高中数学必修1(苏教版)书后练习答案

合集下载

高中数学 第一章 集合(含解析)苏教版必修1

高中数学 第一章 集合(含解析)苏教版必修1

第1课时集合的含义及其表示(1)教学过程一、问题情境(1) 小于10的所有偶数;(2) 中国的直辖市;(3) 单词book中的字母;(4) 到一个角的两边距离相等的所有的点;(5) 方程x2-5x+6=0的所有实数根;(6) 不等式x-3>0的所有解;(7) 某高中全体高一学生.二、数学建构问题1以上实例有什么共同特征?(引导学生说出:一定范围内,确定的,不同对象.然后通过学生回答,总结出集合的含义)一定范围内某些确定的、不同的对象的全体构成一个集合.集合常用大写的拉丁字母来表示,如集合A、集合B.集合中的每一个对象称为该集合的元素,简称元.集合的元素常用小写的拉丁字母来表示,如元素a、元素b.问题2回答下列问题:(1) 已知A={1, 3},问:3, 5哪个是A的元素?(2) “所有素质好的人”能否构成一个集合A?(3) A={2, 2, 4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一个集合?由上述问题可以归纳出集合中元素的特征:①确定性:设A是一个给定的集合,x是某一个具体对象,则“x是A的元素”或者“x不是A的元素”这两种情况必有一种且只有一种成立.②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不能重复出现同一元素.③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照由小到大的数轴顺序书写.问题3元素与集合之间有怎样的关系?解如果a是集合A中的元素,就记作a∈A,读作“a属于A”;如果a不是集合A中的元素,就记作a∉A或a⋷A,读作“a不属于A”.问题4常用的数集有哪些?它们分别用什么数学符号表示?解自然数集(非负整数集):N,正整数集:N*或N+,整数集:Z,有理数集:Q,实数集:R.问题5集合的表示方法有哪些?(1) 列举法:将集合的元素一一列举出来,并置于“{}”中,元素之间用逗号分隔.列举时与元素次序无关,如{北京,上海,天津,重庆}.集合的相等关系:如果两个集合所含的元素完全相同,那么称这两个集合相等,如{北京,上海,天津,重庆}={天津,重庆,北京,上海}.思考“问题情境”中的集合都能用列举法表示吗?如果能,请表示出来.(2) 描述法:将集合中所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.{x|p(x)}中x为集合的代表元素,p(x)指元素x具有的性质,如{x|x为中国的直辖市},{x|x-3>0, x∈R}. (3) Venn图:有时用Venn图示意集合(如图1),更显直观.(图1)问题6按照元素的个数,集合该怎样分类?(1) 有限集:含有有限个元素的集合称为有限集.(2) 无限集:含有无限个元素的集合称为无限集.(3) 空集:不含任何元素的集合称为空集,记作⌀,如{x|x2+x+1=0, x∈R}=⌀.三、数学运用【例1】下列各组对象能否构成集合:(1) 所有的好人;(2) 小于2012的数;(3) 和2012非常接近的数;(4) 小于5的自然数;(5) 不等式2x+1>7的整数解;(6) 方程x2+1=0的实数解. (见学生用书课堂本P1~2)[处理建议]引导学生根据定义判断.[规范板书]解(1)(3)不符合集合中元素的确定性,因此,只有(2)(4)(5)(6)能够构成集合.[题后反思]解决这类题目要抓住集合中元素的两个特征:确定性,互异性.【例2】用符号“∈”或“∉”填空:-错误!未找到引用源。

【创新设计】高中数学(苏教版必修一)配套练习:2.1.3函数的简单性质习题课(含答案解析)

【创新设计】高中数学(苏教版必修一)配套练习:2.1.3函数的简单性质习题课(含答案解析)

习题课课时目标 1.加深对函数的基本性质的理解.2.培养综合运用函数的基本性质解题的能力.1.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围为________. 2.定义在R 上的函数f(x)对任意两个不相等的实数a ,b ,总有-a -b>0成立,则必有________.(填序号) ①函数f(x)先增后减; ②函数f(x)先减后增; ③f(x)在R 上是增函数; ④f(x)在R 上是减函数.3.已知函数f(x)在(-∞,+∞)上是增函数,a ,b ∈R ,且a +b>0,则下列不等关系不一定正确的为________.(填序号) ①f(a)+f(b)>-f(a)-f(b); ②f(a)+f(b)<-f(a)-f(b); ③f(a)+f(b)>f(-a)+f(-b); ④f(a)+f(b)<f(-a)+f(-b).4.函数f(x)的图象如图所示,则最大、最小值分别为________________.5.已知f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________.6.已知f(x)=⎩⎨⎧12x -1, x≥0,1x , x<0,若f(a)>a ,则实数a 的取值范围是________.一、填空题1.设f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f(x 1)<f(x 2),那么下列不等式一定正确的为________.(填序号) ①x 1+x 2<0;②x 1+x 2>0;③f(-x 1)>f(-x 2); ④f(-x 1)·f(-x 2)<0. 2.下列判断:①如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数; ②对于定义域为实数集R 的任何奇函数f(x)都有f(x)·f(-x)≤0; ③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数; ④既是奇函数又是偶函数的函数存在且唯一. 其中正确的序号为________.3.定义两种运算:a ⊕b =ab ,a ⊗b =a 2+b 2,则函数f(x)=2⊕x⊗-2为________函数(填“奇”、“偶”或“非奇非偶”).4.用min{a ,b}表示a ,b 两数中的最小值,若函数f(x)=min{|x|,|x +t|}的图象关于直线x =-12对称,则t 的值为________.5.如果奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是________.(填序号)①增函数且最小值为3;②增函数且最大值为3;③减函数且最小值为-3;④减函数且最大值为-3.6.若f(x)是偶函数,且当x ∈[0,+∞)时,f(x)=x -1,则f(x -1)<0的解集是________.7.若函数f(x)=-x +abx +1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为____.8.已知函数f(x)是定义域为R 的奇函数,且当x>0时,f(x)=2x -3,则f(-2)+f(0)=________.9.