一次函数讲义-适用于新课复习非常全面2017.9
一次函数详细讲义
1变量和函数一、变量1.变量:在一个变化过程中,我们称数值发生变化的量为变量.2.常量:在一个变化过程中,数值始终不变的量为常量。
注意:(1)变量和常量是相对的,前提条件是在一个变化过程中;(2)常数也是常量,如圆周率要作为常量二、函数1.函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
注意:①函数是相对自变量而言的,如对于两个变量x,y,y是x的函数,而不能简单的说出y是函数。
②判断一个关系式是否为函数关系:一看是否在一个变化过程中,二看是否只有两个变量,三看对于一个变量没取到一个确定的值时,另一个变量是否有唯一的值与其对应。
③函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系④“y有唯一值与x对应”是指在自变量的取值范围内,x每取一个确定值,y都唯一的值与之相对应,否则y不是x的函数.⑤判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x取不同的值,y的取值可以相同.例如:函数2(3)y x=-中,2x=时,1y=;4x=时,1y=.2.函数的三种表示形式(1)解析法:用数学式子表示函数的方法叫做解析法.(2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3确定函数解析式的步骤(1)根据题意列出两个变量的二元一次方程(2)用汉字变量的式子表示函数4确定自变量的取值范围(1)分母不为0(2)开平方时,被开方数非负性(3)实际问题对自变量的限制。
注意:(1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数.(3)分式型:分母不为0.(4)复合型:不等式组(5)应用型:实际有意义即可2.函数图象一、函数图象的概念一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
一次函数复习总结讲义
一次函数复习总结讲义一次函数复习总结讲义一次函数1、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应2.一次函数的定义:形如y=kx+b(k≠0,k、b为常数),则y是x 的一次函数.特别地,当b=0时,形如y=kx(k≠0,k为常数)的一次函数叫做正比例函数.3.一次函数的图象:⑴一次函数的图象特征:一次函数y=kx+b的图象经过点和点(0,b)的一条直线.正比例函数y=kx的图象是经过点(0,0)和(1,k)的一条直线.直线y=kx与y=kx+b(k≠0)的位置关系:当b>0时,直线y=kx+b可由直线y=kx(k≠0)沿y轴向上平移b个单位长度而得;当b5、一次函数与一元一次方程的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.6、一次函数与二元一次方程(组)(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=axc 图象相同.bba1xb1yc1的解可以看作是两个一次函数y=a1c(2)二元一次方程组x1和a2xb2yc2b1b1y=a2xc2的图象交点.b2b2例1若一次函数y=2xm29+m-2的图象经过第一、第二、三象限,求m的值.例2鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16192427鞋码22283844(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数?(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?建立函数模型解决实际问题例3某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为20xx千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x≤40和x≥40时y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,那么应从第几天开始进行人工灌溉?基础训练1.下列各点中,在函数y=2x-7的图象上的是()A.(2,3)B.(3,1)C.(0,-7)D.(-1,9)2.已知两个一次函数y1=-b11x-4和y2=-x+的图象重合,则一次函数y=ax+b的图象所2aa2经过的象限为()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限3.(20xx年杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限4.点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3图象上的两个点,且x1y2B.y1>y2>0C.y111.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?应用与探究12.土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列,1996~20xx年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP为y(亿元)与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查20xx年市区建设用地比20xx年增加4万亩,如果这些土地按以上函数关系式开发使用,那么20xx年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩)同步练习1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()2.下列各图给出了变量x与y之间的函数是:()yyyyooooxxxxCBDA3.一次函数y=ax+b,若a+b=1,则它的图象必经过点()A、(-1,-1)B、(-1,1)C、(1,-1)D、(1,1)y4.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-1A5.将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.6.下图可以用来所映这样一个实际情境,一艘船从甲地航行到乙地,到达O乙地后旋即返回,这里横坐标表示航行时间,纵坐标表示船只与甲地的距离.船只从甲地到乙地的速度___从乙地到甲地的速度(填"<"">""=")7.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.8.如图,直线L:y1x2与2Bxx轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。
一次函数经典讲义
一次函数复习讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。
2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。
一次函数的图象与k,b的关系如下图所示:3、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b 中含有两个待定系数k 、b ,根据待定系数法,只要列出方程组即可.4、一次函数的应用: (1)、一次函数与一元一次方程、二元一次方程组的关系。
一元一次方程的解就是一次函数与x 轴的交点坐标的横坐标的值。
二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。
(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。
