令c2-a2=b2,则上式化为:
x2 a2

y2 b2
1(a 0,b 0)
所以点P的轨迹是焦点为(-c,0),(c,0),实轴长、
令a2-c2=b2,则上式化为:
x2 a2

y2 b2
1(a
b
0)
所以点P的轨迹是焦点为(-c,0),(c,0),长轴长、 短轴长分别为2a,2b的椭圆.
变题:已知点P(x,y)到定点F(c,0)的距离与它到定直
线 l : x a2 的距离的比是常数 c (c>a>0),求P的
轨迹.
将其变形为:
你能解释这个式子的几何意义吗?
例1.已知点P(x,y)到定点F(c,0)的距离与它到定直
线 l : x a2 的距离的比是常数 c (a>c>0),求P的
轨迹.
c
a
解:由题意可得:
(x c)2 y2 c
a2 x
a
c
化简得 (a2-c2)x2+a2y2=a2(a2-c2)
1.已知点P到定点F(1,0)的距离与它到定直线x=5
的距离的比是常数 5 ,求P的轨迹方程.
5
2.已知点P到定点F(5,0)的距离与它到定直线x=
16
5
5
的距离的比是常数 4
,求P的轨迹方程.
x2 y2 1
16 9
在推导椭圆的标准方程时,我们曾得到这样 一个式子:

苏教版数学高二- 选修1-1教案 2.1 圆锥曲线

苏教版数学高二- 选修1-1教案 2.1 圆锥曲线

2.1圆锥曲线●三维目标1.知识与技能通过用平面截圆锥面,经历从具体情境中抽象出椭圆、双曲线、抛物线模型的过程,掌握椭圆、抛物线的定义,了解双曲线的定义,并能用数学符号或自然语言描述.2.过程与方法(1)通过用平面截圆锥面,体会圆锥曲线的形状及产生过程,归纳圆锥曲线的定义内涵,通过数形结合,由具体形象抽象出概念.(2)通过具体动点轨迹的判定过程,体会定义法求动点轨迹的方法.3.情感、态度与价值观通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们透过现象揭示事物内在本质的思维方式,提高他们认识事物的能力.●重点难点重点:椭圆、抛物线、双曲线的定义.难点:用数学符号或自然语言描述三种曲线的定义.教学时,应从回顾圆的定义入手,结合冷却塔、油罐车、探照灯等实例,激发学生的探究兴趣,通过平面按不同的角度截割圆锥曲面的动画效果,使学生生动的认识椭圆、抛物线、双曲线的形象,抽象出三种圆锥曲线的概念.●教学建议本节课作为圆锥曲线的起始课程,安排本章的开篇,本节课教材利用平面对圆锥面的不同截法,产生三种不同的圆锥曲线,得出椭圆、双曲线和抛物线的概念.这样既使学生经历概念的形成过程,更有利于从整体上认识三种圆锥曲线的内在关系.根据问题的难易度及学生的认知水平,要求学生掌握椭圆、抛物线的定义,对双曲线只要求了解其定义,这是建立在学生的最近发展区上的形式化的过程,有利于培养学生的数学化能力,提高数学素养.●教学流程回顾初中有关圆的概念,作为三种圆锥曲线定义的铺垫.⇒通过用平面去截圆锥面得到不同曲线的动画,展示圆锥曲线的产生过程,揭示圆锥曲线的定义内涵.⇒由形象到具体,由具体到抽象,抽象出圆锥曲线的定义,通过生活中的实例,理解概念实质,通过举反例,诠释概念内涵.⇒通过例1及变式训练,使学生掌握椭圆定义及应用,判别动点轨迹是否为椭圆,求椭圆上一点到焦点的距离.⇒通过例2及变式训练,使学生掌握双曲线定义及应用,判别动点轨迹是否为双曲线,求双曲线上一点到焦点的距离.⇒通过例3及变式训练,让学生掌握抛物线定义及应用,抛物线上任一点到焦点的距离等于到准线的距离,二者可以灵活转化.⇒通过易错易误辨析,体会双曲线定义的严谨性,以及双曲线图形的特殊性,严防思维的漏洞.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.掌握椭圆、抛物线的定义和几何图形.(重点、难点)2.了解双曲线的定义和几何图形.(重点)3.双曲线与椭圆定义的区别.(易混点)圆锥曲线1.平面中,到一个定点的距离为定值的点的轨迹是什么?【提示】圆.2.函数y=x2的图象是什么?【提示】开口向上的抛物线.3.用刀切火腿肠时,截面会有什么形状?【提示】圆、椭圆.1.用平面截圆锥面能得到的曲线图形是两条相交直线、圆、椭圆、双曲线、抛物线.2.设P为相应曲线上任意一点,常数为2a.定义(自然语言) 数学语言双曲线平面内到两个定点F1,F2距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的|PF1-PF2|=2a<F1F2焦距抛物线平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线PF=d,其中d为点P到l的距离椭圆的定义及应用下列说法中不正确的是________.①已知F1(-4,0),F2(4,0),到F1、F2两点的距离之和等于8的点的轨迹是椭圆;②已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和等于6的点的轨迹是椭圆;③到F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆;④到F1(-4,0),F2(4,0)距离相等的点的轨迹是椭圆.【思路探究】判定是否为椭圆回顾椭圆定义分析距离满足条件【自主解答】①中F1F2=8,故到F1、F2两点的距离之和为常数8的点的轨迹是线段F1F2.②中到F1、F2两点的距离之和6小于F1F2,故这样的轨迹不存在.③中点(5,3)到F1、F2的距离之和为5+42+32+5-42+32=410>F1F2=8,故③中是椭圆的轨迹.④中是线段F1F2的垂直平分线.【答案】①②④1.判断动点P的运动轨迹是否为椭圆,关键分析两点:(1)点P到两定点的距离之和是否为常数.(2)该常数是否满足大于两定点间的距离.如果满足以上两条,则动点P的轨迹便为椭圆.2.椭圆定义不仅可以用来判定动点轨迹形状,也可由椭圆求解其他问题.图2-1-1如图2-1-1,已知F1,F2为椭圆两焦点,直线AB过F1,若椭圆上任一点M满足MF1+MF2=8,F1F2=6,求△ABF2的周长.【解】由椭圆定义,AF1+AF2=8,BF1+BF2=8,∴△ABF2周长为16.双曲线的定义及应用曲线上的点到两个定点F1(-5,0),F2(5,0)的距离之差的绝对值分别等于(1)6,(2)10,(3)12.满足条件的曲线若存在,是什么样的曲线?若不存在,请说明理由.【思路探究】求F1F1→将常数与F1F2比较大小→由定义判别【自主解答】(1)∵F1F2=10>6,∴满足该条件的曲线是双曲线.(2)∵F1F2=10,∴满足该条件的曲线不是双曲线,而是两条射线.(3)∵F1F2=10<12,∴满足条件的点不存在.1.到两定点距离差的绝对值为一个常数时,动点轨迹不一定是双曲线,应与焦距比较大小.2.本例(1)中,若将“绝对值”去掉,则轨迹只是双曲线的一支.若一个动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(a≥0),试讨论点P的轨迹.【解】∵F1F2=2,故有(1)当a=2时,P点轨迹是两条射线y=0(x≥1)或y=0(x≤-1);(2)当a=0时,轨迹是线段F1F2的垂直平分线,即y轴;(3)当0<a<2时,轨迹是以F1、F2为焦点的双曲线;(4)当a>2时,轨迹不存在.抛物线的定义及应用若动点M到点F(3,0)的距离等于它到直线x=-3的距离,那么点M 的轨迹是什么图形?【思路探究】由题意知MF=d(d为点M到直线x=-3的距离),可根据抛物线的定义确定点M的轨迹是抛物线.【自主解答】由题意知,动点M到点F(3,0)和定直线x=-3的距离相等,点F(3,0)不在定直线x=-3上,所以由抛物线的定义知,动点M的轨迹是以F(3,0)为焦点,直线x =-3为准线的抛物线.1.本题中动点M的轨迹是抛物线,在求解的过程中一定要判断点F是否在给定的定直线x=-3上,当F在定直线x=-3上时,动点M的轨迹是以F点为垂足的定直线x=-3的垂线;当F不在定直线x=-3上时,动点M的轨迹才是抛物线.2.利用抛物线的定义判定动点的轨迹,关键是看动点到定直线与到定点的距离是否相等.如图2-1-2所示,在正方体A1B1C1D1-ABCD中,侧面AA1B1B内有一动点P,满足P到平面AA1D1D的距离与到直线BC的距离总相等,则P点的轨迹是________.图2-1-2【解析】如题图,PM是点P到平面AA1D1D的距离,PB是P到直线BC的距离,故PM=PB,所以P的轨迹是以AA1为准线,点B为焦点的一段抛物线.【答案】以AA1为准线,点B为焦点的一段抛物线忽略圆锥曲线定义中的条件致误若一动圆与圆C1:x2+y2=1和圆C2:x2+y2-8x+12=0都外切,则动圆圆心M的轨迹为________.【错解】双曲线.【错因分析】在错解中,忽略了MC2>MC1,从而导致错误.圆C2的圆心C2(4,0),半径为2,设动圆的半径为r.因为动圆与圆C1外切,所以MC1=r+1.又因为动圆与圆C2外切,所以MC2=r+2,从而MC2-MC1=1<C1C2=4,所以根据双曲线的定义可知点M的轨迹是以C1,C2为焦点的双曲线的一支.【防范措施】在椭圆的定义中,一定要注意常数大于F1F2这一条件;在双曲线的定义中,要注意常数为小于F1F2的正数这一条件,同时注意取绝对值;在抛物线的定义中,要注意点不能在定直线上,否则轨迹是一条直线.【正解】双曲线的一支.1.利用圆锥曲线的定义判定动点轨迹时,应注意定义中的条件,若部分满足,则动点轨迹不是完整的圆锥曲线.2.利用圆锥曲线定义解题是本章的一个重要解题方法,此方法常与平面几何知识结合,利用数形结合的思想解题.1.平面内到两定点F1(-3,0),F2(3,0)的距离之和等于6的点P的轨迹是________.【解析】∵F1F2=6,∴点P的轨迹是线段F1F2.【答案】线段F1F22.已知△ABC,其中B(0,1),C(0,-1),且AB-AC=1,则A点的轨迹是________.【解析】∵AB-AC=1<2=BC,∴A点的轨迹是以B、C为焦点的双曲线的下支(x≠0).【答案】以B、C为焦点的双曲线的下支(x≠0)3.抛物线上一点到焦点距离为4,则它到准线的距离为________.【解析】根据抛物线定义,抛物线上的点到焦点的距离与它到准线的距离相等,故它到准线的距离为4.【答案】 44.已知A、B是两个定点,AB=8,且△ABC的周长等于18,试确定这个三角形的顶点C所在的曲线.【解】由题意知,AB+BC+CA=18,∵AB=8,∴BC+CA=10>AB.∴点C所在的曲线是以A,B为焦点的椭圆.(除去椭圆与直线AB的两个交点)一、填空题1.已知M(-2,0),N(2,0)是平面上的两点,动点P满足PM+PN=6,则动点P的轨迹是________.【解析】∵PM+PN=6>4,∴动点P的轨迹是一椭圆.【答案】椭圆2.到定点(0,7)和定直线y=7的距离相等的点的轨迹方程是________.【解析】∵定点(0,7)在定直线y=7上,∴到定点(0,7)与到定直线y=7距离相等的点的轨迹是过(0,7)的该直线的垂线,其方程为x=0.【答案】x=03.命题甲:动点P到定点A、B的距离之和PA+PB=2a(a>0);命题乙:P点的轨迹是椭圆,则命题甲是命题乙的________条件.【解析】甲D⇒/乙,乙⇒甲.【答案】必要不充分4.定点F1(-3,0),F2(3,0),动点M满足|MF1-MF2|=6,则M点的轨迹是________.【解析】∵|MF1-MF2|=6=F1F2,∴M的轨迹是x轴上以F1,F2分别为端点的两条射线.【答案】x轴上分别以F1,F2为端点的两条射线5.若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为______.(填椭圆、双曲线或抛物线)【解析】由题意P到直线x=-2的距离等于它到点(2,0)的距离,故点P的轨迹为一条抛物线.【答案】抛物线图2-1-36.如图2-1-3,点A为圆O内一定点,P为圆周上任一点,AP的垂直平分线交OP 于动点Q,则点Q的轨迹为________.【解析】由题意,QA=QP,∴OQ+QA=OQ+QP=OP(半径)>OA,∴Q点的轨迹是以O、A为焦点的一椭圆.【答案】以O、A为焦点的一椭圆7.已知椭圆的两个焦点为F1(-4,0),F2(4,0),过F1的直线交椭圆于A,B两点,若△AF1F2的周长为18,则△ABF2的周长为________.【解析】因为AF2+AF1+F1F2=18,F1F2=8,所以AF2+AF1=10,于是BF2+BF1=10,所以△ABF 2的周长为AB +AF 2+BF 2=AF 1+BF 1+AF 2+BF 2=20.【答案】 208.△ABC 的顶点A(0,-4),B(0,4),且4(sin B -sin A)=3sin C ,则顶点C 的轨迹是________.【解析】 运用正弦定理,将4(sin B -sin A)=3sin C 转化为边的关系,即4(b 2R -a 2R)=3×c 2R,则AC -BC =6<AB ,显然,顶点C 的轨迹是以A ,B 为焦点的双曲线的一支去掉点(0,3).故填以A ,B 为焦点的双曲线的上支去掉点(0,3).【答案】 以A ,B 为焦点的双曲线的上支(去掉点(0,3))二、解答题9.已知F 1(-4,3),F 2(2,3)为定点,动点P 满足PF 1-PF 2=2a ,当a =2或a =3时,求动点P 的轨迹.【解】 由已知可得,F 1F 2=6.当a =2时,2a =4,即PF 1-PF 2=4<F 1F 2,根据双曲线的定义知,动点P 的轨迹是双曲线的一支(对应于焦点F 2);当a =3时,PF 1-PF 2=6=F 1F 2,此时动点P 的轨迹是射线F 2P ,即以F 2为端点向x 轴正向延伸的射线.故当a =2时,动点P 的轨迹是双曲线的一支(对应于焦点F 2);当a =3时,动点P 的轨迹是射线F 2P.10.已知圆C 1:(x +3)2+y 2=16,圆C 2:(x -3)2+y 2=1,动圆P 与两圆相外切,求动圆圆心P 的轨迹.【解】 设圆P 的半径为r ,两圆圆心分别为C 1(-3,0),C 2(3,0),由圆P 与两圆相外切可知PC 1=4+r ,PC 2=1+r ,∴PC 1-PC 2=3<C 1C 2=6,∴点P 的轨迹为以C 1,C 2为焦点的双曲线的右支.11.若点P(x ,y)的坐标满足方程x -12+y -22=|3x +4y +12|5,试判断点P 的轨迹是哪种类型的圆锥曲线.【解】x -12+y -22=|3x +4y +12|5, 即x -12+y -22=|3x +4y +12|32+42, 等式左边表示点P(x ,y)到点(1,2)的距离,右边表示点P(x ,y)到直线3x +4y +12=0的距离,即点P(x ,y)到点(1,2)的距离与到直线3x +4y +12=0的距离相等.又∵点(1,2)不在直线3x +4y +12=0上,由拋物线的定义知,点P 的轨迹是以(1,2)为焦点,直线3x +4y +12=0为准线的拋物线.如图,某山区的居民生活用水源于两处,一处是位于该地区内的一口深水井,另一处是位于该地区西边的一条河(河岸近似看成直线).已知井C 到河岸AB 的距离为4千米,请为该区域划一条分界线,并指出应如何取水最合理.【思路探究】审题→转化为数学模型→找距离相等→点的轨迹→转化为实际问题答案【自主解答】 分界线上的点到深水井C 和到河岸AB 的距离应相等,依据抛物线定义可知,分界线是以C 为焦点,河岸AB 为准线的抛物线.所谓取水合理,即选择最近点取水,易知抛物线包含的区域应到深水井取水,抛物线上的区域到深水井或河中取水均可,其他区域则应到河中取水.1.实际问题有时可以以圆锥曲线为数学模型进行思考,要根据题意,抽象出数学关系和条件. 2.利用圆锥曲线的定义求解实际问题,要注意实际意义的限制,很多情形下,动点的轨迹只是圆锥曲线的一部分.一炮弹在某处爆炸,在F 1(-5 000,0)处听到爆炸声的时间比在F 2(5 000,0)处晚30017s ,已知坐标轴的单位长度为1 m ,声速为340 m/s ,爆炸点应在什么样的曲线上?【解】 由声速为340 m/s 可知F 1、F 2两处与爆炸点的距离差为340×30017=6 000(m),且小于F 1F 2=10 000(m),因此爆炸点在以F 1、F 2为焦点的双曲线上,打印版因为爆炸点离F1处比F2处更远,所以爆炸点应在靠近F2处的一支上.高中数学。