函数f(x)=x 2+2x +a ,若对任意x ∈[1,+∞),f(x)>0恒成立,则实数a 的取值范围是________. 二、解答题10.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函数,f(1)=0.(1)求证:函数f(x)在(-∞,0)上是增函数; (2)解关于x 的不等式f(x)<0.11.已知f(x)=x 2+ax +bx ,x ∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数; (2)是否存在实数a ,b.使f(x)同时满足下列二个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a ,b 的值;若不存在,请说明理由. 能力提升12.设函数f(x)=1-1x +1,x ∈[0,+∞)(1)用单调性的定义证明f(x)在定义域上是增函数;(2)设g(x)=f(1+x)-f(x),判断g(x)在[0,+∞)上的单调性(不用证明),并由此说明f(x)的增长是越来越快还是越来越慢?13.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,设CD =2x ,梯形ABCD 的周长为(1)求出y关于x的函数f(x)的解析式;(2)求y的最大值,并指出相应的x值.,1,f(x)习题课双基演练 1.(-∞,-12)解析 由已知,令2k +1<0,解得k<-12.2.③ 解析 由-a -b>0,知f(a)-f(b)与a -b 同号,由增函数的定义知③正确. 3.①②④解析 ∵a +b>0,∴a>-b ,b>-a.由函数的单调性可知,f(a)>f(-b),f(b)>f(-a). 两式相加得③正确. 4.f(0),f(-32)解析 由图象可知,当x =0时,f(x)取得最大值; 当x =-32时,f(x)取得最小值.5.130 解析 偶函数定义域关于原点对称, ∴a -1+2a =0.∴a =13.∴f(x)=13x 2+bx +1+b.又∵f(x)是偶函数,∴b =0. 6.(-∞,-1)解析 若a≥0,则12a -1>a ,解得a<-2,∴a ∈∅;若a<0,则1a >a ,解得a<-1或a>1,∴a<-1.综上,a ∈(-∞,-1). 作业设计 1.②解析 由已知得f(x 1)=f(-x 1),且-x 1<0,x 2<0,而函数f(x)在(-∞,0)上是增函数,因此由f(x 1)<f(x 2),知f(-x 1)<f(x 2)得-x 1<x 2,x 1+x 2>0.2.②解析 判断①,一个函数的定义域关于坐标原点对称,是这个函数具有奇偶性的前提条件,但并非充分条件,故①错误.判断②正确,由函数是奇函数,知f(-x)=-f(x),特别地当x =0时,f(0)=0,所以f(x)·f(-x)=-[f(x)]2≤0.判断③,如f(x)=x 2,x ∈[0,1],定义域不关于坐标原点对称,即存在1∈[0,1],而-1 [0,1];又如f(x)=x 2+x ,x ∈[-1,1], 有f(x)≠f(-x).故③错误.判断④,由于f(x)=0,x ∈[-a ,a],根据确定一个函数的两要素知,a 取不同的实数时,得到不同的函数.故④错误. 综上可知,只有②正确. 3.奇解析 因为f(x)=2xx 2+2,f(-x)=-f(x),故f(x)为奇函数.4.1解析 当t>0时f(x)的图象如图所示(实线)对称轴为x =-t 2,则t 2=12,∴t =1.5.④解析 当-5≤x≤-1时,1≤-x≤5, ∴f(-x)≥3,即-f(x)≥3. 从而f(x)≤-3,又奇函数在原点两侧的对称区间上单调性相同, 故f(x)在[-5,-1]是减函数. 6.(0,2)解析 依题意,因为f(x)是偶函数, 所以f(x -1)<0化为f(|x -1|)<0,又x ∈[0,+∞)时,f(x)=x -1,所以|x -1|-1<0, 即|x -1|<1,解得0<x<2. 7.1解析 f(x)为[-1,1]上的奇函数,且在x =0处有定义,所以f(0)=0,故a =0.又f(-1)=-f(1),所以--1-b +1=1b +1,故b =0,于是f(x)=-x.函数f(x)=-x 在区间[-1,1]上为减函数, 当x 取区间左端点的值时,函数取得最大值1. 8.-1解析 ∵f(-0)=-f(0),∴f(0)=0, 且f(2)=22-3=1. ∴f(-2)=-f(2)=-1, ∴f(-2)+f(0)=-1. 9.a>-3解析 ∵f(x)=x 2+2x +a =(x +1)2+a -1, ∴[1,+∞)为f(x)的增区间,要使f(x)在[1,+∞)上恒有f(x)>0,则f(1)>0, 即3+a>0,∴a>-3.10.(1)证明 设x 1<x 2<0,则-x 1>-x 2>0. ∵f(x)在(0,+∞)上是增函数, ∴f(-x 1)>f(-x 2). 由f(x)是奇函数,∴f(-x 1)=-f(x 1),f(-x 2)=-f(x 2), ∴-f(x 1)>-f(x 2),即f(x 1)<f(x 2). ∴函数f(x)在(-∞,0)上是增函数.(2)解 若x>0,则f(x)<f(1),∴x<1,∴0<x<1; 若x<0,则f(x)<f(-1),∴x<-1.∴关于x 的不等式f(x)<0的解集为(-∞,-1)∪(0,1). 11.(1)证明 设0<x 1<x 2<1,则x 1x 2>0,x 1-x 2<0. 又b>1,且0<x 1<x 2<1,∴x 1x 2-b<0. ∵f(x 1)-f(x 2)=1-x 21x 2-x 1x 2>0,∴f(x 1)>f(x 2),所以函数f(x)在(0,1)上是减函数. (2)解 设0<x 1<x 2<1, 则f(x1)-f(x 2)=1-x 21x 2-x 1x 2由函数f(x)在(0,1)上是减函数,知x 1x 2-b<0恒成立,则b≥1. 设1<x 1<x 2,同理可得b≤1,故b =1.x ∈(0,+∞)时,通过图象可知f(x)min =f(1)=a +2=3. 故a =1.12.解 (1)设x 1>x 2≥0,f(x 1)-f(x 2)=(1-1x 1+1)-(1-1x 2+1)=x 1-x 21+2+.由x 1>x 2≥0⇒x 1-x 2>0,(x 1+1)(x 2+1)>0, 得f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). 所以f(x)在定义域上是增函数. (2)g(x)=f(x +1)-f(x)=1++,g(x)在[0,+∞)上是减函数,自变量每增加1,f(x)的增加值越来越小,所以f(x)的增长是越来越慢.13.解 (1)作OH ,DN 分别垂直DC ,AB 交于H ,N , 连结OD.由圆的性质,H 是中点,设OH =h , h =OD 2-DH 2=4-x 2.又在直角△AND 中,AD =AN 2+DN 2 =-2+-x 2=8-4x =22-x ,所以y =f(x)=AB +2AD +DC =4+2x +42-x ,其定义域是(0,2). (2)令t =2-x ,则t ∈(0,2),且x =2-t 2, 所以y =4+2·(2-t 2)+4t =-2(t -1)2+10, 当t =1,即x =1时,y 的最大值是10.。