二、一次函数的概念典型例题1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数;3、函数中,当 时,它是一次函数,当它是正比例函数.4、下列函数中,是的一次函数的是( )、 、 、 、三、一次函数的图象与性质1.下列图形中的曲线不表示y 是x 的函数的是( )2、如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集.其中正确的个数是( ) A .0 B .1 C .2 D .33、对于函数y =5x+6,y 的值随x 值的减小而___________。
4、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
一次函数 复习讲义
一次函数复习讲义一、知识要点1.一次函数的概念:函数(,为常数)叫做的一次函数。
2.一次函数的图像:3.一次函数的性质:4.解析式的确定:确定一次函数解析式的常用方法是待定系数法,它的一般步骤如下:(1)写出函数解析式的一般形式:(),其中k ,b 是待定系数。
(2)把自变量与函数的对应值代入函数解析式中,得到关于待定系数k ,b 的方程或方程组。
(3)解方程或方程组求出待定系数k ,b 的值,从而写出一次函数的解析式。
注:已知两直线:)0(111≠+=k b x k y 和)0(222≠+=k b x k y ,且21b b ≠,则2121//l l k k ⇔=5.一次函数y =kx +b (k ≠0)和二元一次方程Ax +By =C 之间在A ≠0且B ≠0的条件下是可以互相转化的。
二、考点解读例1.下列函数关系式中,哪些y 是x 的一次函数?哪些是正比例函数?(1)y x -=12(2)x y 23-=(3)x y 32=(4)32-=x y (5)x y 32-=(6)023=+y x 例2.若函数()213m y m x =-+是一次函数,求m 的值,并写出解析式。
例3.直线经过第一、二、四象限,求m 的取值范围。
例4.根据下列条件写出相应的解析式:(1)直线5+=kx y 经过点)1,2(--(2)一次函数中,当1=x 时,3=y ,当1-=x 时,7=y 。
例5.已知一次函数图像过点(-2,3)和点(3,-2),求函数解析式,画出函数图像并求:(1)图像与x 轴、y 轴的交点坐标.(2)图像与两坐标轴围成的三角形面积.例6.已知一次函数n x m y -+-=4)32(满足下列条件,分别求出字母n m ,的取值范围.(1)使得y 随x 的减小而增大;(2)使得函数图像与y 轴交点在x 轴下方;(3)使函数经过第二、三、四象限.例7.如图,L 1反映了某公司产品的销售收入与销售量的关系,L 2反映了该公司的销售成本与销售量的关系.观察图像,回答下列问题.(1)当销售量分别为2吨和6吨时,销售收入与销售成本分别为多少元?(2)当销售量为多少吨时,销售收入等于销售成本?(3)当销售量为多少吨时,该公司赢利(收入大于成本)?当销售量为多少吨时,该公司亏损(收入小于成本)?(4)写出L 1和L 2对应的函数表达式.例8.m 为何值时,直线与的交点在第三象限?分析:本题有一定的难度,先求出两直线的交点,再由此交点在第三象限,知其横纵坐标均为负,进而求出m 的取值范围.2 (吨)例9.如图所示,已知正比例函数x y 21-=和一次函数b x y +=,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。
7第七章《一次函数》3、4节讲义
教 师 辅 导 讲 义学员姓名: 辅导课目:科学 年级:九年级 学科教师:汪老师 授课日期及时段课 题第七章《一次函数》3、4节讲义学习目标1、一次函数的相关定义、基本求解2、一次函数图像教学内容第七章《一次函数》3、4节<1> 一次函数及性质:一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,y = kx + b 即y = kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb ,0)(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小. (5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.<2> 一次函数y=kx +b 的图象的画法:根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下: 是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.<3> 正比例函数与一次函数图象之间的关系:一次函数y=kx +b 的图象是一条直线,它可以看作是由直线 y = kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). <4> 直线y=k 1x+b 1与y=k 2x+b 2的位置关系:(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2<5> 一次函数与一元一次不等式的关系:任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常 数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时求自变量的取值范围 <6> 一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c x b a +-和y=2222b cx b a +-的图象交点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小1、直线y=kx+b与直线y=-32x+5平行,且过点A(0,-3).(1)求该直线的函数表达式;(2)该直线可由直线y=-32x+5通过怎样的平移得到?2、旅客乘车按规定可随身携带一定重量的行李,如果超过规定重量,•则需购买行李票,设行李费y(元)是行李质量x(千克)的一次函数,其图象如图7-4-5所示,求:(1)y与x之间的函数关系式;(2)旅客至多可免费携带行李多少千克?3、某种汽车油箱可储油60升,加满油开始行驶,油箱中的剩余油量y(L)•与行驶的里程x(km)之间的函数关系式为一次函数,如图.(1)求y与x的函数关系式;(2)求加满一次汽油可以行驶多少千米?4、如图所示是某汽车行驶的路程s(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在途中停了多长时间?(3)当16≤t≤30时,求s与t的函数关系式.5、如图,已知y是x的一次函数,它的图象经过点P(-2,3),与x轴和y轴分别相交于点A和B.当△PAO的面积是6时,求点B的坐标.6、将直线y=2x向右平移2个单位所得的直线的解析式是。
一次函数讲义优质讲义
15.如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,
当点B 的对应点D 恰好落在BC 边上时,则CD 的长为.
16.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落
在AC 边上的点E 处.若
∠A =26°,则∠ADE =°.
17.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三
角形,若正方形A ,B ,C ,D 的面积和是49cm), ),
则其中最大的正方形S 的边长为cm.
18.在平面直角坐标系中,规定把一个正方形先沿着x
轴翻折,再向右平
移2个单位称为1次变换.如图,已知正方形ABCD
的顶点A 、B 的坐
标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续6次这 样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是▲.
三.解答题(本大题共9小题,共64分) 19.(本题满分8分)
(1)(4分)求出式子中x 的值:9x 2-16=0.