苏教版高中数学选修1-1:圆锥曲线的共同性质

苏教版高中数学选修1-1:圆锥曲线的共同性质


P4
3
6,2为所求.
【名师点评】 本类题是圆锥曲线中求最值 的一类典型问题,解题的方法也是相通的, 都是利用定义实现转化.
圆锥曲线的焦半径、焦 点弦问题
圆锥曲线上的点与焦点连线时,焦半径对应 的问题常应用统一定义来解决.
圆锥曲线的焦点弦问题是常见的一类弦长问 题,可以用一般弦长公式求解,但更好的方 法是利用焦点弦特有的公式进行计算,焦点 弦公式为AB=AF+BF=e(AA1+BB1),其 中AA1,BB1为弦的两端点到准线的距离.
知新益能
1.圆锥曲线的共同性质及离心率和准线的定义 圆锥曲线定义中的_定__点__F_就是圆锥曲线的_焦__点_, 定直线l就是圆锥曲线的_准__线_,常数e叫做圆锥曲 线的_离__心__率_. 椭圆、双曲线、抛物线的共同性质:
圆锥曲线上任一点到焦点F的距离和到同侧准线l 的距离之比等于离心率e. 显然,椭圆的离心率满足0<e<1,双曲线的离心 率满足e>1,抛物线的离心率满足e=1.
2.圆锥曲线的焦点、准线与曲线的相对 位置,曲线中与坐标系无关的不变量 (1)准线与曲线没有公共点. (2)椭圆中长轴长 2a,短轴长 2b,离心
率 e=ac,中心到焦点的距离 c,中心到 准线的距离ac2等都是与坐标系无关的不
变量.
抛物线中焦点到顶点的距离p2,焦点到 准线的距离 p 也都是与坐标系无关的不 变量.
∴点
P
的 坐 标 为 295,89

14 或
295,-89

14.14 分
【名师点评】 利用焦半径公式,将圆锥曲 线上任意一点的坐标与几何等式联系在一起 .
自我挑战 2 已知椭圆1x62+y92=1,P 为 椭圆上任意一点,F 为左焦点,求|PF| 的取值范围.

苏教版数学高二-【新学案】 选修1-1教学案 2.5圆锥曲线的共同性质

苏教版数学高二-【新学案】 选修1-1教学案 2.5圆锥曲线的共同性质

2.5圆锥曲线的共同性质教学过程一、问题情境我们知道,平面内到一个定点F的距离和到一条定直线l(F不在l上)的距离的比等于1的动点P 的轨迹是抛物线.当这个比值是一个不等于1的常数时,动点P的轨迹又是什么曲线呢?二、数学建构问题1试探讨这个常数分别是和2时,动点P的轨迹.方案1利用尺规作出几个特殊的点,从而猜想轨迹.方案2利用几何画板制作课件演示.可以得到:当常数是时,动点P的轨迹是椭圆;当常数是2时,动点P的轨迹是双曲线.问题2由上面问题的解决,同学可以猜想得出什么样的结论?解平面内到一个定点F的距离和到一条定直线l(F不在l上)的距离的比等于e的动点P的轨迹是圆锥曲线.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.问题3以上的结论是否正确呢?如何证明?解当e=1时,结论在抛物线标准方程的推导中已经得到证明,那么其他两种情况如何通过方程来证明呢?(思考片刻继续引导)关键在于如何建立坐标系才能使得轨迹的方程为标准方程.(思考片刻继续引导)请同学们阅读教材第55页的思考后回答下面问题.问题4当0<e<1时,如何建立平面直角坐标系,才能使轨迹方程为标准方程呢?解建立适当的平面直角坐标系,使定点F(c,0),定直线l的方程为x=.设点P(x,y),则==e,化简得(a2-c2)x2+a2y2=a2(a2-c2)(*).因为e=∈(0,1),所以a2-c2>0,所以可令b2=a2-c2,这样方程(*)可化为+=1(a>b>0).这就证明了,当0<e<1时,点P的轨迹为椭圆.由此可见,当点P到定点F(c,0)的距离和它到定直线l:x=的距离的比是常数(a>c>0)时,这个点的轨迹是椭圆,方程为+=1(a>b>0, b2=a2-c2),这个常数就是椭圆的离心率.类似地,我们可以得到:当点P到定点F(c,0)的距离和它到定直线l:x=的距离的比是常数(c>a>0)时,这个点的轨迹是双曲线,方程为-=1(a>0,b>0,其中b2=c2-a2),这个常数就是双曲线的离心率.这样,圆锥曲线可以统一定义为平面内到一个定点F和到一条定直线l(F不在l上)的距离的比等于常数e的点的轨迹.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线.由前面的研究可知:点F(c,0),直线l:x=分别为椭圆+=1(a>b>0)的焦点、准线;点F(c,0),直线l:x=分别为双曲线-=1(a>0,b>0)的焦点、准线.根据图形的对称性可知,椭圆和双曲线都有两条准线,中心在坐标原点,焦点在x轴上的椭圆+=1(a>b>0)或双曲线-=1(a>0,b>0),与焦点F1(-c,0),F2(c,0)对应的准线方程分别为x=-,x=. 三、数学运用【例1】求下列曲线的焦点坐标、准线方程:(1)25x2+16y2=400;(2)x2-8y2=32;(3)y2=16x.引导学生将曲线方程转化为标准形式,再让学生根据定义求解.解(1) 由25x2+16y2=400,得+=1,因此此椭圆的焦点在y轴上,且a=5,b=4,所以c==3,故曲线25x2+16y2=400的焦点坐标为(0,±3),准线方程为y=±.(2)由x2-8y2=32,得-=1,因此此双曲线的焦点在x轴上,且a=4,b=2,所以c==6,故曲线x2-8y2=32的焦点坐标为(±6,0),准线方程为x=±.(3)由y2=16x,得p=8,故曲线y2=16x的焦点坐标为(4,0),准线方程为x=-4.要求圆锥曲线的准线方程、焦点坐标,必须先将曲线方程化为标准形式.变式已知椭圆+=1的一条准线方程为y=,求实数m的值.解由题意可知,a2=m(m>9),b2=9,所以c=.由一条准线方程为y=可知=,解得m=25或m=.【例2】已知椭圆+=1上一点P到右准线的距离是2b,求点P到椭圆左焦点的距离.引导学生根据圆锥曲线的统一定义,将点到准线的距离转化为其到相应焦点的距离.解法一由题意知,该椭圆的左、右焦点分别是(-b,0),(b,0),离心率为.设该椭圆的左、右焦点分别为F1,F2,则由圆锥曲线的统一定义可知,=,所以PF2=3b.由椭圆的定义可知,PF1=4b-3b=b,即该点到椭圆左焦点的距离为b.解法二由题意知,该椭圆的左、右焦点分别是(-b,0),(b,0),离心率为.设该椭圆的左、右焦点分别为F1,F2.因为椭圆两准线间的距离为b,所以P到左准线的距离为b,则由圆锥曲线的统一定义可知,=,所以PF1=b,即该点到椭圆左焦点的距离为b.椭圆和双曲线分别有两个焦点和两条准线,在解题过程中要注意对应,即左焦点对应左准线,右焦点对应右准线(或上焦点对应上准线,下焦点对应下准线).【例3】已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与C相交于A,B两点.若=3,求斜率k的值.解设直线l为椭圆的右准线,e为离心率.如图,分别过A,B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E.由圆锥曲线的共同性质得AA1=,BB1=,由=3,得AA1=,所以cos∠BAE====,所以sin∠BAA1=,所以tan∠BAA1=,即k=.(例3)【例4】若椭圆+=1内有一点P(1,-1),F为其右焦点,椭圆上有一点M使MP+2MF最小,则点M的坐标为.提示因为椭圆的离心率为,则2MF就等于点M到右准线的距离d,所以MP+2MF=MP+d.由点到直线的最短距离是垂线段得可以得到M.先用圆锥曲线的统一定义将MP+2MF的最小值转化为MP+d(d为点M到右准线的距离)的最小值,再根据“点到直线的距离中垂线段最短”将问题解决.这是处理圆锥曲线中与曲线上的动点到焦点(或准线)的距离有关的最值问题的常用方法.四、课堂练习1. 若抛物线的顶点在原点,准线与椭圆+=1的准线重合,则此抛物线的方程为y2=±16x.提示由题意知椭圆的准线方程为x=±=±4,所以=±4,即p=±8.2. 已知椭圆+=1上一点P到左焦点的距离为12,则点P到右准线的距离为10.提示由题意知点P到左准线的距离为=15,两准线间的距离为2×=25,故点P到右准线的距离为10.3.已知F1,F2分别为双曲线C:-=1(a,b>0)的左、右焦点,曲线C的两条准线分别与x轴交于点A,B.若A,B为线段F1F2的三等分点,则此双曲线C的离心率为.提示由题意得=3,即e2=3.4.已知P为椭圆C:+=1上一点,且P到曲线C的右焦点F的距离为3,求点P的坐标.解法一椭圆C:+=1的右焦点为F(2,0),设P(x,y),则由题意可知解得即点P的坐标为(2,±3).解法二椭圆C:+=1的右准线的方程为x=8,离心率e=.因为P到曲线C的右焦点F的距离为3,所以P到右准线的距离为6.设P(x,y),则8-x=6,解得x=2,代入+=1,得y=±3,所以点P的坐标为(2,±3).五、课堂小结1.圆锥曲线的统一定义.2.会根据圆锥曲线的标准方程求准线方程.3.掌握圆锥曲线上的点到焦点的距离及该点到对应准线的距离之间的相互转化.。