2023年苏教版新教材高中数学选择性必修第一册4.1数列 同步练习题含答案解析

2023年苏教版新教材高中数学选择性必修第一册4.1数列 同步练习题含答案解析

4.1 数列一、单选题1.已知数列{}n a 的前n 项和22n S n n m =-++,且对任意*1,0n n n a a +∈-<N ,则实数m 的取值范围是( ) A .()2,-+∞ B .(),2-∞- C .()2,+∞ D .(),2-∞【答案】A【分析】根据数列为递减数列,结合n a 与n S 的关系即可求解. 【详解】因为10n n a a +-<,所以数列{}n a 为递减数列,当2n ≥时,()2212(1)2123n n n a S S n n m n n m n -⎡⎤=-=-++---+-+=-+⎣⎦,故可知当2n ≥时,{}n a 单调递减, 故{}n a 为递减数列,只需满足21a a <, 因为1211,1a a S m =-==+, 所以11m -<+,解得2m >-,2.已知数列{}n a 的前n 项和2n S n n =+,那么它的通项公式n a =( ) A .n B .2nC .2n +1D .n +1【答案】B【分析】根据111,1,2n n n a S n a S S n -==⎧⎨=-≥⎩即可求n a .【详解】11112a S ==+=,()()()()221112,2n n n a S S n n n n n n -⎡⎤=-=+--+-=≥⎣⎦,当1n =时,122n a ==, 2n a n ∴=.3.已知数列{}n a 满足111n n a a ++=,若502a =,则1a =( ) A .1- B .12C .32D .24.在数列{}n a 中,12a =,11n n a a -=-(2n ≥,N n +∈),则2023a =( )A .12 B .1C .1-D .25.已知数列n 满足17n n +,则2( ) A .1- B .12C .2D .526.已知数列{}n a 满足*1120222022,,N 20232023nn a a n +⎛⎫==∈ ⎪⎝⎭,则下列结论成立的是( ) A .202120222020a a a << B .202220212020a a a << C .202120202022a a a << D .202020212022a a a <<【答案】A【分析】根据指数函数的性质判断1342a a a a <<<,即可猜想数列{}n a 的奇数项递增,偶数项递减,且奇数项小于偶数项,再证明即可,从而可得答案.7.已知数列n a 满足12111,3,N ,2n n n a a a a a n n *-+===+∈≥,则2022a =( )A .2-B .1C .4043D .4044【答案】A【分析】由递推式得到21n n a a +-=-,从而得到6n n a a +=,由此再结合11n n n a a a -+=+即可求得2022a 的值.【详解】由11n n n a a a -+=+得12n n n a a a ++=+, 两式相加得21n n a a +-=-,即3n n a a +=-,故6n n a a +=, 所以20226321()2a a a a a ==-=--=-.8.已知数列{}n a 的前n 项和221n S n =-+,则这个数列的通项公式为( ) A .42n a n =-+B .32n a n =-+C .1,1,4 2.2n n a n n -=⎧=⎨-+≥⎩D .1,1,32,2n n a n n -=⎧=⎨+≥⎩【答案】C【分析】已知和求通项公式:11,1,2n n n S n a S S n -=⎧=⎨-≥⎩进行计算.【详解】当1n =时,11211;a S ==-+=-当2n ≥时,()2212121142;n n n a S S n n n -=-=-++--=-+ 二、多选题9.已知数列{}n a 的通项公式为31,22,n n n a n n +⎧=⎨-⎩为奇数为偶数,则下列正确的是( )A .619a =B .76a a >C .522S =D .68S S >【答案】BC【分析】根据通项公式即可作出判断.【详解】对于A ,6是偶数,则621210a =-=-,A 错误; 对于B ,7622a a =>,B 正确;对于C ,54(2)10(6)1622S =+-++-+=,C 正确;对于D ,56612S S a =+=,86781222(14)20S S a a =++=++-=,68S S <,D 错误.10.下列数列{}n a 是单调递增数列的有( ) A .231n a n n =-+ B .12nn a ⎛⎫=- ⎪⎝⎭C .2n a n n=+D .ln1n n a n =+55,89,144,233,⋯,在现代生物及化学等领域有着广泛的应用,它可以表述为数列{}n a 满足()12211,n n n a a a a a n +++===+∈N .若此数列各项被3除后的余数构成一个新数列{}n b ,记{}n b 的前n 项和为n S ,则以下结论正确的是( ) A .910n n b b ++-= B .1029n n S S ++=+ C .20222b = D .20222696S =【答案】ABC【分析】根据数列{}n a 可得出数列{}n b 是以8为周期的周期数列,依次分析即可判断. 【详解】数列{}n a 为1,1,2,3,5,8,13,21,34,55,89,144,233,…, 被3除后的余数构成一个新数列{}n b ,∴数列{}n b 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…,观察可得数列{}n b 是以8为周期的周期数列,故910n n b b ++-=,A 正确;。

(苏教版)高中数学必修一(全册)课时同步练习全汇总

(苏教版)高中数学必修一(全册)课时同步练习全汇总

(苏教版)高中数学必修一(全册)课时同步练习汇总第1章集合1.1 集合的含义及其表示A级基础巩固1.下列关系正确的是()①0∈N;②2∈Q;③12∉R;④-2∉Z.A.③④B.①③C.②④D.①解析:①正确,因为0是自然数,所以0∈N;②不正确,因为2是无理数,所以2∉Q;③不正确,因为12是实数,所以12∈R;④不正确,因为-2是整数,所以-2∈Z.答案:D2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:根据集合中元素的互异性可知,一定不是等腰三角形.答案:D3.集合M={(x,y)|xy<0,x∈R,y∈R}是()A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、第四象限内的点集解析:集合M 为点集,且横、纵坐标异号,故是第二、第四象限内的点集.答案:D4.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .0解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .答案:B5.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( ) A .