(2)(4分)232)3(8)2(+---
20.(本题满分5分)求一个正数的算术平方根,有些数可以直接求得,如4,
有些数则不能直接求得,如5,但可以通过计算器求得.还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
-1-1y= -x-2y=2x+1x y P (第13题图)
D E C
A B (第16题图) x y 1234–1–2–3–41234–1–2–3–4C D B A o (第18题图)
(第15题图) D E A C B。
一次函数培训讲义全
(A)()A (A)(A)(A)一次函数培训讲义一 平面直角坐标系中的坐标问题例1 如图,边长为2的正方形OABC 顶点O 与坐标原点重合,且OA 与x 轴正方形的夹角为30.求点,,A B C 的坐标练习 1、点(,)A x y 关于x 轴的对称点坐标为 ,关于y 轴的对称点坐标为 ,关于原点的对称点坐标为 ,关于直线yx 的对称点是2、在平面直角坐标系中,已知点(3,3)A ,P 是y 轴上一点,则使AOP 为等腰三角形的点P 有( )个.(A). 2 (B). 3 (C). 4 (D). 53、在平面直角坐标系中有点(2,2),(3,2)A B ,C 是坐标轴上一点,已知ABC 是直角三角形,求点C 的坐标.二 一次函数的图像性质问题 例 2 若a b c t bccaab,则一次函数2y txt 的图像必经过的象限是( )(A). 第一、二象限 (B). 第一、二、三象限 (C).第二、三、四象限 (D). 第三、四象限 练习设a b >,在同一平面直角坐标系,一次函数a bx y +=与b ax y +=的图象最有可能的是( ).三 一次函数的解析式 1、对称问题 例3 如图,直线210yx 与,x y 轴分别交于,A B ,把AOB 沿直线翻折,点O 落在C 处,则点C 的坐标是2、面积问题 例4 设直线(1)1kxk y(k 是正整数)与两坐标轴所围成的图形面积为k S ,则122011S S S3、整点问题例 5 在直角坐标系中,横纵坐标都是整数的点称为整点,设k 是整数,当直线3y x 与ykx k 的交点为整点时,满足条件的k 的值有 个4、定点问题例6 不论k 为何值,解析式(21)(3)(11)0kx k y k 表示的函数的图像经过一定点,则这个定点是5、最值问题例7 已知,,a b c 是非负实数,且满足30,350,ab c a b c 求42M a b c 的最大值和最小值.三 一次函数的应用题例8 某家电企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少60台,已知这些家电产品每台所需的工时和每台产值如表问每周应生产空调器、彩电、冰箱个多少台才能使产值最高?最高产值是多少(以千元为单位)?四 可化为一次函数的绝对值函数 例8 (1)作函数13y x x 的图像(2)13y x x五 构造一次函数解题 例9 已知关于x 的方程13x x a ,(1)若方程仅有两个解,求a 的取值围. (2) 若方程有无数个解,求a 的取值围. (3)若方程无解,求a 的取值围.例10 若已知关于x 的方程1kx x 有且仅有一个负根,求k 的取值围.练习题1、在直角坐标系中,x 轴上的动点(,0)M x 到定点(5,5),(2,1)P Q 的距离分别为,MP MQ ,求MP MQ 的最小值,并求此时点M 的坐标.2、已知一个六边形OABCDE 六个顶点的坐标如图所示,直线l 平分该六边形的面积,写出满足条件的一条直线l 的解析式.3、小刚和小强在一条由西向东的公路上行走,出发时间相同,小强从 A 出发,小刚从A 往东的B 处出发,两人到达C 地后都停止。
一次函数知识点复习讲义
一次函数知识点复习讲义基础巩固:定义及基本概念:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。
其中x 是自变量,y是因变量,k为一次项系数,y是x的函数。
其图象为一条直线。
正比例函数:当b=0时,y=kx+b即y=kx,原函数变为正比例函数,其函数图象为一条通过原点的直线。
所以说正比例函数是一种特殊的一次函数,但一次函数不一定是正比例函数。
函数的表示方法:解析式法、列表法、图象法.与坐标轴的交点:一次函数y=kx+b交y轴于(0,y),交x轴于(-b/k,0).图像性质:当k相同,且b不相等,图像平行,其中,b大则图像在上方,b小则相反;当k不同,且b相等,图象相交于y轴;当k互为负倒数时,两直线垂直.图像作法:通过如下3个步骤:(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表,(2)描点:一般取两个点,根据“两点确定一条直线”的道理;(3)连线:可以作出一次函数的图象——条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-与(-b/k,0),0与b)k,b与函数图象所在象限:y=kx时(即b等于0,y与x成正比,此时的图象是是一条经过原点的直线)当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b(k,b为常数,k≠0)时:当k>0,b>0, 这时此函数的图象经过一,二,三象限;当k>0,b<0, 这时此函数的图象经过一,三,四象限;当k<0,b>0, 这时此函数的图象经过一,二,四象限;当k<0,b<0, 这时此函数的图象经过二,三,四象限。
k>0时,图象从左到右上升,y随x的增大而增大。
k<0时,图象从左到右下降,y随x的增大而减小。
函数的平移:将函数向上平移n格,函数解析式为y=kx+b+n,将函数向下平移n格,函数解析式为y=kx+b-n,将函数向平左移n格,函数解析式为y=k(x+n)+b,将函数向平右移n 格,函数解析式为y=k(x-n)+b.用待定系数法求函数的解析式.难点突破:难点一画函数图像例1 作出函数y=6x-5的图像难点二观察函数图像例2 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,达到乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的关系式如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往返速度是否相同?请说明理由(2)求返程中y与x之间的函数关系式;(3)求这辆汽车从甲地出发4h后与甲地的距离.难点三一次函数图像性质难点四分段函数例3 一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?难点五一次函数的方案选择例4 某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变.并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润.问该集团该如何设计调配方案.使总利润达到最大?难点六一次函数与方程、不等式例5 一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为,当x 时,kx+b<0.一次函数和方程关系:一次函数与x轴交点的横坐标就是相应的一元一次方程的根.若两条解析式为y=kx+b的直线相交,交点坐标为(x,y).函数和不等式:解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