苏教版选修(1-1)2.5《圆锥曲线的共同性质》word教案

苏教版选修(1-1)2.5《圆锥曲线的共同性质》word教案

2.5 圆锥曲线的共同性质华罗庚说过,“就数学本身而言,是壮丽多彩,千姿百态,引人入胜的……”圆锥曲线有着独特和奇异的一面,其中蕴藏着奥妙和魅力,也蕴藏着规律和道理.但“天得一以清,地得一以宁,……,万物得一以生”,圆锥曲线的共同性质又体现了圆锥曲线的“统一美”,这“统一美”使圆锥曲线充满了勃勃生机.教学目标:知识目标:掌握圆锥曲线的统一定义和共同性质,了解圆锥曲线的联系和区别,能利用圆锥曲线的有关知识解决有关的问题.能力目标:通过对圆锥曲线的统一性的研究,进一步培养观察能力和探索能力,同时达到进行运动变化、对立统一的辩证唯物主义思想教育.情感目标:通过学习圆锥曲线的统一定义,体验和感受数学的整体之美、统一之美、和谐之美,进一步激发学习数学的主动性和积极性.教学重点:圆锥曲线的统一定义和共同性质.教学难点:圆锥曲线的共同性质.授课类型:新授课.课时安排:1课时.教学过程:一、问题情境回忆抛物线定义,并在此基础上提出问题:当这个比值是一个不等于1的常数时,动点P的轨迹又是什么曲线呢?(以抛物线的定义作为新知识的生长点)二、学生活动阅读课本P47,初步感知当比值大于1和比值小于1时动点P的轨迹.三、建构数学1.圆锥曲线的统一定义(1)多媒体演示;(2)引导学生回忆椭圆标准方程的推导过程,思考课本P47的“思考”,并在此基础上讲解例1,引导得出椭圆的第二定义,再类比得出双曲线的第二定义.2.圆锥曲线的共同性质(1)圆锥曲线的共同性质给出了三个量:定点F,定直线l,常数e.其中要求定点F 不在定直线l上,且规定e是到定点的距离与到定直线的距离的比值,两者顺序包括颠倒.(2)圆锥曲线的共同性质揭示了曲线上的点到焦点的距离与它到准线的距离的关系,规律是:左焦点对应左准线,右焦点对应右准线,上焦点对应上准线,下焦点对应下准线.具体如下:①对于22221(>>0)x ya ba b+=而言,左焦点1(,0)F c-对应左准线2axc=-,右焦点2(,0)F c对应右准线2axc =.②对于22221(>>0)y x a b a b +=而言,上焦点1(0,)F c 对应上准线2a y c=,下焦点2(0,)F c -对应右准线2a y c=-. ③对于22221(>0,>0)x y a b a b -=而言,左焦点1(,0)F c -对应左准线2a x c=-,右焦点2(,0)F c 对应右准线2a x c=. ④对于22221(>0,>0)y x a b a b -=而言,上焦点1(0,)F c 对应上准线2a y c=,下焦点2(0,)F c -对应右准线2a y c=-. 四、数学应用例1 求下列曲线的焦点坐标和准线方程(1)22144x y +=; (2)22221125x y -=; (3)224936y x -=; (4)22y x =-; (5)240x y +=.一般思路:首先确定圆锥曲线的类型,其次确定其标准方程的形式,然后确定相关的参数a 、b 、c 或p ,最后根据方程的特征写出相应的焦点坐标和准线方程.应注意的是:椭圆和双曲线分别有两条准线,而抛物线只有一条准线;若题中含有参变量,则应分类讨论.练习:课本P48 练习 第1题. 例2 已知双曲线2216436x y -=上一点P 到左焦点的距离是14,求点P 到右准线的距离. 引导学生审清题意,寻找解题思路.可先求出22||(PF F 为焦点),再利用统一定义进行求解,也可利用两准线间的距离是22a c进行求解. 解:(略) (答案:24)练习:1,求该椭圆的离心率.五、本节小结:(略)六、板书设计:(略)七、布置作业:八、教后反思:。