{x =1,y =1}B .{1}C .{(1,1)}D .(1,1)解析:方程组的解集中元素应是有序数对形式,排除A 、B ,而D 不是集合的形式,排除D.答案:C6.下列集合中为空集的是( )A .{x ∈N|x 2≤0}B .{x ∈R|x 2-1=0}C .{x ∈R|x 2+x +1=0}D .{0}答案:C7.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a 的值是( )A .-3或-1或2B .-3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14}.当a 2-a +2=4时,得a=-1或a=2.当a=-1时,A={2,2,4},不满足互异性;当a=2时,A={2,4,-1}.所以a=-3或a=2.答案:C8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={(3,2)},N={3,2}解析:A中集合M,N表示的都是点集,由于横、纵坐标不同,所以表示不同的集合;B中根据集合元素的互异性知表示同一集合;C中集合M表示直线x+y=1上的点,而集合N表示直线x+y=1上点的纵坐标,所以是不同集合;D中的集合M表示点集,N表示数集,所以是不同集合.答案:B9.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x =4k+1,k∈Z},若a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不属于P,Q,M中任意一个解析:因为a∈P,b∈Q,所以a=2k1,k1∈Z,b=2k2+1,k2∈Z.所以a+b=2(k1+k2)+1,k1,k2∈Z.所以a+b∈Q.答案:B10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.解析:方程x2-2x-3=0的两根分别是-1和3.由题意可知,a+b=2.答案:211.已知集合A中含有两个元素1和a2,则a的取值范围是________________.解析:由集合元素的互异性,可知a2≠1,所以a≠±1.答案:a∈R且a≠±112.点(2,11)与集合{(x,y)|y=x+9}之间的关系为__________________.解析:因为11=2+9,所以(2,11)∈{(x,y)|y=x+9}.答案:(2,11)∈{(x,y)|y=x+9}13.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A,且a∈B,则a为________.解析:集合A,B都表示直线上点的集合,a∈A表示a是直线y =2x+1上的点,a∈B表示a是直线y=x+3上的点,所以a是直线y=2x+1与y=x+3的交点,即a为(2,5).答案:(2,5)14.下列命题中正确的是________(填序号).①0与{0}表示同一集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:对于①,0表示元素与{0}不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.答案:②B 级 能力提升15.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?解:(1)在A ,B ,C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R.集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条y =x 2+1,表示满足y =x 2+1的实数对(x ,y );即满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={(x ,y )|点(x ,y )是抛物线y =x 2+1上的点}.16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由题知a ≠0,故b a=0,所以b =0.所以a 2=1, 所以a =±1.又a ≠1,故a =-1.所以a 2 016+b 2 017=(-1)2 016+02 017=1.17.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.又因为2∈A,所以11-2=-1∈A.因为-1∈A,所以11-(-1)=12∈A.因为12∈A,所以11-12=2∈A.所以A中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.所以集合A不可能是单元素集合.第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是() A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:因为U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N 之间关系的Venn图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则实数a的值为________.解析:由A⊇B,得a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B 的包含关系是________.解析:因为∁U A={x|x<0},∁U B={y|y<1}={x|x<1},所以∁U A∁U B.答案:∁U A∁U B10.集合A={x|-3<x≤5},B={x|a+1≤x<4a+1},若B A,则实数a的取值范围是________.解析:分B=∅和B≠∅两种情况.答案:{a|a≤1}11.已知∅{x|x2-x+a=0},则实数a的取值范围是________.解析:因为∅{x|x2-x+a=0},所以方程x2-x+a=0有实根.则Δ=1-4a ≥0,所以a ≤14. 答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解:因为B ⊆A ,A ≠∅,所以B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a , 所以-1a ∈A ,即有-1a =-2,得a =12. 综上所述,a =0或a =12. B 级 能力提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:因为A ={1,2},B ={1,2,3,4},所以C 中必须含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16.答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:因为A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a . 