一次函数(专题精讲)讲义
【教学过程】【知识点梳理】1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数. 2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限);③当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限);④当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.【例题解析】例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. 例2 当m 为何值时,函数y=-(m-2)x32 m +(m-4)是一次函数?【小结】某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.跟踪练习:已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.例8 已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由;(2)在什么条件下,y 是x 的正比例函数?例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x 分,两种通讯方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例10已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例11已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?(5)k为何值时,y随x的增大而减小?例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.【课后习题】1. 如图,你能找出下列四个一次函数对应的图象吗?请说出你的理由.(1)12+-=x y ; (2)13-=x y ; (3)x y = ; (4)x y 32-=.2.(1)判断下列各组直线的位置关系:①x y =与1-=x y ; ②213-=x y 与2131--=x y . (2)已知直线532+=x y 与一条经过原点的直线l 平行,则这条直线l 的函数关系______ ;若直线a 与直线l 垂直且过点(0,-2),则直线a 的函数关系式为 .3.(1)一次函数x y 3-=的图象经过_ 象限,y 随x 的增大而__________;(2)一次函数n mx y +=A .0,0<<n mB .0,0><n mC .0,0>>n mD .0,0<>n m4.在下列四个函数中,y 值随x 值的增大而减小的是( ). A .x y 2= B .63-=x y C .52+-=x y D .73+=x y5.如图,已知一次函数k kx y +=的图象大致是( ).A .B .C .D .6.直线32+=x y 与x 轴正方向所成的锐角为α,直线13--=x y 与x 轴正方向所成的锐角为β,则α与β的关系为( ).A .α>βB .α=βC .α<βD .无法确定 7.已知一次函数k kx y -=,若y 随x 的增大而减小,则该函数的图象经过( ).A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限8.如图,某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按同样速度注水,水池注满后,停止注水,又立即按同样的速度放完水池的水.若水池的存水量为v (3m ),放水或注水的时间为t (min ),则v 与t 的关系的大致图象只能是( ).A .B .C .D . 9.函数3)2(1+-=-m x m y 的图象是一条直线,则=m .10.如果直线2+=kx y ,y 随x 的增大而增大,则直线2--=kx y 不经过第 象限.11.如果直线x m y )2(-=与直线23+=x y 平行,则=m12.已知直线b kx y +=过点A (1-,5)且平行于直线x y -=.(1)求这条直线b kx y +=的解析式;(2)若点B (m ,5-)在这条直线b kx y +=上,O 为坐标原点,求m 及AOB ∆的面积.13.如图,直线AB 的解析式为434+-=x y ,直线AB OC ⊥于C . (1)求A 、B 两点的坐标;(2)求直线OC 的解析式;。
一次函数 全面讲义
第六章一次函数【知识梳理】1.一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y= (k,b为常数,k≠0)的形式,则称y是x 的一次函数(x 为自变量,y为因变量);特别地,当b= 时,称y是x的正比例函数.2.函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为步:、、.3.函数的表达方式:、、 .4.一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,),直线与x轴的交点(,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,)即可.5.一次函数y=kx+b(k,b为常数,k≠0)的性质㈠㈡(1)k的正负决定直线的倾斜方向;(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;(4)由于k,b的符号不同,直线所经过的象限也不同;(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们位角,因此,它们是平行的.另外,从平移的角度也可以分析,即:若一次函数y1=k1x+b1 和y2=k2x+b2的图像互相平行,则;若它们相交,则,特别地:若b1= b2,则这两直线 .直线平移:左“+”右“-”,上“+”下 “-”6. 一次函数与一元一次方程的关系:求直线与两坐标轴的交点坐标,可转化为求一元一次方程的解. 【典型例题】㈠ 函数自变量的取值范围:要点:(1)自变量在整式中;(2)自变量在二次根式中;(3)自变量在分母中;(4)综合 例1:求下列函数中自变量x 的取值范围:(1) y =3x -1; (2)21+=x y ; (3)2-=x y .㈡ 一次函数的定义:要点:(1)正比例解析式的特征;(2)一次函数解析式的特征 例1 下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=-21x ; (2)y=-x 2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. 例2 当m ,n 为何值时,函数y=-(m-2)x 32-m +(n-4)是一次函数?正比例函数呢?针对训练:1、已知函数y=(k -2)x+2k+1,当k _______时,它是正比例函数;当k _______时,它是一次函数。
一次函数复习讲义