高中数学(苏教版)选修1-1讲学案:第二章2.5 圆锥曲线的共同性质

高中数学(苏教版)选修1-1讲学案:第二章2.5 圆锥曲线的共同性质

2.5圆锥曲线的共同性质圆锥曲线的共同性质抛物线可以看成平面内到定点(焦点)F的距离与定直线(准线)l的比值等于1(离心率)的动点的轨迹.问题1:当比值大于0小于1时轨迹是什么?提示:椭圆.问题2:当比值大于1时轨迹是什么?提示:双曲线.圆锥曲线的共同定义为:平面内到一个定点F和到一条定直线l(F不在l上)的距离之比等于常数e的点的轨迹.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.其中e是离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线.圆锥曲线的准线在圆锥曲线的定义中,定点F是焦点,定直线l是准线,而且知道抛物线只有一个焦点和一条准线.问题:椭圆和双曲线有几个焦点、几条准线?提示:椭圆和双曲线有两个焦点、两条准线.椭圆、双曲线和抛物线的准线方程曲线方程准线方程曲线方程准线方程x 2a 2+y 2b 2= 1(a >b >0) x =±a 2cy 2a 2+x 2b 2=1 (a >b >0) y =±a 2cx 2a 2-y 2b 2=1 (a >0,b >0) x =±a 2cy 2a 2-x 2b 2=1 (a >0,b >0) y =±a 2cy 2=2px (p >0) x =-p 2x 2=2py (p >0) y =-p 2y 2=-2px (p >0)x =p 2x 2=-2py (p >0)y =p 21.关于圆锥曲线共同特征的认识(1)从点的集合(或轨迹)的观点来看:它们都是平面内与一个定点和一条定直线的距离的比是常数e 的点的集合(或轨迹),只是当0<e <1时为椭圆,当e =1时为抛物线,当e >1时为双曲线.(2)从曲线形状的生成过程来看:圆锥曲线可看成不同的平面截圆锥面所得到的截面的周界,因此,椭圆(包括圆)、抛物线、双曲线又统称为圆锥曲线.2.圆锥曲线共同特征的应用设F 为圆锥曲线的焦点,A 为曲线上任意一点,d 为点A 到定直线的距离,由AFd =e 变形可得d =AFe.由这个变形可以实现由AF 到d 的转化,借助d 则可以解决一些最值问题.[对应学生用书P36]利用圆锥曲线的定义求轨迹[例1] 已知动点M (x ,y )到点F (2,0)与到定直线x =8的距离之比为12,求点M 的轨迹.[思路点拨] 该题有两种解法,一种是利用直译法直接代入化简,另一种是用圆锥曲线的统一定义来求.[精解详析] 法一:由题意得(x -2)2+y 2|x -8|=12,整理得x 216+y 212=1.法二:由圆锥曲线的统一定义知,M 点的轨迹是一椭圆.c =2,a 2c =8,则a 2=16,∴a =4,∴e =24=12,与已知条件相符,∴椭圆中心在原点,焦点(±2,0),准线x =±8,b 2=12, 其方程为x 216+y 212=1.[一点通](1)解决此类题目有两种方法:①直接列方程,代入后化简整理即得方程.②根据定义判断轨迹是什么曲线,然后确定其几何性质,从而得出方程.(2)当题目中给出的条件直观上看不符合圆锥曲线定义时,要进行适当的变形,通过推导找出与之相关的距离问题进行验证,通过点与点、点与线间距离的转化去寻找解题途径,对于这种轨迹问题,一般都要通过定义解决.1.平面内的动点P (x ,y )(y >0)到点F (0,2)的距离与到x 轴的距离之差为2,求动点P 的轨迹.解:如图,作PM ⊥x 轴于M ,延长PM 交直线y =-2于N . ∵PF -PM =2.∴PF =PM +2. 又∵PN =PM +2,∴PF =PN .∴P 到定点F 与到定直线y =-2的距离相等.由抛物线的定义知,P 的轨迹是以F 为焦点以y =-2为准线的抛物线,顶点在原点,p =4.∴抛物线方程为x 2=8y .∴动点P 的轨迹是抛物线.2.在平面直角坐标系xOy 中,已知F 1(-4,0),直线l :x =-2,动点M 到F 1的距离是它到定直线l 距离d 的2倍.设动点M 的轨迹曲线为E .(1)求曲线E 的轨迹方程;(2)设点F 2(4,0),若直线m 为曲线E 的任意一条切线,且点F 1,F 2到m 的距离分别为d 1,d 2,试判断d 1d 2是否为常数,并说明理由.解:(1)由题意,设点M (x ,y ), 则有MF 1=(x +4)2+y 2,点M (x ,y )到直线l 的距离d =|x -(-2)|=|x +2|, 故(x +4)2+y 2=2|x +2|,化简得x 2-y 2=8.故动点M 的轨迹方程为x 2-y 2=8. (2)d 1d 2是常数,证明如下:若切线m 斜率不存在,则切线方程为x =±22, 此时d 1d 2=(c +a )·(c -a )=b 2=8.当切线m 斜率存在时,设切线m :y =kx +t , 代入x 2-y 2=8,整理得:x 2-(kx +t )2=8, 即(1-k 2)x 2-2tkx -(t 2+8)=0. Δ=(-2tk )2+4(1-k 2)(t 2+8)=0, 化简得t 2=8k 2-8.又由kx -y +t =0,d 1=|-4k +t |k 2+1,d 2=|4k +t |k 2+1, d 1d 2=|16k 2-t 2|k 2+1=|16k 2-(8k 2-8)|k 2+1=8,8为常数.综上,对任意切线m ,d 1d 2是常数.最值问题[例2] 若点P 的坐标是(-1,-3),F 为椭圆x 216+y 212=1的右焦点,点Q 在椭圆上移动,当QF +12PQ 取得最小值时,求点Q 的坐标,并求出最小值.[思路点拨] 利用定义把QF 转化成到准线的距离,然后再求它与12PQ 的和的最小值.[精解详析] 在x 216+y 212=1中a =4,b =2 3,c =2,∴e =12,椭圆的右准线l :x =8,过点Q 作QQ ′⊥l 于Q ′, 则QFQQ ′=e . ∴QF =12QQ ′.∴QF +12PQ =12QQ ′+12PQ =12(QQ ′+PQ ).要使QQ ′+PQ 最小,由图可知P 、Q 、Q ′三点共线,所以由P 向准线l 作垂线,与椭圆的交点即为QF +12PQ 最小时的点Q ,∴Q 的纵坐标为-3,代入椭圆得:Q 的横坐标为x =2. ∴Q 为(2,-3),此时QF +12PQ =92.[一点通] 利用圆锥曲线的定义通过把到焦点的距离转化为到准线的距离,或把到准线的距离转化为到焦点的距离,从而求得距离问题的最值是这一部分的常见题型,应熟练掌握.3.已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),M 为双曲线的动点,求MA +35MF 的最小值.解:双曲线离心率e =53,由圆锥曲线的共同性质知MFd =e (d 为点M 到右准线l 的距离),右准线l 的方程为x =95,而AM +35MF =MA +35de =MA +d .显然当AM ⊥l 时,AM +d 最小,而AM +d 的最小值为A 到l 的距离为9-95=365.即MA +53MF 的最小值为365.4.已知定点A (-2,3),点F 为椭圆x 216+y 212=1的右焦点,点M 在椭圆上运动,求AM+2MF 的最小值,并求此时点M 的坐标.解:∵a =4,b =23,∴c =a 2-b 2=2.∴离心率e =12.A 点在椭圆内,设M 到右准线距离为d ,则MF d =e ,即MF =ed =12d ,右准线l :x =8.∴AM +2MF =AM +d .∵A 点在椭圆内,∴过A 作AK ⊥l (l 为右准线)于K ,交椭圆于点M 0.则A 、M 、K 三点共线,即M 与M 0重合时,AM +d 最小为AK ,其值为8-(-2)=10. 故AM +2MF 的最小值为10,此时M 点坐标为(23,3).圆锥曲线的准线、离心率的应用[例3] 求椭圆x 216+y 225=1的离心率与准线方程,并求与该椭圆有相同准线,且离心率互为倒数的双曲线方程.[思路点拨] 由方程确定a ,c ,从而求e 与准线,由椭圆的准线、离心率,再确定双曲线的实轴长、虚轴长,从而求出双曲线的方程.[精解详析] 由x 216+y 225=1知a =5,b =4,c =3,e =c a =35,准线方程为y =±253.设双曲线虚半轴长为b ′,实半轴长为a ′,半焦距为c ′,离心率为e ′. 则e ′=1e =53,又∵a 2c =a ′2c ′=253.解得:a ′=1259,c ′=62527,b ′2=250 000729.双曲线方程为81y 215 625-729x 2250 000=1.[一点通] 在圆锥曲线中,a ,b ,c ,e ,p 是确定图形形状的特征量,把握它们之间的内在联系是解决此类问题的关键.5.过圆锥曲线C 的一个焦点F 的直线l 交曲线C 于A ,B 两点,且以AB 为直径的圆与F 相应的准线相交,则曲线C 为________.解析:设圆锥曲线的离心率为e ,M 为AB 的中点,A ,B 和M 到准线的距离分别为d 1,d 2和d ,圆的半径为R ,d =d 1+d 22,R =AB 2=F A +FB 2=e (d 1+d 2)2.由题意知R >d ,则e >1,故圆锥曲线为双曲线.答案:双曲线6.(天津高考)已知抛物线y 2=8x的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点, 且双曲线的离心率为2,则该双曲线的方程为________.解析:抛物线y 2=8x 的准线x =-2过双曲线的一个焦点,所以c =2,又离心率为2,所以a =1,b =c 2-a 2=3,所以该双曲线的方程为x 2-y 23=1. 答案:x 2-y 23=11.圆锥曲线的准线:在求解圆锥曲线的准线时,应根据曲线的方程先化为其对应的标准形式,通过标准形式确定好曲线的焦点在坐标轴的位置,求出相应的量a 、c 或p ,然后写出其准线.2.圆锥曲线的判断:要判断所给曲线是哪种圆锥曲线,常利用圆锥曲线的定义求解,其思路是: (1)如果遇到有动点到两定点的距离问题应自然联想到椭圆及双曲线的定义.(2)如果遇到动点到一个定点和一条定直线的距离问题,应自然联想到椭圆、双曲线和抛物线的统一定义.[对应课时跟踪训练(十四)]1.若双曲线x 28-y 2b 2=1的一条准线与抛物线y 2=8x 的准线重合,则双曲线的离心率为________.解析:根据题意和已知可得方程组⎩⎪⎨⎪⎧a 2c =2,a 2=8,⇒⎩⎨⎧c =4,a =2 2,⇒e = 2.答案:22.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则cos ∠F 1PF 2的值是________.解析:曲线C 1:x 26+y 22=1与曲线C 2:x 23-y 2=1的焦点重合,两曲线共有四个交点,不妨设P 为第一象限的交点.则PF 1+PF 2=26,PF 1-PF 2=23,解得PF 1=6+3,PF 2=6- 3.又F 1F 2=4,在△F 1PF 2中,由余弦定理可求得cos ∠F 1PF 2=(6+3)2+(6-3)2-422×(6+3)×(6-3)=13.答案:133.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则PM +PN 的最小值、最大值分别为________________.解析:PM +PN 最大值为PF 1+1+PF 2+1=12,最小值为PF 1-1+PF 2-1=8. 答案:8,124.(福建高考)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y=3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,MF 1=c ,MF 2=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1.答案:3-15.已知椭圆x 24+y 22=1内部的一点为A ⎝⎛⎭⎫1,13,F 为右焦点,M 为椭圆上一动点,则MA+2MF 的最小值为________.解析:设M 到右准线的距离为d , 由圆锥曲线定义知MF d =22,∴d =2MF .∴MA +2MF =MA +d .由A 向右准线作垂线,垂线段长即为MA +d 的最小值. MA +d ≥2 2-1. 答案:2 2-16.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,求此双曲线离心率e 的最大值.解:设P 点坐标为P (x 0,y 0),由圆锥曲线的统一定义得:e =PF 1x 0+a 2c =PF 2x 0-a 2c ,把PF 1=4PF 2.代入则有:x 0+a 2c =4⎝⎛⎭⎫x 0-a 2c .整理得5a 2c =3x 0≥3a (∵x 0≥a ).∴e =c a ≤53.∴离心率e 的最大值为53.7.已知平面内的动点P 到定直线l :x =2 2的距离与点P 到定点F (2,0)之比为 2. (1)求动点P 的轨迹C 的方程;(2)若点N 为轨迹C 上任意一点(不在x 轴上),过原点O 作直线AB ,交(1)中轨迹C 于点A 、B ,且直线AN 、BN 的斜率都存在,分别为k 1、k 2,问k 1·k 2是否为定值?解:(1)设点P (x ,y ),依题意,有(x -2)2+y 2|x -2 2|=22.整理,得x 24+y 22=1.所以动点P 的轨迹C 的方程为x 24+y 22=1. (2)由题意,设N (x 1,y 1),A (x 2,y 2),则B (-x 2,-y 2),x 214+y 212=1,x 224+y 222=1.k 1·k 2=y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=y 21-y 22x 21-x 22=2-12x 21-2+12x 22x 21-x 22=-12,为定值. 8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右准线l 2与一条渐近线l 交于点P ,F 是双曲线的右焦点.(1)求证:PF ⊥l ;(2)若PF =3,且双曲线的离心率e =54,求该双曲线的方程.解:(1)证明:右准线为l 2:x =a 2c ,由对称性不妨设渐近线l 为y =b a x ,则P ⎝⎛⎭⎫a 2c ,ab c ,又F (c,0),∴k PF =abc -0a 2c-c =-ab .又∵k l =b a ,∴k PF ·k l =-a b·ba =-1.∴PF ⊥l .(2)∵PF 的长即F (c,0)到l :bx -ay =0的距离, ∴|bc |a 2+b 2=3,∴b =3.又e =c a =54,∴a 2+b 2a 2=2516.∴a =4.故双曲线方程为x 216-y 29=1.[对应学生用书P38]一、圆锥曲线的意义 1.椭圆平面内与两个定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆. (1)焦点:两个定点F 1,F 2叫做椭圆的焦点. (2)焦距:两焦点间的距离叫做椭圆的焦距. 2.双曲线平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线.(1)焦点:两个定点F 1,F 2叫做双曲线的焦点.(2)焦距:两焦点间的距离叫做双曲线的焦距.3.抛物线平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.二、圆锥曲线的标准方程及几何性质1.椭圆的标准方程和几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围-a≤x≤a,-b≤y≤b-a≤y≤a,-b≤x≤b 顶点(±a,0),(0,±b)(0,±a),(±b,0)轴长短轴长=2b,长轴长=2a焦点(±c,0)(0,±c)焦距F1F2=2c对称性对称轴x轴,y轴,对称中心(0,0)离心率0<e<12.双曲线的标准方程和几何性质焦点的位置焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形焦点(±c,0)(0,±c)焦距2c范围x≥a或x≤-a,y∈R y≥a或y≤-a,x∈R顶点 (±a,0) (0,±a )对称性 关于x 轴、y 轴、坐标原点对称 轴长 实轴长=2a ,虚轴长=2b 渐近线方程 y =±b axy =±a bx离心率 e =c a>13. 抛物线的标准方程和几何性质 类型y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形焦点 (p2,0) (-p2,0) (0,p 2)(0,-p 2)准线 x =-p 2x =p 2 y =-p 2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Rx ∈R ,y ≥0x ∈R ,y ≤0对称轴 x 轴y 轴 顶点 (0,0) 离心率 e =1开口方向向右向左向上向下三、圆锥曲线(椭圆、双曲线、抛物线)的共同性质1.圆锥曲线上的点到一个定点F 和到一条定直线l (F 不在定直线l 上)的距离之比是一个常数e .这个常数e 叫值圆锥曲线的离心率,定点F 就是圆锥曲线的焦点,定直线l 就是该圆锥曲线的准线.2.椭圆的离心率满足0<e <1,双曲线的离心率e >1,抛物线的离心率e =1.⎣⎢⎡⎦⎥⎤对应阶段质量检测(二) 见8开试卷 (时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.(江苏高考)双曲线x 216-y 29=1的两条渐近线的方程为________.解析:令x 216-y 29=0,解得y =±34x .答案:y =±34x2.(四川高考改编)抛物线y 2=4x的焦点到双曲线x 2-y 23=1的渐近线的距离是________. 解析:因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y =±3x ,所以所求距离为|±3×1-0|1+3=32. 答案:323.(辽宁高考)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题意因为PQ 过双曲线的右焦点(5,0),所以P ,Q 都在双曲线的右支上,则有FP -P A =6,FQ -QA =6,两式相加,利用双曲线的定义得FP +FQ =28,所以△PQF 的周长为FP +FQ +PQ =44.答案:444.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.解析:设P (x ,y ),动圆P 在直线x =1的左侧,其半径等于1-x ,则PC =1-x +1,即(x +2)2+y 2=2-x . ∴y 2=-8x . 答案:y 2=-8x5.两个焦点为(±2,0)且过点P ⎝⎛⎭⎫52,-32的椭圆的标准方程为________. 解析:∵两个焦点为(±2,0), ∴椭圆的焦点在x 轴上,且c =2. 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∴⎩⎨⎧⎝⎛⎭⎫522a 2+⎝⎛⎭⎫-322b 2=1a 2-b 2=4,,解得a 2=10,b 2=6.∴椭圆的标准方程为x 210+y 26=1.答案:x 210+y 26=16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,AF =2,则BF =________.解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有,焦点F (1,0),AF =x 1+1=2,x 1=1,直线AF 的方程是x =1,故BF =AF =2.答案:27.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.解析:在△ABF 中,AF 2=AB 2+BF 2-2AB ·BF ·cos ∠ABF =102+82-2×10×8×45=36,则AF =6.由AB 2=AF 2+BF 2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =OF =AB2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以BF =AF 1=8.由椭圆的性质可知AF +AF 1=14=2a ⇒a =7,则e =c a =57.答案:578.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是________.解析:设P (x ,y )为抛物线上任意一点,则P 到直线的距离d =|2x -y -4|5=|2x -x 2-4|5=|(x -1)2+3|5, ∴当x =1时,d 取最小值35,此时P 的坐标为(1,1). 答案:(1,1)9.设点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)与圆x 2+y 2=2a 2的一个交点,F 1,F 2分别是双曲线的左、右焦点,且PF 1=3PF 2,则双曲线的离心率为________.解析:由⎩⎪⎨⎪⎧PF 1-PF 2=2a ,PF 1=3PF 2得PF 1=3a ,PF 2=a ,设∠F 1OP =α,则∠POF 2=180°-α,在△PF 1O 中,PF 21=OF 21+OP 2-2OF 1·OP ·cos α ①, 在△OPF 2中,PF 22=OF 22+OP 2-2OF 2·OP ·cos(180°-α) ②,由cos(180°-α)=-cos α与OP =2a , ①+②得c 2=3a 2,∴e =c a =3a a = 3.答案:310.已知双曲C 1=x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐进线的距离为2,则抛物线C 2的方程为______________________.解析:∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的率心率为2.∴ca =a 2+b 2a =2,∴b =3a .∴双曲线的渐近线方程为 3 x ±y =0.∴抛物线C 2:x 2=2py (p >0)的焦点⎝⎛⎭⎫0,p2到双曲线的渐近线的距离为⎪⎪⎪⎪3×0±p 22=2.∴p =8.∴所求的抛物线方程为x 2=16y . 答案:x 2=16y11.(新课标全国卷Ⅰ改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.解析:因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3.所以E 的方程为x 218+y 29=1.答案:x 218+y 29=112.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则PF 1·PF 2的值是________.解析:取P 在双曲线的右支上,则⎩⎨⎧ PF 1+PF 2=2 m ,PF 1-PF 2=2 a ,∴⎩⎨⎧PF 1=m +a ,PF 2=m -a .∴PF 1·PF 2=(m +a )(m -a )=m -a . 答案:m -a13.若椭圆mx 2+ny 2=1(m >0,n >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 的中点的连线斜率为22,则nm的值为________. 解析:设A (x 1,y 1),B (x 2,y 2),AB 中点(x 0,y 0).由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x ,得(m +n )x 2-2nx +n -1=0 ∴x 1+x 2=2n m +n ,∴x 0=n m +n .∴y 0=m m +n .又y 0x 0=22,∴m n =22,∴nm = 2. 答案:214.(四川高考改编)从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由已知,点P (-c ,y )在椭圆上,代入椭圆方程,得P ⎝⎛⎭⎫-c ,b2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.答案:22二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知双曲线与椭圆x 236+y 249=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为37,求双曲线的方程.解:在椭圆x 236+y 249=1中,焦点坐标为(0,±13),离心率e ′=137, 设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),∴⎩⎪⎨⎪⎧a 2+b 2=13,137∶a 2+b 2a =37,解得⎩⎪⎨⎪⎧a 2=9,b 2=4. ∴双曲线的方程为y 29-x 24=1.16.(本小题满分14分)已知中心在坐标原点、焦点在x 轴上的椭圆,它的离心率为32,且与直线x +y -1=0相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆的方程.解:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),∵e =32,∴a 2=4b 2,即a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.把直线方程代入并化简,得5x 2-8x +4-4b 2=0. 设M (x 1,y 1)、N (x 2,y 2),则 x 1+x 2=85,x 1x 2=15(4-4b 2).∴y 1y 2=(1-x 1)(1-x 2)=1-(x 1+x 2)+x 1x 2=15(1-4b 2).由于OM ⊥ON ,∴x 1x 2+y 1y 2=0. 解得b 2=58,a 2=52.∴椭圆方程为25x 2+85y 2=1.17.(本小题满分14分)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.解:(1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2, 直线AB 的方程为y =-3(x -c ).代入椭圆方程3x 2+4y 2=12c 2,得B ⎝⎛⎭⎫85c ,-335c .所以|AB |=1+3·|85c -0|=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设AB =t .因为|AF 2|=a ,所以|BF 2|=t -a . 由椭圆定义BF 1+BF 2=2a 可知,BF 1=3a -t . 由余弦定理得(3a -t )2=a 2+t 2-2at cos 60°可得, t =85a . 由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.18.(本小题满分16分)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与C 相交于A ,B 两点,若|AB |=8,求直线l 的方程.解:抛物线y 2=4x 的焦点为F (1,0),当直线l 斜率不存在时,|AB |=4,不合题意.设直线l 的方程为y =k (x -1),代入y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由题意知k ≠0, 则x 1+x 2=2k 2+4k 2.由抛物线定义知,|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2, ∴x 1+x 2+2=8,即2k 2+4k 2+2=8.解得k =±1.所以直线l 的方程为y =±(x -1), 即x -y -1=0,x +y -1=0.19.(本小题满分16分)(陕西高考)已知动点M (x ,y )到直线l :x =4的距离是它到点N (1,0)的距离的2倍.(1)求动点M 的轨迹C 的方程;(2)过点P (0,3)的直线m 与轨迹C 交于A ,B 两点,若A 是PB 的中点,求直线m 的斜率. 解:(1)设M 到直线l 的距离为d ,根据题意d =2|MN |.由此得|4-x |=2(x -1)2+y 2,化简得x 24+y 23=1,所以,动点M 的轨迹方程为x 24+y 23=1.(2)法一:由题意,设直线m 的方程为y =kx +3, A (x 1,y 1),B (x 2,y 2). 将y =kx +3代入x 24+y 23=1中,有(3+4k 2)x 2+24kx +24=0,其中Δ=(24k )2-4×24(3+4k 2)=96(2k 2-3)>0, 故k 2>32.由根与系数的关系得, x 1+x 2=-24k3+4k 2,①x 1x 2=243+4k 2.② 又因为A 是PB 的中点,故x 2=2x 1,③ 将③代入①,②,得 x 1=-8k 3+4k 2,x 21=123+4k 2, 可得⎝⎛⎭⎫-8k 3+4k 22=123+4k 2,且k 2>32, 解得k =-32或k =32,所以直线m 的斜率为-32或32.法二:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2). ∵A 是PB 的中点, ∴x 1=x 22,①y 1=3+y 22.②又x 214+y 213=1,③ x 224+y 223=1,④ 联立①,②,③,④解得⎩⎪⎨⎪⎧ x 2=2,y 2=0,或⎩⎪⎨⎪⎧x 2=-2,y 2=0.即点B 的坐标为(2,0)或(-2,0),所以直线m 的斜率为-32或32.20.(本小题满分16分)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P ,Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积. 解:(1)设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|, 故∠B 1AB 2为直角,从而|OA |=|OB 2|,即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故 S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2, 由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20. 因此所求椭圆的标准方程为x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意,直线PQ 的倾斜角不为0, 故可设直线PQ 的方程为x =my -2,代入椭圆方程得 (m 2+5)y 2-4my -16=0.(*)设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是方程(*)的两根, 因此y 1+y 2=4mm 2+5,y 1·y 2=-16m 2+5.又2B P =(x 1-2,y 1),2B Q =(x 2-2,y 2),所以2B P ·2B Q =(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,知2B P ·2B Q =0, 即16m 2-64=0,解得m =±2.当m =2时,方程(*)化为9y 2-8y -16=0. 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8109,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16109.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16109.综上所述,△PB 2Q 的面积为16109.。