由B A ,可知1a =-1或1a=3, 即a =-1或a =13. 综上可知a 的值为0,-1,13. 18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B⊆∁R A,求a的取值范围.解:由题意得∁R A={x|x≥-1}.(1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁R A.(2)若B≠∅,则由B⊆∁R A,得2a≥-1且2a<a+3,即-12≤a<3.综上可得a≥-12.第1章集合1.3 交集、并集A级基础巩固1.(2014·课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x -2=0},则A∩B=()A.∅B.{2}C.{0} D.{-2}解析:B={x|x2-x-2=0}={-1,2},又A={-2,0,2},所以A∩B={2}.答案:B2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3}, A∩∁U B={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B 为()A.{x=1或y=2} B.{1,2}C.{(1,2)} D.(1,2)(x,y)|4x+y=6,3x+2y=7={(1,2)}.解析:A∩B={}答案:C5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解析:因为A={x|x=3n+2,n∈N}={2,5,8,11,14,…}又B={6,8,10,12,14},所以A∩B={8,14}.故A∩B中有2个元素.答案:D6.(2014·辽宁卷)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:易知A∪B={x|x≤0或x≥1}.所以∁U(A∪B)={x|0<x<1}.答案:D7.已知集合A={3,2a},B={a,b},若A∩B={2},则A∪B=________.解析:因为A∩B={2},所以2a=2,所以a=1,b=2,故A∪B={1,2,3}.答案:{1,2,3}8.已知全集S=R,A={x|x≤1},B={x|0≤x≤5},则(∁S A)∩B =________.解析:∁S A={x|x>1}.答案:{x|1<x≤5}9.设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},则a的取值范围为________.解析:如下图所示,由A∪B={x|-1<x<3}知,1<a≤3.答案:{a|1<a≤3}10.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且M∩S={3},则pq=________.解析:因为M∩S={3},所以3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p=8,q=6.则pq=4 3.答案:4 311.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是________.解析:A可以是集合{5},{1,5},{3,5}或{1,3,5}.答案:412.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={}x |2x +a >0,满足B ∪C =C ,求实数a 的取值范围.解:(1)因为B ={x |x ≥2},所以A ∩B ={x |2≤x <3}.(2)因为C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C , 所以-a 2<2.所以a >-4. B 级 能力提升13.集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B 为( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅解析:因为A ={x |-1≤x ≤1},B ={y |y ≥0},所以A ∩B ={x |0≤x ≤1}.答案:C14.图中的阴影部分表示的集合是( )A .A ∩(∁UB )B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )解析:阴影部分的元素属于集合B 而不属于集合A ,故阴影部分可表示为B ∩(∁U A ).答案:B15.设全集U =R ,集合A ={x |x ≤1或x ≥3},集合B ={x |k <x<k +1,k <2},且B ∩(∁U A )≠∅,则实数k 的取值范围是________.解析:由题意得∁U A ={x |1<x <3},又B ∩∁U A ≠∅,故B ≠∅,结合图形可知⎩⎪⎨⎪⎧k <k +1,1<k +1<3,解得0<k <2. 答案:0<k <216.已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解:假设存在x ,使B ∪(∁U B )=A .所以B A .(1)若x +2=3,则x =1符合题意.(2)若x +2=-x 3,则x =-1不符合题意.所以存在x =1,使B ∪(∁U B )=A ,此时A ={1,3,-1},B ={1,3}.17.已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解:因为A ∪B =A ,所以B ⊆A .若B =∅时,2a >a +3,则a >3;若B ≠∅时,⎩⎪⎨⎪⎧2a ≥-2,a +3≤5,2a ≤a +3,解得-1≤a ≤2. 综上所述,a 的取值范围是{a |-1≤a ≤2或a >3}.18.设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解:(1)A ={x |x ≤-1或x ≥4}.因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧2a ≤a +2,2a ≤-1. 所以a =2或a ≤-12. 所以实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-12或a =2. (2)因为A ∩B =B ,所以B ⊆A .①B =∅时,满足B ⊆A ,则2a >a +2⇒a >2.②B ≠∅时,则⎩⎪⎨⎪⎧2a ≤a +2,a +2≤-1或⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4. 解之得a ≤-3或 a =2.综上所述,实数a 的取值范围为{a |a ≤-3或a ≥2}.章末知识整合一、元素与集合的关系[例1] 设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N . (1)试判断1和2与集合B 的关系;(2)用列举法表示集合B .解:(1)当x =1时,62+1=2∈N ,所以1∈B . 当x =2时,62+2=32∉N ,2∉B . (2)令x =0,1,2,3,4,代入62+x ,检验62+x∈N 是否成立,可得B ={0,1,4}.