一次函数复习讲义 YUKI was compiled on the morning of December 16, 2020第十四章一次函数复习讲义【知识网络结构图】1y都1、下列函数中y是x的函数是()2、求下列自变量x的取值范围.3、函数36y x=-,当函数值y=18时,自变量x的取值是______________.4、函数y=2x-3中,当x=2时,函数值为____________________.5、若一个等腰三角形的周长是24.(1)写出底边y与腰长x的函数关系式;(2)指出自变量及其取值范围;(3)底边长为10时,其腰长为多少?三、函数的图象1、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t与山高h间的函数关系用图形表示是()A B C D2、一天,小军和爸爸去登山,已知山脚到山顶的路程为200米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的函数关系(从爸爸开始登山时计时).根据图象,下列说法错误..的是()A、爸爸开始登山时,小军已走了50米;B、爸爸走了5分钟,小军仍在爸爸的前面C、小军比爸爸晚到山顶;D、10分钟后小军还在爸爸的前面3、将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h与注水时间(min)t的函数图象大致为()四、一次函数的相关概念、图象、性质(一)概念1、下列函数中,是正比例函数的是()2、下列函数中,y 是x 的一次函数的是()3、已知23(21)m y m x -=-是正比例函数,且y 随x 的增大而减小,则m 的值______________.4、当m=_________时,函数21(3)5m y m x +=+-是一个一次函数.(二)性质的应用1、12y x =经过第_____________象限,y 随x 的_____________________;2、在正比例函数(2)y k x =+中,y 随x 的增大而增大,则k 满足_________________;3、函数(2)2,y m x =+-y 随x 的增大而增大,m 的取值范围_____________________;4、一次函数3y kx =+,y 随x 的增大而减小,那么它的图象经第_____________象限;5、已知一次函数y kx b =+的图象经过一、二、四象限,则k ,b 的符号:k_____0,b_______0;6、一次函数(1)(3)y k x k =---的图象不经过第三象限,则k 的取值为_____________;7、已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,则下列结论正确的有()①k>0,b>0②k>0,b<0③k<0,b>0④k<0,b<08、函数2143y x b=+-的图象经过第一、三、四象限,则b的取值范围______________;9、已知一次函数(24)(3)y m x n=++-.求:(1)m、n为何值时,y随x的增大而增大;(2)m、n为何值时,函数图象与y轴的交点在x轴的下方;(3)m、n为何值时,函数图象经过原点;(4)若m=-1,n=2,求此一次函数的图象与两个坐标轴的交点坐标;(5)若图象经过第一、二、三象限,求m,n的取值范围。
初中数学一次函数讲义
八年级数学一次函数(巩固篇)讲义一、知识点:1. 一次函数用自变量的一次式表示的函数叫一次函数.由定义可知:形如y=kx+b(k≠0,k、b为常数),则y是x的一次函数.一次函数可以表示为y=kx+b(k≠0,k、b为常数),特别地,当b=0时,形如y=kx(k≠0,k为常数)的一次函数叫做正比例函数.正比例函数总可以表示为y=kx(k≠0,k为常数).2. 一次函数的图象:⑴一次函数的图象特征:一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−bk ,0)和点(0,b)的一条直线.正比例函数y=kx(k是常数,k≠0)的图象是经过点(0,0)和(1,k)的一条直线.直线y=kx与y=kx+b(k≠0)的位置关系:当b>0时,直线y=kx+b可由直线y=kx(k≠0)沿y轴向上平移b个单位长度而得;当b<0时,直线y=kx+b可由y=kx(k≠0)沿y轴向下平移|b|个单位长度而得.⑵一次函数图象的性质:的增大的增大3. 待定系数法及一次函数的应用先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法.其中未知的系数也叫做待定系数.用待定系数法求函数解析式的一般步骤:⑴写出函数解析式的一般形式;⑵把已知条件(通常是自变量和函数的对应值或函数图象上某点的坐标等)代入函数解析式中,得到关于待定系数的方程或方程组.⑶解方程或解方程组求出待定系数的值,从而写出函数解析式.二、技能掌握:1.一次函数图像与坐标轴的交点坐标快速求取:a.牢记:对于一次函数一般式y=kx+b(k,b是常数,k≠0)与x轴的交点坐标为;与y轴的交点坐标为(0,b)。
b.运用:一次函数y=2x-4与x、y的交点坐标分别是(2,0);(0,-4)c.练习:求出下列一次函数与坐标轴的交点坐标 y=6x-5; y=-3x+12.一次函数图像经过直角坐标系的哪些象限:a.牢记:一次函数的图像是一条直线,一次项系数k决定了图像是向上走还是向下走(从左至右),当k>0时,直线向上走;当k<0时,直线向下走。
一次函数教学讲义(知识点框架、典型例题、中考真题)
一次函数讲义知识点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。
正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数 习题练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m x x +=-+-是一次函数;4、当m_____________时,()21445m y m x x +=-+-是一次函数;知识点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可. 确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式.常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。
(见前面函数解析式的确定) 第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数) 一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
二. 平移型 两条直线1l:11y k x b =+;2l :22y k x b =+。
一次函数复习讲义全
(1)求∠OAB的度数及直线AB的解析式;
(2)若△OCD与△BDE的面积相等,①求直线CE的解析式;②若 轴上的一点P满足∠APE=45°,请直接写出点P的坐标.
求关于 、 的一元一次方程 =0( ≠0)的解
为何值时,函数 的值为0?
确定直线 与 轴(即直线 =0)交点的横坐标
求关于 、 的二元一次方程组 的解.
为何值时,函数 与函数 的值相等?
确定直线 与直线 的交点的坐标
求关于 的一元一次不等式 >0( ≠0)的解集
为何值时,函数 的值大于0?
确定直线 在 轴(即直线 =0)上方部分的所有点的横坐标的围
要点诠释:
直线 可以看作由直线 平移| |个单位长度而得到(当 >0时,向上平移;当 <0时,向下平移).说明通过平移,函数 与函数 的图象之间可以相互转化.