高中数学新苏教版精品教案《苏教版高中数学选修1-1 2.5 圆锥曲线的共同性质》4

高中数学新苏教版精品教案《苏教版高中数学选修1-1 2.5 圆锥曲线的共同性质》4

圆锥曲线离心率问题【教学目标】1了解近几年各地高考对圆锥曲线离心率问题的考查内容 2 回顾圆锥曲线离心率问题求解的常用策略3学会解决问题时利用数形结合思想提高运算的效率,提升思维的品质. 【教学重点、难点】选择不同的角度寻求基本量a,b,c 的关 系式【知识回顾】1 如图,在平面直角坐标系xOy 中,F 是椭圆22221x y a b +=(0)a b >>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是__________.2 已知12,F F 是双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则双曲线E 的离心率为__________.3 椭圆22221(0)x y a b a b+=>>的一个焦点为F ,短轴的一个端点为B ,线段BF 延长线交椭圆于D ,且2BF FD =,则椭圆的离心率是__________.4 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F ,短轴的一个端点为M , 直线:340x y -=交椭圆E 于A ,B 两点,若4AF BF +=,点M 到直线的距离不小于45,则椭圆E 的离心率的取值范围是__________.5 已知椭圆E :22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,若右准线上存在一点B ,椭圆上且在第一象限内存在一点C ,使得四边形F ABC 是平行四边形,则椭圆E 的离心率e 的取值范围是__________.【例题评析】例1 已知椭圆22221(0)x y a b a b+=>>左焦点1F 和右焦点2F ,上顶点A ,线段2AF 的中垂线交椭圆于点B ,若左焦点1F 在线段AB 上,则椭圆的离心率为__________.例2 如图,已知椭圆22221(0)y x a b a b+=>>的右焦点为F (1,0),离心率为e ,设A ,B 是椭圆上关于原点对称的两点,AF 的中点为M ,BF 的中点为N ,原点O 在线段MN 为直径的圆上,设直线AB 的斜率为,若0<,求离心率e 的取值范围.【课堂小结】【评测训练】1 已知椭圆的焦距、短轴长、长轴长成等差数列,则该椭圆的离心率为__________.2 已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 3C 于A 、B 两点,若4AF FB =,则双曲线C 的离心率为__________.3 已知椭圆22221(0)y x a b a b+=>>左右焦点为12,F F ,过1F 直线与椭圆交A 、B 两点,若20AB AF ⋅=,2AB AF =,则椭圆的离心率为__________.4 设A 为椭圆()222210x y a b a b+=>>上一点,点A 关于原点的对称点为B ,F 为椭圆的右焦点,且AF ⊥BF . 若∠ABF ∈ππ[,]124,求椭圆的离心率范围__________.5 已知椭圆22221(0)x y a b a b+=>>左右焦点为12,F F ,上顶点为A ,线段1AF 延长线交椭圆于B ,M 是2AF 中点,2ABF ∆的内切圆与线段2AF 相切于M ,求椭圆离心率范围.6 如图,在平面直角坐标系xOy 中,21,F F 是椭圆)0(12222>>=+b a by a x 的左、右焦点,顶点B 的坐标为)(b ,0,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接C F 1.若AB C F ⊥1,求椭圆离心率.。