规律方法1.判断所给元素a 是否属于给定集合时,若a 在集合内,用符号“∈”;若a 不在集合内,用符号“∉”.2.当所给的集合是常见数集时,要注意符号的书写规范.[即时演练] 1.已知集合A ={x |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 中只有一个元素,求实数a 的值,并把这个元素写出来. 解:(1)A =∅,则方程ax 2-3x +2=0无实根,即Δ=9-8a <0,所以a >98. 所以a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a >98. (2)因为A 中只有一个元素,所以①a =0时,A =⎩⎨⎧⎭⎬⎫23满足要求. ②a ≠0时,则方程ax 2-3x +2=0有两个相等的实根.故Δ=9-8a =0,所以a =98,此时A =⎩⎨⎧⎭⎬⎫43满足要求. 综上可知:a =0或a =98. 二、集合与集合的关系[例2] A ={x |x <-1或x >2},B ={x |4x +p <0},当B ⊆A 时,求实数p 的取值范围.分析:首先求出含字母的不等式,其次利用数轴解决.解:由已知解得,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-p 4.又因为因为A={x|x<-1或x>2},且B⊆A,利用数轴所以-p4≤-1.所以p≥4,故实数p的取值范围为{p|p≥4}.规律方法1.在解决两个数集的包含关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解.2.注意端点值的取舍,这是同学易忽视失误的地方.[即时演练] 2.设集合P={(x,y)|x+y<4,x,y∈N*},则集合P 的非空子集的个数是()A.2 B.3 C.7 D.8解析:当x=1时,y<3,又y∈N*,因此y=1或y=2;当x=2时,y<2,又y∈N*,因此y=1;当x=3时,y<1,又y∈N*,因此这样的y不存在;当x≥4时,y<0,也不满足y∈N*.综上所述,集合P中的元素有(1,1),(1,2),(2,1),所以P 的非空子集的个数是23-1=7.故选C.答案:C三、集合的运算[例3]已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B,分析:先确定集合A,B,然后讨论a的范围对结果的影响.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴表示如图所示.(1)当a -3≤5,即a ≤8时,A ∪B ={x |x <a -3或x >5}.(2)当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R}=R.综上可知,当a ≤8时,A ∪B ={x |x <a -3或x >5};当a >8时,A ∪B =R.规律方法解集合问题关键是读懂集合语言,明确意义,用相关的代数或几何知识进行解决.[即时演练] 3.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合∁A (A ∩B )=________.解析:因为A ={x |-4<x <4},B ={x |x <1或x >3},所以A ∩B ={x |-4<x <1或3<x <4}.所以∁A (A ∩B )={x |1≤x ≤3}.答案:{x |1≤x ≤3}四、利用集合的运算求参数[例4] 设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R},若M ∪N =M ,求实数t 的取值范围.分析:由M ∪N =M ,知N ⊆M .根据子集的意义,建立关于t 的不等式关系来求解.解:由M ∪N =M 得N ⊆M ,故当N =∅,即2t +1≤2-t ,t ≤13时,M ∪N =M 成立. 当N ≠∅时,由数轴图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,所求实数t 的取值范围是{t |t ≤2}.规律方法1.用数轴表示法辅助理解,若右端点小于等于左端点,则不等式无解, N =∅.2.列不等式组的依据是左端点小于右端点,即2t +1在5的左侧(相等时也符合题意),2-t 在-2的右侧(相等时也符合题意).[即时演练] 4.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若A ∩B =B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.解:(1)A ∩B =B ⇔B ⊆A ,当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;当m +1≤2m -1时,要使B ⊆A .则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,m +1≤2m -1⇒2≤m ≤3. 综上,m 的取值范围为{m |m ≤3}.(2)当m +1>2m -1,即m <2时,B =∅,满足A ∩B =∅; 当B ≠∅时,要使A ∩B =∅,则必须⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2⇒m >4. 综上,m 的取值范围是{m |m <2或m >4}.五、集合的实际应用[例5] 某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.分析:每名同学至多参加两个小组―→画出相应的Venn图―→根据全班有36名同学列等式―→得答案解析:设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,故同时参加数学和化学小组的有8人.答案:8规律方法解决有关集合的实际应用题时,首先要将文字语言转化为集合语言,然后结合集合的交、并、补运算来处理.此外,由于Venn图简明、直观,因此很多集合问题往往借助Venn图来分析.[即时演练] 5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜欢,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设A,B分别表示喜爱篮球运动、乒乓球运动的人数构成的集合,集合U表示全班人数构成的集合.设同时喜爱乒乓球和篮球运动的有x人.依题意,画出如图所示的Venn图.根据Venn图,得8+x+(15-x)+(10-x)=30.解得x=3.故喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.答案:12章末过关检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P解析:因为Q={x|-2<x<2},所以Q⊆P.答案:B2.已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()解析:由于A是数集,B是点集,故A∩B=∅.