2、一次函数性质及图象特征
掌握一次函数的图象及性质(对比正比例函数的图象和性质)
要点诠释:
理解 、 对一次函数 的图象和性质的影响:
(1) 决定直线 从左向右的趋势(及倾斜角 的大小——倾斜程度), 决定它与 轴交点的位置, 、 一起决定直线 经过的象限.
解得 ∴ C(2,-3).
∴ △ADC的AD边上的高为3.
∵ OD=1,OA=4,
∴ AD=3.
∴ .
(4)P(6,3).
【总结升华】这是一道一次函数图象与性质的综合应用问题,求直线的函数解析式,一般运用待定系数法,但运用过程中,又要具体问题具体分析;求底边在坐标轴上三角形的面积的关键是探求该三角形的高.
一次函数讲义优质讲义
教学内容一、能力培养一次函数知识点1、一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数. 【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y=kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.1.如果()2213m y m x -=-+是一次函数,则的值是()A 、1B 、-1C 、±1D 、±2 2.函数y=2x+3,当x=1时,y 的值是()A 、1B 、0C 、-1D 、-53.若23y x b =+-是正比例函数,则b 的值是__________知识点2、函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点3、一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线b,0).但也不必一定与y轴的交点(0,b),直线与x轴的交点(-k选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点4、一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k<O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(陡);|k|越小,直线与x轴相交的锐角度数越小(缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②当k>0,b<O时,直线经过第一、三、四象限(直线不经过第二象限);③当k<O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④当k<O,b<O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,即两条直线是平行的.练习:1、若m<0,n>0,则一次函数y=mx+n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、当0y+bx=在同一坐标系中的图象大致是()0><b,a时,函数y=a x+b与a知识点5、点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点6、正比例函数及一次函数的表达式(待定系数法)(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.知识点8、函数图象的平移(左加右减,上加下减)例1、直线y=2x+1按坐标向上平移3个单位后的函数的表达式为________________例2、将直线y=3x 向左平移5个单位,得到直线;将直线y =-2x-5向右平移3个单位,得到直线. 老规矩,下面是试卷练习一、选择题(每小题2分,共16分)1.点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,3)D .(2,-3)2.若2=a ,则a 的值为()A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是()A .0.6B .0.7C .0.67D .0.704.一次函数y =2x +1的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.若440-=m ,则估计m 的值所在的范围是()A .1<m <2B .2<m <3C .3<m <4D .4<m <56.若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则()A .321y y y >>B .321y y y <<C .231y y y <<D .132y y y >>7.某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,有下列结论,正确的是( )①.汽车在高速公路上的行驶速度为80km/h②.乡村公路总长为160km③.汽车在乡村公路上的行驶速度约为53.3km/h④.该记者在出发后5h 到达采访地A 、①②④B 、②③④C 、①②③D 、①②③④8.平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( )A .4个B .8个C .10个D .12个 二.填空题(每小题2分,共20分)9.计算:=▲.10.若等腰三角形的两边长分别为4和8,则这个三角形的周长为.11.若032=++-y x ,则()2013y x +的值为.12.在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是.13.如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,可得方程组的解为.14.将一次函数y =2x -1的图像向上平移3个单位长度后,其对应的函数关系式为.15.如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上(第7题图) 240160 3.52y/km x/h-1-1y= -x-2y=2x+1x yP (第13题图) D E C A B (第16题图)(第15题图) D E AC B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数讲义-适用于新课复习非常全面内容提示:1.变量及函数 课堂学习检测 课后综合训练2.函数的图像 课堂学习检测 课后综合训练3.正比咧函数 课堂学习检测 课后综合训练4.一次函数 课堂学习检测 课后综合训练5.一次函数与一次方程(组)及一元一次不等式 课堂学习检测 课后综合训练6.一次函数综合过关变量及函数知识点:1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为是x的函数。
※判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、自变量取值范围:一般的,一个函数的自变量允许取值的范围。
4、函数值:对于自变量x与函数y,在自变量x取值范围内,当x=a时,y=b,则称b为当x=a时的函数值。
5、确定函数自变量取值范围的方法:(1)必须使关系式成立。
①当关系式为整式时,自变量取值范围为全体实数;②当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零;③关系式含有二次根式时,自变量取值范围必须使被开方的式子不小于零;④当关系式中含有指数为零或负数的式子时,自变量取值范围要使底数不等于零;(2)当函数关系表示实际问题时,自变量的取值范围还要符合实际情况,使之有意义。