2019-2020学年苏教版选修1-1第2章 2.1 圆锥曲线学案

2019-2020学年苏教版选修1-1第2章  2.1  圆锥曲线学案

2.1圆_锥_曲_线取一条定长的无弹性的细绳,把它的两端分别固定在图板的两点F1、F2处,套上铅笔,拉紧绳子,移动笔尖.问题1:若绳长等于两点F1、F2的距离,画出的轨迹是什么曲线?提示:线段F1F2.问题2:若绳长L大于两点F1、F2的距离.移动笔尖(动点M)满足的几何条件是什么?提示:MF1+MF2=L.平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.(1)焦点:两个定点F1,F2叫做椭圆的焦点.(2)焦距:两个焦点间的距离叫做椭圆的焦距.2013年11月30日,中国海军第16批护航编队“盐城”导弹护卫舰,“洛阳”号导弹护卫舰在亚丁湾东部海域商船集结点附近正式会合,共同护航,某时,“洛阳”舰哨兵监听到附近海域有快艇的马达声,与“洛阳”舰哨兵相距1 600 m的“盐城”舰,3 s后也监听到了马达声(声速340 m/s),用A、B分别表示“洛阳”舰和“盐城”舰所在的位置,点M 表示快艇的位置.问题1:“盐城”舰比“洛阳”舰距离快艇远多少米?提示:MB-MA=340×3=1 020(m).问题2:把快艇作为一个动点,它的轨迹是双曲线吗?提示:不是.平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线.(1)焦点:两个定点F1,F2叫做双曲线的焦点.(2)焦距:两焦点间的距离叫做双曲线的焦距.如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.问题1:画出的曲线是什么形状?提示:抛物线.问题2:DA是点D到直线EF的距离吗?为什么?提示:是.AB是直角三角形的一条直角边.问题3:点D在移动过程中,满足什么条件?提示:DA=DC.1.一般地,平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.2.椭圆、双曲线、抛物线统称为圆锥曲线.1.圆锥曲线定义用集合语言可描述为:(1)椭圆P={M|MF1+MF2=2a,2a>F1F2};(2)双曲线P={M||MF1-MF2|=2a,2a<F1F2};(3)抛物线P={M|MF=d,d为M到直线l的距离}.2.在椭圆定义中,当2a=F1F2时,M的轨迹为线段F1F2,在双曲线定义中,当2a=F1F2时,M的轨迹为两条射线.3.过抛物线焦点向准线作垂线,垂足为N,则FN的中点为抛物线顶点,FN所在直线为抛物线对称轴.4.对于椭圆、双曲线,两焦点的中点是它们的对称中心,两焦点所在直线及线段F1F2的垂直平分线是它们的对称轴.[例1]12m取何值时M的轨迹是椭圆?[思路点拨]若M的轨迹是椭圆,则MF1+MF2为常数,但要注意这个常数大于F1F2.[精解详析]∵MF1+MF2=3m,∴M到两定点的距离之和为常数,当3m大于F1F2时,由椭圆定义知,M的轨迹为椭圆,∴3m>F1F2=(3+3)2+(0-0)2=6,∴m>2,∴当m>2时,M的轨迹是椭圆.[一点通]深刻理解圆锥曲线的定义是解决此类问题的前提,一定要注意定义中的约束条件:(1)在椭圆中,和为定值且大于F1F2;(2)在双曲线中,差的绝对值为定值且小于F1F2;(3)在抛物线中,点F不在定直线上.1.命题甲:动点P到两定点A、B的距离之和P A+PB=2a(a>0,a为常数);命题乙:P点轨迹是椭圆,则命题甲是命题乙的________条件.解析:若P点轨迹是椭圆,则P A+PB=2a(a>0,常数),∴甲是乙的必要条件.反过来,若P A+PB=2a(a>0,常数)是不能推出P点轨迹是椭圆的.这是因为:仅当2a>AB时,P点轨迹才是椭圆;而当2a=AB时,P点轨迹是线段AB;当2a<AB时,P点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.答案:必要不充分2.下列说法中不正确的是________.①已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和等于8的点的轨迹是椭圆;②已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和等于6的点的轨迹是椭圆;③到F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆;④到F1(-4,0),F2(4,0)距离相等的点的轨迹是椭圆.解析:①中F1F2=8,故到F1,F2两点的距离之和为常数8的点的轨迹是线段F1F2.②中到F1,F2两点的距离之和6小于F1F2,故这样的轨迹不存在.③中点(5,3)到F1,F2的距离之和为(5+4)2+32+(5-4)2+32=410>F1F2=8,故③中的轨迹是椭圆.④中点的轨迹是线段F1F2的垂直平分线.答案:①②④[例2] 设F 1,F 2F 1QF 2的平分线的垂线,垂足是P ,那么点P 的轨迹是什么曲线?[思路点拨] 利用双曲线的定义,结合平面图形的性质判断.[精解详析] 如图所示,点Q 在双曲线的右支上,有QF 1-QF 2=2a .①延长F 1P 、QF 2交于L .∵∠F 1QP =∠LQP ,QP ⊥F 1P ,∴F 1Q =QL ,代入①,则QL -QF 2=2a ,即F 2L =2a . 取线段F 1F 2中点O ,则由P 是F 1L 中点有PO =12F 2L =12·2a =a . ∴P 的轨迹是以O 为圆心,以a 为半径的圆.[一点通] 当点在圆锥曲线上时,点一定满足圆锥曲线的定义,如本题中,点Q 在双曲线上,则有QF 1-QF 2=2a ,这是定义的要求.另外利用平面图形的性质解题是解析几何中很常见的解题思想.3.已知A ⎝⎛⎭⎫-12,0,B 是圆F :⎝⎛⎭⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹为________.解析:由已知,得P A =PB ,PF +BP =2,所以P A +PF =2,且P A +PF >AF ,即动点P 的轨迹是以A ,F 为焦点的椭圆.答案:椭圆4.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,试判断动圆圆心M 的轨迹.解:设圆M 的半径为r ,由题意,得MC 1=1+r ,MC 2=3+r .∵MC 2-MC 1=2<C 1C 2,∴圆心M 的轨迹是以C 1,C 2为焦点的双曲线的一支.5.已知定点P (0,3)和定直线l :y +3=0,动圆M 过P 点且与直线l 相切.求证:圆心M 的轨迹是一条抛物线.解:∵直线y +3=0与圆相切,∴圆心M 到直线y +3=0的距离为圆的半径r .又圆过点P (0,3),∴r =MP ,∴动点M 到点P (0,3)的距离等于到定直线y +3=0的距离,∴动点M 的轨迹是以点P (0,3)为焦点,以直线y +3=0为准线的抛物线.椭圆定义中常数为动点到两焦点的距离之和,由三角形中两边之和大于第三边知,应要求常数大于焦距.双曲线定义中常数为动点到两焦点的距离之差的绝对值,由三角形中两边之差小于第三边知,应要求常数小于焦距.[对应课时跟踪训练(七)]1.平面内到一定点F 和到一定直线l (F 在l 上)的距离相等的点的轨迹是________________________.答案:过点F 且垂直于l 的直线2.在平面直角坐标系中,B (-3,0),C (3,0),动点A 满足AB =AC +2,则点A 的轨迹是____________.解析:由AB =AC +2知AB -AC =2,且2<BC =6,故点A 的轨迹是双曲线的一支. 答案:双曲线的一支3.已知F 1,F 2是椭圆的两个焦点,点P ,Q 都在椭圆上,若△PF 1F 2的周长为15,F 1F 2=6,则QF 1+QF 2=________.解析:QF 1+QF 2=PF 1+PF 2=15-6=9.答案:94.平面内动点P 到两定点F 1(-2,0),F 2(2,0)的距离之差为m ,若动点P 的轨迹是双曲线,则m 的取值范围是________.解析:由题意可知,|m |<4,且m ≠0,∴-4<m <4,且m ≠0.答案:(-4,0)∪(0,4)5.已知F ⎝⎛⎭⎫14,0是抛物线的焦点,x =-14是抛物线的准线,A ,B 是抛物线上的两点,且AF +BF =3,则线段AB 的中点M 到y 轴的距离为________.解析:因为抛物线的焦点为F ⎝⎛⎭⎫14,0,准线方程为x =-14,AF +BF =3,所以设A 到准线的距离为AC ,B 到准线的距离为BD ,则根据抛物线的定义知AC +BD =AF +BF =3,则线段AB 的中点M 到准线的距离为AC +BD 2=32,所以M 到y 轴的距离为32-14=54. 答案:546.已知△ABC 中,BC =2,且sin B -sin C =12sin A ,求△ABC 的顶点A 的轨迹. 解:由正弦定理得:sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 代入sin B -sin C =12sin A , 得:b -c =12a ,即b -c =1,即AC -AB =1(<BC ), 所以顶点A 的轨迹是以B ,C 为焦点且靠近B 的双曲线的一支,并去掉与BC 的交点.7.若点P (x ,y )的坐标满足方程(x -1)2+(y -2)2=|3x +4y +12|5,试判断点P 的轨迹是哪种类型的圆锥曲线. 解:(x -1)2+(y -2)2=|3x +4y +12|5, 即(x -1)2+(y -2)2=|3x +4y +12|32+42, 等式左边表示点P (x ,y )到点(1,2)的距离,右边表示点P (x ,y )到直线3x +4y +12=0的距离,即点P (x ,y )到点(1,2)的距离与到直线3x +4y +12=0的距离相等.又因为点(1,2)不在直线3x +4y +12=0上,由抛物线的定义知,点P 的轨迹是以(1,2)为焦点,直线3x +4y +12=0为准线的抛物线.8.在相距1 600 m 的两个哨所A ,B ,听远处传来的炮弹爆炸声,已知当时的声速是340 m/s ,在A 哨所听到爆炸声的时间比在B 哨所听到时间早3 s .试判断爆炸点在怎样的曲线上?解:由题意可知点P 离B 比离A 远,且PB -P A =340×3=1 020 m ,而AB =1 600 m >1 020 m ,满足双曲线的定义,∴爆炸点应在以A ,B 为焦点的双曲线的靠近A 的一支上.。

2019-2020学年高中数学 圆锥曲线教案 苏教版选修1-1.doc

2019-2020学年高中数学 圆锥曲线教案 苏教版选修1-1.doc

2019-2020学年高中数学圆锥曲线教案苏教版选修1-1教学目标1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义,并能用数学符号或自然语言的描述。

2.通过用平面截圆锥面,感受、了解双曲线的定义。

能用数学符号或自然语言描述双曲线的定义。

重点难点重点:椭圆、抛物线、双曲线的定义。

难点:用数学符号或自然语言描述三种曲线的定义教学过程1.问题情境我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。

提出问题:用平面去截圆锥面能得到哪些曲线?2.学生活动学生讨论上述问题,通过观察,可以得到以下三种不同的曲线:对于Dan delin双球理论只要让学生感知、认同即可。

3.建构数学(1)圆锥曲线的定义椭圆:平面内到两定点1F,2F的距离和等于常数(大于12F F)的点的轨迹叫做椭圆,两个定点1F,2F叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

对于第二种情形,平面与圆锥曲线的截线由两支曲线构成。

(类比椭圆的定义)双曲线:平面内到两定点1F,2F的距离的差的绝对值等于常数(小于12F F)的点的轨迹叫做双曲线,两个定点1F,2F叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。

对于第三种情形,平面与圆锥曲线的截线是一条曲线构成。

抛物线:平面内到一个定点F和一条定直线L(F不在L上)的距离相等的点轨迹叫做抛物线,定点叫做抛物线的焦点,定直线L 叫做抛物线的准线。

(2)圆锥曲线的定义式上面的三个结论我们都可以用数学表达式来体现:设平面内的动点为M 。

椭圆:动点M 满足的式子:122MF MF a +=(2a >12F F 的常数)双曲线:动点M 满足的式子:122MF MF a -=(0<2a <12F F 的常数)抛物线:动点M 满足的式子:MF =d (d 为动点M 到直线L 的距离)我们可利用上面的三条关系式来判断动点M 的轨迹是什么!4.数学应用例1、试用适当的方法作出以两个定点1F ,2F 为焦点的一个椭圆。

2019-2020年苏教版选修1-1高中数学2.5《圆锥曲线的共同性质》word导学案

2019-2020年苏教版选修1-1高中数学2.5《圆锥曲线的共同性质》word导学案
2:知识归纳
圆锥曲线的共同性质
1.
2.
3.
3:知识应用
1.椭圆的准线方程是
2.双曲线的一条准线是 y=1,则m的值为
3.双曲线的两条准线的距离等于
4.椭圆的准线平行于x轴,则的取值范围是
5.椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是
【课堂研讨】
例1.与椭圆+=1共焦点,且两条准线间的距离为的双曲线方程是
【课后作业】
1.椭圆上一点P
⑴它到一个焦点的距离等于3,它到相对应的准线的距离为.
⑵它到左准线的距离为4,则到右焦点的距离是.
2.双曲线的焦距是两准线间距离的4倍,则此双曲线的离心率等于
3.离心率,一条准线方程是的椭圆的标准方程是.
4.若一个椭圆的离心率,准线方程是x=4,对应的焦点坐标是(2,0),则椭圆的方程.
2019-2020年苏教版选修1-1高中数学2.5《圆锥曲线的共同锥曲线统一定义及其应用。体现解几基本思想:用代数方法解决解几问题
【课前预习】
1:探究问题
问题(一):点M与定点F的距离和它到定直线:的距离的比是常数,求点M的轨迹.
问题(二):点M与定点F的距离和它到定直线:的距离的比是常数,求点M的轨迹.
5.求与定点A(5,0)及定直线的距离的比是的点的轨迹方程.
6.已知点A(1,2)在椭圆内,F是椭圆的右焦点,在椭圆上求一点P,使|PA|+2|PF|最小.
例2.满足方程的动点的轨迹是
例3.已知双曲线-=1上点P到右焦点的距离上14,则其到左准线距离是
课题:2.5圆锥曲线的共同性质 检测案
【课堂作业】
1.若双曲线-=1上点P到右焦点的距离为8,则P到其右准线的距离为