答案:D3.已知集合A={x|x(x-1)=0},那么下列结论正确的是() A.0∈A B.1∉AC.-1∈A D.0∉A解析:由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.答案:A4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=() A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A∩B ={0,2}.答案:C5.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1 B.0C.0或1 D.以上答案都不对解析:当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.答案:C6.下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()解析:空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.答案:B7.(2015·山东卷)已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0}.则A ∩B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析:易知B ={x |1<x <3},又A ={x |2<x <4},所以A ∩B ={x |2<x <3}=(2,3).答案:C8.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅解析:⎩⎪⎨⎪⎧a -1≤3,5≤a +2⇒3≤a ≤4. 答案:B9.已知全集U =R ,集合A ={x |x >1或x <-2},B ={x |-1≤x ≤0},则A ∪∁U B 等于( )A .{x |x <-1或x >0}B .{x |x <-1或x >1}C .{x |x <-2或x >1}D .{x |x <-2或x ≥0}解析:∁U B ={x |x <-1或x >0},所以A ∪∁U B ={x |x <-1或x >0}.答案:A10.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅解析:由题意A ∪B ={1,2,3},又B ={1,2}.所以∁U B ={3,4},故A ∩∁U B ={3}.答案:A11.已知全集U =R ,集合A ={x |y =1-x },集合B ={x |0<x <2},则(∁U A )∪B 等于( )A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)解析:因为A ={x |x ≤1},所以∁U A ={x |x >1}.所以(∁U A )∪B ={x |x >0}.答案:D12.设全集U ={(x ,y )|x ∈R ,y ∈R},集合A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},若点P (2,3)∈A ∩(∁U B ),则下列选项正确的是( )A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5解析:由P (2,3)∈A ∩(∁U B )得P ∈A 且P ∉B ,故⎩⎪⎨⎪⎧2×2-3+m >0,2+3-n >0,解得⎩⎪⎨⎪⎧m >-1,n <5. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =________.答案:{1,3,5}14.已知集合A ={(x ,y )|ax -y 2+b =0},B ={(x ,y )|x 2-ay +b =0},且(1,2)∈A ∩B ,则a +b =________.解析:因为(1,2)∈A ∩B ,所以⎩⎪⎨⎪⎧a -4+b =0,1-2a +b =0⇒a =53,b =73. 故a +b =4.答案:415.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合{x |x ∈A ,且x ∉A ∩B }=________.解析:A ={x |-4<x <4},B ={x |x >3或x <1},A ∩B ={x |3<x <4或-4<x <1},所以{x |x ∈A 且x ∉A ∩B }={x |1≤x ≤3}.答案:{x |1≤x ≤3}16.设集合M ={x |2x 2-5x -3=0},N ={x |mx =1},若N ⊆M ,则实数m 的取值集合为________.解析:集合M =⎩⎨⎧⎭⎬⎫3,-12.若N ⊆M ,则N ={3}或⎝ ⎛⎭⎬⎫-12或∅.于是当N ={3}时,m =13;当N =⎩⎨⎧⎭⎬⎫-12时,m =-2;当N =∅时,m =0.所以m 的取值集合为⎩⎨⎧⎭⎬⎫-2,0,13. 答案:⎩⎨⎧⎭⎬⎫-2.0,13 三、解答题(本大题共6小题,共70分.解答时写出必要文字说明、计算或证明推理过程)17.(本小题满分10分)A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .解:因为A ∪B =A ,所以B ⊆A .当B =∅时,即a =0时,显然满足条件.当B ≠∅时,则B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2a ,A ={1,2}, 所以2a =1或2a=2,从而a =1或a =2. 故集合C ={0,1,2}.18.(本小题满分12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.(1)求A ∪B ,(∁R A )∩B ;(2)如果A ∩C ≠∅,求a 的取值范围.解:(1)A ∪B ={x |1≤x <10},(∁R A )∩B ={x |x <1或x ≥7}∩{x |2<x <10}={x |7≤x <10}.(2)当a >1时,满足A ∩C ≠∅.因此a 的取值范围是{a |a >1}.19.(本小题满分12分)已知A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求a 的取值范围.解:集合A ={0,-4},由于B ⊆A ,则:(1)当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入解得a =1.(2)当B ≠A 时:①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或B ={-4}时,方程x 2+2(a +1)x +a 2-1=0应有两个相等的实数根0或-4,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件.综上可知a =1或a ≤-1.20.(本小题满分12分)已知A ={x |a -4<x <a +4},B ={x |x <-1或x >5}.