(3)当函数关系表示一个图形的变化关系时,自变量的取值范围必须使图形存在。
课堂学习检测一、填空题1.设在某个变化过程中有两个变量x和y,如果对于变量x取值范围内的______,另一个变量y都有______的值与它对应,那么就说______是自变量,______是的函数.2.设y 是x 的函数,如果当x =a 时,y =b ,那么b 叫做当自变量的值为______时的______.3.对于一个函数,在确定自变量的取值范围时,不仅要考虑______有意义,而且还要注意问题的______. 4.飞轮每分钟转60转,用解析式表示转数n 和时间t (分)之间的函数关系式: (1)以时间t 为自变量的函数关系式是______. (2)以转数n 为自变量的函数关系式是______.5.某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x 件,应收货款y 元,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.6.已知5x +2y -7=0,用含x 的代数式表示y 为______;用含y 的代数式表示x 为______.7.已知函数y =2x 2-1,当x 1=-3时,相对应的函数值y 1=______;当52-=x 时,相对应的函数值y 2=______;当x 3=m 时,相对应的函数值y 3=______.反过来,当y =7时,自变量x =______. 8.已知,6y =根据表中 自变量x 的值,写出相对应的函数值.二、求出下列函数中自变量的取值范围 9.52+-=x x y 10.324-=x xy 11.32+=x y12.12-=x x y13.321x y -=14.23++=x x y15.10+=x x y16.|2|23-+=x x y17.x x y 2332-+-=课后综合训练 一、选择题18.在下列等式中,y 是x 的函数的有( )3x -2y =0,x 2-y 2=1,.|||,|,y x x y x y ===A .1个B .2个C .3个D .4个19.设一个长方体的高为10cm ,底面的宽为x cm ,长是宽的2倍,这个长方体的体积V (cm 3)与长、宽的关系式为V =20x 2,在这个式子里,自变量是( )A .20x 2B .20xC .VD .x20.电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通话均不超过3分钟,则每月应缴费y (元)与市内电话通话次数x 之间的函数关系式 是( )A.y=28x+0.20 B.y=0.20x+28xC.y=0.20x+28 D.y=28-0.20x二、解答题21.已知:等腰三角形的周长为50cm,若设底边长为x cm,腰长为y cm,求y与x的函数解析式及自变量x 的取值范围.22.某人购进一批苹果到集市上零售,已知卖出的苹果x(千克)与销售的金额y元的关系如下表:x(千克) 1 2 3 4 5 …y(元)2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 …(1)写出与的函数关系式:______;(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?拓展、探究、思考23.用40m长的绳子围成矩形ABCD,设AB=x m,矩形ABCD的面积为S m2,(1)求S与x的函数解析式及x的取值范围;(2)写出下面表中与x相对应的S的值:x …8 9 9.5 10 10.5 11 12 …S …(3)猜一猜,当x为何值时,S的值最大?(4)想一想,如果打算用这根绳子围成的面积比(3)中的还大,应围成么样的图形?并算出相应的面积.函数的图象知识点:函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.函数解析式:用含有表示自变量的字母的代数式表示函数的式子叫做解析式。
※函数解析式通常写成一个等式,表示函数的变量写在“=”的左边,含自变量的代数式写在“=”的右边。
※含有某一表达自变量字母的式子就是关于这个自变量的函数。
描点法画函数图形的一般步骤第一步:列表(表中随机取出一些自变量的值及其对应的函数值,取值时,通常取5—7组);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来,并表示出图象的趋势)。
函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
函数的三种表示方法各有优、缺点,有时可以相互转化。
课堂学习检测 一、解答题 1.回答问题.(1)什么是函数的图象?(2)为什么要学习函数的图象?(3)用“描点法”画一个函数的图象的一般步骤是什么?2.用“描点法”分别画出下列各函数的图象. (1)x y 21=x … -6 -4 -2 0 2 4 … y解:函数x y 21=的自变量x 的取值范围是______.(2)321+=x y解:函数321+=x y 的自变量x 的取值范围是______. x … -6 -4 -2 0 2 4 … y问题:当(2)中的自变量x 的取值范围变为-2≤x <4时,请在上图中标出相应的图象部分. (3)y =x 22x (2)3--1 21- 0 21 1 23 … y…从图象可以得到,函数图象的最低点的坐标是______;此图象关于______对称.3.如图2-1,下面的图象记录了某地一月份某大的温度随时间变化的情况,请你仔细观察图象回答下面的问题:图2-1(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.课后综合训练一、选择题4.图2-2中,表示y是x的函数图象是()图2-25.如图2-3是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()图2-3A.39.0℃B.38.2℃C.38.5℃D.37.8℃6.如图2-4,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()图2-4二、填空题7.星期日晚饭后,小红从家里出去散步,图2-5所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题图2-5(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题8.已知:线段AB=36米,一机器人从A点出发,沿线段AB走向B点.(1)求所走的时间t(秒)与其速度V(米/秒)的函数解析式及自变量V的取值范围;(2)利用描点法画出此函数的图象.拓展、探究、思考9.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图2-6中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?图2-6正比例函数知识点:正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx ①k≠0②x的指数为1当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x增大y反而减小.探索:利用描点法在同一坐标系中尝试画出 y=2x、y=-2x、和y=3x、y=6x、y=-4x的图像。