(江苏共享)2019-2020学年高中数学 第二章 圆锥曲线与方程 2.5 圆锥曲线的共同性质学案 苏教版选修1-1【优

(江苏共享)2019-2020学年高中数学 第二章 圆锥曲线与方程 2.5 圆锥曲线的共同性质学案 苏教版选修1-1【优

2.5 圆锥曲线的共同性质学习目标:1.了解圆锥曲线的统一定义,掌握根据标准方程求圆锥曲线的准线方程的方法.(重点) 2.能用坐标法解决一些与圆锥曲线有关的简单几何问题.(难点)[自 主 预 习·探 新 知]1.圆锥曲线的共同性质:圆锥曲线上的点到一个定点F 和到一条定直线l (F 不在定直线l 上)的距离之比是一个常数e .这个常数e 叫做圆锥曲线的离心率,定点F 就是圆锥曲线的焦点,定直线l 就是该圆锥曲线的准线.2.圆锥曲线离心率的范围: (1)椭圆的离心率满足0<e <1, (2)双曲线的离心率满足e >1, (3)抛物线的离心率满足e =1. 3.椭圆和双曲线的准线方程:根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,准线方程都是x =±a 2c.[基础自测]1.判断正误:(1)到定点F 与定直线l 的距离之比为常数的点的轨迹是圆锥曲线.( ) (2)离心率e =1时不表示圆锥曲线.( )(3)椭圆的准线为x =±a 2c (焦点在x 轴上),双曲线的准线为x =±c 2a(焦点在x 轴上).【解析】 (1)×.定点F 不在定直线l 上时才是圆锥曲线. (2)×.当e =1时表示抛物线是圆锥曲线.(3)×.双曲线的准线也是x =±a 2c.【答案】 (1)× (2)× (3)×2.离心率为12,准线为x =±4的椭圆方程为________.【导学号:95902149】【解析】 由题意知a =2,c =1,b 2=3,∴椭圆方程为x 24+y 23=1.【答案】x 24+y 23=1[合 作 探 究·攻 重 难](1)x 2-y 2=2; (2)4y 2+9x 2=36; (3)x 2+4y =0; (4)3x 2-3y 2=-2.[思路探究] 把方程化为标准形式后,确定焦点的位置、利用公式求解. 【自主解答】 (1)化方程为标准形式:x 22-y 22=1.焦点在x 轴上,a 2=2,b 2=2,c 2=4,c =2. ∴焦点为(±2,0),准线方程为x =±22=±1.(2)化方程为标准形式:y 29+x 24=1.焦点在y 轴上,a 2=9,b 2=4,c = 5. ∴焦点坐标为(0,±5),准线方程为y =±95=±95 5.(3)由方程x 2=-4y 知,曲线为抛物线,p =2, 开口向下,焦点为(0,-1),准线为y =1. (4)化方程为标准形式y 223-x 223=1,a 2=23,b 2=23,c =23+23=233,故焦点为⎝⎛⎭⎪⎫0,±233. 准线方程为y =±a 2c =±23233=±33.[规律方法]1.已知圆锥曲线方程求焦点坐标、准线方程的一般思路是:首先确定圆锥曲线的类型,其次确定其标准方程的形式,然后确定相关的参数值a ,b ,c 或p ,最后根据方程的特征写出相应的焦点坐标、准线方程.2.注意:椭圆、双曲线有两条准线,而抛物线只有一条准线,应区别对待. [跟踪训练]1.求下列圆锥曲线的焦点坐标和准线方程: (1)3x 2+4y 2=12;(2)2x 2-y 2=4.【导学号:95902150】【解】 (1)化方程为标准形式:x 24+y 23=1.焦点在x 轴上,a 2=4,b 2=3,c 2=1,c =1.∴焦点坐标为(±1,0),准线方程为x =±a 2c=±4.(2)化方程为标准形式:x 22-y 24=1.焦点在x 轴上,a 2=2,b 2=4,c 2=6,c = 6.∴焦点坐标为(±6,0),准线方程为x =±a 2c =±26=±63.双曲线x 29-y 216=1上有一点P ,它到右准线的距离为115,求它到左焦点的距离.[思路探究] 首先判定点P 在双曲线的左支还是右支上,然后利用性质把到准线的距离转化为到焦点的距离求解.【自主解答】 双曲线x 29-y 216=1的左准线和右准线分别为x =-95和x =95,若点P 在双曲线的左支上,则点P 到右准线的最小距离为95-(-3)=245>115,故点P 不可能在左支上,而在右支上,所以点P 到右焦点的距离为115e =113,再根据双曲线的定义知PF 1-PF 2=6,即PF 1=6+PF 2=6+113=293.即点P 到左焦点的距离为293.[规律方法] 解决这类圆锥曲线上点到焦点和准线的距离问题的一般思路有两种:(1)先利用统一定义进行曲线上点到焦点与相应准线距离之间的相互转化,再利用对应的圆锥曲线定义进行曲线上点到两不同焦点距离之间的转化来解决;(2)把思路(1)的两步过程交换先后顺序来解决.[跟踪训练]2.椭圆x 225+y 216=1上有一点P ,它到椭圆的左准线的距离为283,求点P 到椭圆的右焦点的距离.【解】 椭圆x 225+y 216=1中,a 2=25,b 2=16,则a =5,c =3,故离心率为e =35.由圆锥曲线的性质得点P 到椭圆的左焦点的距离为283e =285,再根据椭圆的定义得,P 到右焦点的距离为2a -285=10-285=225.[探究问题]1.根据椭圆(双曲线)的共同性质,椭圆(双曲线)上一点P 到其焦点F 的距离PF ,与点P 到对应准线的距离d 有什么关系?【提示】PFd=e ,即PF =de (e 为椭圆或双曲线的离心率). 2.设椭圆x 24+y 23=1内一点A (1,1),P 为椭圆上一点,过P 作椭圆的准线x =4的垂线,垂足为D ,则PA +PD 的最小值是什么?【提示】 过A 作直线x =4的垂线交椭圆于P ,垂足为D ,则PA +PD 最小,最小值为AD =4-1=3.3.设椭圆x 24+y 23=1外一点M (1,3),F 为其右焦点,P 为椭圆上一点,P 到椭圆的准线x =4的距离为PD ,则PA +12PD 的最小值是什么?【提示】 易知椭圆的离心率是e =12,由PF PD =12,得PF =12PD ,故PA +12PD =PA +PF ≥AF =3.即PA +12PD 的最小值是3.已知椭圆x 28+y 29=1内有一点M (1,2),F 是椭圆在y 轴正半轴上的一个焦点,在椭圆上求一点P ,使得MP +3PF 的值最小.【导学号:95902151】[思路探究] 因为椭圆离心率为13,∴PF d =13(d 为P 到相应准线的距离),∴3PF =d ,将MP+3PF 转化为MP +d .【自主解答】 设P 点坐标为(x 0,y 0),P 到F 对应准线的距离为d ,由方程知a 2=9,a =3,b 2=8,c 2=1,∴e =13,∴PF d =13,∴3PF =d ,∴MP +3PF =MP +d . 当MP 与准线l 垂直时MP +d 最小.此时P 点的横坐标为x 0=1,将x 0=1代入椭圆方程x 208+y 209=1,得y 0=3414.∴P 点坐标为⎝ ⎛⎭⎪⎫1,3414,最小距离为a 2c -2=9-2=7.即MP +3PF 的最小值为7.[规律方法] 求距离和的最小值的关键在于把折线变成直线,此过程需借助于圆锥曲线的统一定义进行等价转化,体现了数形结合与等价转化的数学思想.[跟踪训练]3.如图2­5­1所示,已知F 是双曲线x 24-y 212=1的左焦点,定点A 的坐标为(3,1),P 是双曲线右支上的动点,则12PF +PA 的最小值为多少?图2­5­1【解】 由x 24-y 212=1知a =2,c =4,e =2.设点M 是点P 在左准线上的射影.则PM 是P 到左准线x =-1的距离,则PFPM=2. 所以12PF =PM ,所以12PF +PA =PM +PA .显然当A ,P ,M 三点共线时,12PF +PA 的值最小,即12PF +PA 的最小值为点A 到双曲线左准线的距离:3+a 2c =3+44=4.故12PF +PA 的最小值为4.[构建·体系][当 堂 达 标·固 双 基]1.椭圆x 23+y 22=1的准线方程是________.【解析】 由方程可知a 2=3,b 2=2,c 2=1,∴c =1,则准线方程为x =±a 2c=±3.【答案】 x =±32.在平面直角坐标系xOy 中,已知双曲线x 2a -y 24=1的一条准线的方程为x =3,则实数a的值是__________.【导学号:95902152】【解析】 由方程可得c =a +4,∴x =aa +4=3,解得a =12或a =-3(舍),故a =12. 【答案】 123.若椭圆的焦点坐标为(1,0),准线方程是x =12,则该椭圆的方程是________.【解析】 易知椭圆的焦点在x 轴上,且c =1,故准线方程是x =a 2c =a 2=12,则b 2=a 2-c 2=11,故椭圆方程是x 212+y 211=1.【答案】x 212+y 211=1 4.椭圆x 24+y 23=1上一点P 到其焦点的距离为2,则点P 到对应的准线的距离为________.【解析】 由题意知a =2,c =1,∴e =12,所以p 到准线的距离为2÷12=4.【答案】 45.椭圆x 2100+y 236=1上有一点P ,它到椭圆的左准线的距离为10,求点P 到椭圆的右焦点的距离.【导学号:95902153】【解析】 椭圆x 2100+y 236=1中,a 2=100,b 2=36,则a =10,c =a 2-b 2=8,故离心率为e =45.根据圆锥曲线的统一定义得,点P 到椭圆的左焦点的距离为10e =8.再根据椭圆的定义得,点P 到椭圆的右焦点的距离为20-8=12.。

2019-2020学年苏教版选修1-1 圆锥曲线的综合问题 学案

2019-2020学年苏教版选修1-1   圆锥曲线的综合问题  学案

2019-2020学年苏教版选修1-1 圆锥曲线的综合问题学案1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.3.圆锥曲线的综合问题的解决大多需要具备方程(组)思想:引参—列方程(组)—消参—求值,或围绕函数思想求范围、最值.或根据等式的恒成立、数式变换等寻找不受参数影响的量解决定值、定点问题.知识拓展过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)设点P (x 0,y 0)为双曲线y 2a 2-x 2b 2=1上的任一点,则|x 0|≥a .( × )(3)椭圆x 2a 2+y 2b 2=1上的点到焦点距离的最大值是a +c .( √ )(4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)设点A (x 1,y 1),B (x 2,y 2)在抛物线y 2=2px (p >0)上,且直线AB 过抛物线的焦点,则y 1y 2=-p 2.( √ ) 题组二 教材改编2.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条 D .4条答案 C解析 过(0,1)与抛物线y 2=4x 相切的直线有2条,过(0,1)与对称轴平行的直线有一条,这三条直线与抛物线都只有一个公共点.3.已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________. 答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2,x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2≥4, 即当m =0时,|AB |有最小值4.题组三 易错自纠4.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( ) A .有且只有一条 B .有且只有两条 C .有且只有三条 D .有且只有四条答案 B解析 设该抛物线的焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且只有两条.5.(2018届江西省南昌市三模)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为________.答案226.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________. 答案 y =±x解析 抛物线的准线方程为y =-p2,焦点为F ⎝⎛⎭⎫0,p 2, ∴a 2+⎝⎛⎭⎫p 22=c 2.①设抛物线的准线y =-p2交双曲线于M ⎝⎛⎭⎫x 1,-p 2,N ⎝⎛⎭⎫x 2,-p 2两点,∴⎩⎨⎧y =-p 2,x 2a 2-y2b 2=1,即x2a 2-⎝⎛⎭⎫-p 22b 2=1,解得x =±a p 24b 2+1, ∴2ap 24b 2+1=2c .② 又∵b 2=c 2-a 2,③ ∴由①②③,得c 2a2=2.∴b 2a 2=c 2a 2-1=1,解得b a =1. ∴双曲线的渐近线方程为y =±x .第1课时 范围、最值问题题型一 范围问题典例 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1|OF |+1|OA |=3e |F A |, 即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0. 解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M),由方程组⎩⎨⎧y =k (x -2),y =-1k x +9-4k212k ,消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,由∠MOA ≤∠MAO ,得|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简,得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的简单性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练 (2018·开封质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点. (1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围. 解 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =c a =32.又∵直线x -y -2=0经过椭圆的右顶点, ∴右顶点为点(2,0),即a =2,c =3,b =1, ∴椭圆方程为x 24+y 2=1.(2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0), M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k2, 于是y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2, 则-8k 2m 21+4k2+m 2=0. 由m ≠0得k 2=14,解得k =±12.又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d , 则S △OMN =12|MN |d=12·1+k 2·|x 1-x 2|·|m |1+k 2=12|m |(x 1+x 2)2-4x 1x 2=-(m 2-1)2+1.故由m 的取值范围可得△OMN 面积的取值范围为(0,1).题型二 最值问题命题点1 利用三角函数有界性求最值典例 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( )A .2 B. 2 C .4 D .2 2 答案 C解析 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4.命题点2 数形结合利用几何性质求最值典例 在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+(-1)2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值 典例 (2017·山东)在平面直角坐标系xOy 中,椭圆E : x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦距为2.(1)求椭圆E 的方程; (2)如图,动直线l :y =k 1x -32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24.M 是线段OC 延长线上一点,且|MC |∶|AB |=2∶3,⊙M 的半径为|MC |,OS ,OT 是⊙M 的两条切线,切点分别为S ,T .求∠SOT 的最大值,并求取得最大值时直线l 的斜率.解 (1)由题意知e =c a =22,2c =2,所以c =1,所以a =2,b =1,所以椭圆E 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎨⎧x 22+y 2=1,y =k 1x -32,得(4k 21+2)x 2-43k 1x -1=0.由题意知Δ>0,且x 1+x 2=23k 12k 21+1,x 1x 2=-12(2k 21+1), 所以|AB |=1+k 21|x 1-x 2|=21+k 211+8k 211+2k 21.由题意可知,圆M 的半径r 为r =23|AB |=223·1+k 21 1+8k 212k 21+1, 由题设知k 1k 2=24,所以k 2=24k 1, 因此直线OC 的方程为y =24k 1x . 联立方程⎩⎨⎧x 22+y 2=1,y =24k 1x ,得x 2=8k 211+4k 21,y 2=11+4k 21, 因此|OC |=x 2+y 2=1+8k 211+4k 21.由题意可知,sin ∠SOT 2=r r +|OC |=11+|OC |r.而|OC |r =1+8k 211+4k 21223·1+k 21 1+8k 211+2k 21=324·1+2k 211+4k 211+k 21,令t =1+2k 21,则t >1,1t ∈(0,1), 因此|OC |r =32·t2t 2+t -1=32·12+1t -1t 2=32·1-⎝⎛⎭⎫1t -122+94≥1,当且仅当1t =12,即t =2时等号成立,此时k 1=±22,所以sin∠SOT 2≤12,因此∠SOT 2≤π6,所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率为k 1=±22.思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、简单性质以及平面简单中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟踪训练 (2018·邢台模拟)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 的中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则t 2∈⎝⎛⎭⎫0,32.则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立,此时满足t 2∈⎝⎛⎭⎫0,32. 故△AOB 面积的最大值为22.1.(2017·河北武邑中学模拟)已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→<0,则x 0的取值范围是( ) A.⎝⎛⎭⎫-263,263 B.⎝⎛⎭⎫-233,233 C.⎝⎛⎭⎫-33,33 D.⎝⎛⎭⎫-63,63 答案 A解析 由题意可知:F 1(-3,0),F 2(3,0), 则PF 1→·PF 2→=(x 0+3)(x 0-3)+y 20=x 20+y 20-3<0, 点P 在椭圆上,则y 20=1-x 204,故x 20+⎝⎛⎭⎫1-x 204-3<0,解得-263<x 0<263,即x 0的取值范围是⎝⎛⎭⎫-263,263.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105 D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=2·⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2,当t =0时,|AB |max =4105. 3.过抛物线y 2=x 的焦点F 的直线l 交抛物线于A ,B 两点,且直线l 的倾斜角θ≥π4,点A在x 轴上方,则|F A |的取值范围是( ) A.⎝⎛⎦⎤14,1 B.⎝⎛⎭⎫14,+∞ C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎦⎤14,1+22答案 D解析 记点A 的横坐标是x 1,则有|AF |=x 1+14=⎝⎛⎭⎫14+|AF |cos θ+14=12+|AF |cos θ, |AF |(1-cos θ)=12,|AF |=12(1-cos θ).由π4≤θ<π得-1<cos θ≤22,2-2≤2(1-cos θ)<4,14<12(1-cos θ)≤12-2=1+22, 即|AF |的取值范围是⎝⎛⎦⎤14,1+22.4.(2018·长春质检)已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,对于左支上任意一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴长),则此双曲线的离心率e 的取值范围是( ) A .(1,+∞) B .(2,3] C .(1,3] D .(1,2]答案 C解析 由P 是双曲线左支上任意一点及双曲线的定义, 得|PF 2|=2a +|PF 1|,所以|PF 2|2|PF 1|=|PF 1|+4a 2|PF 1|+4a =8a ,所以|PF 1|=2a ,|PF 2|=4a , 在△PF 1F 2中,|PF 1|+|PF 2|≥|F 1F 2|, 即2a +4a ≥2c ,所以e =ca ≤3.又e >1,所以1<e ≤3.故选C.5.(2018届云南昆明一中摸底)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.22 B.23 C.33D.1 答案 A解析 由题意可得F ⎝⎛⎭⎫p 2,0,设P ⎝⎛⎭⎫y 22p ,y 0(y 0>0), 则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝⎛⎭⎫y 206p +p 3,y 03, 可得k =y 03y 206p +p 3=1y 02p +p y 0≤12y 02p ·p y 0=22. 当且仅当y 02p =py 0时取得等号,故选A.6.(2017·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=4y ,点P 是C 的准线l 上的动点,过点P 作C 的两条切线,切点分别为A ,B ,则△AOB 面积的最小值为( ) A. 2 B .2 C .2 2 D .4答案 B解析 设P (x 0,-1),A (x 1,y 1),B (x 2,y 2), 又A ,B 在抛物线上,所以y 1=x 214,y 2=x 224.因为y ′=x 2,则过点A ,B 的切线分别为y -x 214=x 12(x -x 1),y -x 224=x 22(x -x 2)均过点P (x 0,-1),则-1-x 214=x 12(x 0-x 1),-1-x 224=x 22(x 0-x 2),即x 1,x 2是方程-1-x 24=x 2(x 0-x )的两根,则x 1+x 2=2x 0,x 1x 2=-4,设直线AB 的方程为y =kx +b ,联立⎩⎪⎨⎪⎧x 2=4y ,y =kx +b ,得x 2-4kx -4b=0,则x 1x 2=-4b =-4, 即b =1,|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·4x 20+16,O 到直线AB 的距离d =bk 2+1, 则S △AOB =12|AB |d =x 20+4≥2,即△AOB 的面积的最小值为2,故选B.7.(2017·泉州质检)椭圆C :x 2a 2+y 2=1(a >1)的离心率为32,F 1,F 2是C 的两个焦点,过F 1的直线l 与C 交于A ,B 两点,则|AF 2|+|BF 2|的最大值为________. 答案 7解析 因为椭圆C 的离心率为32,所以a 2-1a =32,解得a =2,由椭圆定义得|AF 2|+|BF 2|+|AB |=4a =8, 即|AF 2|+|BF 2|=8-|AB |,而由焦点弦性质,知当AB ⊥x 轴时,|AB |取最小值2×b 2a =1,因此|AF 2|+|BF 2|的最大值为8-1=7.8.(2018届贵州黔东南州联考)定长为4的线段MN 的两端点在抛物线y 2=x 上移动,设点P为线段MN 的中点,则点P 到y 轴距离的最小值为________. 答案 74解析 设M (x 1,y 1),N (x 2,y 2),抛物线y 2=x 的焦点为F ⎝⎛⎭⎫14,0,抛物线的准线为x =-14,所求的距离d =⎪⎪⎪⎪⎪⎪x 1+x 22=x 1+14+x 2+142-14=|MF |+|NF |2-14,所以|MF |+|NF |2-14≥|MN |2-14=74(两边之和大于第三边且M ,N ,F 三点共线时取等号). 9.(2017·泉州模拟)椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过椭圆的右焦点F 2作一条直线l 交椭圆于P ,Q 两点,则△F 1PQ 的内切圆面积的最大值是________. 答案9π16解析 令直线l :x =my +1,与椭圆方程联立消去x ,得(3m 2+4)y 2+6my -9=0,可设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.可知S △F 1PQ =12|F 1F 2||y 1-y 2|=(y 1+y 2)2-4y 1y 2=12m 2+1(3m 2+4)2,又m 2+1(3m 2+4)2=19(m 2+1)+1m 2+1+6≤116, 故1F PQS≤3.三角形的周长与三角形内切圆的半径的积是三角形面积的二倍,三角形的周长l =4a =8,则内切圆半径r =21F PQS8≤34,其面积最大值为9π16. 10.(2018·日照模拟)若点O 和点F 分别为椭圆x 29+y 28=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最小值为__________. 答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),由题意得左焦点F (-1,0), ∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝⎛⎭⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝⎛⎭⎫x +922≤2254, ∴14≤19⎝⎛⎭⎫x +922≤254, ∴6≤19·⎝⎛⎭⎫x +922+234≤12, 即6≤OP →·FP →≤12.故最小值为6. 11.已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2, 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 2x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.12.(2018·商丘模拟)如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为弦AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值. 解 (1)因为e 1e 2=32,所以a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2. 故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1.(2)因为AB 不垂直于y 轴,且过点F 1(-1,0), 故可设直线AB 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1,得(m 2+2)y 2-2my -1=0.易知此方程的判别式大于0. 设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2.因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0.由⎩⎨⎧y =-m2x ,x22-y 2=1,得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2,从而|PQ |=2x 2+y 2=2m 2+42-m 2. 设点A 到直线PQ 的距离为d , 则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧, 所以(mx 1+2y 1)(mx 2+2y 2)<0, 于是|mx 1+2y 1|+|mx 2+2y 2| =|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2, 所以2d =22·1+m 2m 2+4.故四边形APBQ 的面积S =12|PQ |·2d=22·1+m 22-m2=22·-1+32-m 2.而0<2-m 2≤2,故当m =0时,S 取得最小值2. 综上所述,四边形APBQ 面积的最小值为2.13.(2018·郑州模拟)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是( ) A.⎝⎛⎭⎫1,62 B .(2,+∞) C .(1,2) D.⎝⎛⎭⎫62,+∞ 答案 C解析 不妨联立y =b a x 与y 2=x ,消去y 得b 2a 2x 2=x ,由x 0>1,知b2a 2<1,即c 2-a 2a2<1,故e 2<2,又e >1,所以1<e <2,故选C.14.(2017·资阳模拟)过抛物线y 2=4x 的焦点F 作互相垂直的弦AC ,BD ,则点A ,B ,C ,D 所构成四边形的面积的最小值为( ) A .16 B .32 C .48 D .64答案 B解析 由抛物线的几何性质可知: |AC |=2p sin 2θ,|BD |=2psin 2⎝⎛⎭⎫θ+π2,∴S =12|AC |×|BD |=8p 2sin 22θ≥8p 2=32,据此可得,点A ,B ,C ,D 所构成四边形的面积的最小值为32.15.(2018·石家庄模拟)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC =θ,若Γ的离心率为2,则( ) A .θ∈⎝⎛⎭⎫0,π2 B .θ=π2C .θ∈⎝⎛⎭⎫3π4,π D .θ=3π4答案 B解析 ∵e =ca=2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B. 16.(2017·郑州质检)已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n =1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 答案 ⎝⎛⎭⎫22,1解析 ∵椭圆C 1:x 2m +2-y 2n=1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+nm +2. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +2+n =m -n ,则n =-1,∴e 21=1-1m +2. 由m >0得m +2>2,1m +2<12,-1m +2>-12, ∴1-1m +2>12,即e 21>12,而0<e 1<1, ∴22<e 1<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学圆锥曲线的共同性质教案苏教版选修1-1
教学目标:(1)掌握圆锥曲线的共同性质,理解离心率、焦点、准线的意义
(2)通过观察、类比、归纳总结得出圆锥曲线的共同性质
(3)通过本节的学习,可以培养我们观察、猜想、归纳、推理的能力
重点:圆锥曲线第二定义的推导
难点:对圆锥曲线第二定义的理解与运用
一.知识回顾
二.数学探究
问题1:圆锥曲线有什么共同性质?它们的离心率有什么联系?从抛物线的定义出发来研究:
1.抛物线离心率e=1:
准线方程:
2.椭圆的离心率0<e<1:
准线方程:
3.双曲线的离心率e>1:
准线方程:
三.数学应用
例1:已知动点P满足到定直线的距离和它到定点F的距离比为,那么动点P的轨迹是_________________.
例2:若椭圆的一条准线为,则________.
例3:已知动点P满足=,那么动点P的轨迹是什么?
问题2:椭圆和双曲线的准线方程各是什么?
练习:求下列曲线的准线方程:
(1)(2)
(3)(4)
(5)(6)
例4.在椭圆内有一点P(1,-1),F为椭圆右焦点,在椭圆上有一点M,使的值最小,求这个最小值.
巩固练习:
1.双曲线的准线方程是____________.
2.已知平面内动点P到一条定直线的距离和它到定点F的距离的比等于,则点P 的轨迹是__________.
3.椭圆上一点到其左准线的距离等于,则P到右焦点的距离等于_______
4.以椭圆的右准线为准线的抛物线的标准方程是___________.
问题探究:
设A,是右焦点为F的椭圆上三个不同的点,则“AF,BF,CF成等差数列”是“”的____________条件.
课堂小结:
1.知识小结:
2.数学思想方法:
课外练习:
1. 双曲线的准线方程为____________,两准线间的距离为_____________.
2. 椭圆的一条准线方程为,那么__________.
3. 若抛物线的准线是椭圆的一条准线,则=_______.
4. 已知点是椭圆上的一点,若点到椭圆右准线的距离是,则点P 到左焦点的距离是__________.
5. 若双曲线的一条准线与两条渐近线交点确定的线段长恰好等于双曲线的实半轴长,则双曲线的离心率为__________________.
6. 已知定点F (-4,0),动点P 到F 的距离是P 到定直线的距离的倍,则点P 的轨迹方程为___________.
7. 若抛物线上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为_____.
8. 3x y =+-表示的曲线是________________.
9. 求圆心在抛物线上且与轴及抛物线的准线都相切的圆的方程.
10.已知椭圆的左焦点为F ,点P 在椭圆上,且,,求点P 到椭圆左准线的距离.。

相关文档
最新文档