步骤:1.列表:2.描点:3.连线:观察发现:(1)走向:当k>0时,直线y=kx经过象限,当k<0时,直线y=kx经过象限;(2)必过点:两个函数都过_________点.(3)增减性:当k>0时,图像从左向右_____,即随x的增大y也;当k<0时,图像从左向右_____,即随x增大y反而(4)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴总结:正比例函数的性质(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴课堂学习检测一、填空题1.形如______的函数叫做正比例函数.其中______叫做比例系数. 2.可以证明,正比例函数y =kx (k 是常数.k ≠0)的图象是一条经过______点与点(1,______的__________,我们称它为______.3.如图3-1,当k >0时,直线y =kx 经过______象限,从左向右______,因此正比例函数y =kx ,当k >0时,y 随x 的增大而______;当k <0时,直线y =kx 经过______象限,从左向右______,因此正比例函数y =kx ,当k <0时,y 随x 的增大反而______.图3-14.若直线y =kx 经过点A (-5,3),则k =______.如果这条直线上点A 的横坐标x A =4,那么它的纵坐标y A =______. 5.若⎩⎨⎧-=-=6,4y x 是函数y =kx 的一组对应值,则k =______,并且当x ≥5时,y ______;当y <-2时,x ____________. 二、选择题6.下列函数中,是正比例函数的是( )A .y =2xB .xy 21=C .y =x 2D .y =2x -1 7.如图3-2,函数y =-x (x <0)的图象是()图3-28.函数y =-2x 的图象一定经过下列四个点中的( ) A .点(1,2) B .点(-2,1)C .点)1,21(-D .点)21,1(-9.如果函数y =(k -2)x 为正比例函数,那么( )A .k >0B .k >2C .k 为实数D .k 为不等于2的实数 10.如果函数|1|)2(--=m x m y 是正比例函数,那么( ) A .m =2或m =0 B .m =2 C .m =0 D .m =1课后综合训练一、解答题11.若规定直角坐标系中,直线向上的方向与x 轴的正方向所成的角叫做直线的倾斜角.请在同一坐标系中,分别画出各正比例函数的图象,它们各自的倾斜角是锐角还是钝角?比例系数k 对其倾斜角有何影响?(1);3,23,,214321x y x y x y x y ====(2).x y ,x y ,x y ,x y 212334321-=-=-=-=12.有一长方形AOBC 纸片放在如图3-3所示的坐标系中,且长方形的两边的比为OA :AC =2:1.(1)求直线OC 的解析式;(2)求出x =-5时,函数y 的值; (3)求出y =-5时,自变量x 的值; (4)画这个函数的图象;(5)根据图象回答,当x 从2减小到-3时,y 的值是如何变化的?图3-313.如图3-4,居室窗户的高90cm,活动窗拉开的最大距离是80cm.如果活动窗拉开x cm时,窗户的通风面积是y cm2.(1)试确定这个函数的解析式并指出自变量x的取值范围;(2)画出这个函数的图象.图3-4拓展、探究、思考14.已知z=m+y,m是常数,y是x的正比例函数,当x=2时,z=1;当x=3时,z=-1,求z与x的函数关系.一次函数知识点:一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b ①k≠0②x指数为1 ③b取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)探索:利用描点法在同一坐标系中尝试画出y=2x+1、y=2x-1、y=-2x+1、y=-2x-1的图像,并完成下表一次函数()0k kx b k =+≠ k ,b 符号0k >0k < 0b >0b <0b =0b >0b <0b =图象增减性y 随x 的____________ y 随x 的____________总结一次函数的性质(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.正比例函数与一次函数图象之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 直线y=k 1x+b 1与y=k 2x+b 2的位置关系 (1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 2 【重点难点解析】 例1已知函数)2()12(232+--=-n xm y m .(1)当m 、n 为何值时,其图象是过原点的直线;(2)当m 、n 为何值时,其图象是过(0,4)点的直线;(3)当m 、n 为何值时,其图象是一条直线且y 随x 的增大而减小.例2依据给定的条件,求一次函数解析式.(1)当-1≤x ≤1时,-2≤y ≤4.(2)y =1与x 成正比例,且x =2时,y =4.(3)y =ax +7经过一次函数y =4-3x 和y =2x -1的交点.(4)正比例函数的图象与一次函数的图象交于点(3,4),两图象与y 轴围成的三角形面积为,215求这两个函数的解析式.例 3 某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其他费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)例4 直线l 1:y 1=k 1x+b 1 与y=2x 平行且通过A (3,4),直线l 2:y 2=k 2x+b 2通过B (1,3),C (-1,5),求l 1和l 2的解析式.例5一次函数y kx b =+的图象只经过第一、二、三象限,则【 】 A .00k b <>, B .00k b >>, C .00k b ><, D .00k b <<,例题6:如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么【 】 A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <例7 已知一次函数的图象过点(3,5)与(-4,-9),求该函数的图象与y 轴交点的坐标.例7已知一次函数011)3()12(=+-+--k y k x k ,试说明:不论k 为何值,这条直线总要经过一个定点,并求出这个定点.例8一次函数y =ax +b 的图像关于直线y =-x 轴对称的图像的函数解析式为____ __例9某面粉厂有工人20名,为获得更多利润,增设加工面条项目,用本厂生产的面粉加工成面条(生产1kg 面条需用面粉1kg ).已知每人每天平均生产面粉600kg ,或生产面条400kg .将面粉直接出售每千克可获利润0.2元,加工成面条后出售每千克面条可获利0.6元,若每个工人一天只能做一项工作,且不计其他因素,设安排x 名工人加工面条(1)求一天中加工面条所获利润y 1(元); (2)求一天中剩余面粉所获利润y 2(元);(3)当x 为何值时,该厂一天中所获总利润y (元)最大?最大利润为多少元?例10已知某一次函数当自变量取值范围是2≤y≤6时,函数值的取值范围是5≤x≤9.求此一次函数的解析式.例11:已知一次函数y =ax +4与y =bx -2的图象在x 轴上相交于同一点,则ba的值是【 】 A 、4 B 、-2 C 、 12 D 、- 12例11:求直线y =2x -1与两坐标轴所围成的三角形面积.课堂同步: 一、【用心做一做】(12分)1、直线y=-x+1 由左至右 ,y 随x 的增大而 。