(1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.解:(1)当a =1时,A ={x |-3<x <5},B ={x |x <-1或x >5}. 所以A ∩B ={x |-3<x <-1}.(2)因为A ={x |a -4<x <a +4},B ={x |x <-1或x >5},又A ∪B =R ,所以⎩⎪⎨⎪⎧a -4<-1,a +4>5⇒1<a <3. 所以所求实数a 的取值范围是{a |1<a <3}.21.(本小题满分12分)已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},求a 取何值时,A ∩B ≠∅与A ∩C =∅同时成立.解:因为B ={2,3},C ={2,-4},由A ∩B ≠∅且A ∩C =∅知,3是方程x 2-ax +a 2-19=0的解, 所以a 2-3a -10=0.解得a =-2或a =5.当a =-2时,A ={3,-5},适合A ∩B ≠∅与A ∩C =∅同时成立;当a =5时,A ={2,3},A ∩C ={2}≠∅,故舍去.所求a 的值为-2.22.(本小题满分12分)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |1≤2x +5≤15}.(1)已知a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.解:(1)因为a =3,所以集合P ={x |4≤x ≤7}.所以∁R P ={x |x <4或x >7},Q ={x |1≤2x +5≤15}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)因为P ∪Q =Q ,所以P ⊆Q .①当a +1>2a +1,即a <0时,P =∅,所以P ⊆Q ;②当a ≥0时,因为P ⊆Q ,所以⎩⎪⎨⎪⎧a ≥0,a +1≥-2,2a +1≤5.所以0≤a ≤2. 综上所述,实数a 的取值范围为(-∞,2].第2章 函数2.1 函数的概念2.1.1 函数的概念和图象A 级 基础巩固1.下列各图中,不可能表示函数y =f (x )的图象的是( )答案:B2.函数y =1-x +x 的定义域是( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1,或x ≤0}D .{x |0≤x ≤1}解析:由⎩⎪⎨⎪⎧1-x ≥0,x ≥0,得0≤x ≤1. 答案:D3.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a =( ) A .-3 B .-1 C .1 D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,适合题意.答案:A4.定义域在R 上的函数y =f (x )的值域为[a ,b ],则函数y =f (x +a )的值域为( )A .[2a ,a +b ]B .[0,b -a ]C .[a ,b ]D .[-a ,a +b ] 答案:C5.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:A 、C 、D 的定义域均不同. 答案:B6.二次函数y =x 2-4x +3在区间(1,4]上的值域是( ) A .[-1,+∞) B .(0,3] C .[-1,3] D .(-1,3)解析:y =x 2-4x +3=(x -2)2-1≥-1,再结合二次函数的图象(如右图所示)可知,-1≤y ≤3.答案:C7.已知函数f (x )的定义域为(-3,0),则函数y =f (2x -1)的定义域是( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析:由于f (x )的定义域为(-3,0) 所以-3<2x -1<0,解得-1<x <12.故y =f (2x -1)的定义域为⎝ ⎛⎭⎪⎫-1,12.答案:B8.函数f (x )=⎝ ⎛⎭⎪⎫x -120+x 2-1x +2的定义域是__________________.解析:要使f (x )有意义,必有⎩⎨⎧x -12≠0,x +2>0,解得x >-2且x ≠12. 答案:⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞9.已知函数f (x )的定义域为[0,1],值域为[1,2],则f (x +2)的定义域是________,值域是________.解析:因为f (x )的定义域为[0,1],所以0≤x +2≤1.所以-2≤x ≤-1,即f (x +2)的定义域为[-2,-1],值域仍然为[1,2].答案:[-2,-1] [1,2]10.(2015·课标全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.解析:因为点(-1,4)在y =f (x )的图象上, 所以4=-a +2.所以a =-2. 答案:-211.若f (x )=ax 2-2,a 为正常数,且f [f (2)]=-2,则a =________.解析:因为f (2)=a ·(2)2-2=2a -2, 所以f ()f (2)=a ·(2a -2)2-2=- 2. 所以a ·(2a -2)2=0.又因为a 为正常数,所以2a -2=0.所以a =22.答案:2212.已知函数f (x )=x +1x .(1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.解:(1)要使函数f (x )有意义,必须使x ≠0, 所以f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0. 所以f (a +1)=a +1+1a +1. B 级 能力提升13.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域为( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以g (x )=f (2x )x -1需满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域为[0,1). 答案:B14.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )解析:因为汽车先启动,再加速、匀速,最后减速,s 随t 的变化是先慢,再快、匀速,最后慢,故A 图比较适合题意.答案:A15.已知函数f (x )=x 21+x 2,那么f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=______. 解析:因为f (x )=x 21+x 2,f ⎝ ⎛⎭⎪⎫1x =1x 2+1,所以f (x )+f ⎝ ⎛⎭⎪⎫1x =1.所以f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=12+1+1+1=72.答案:7216.已知函数f (x )=2x -1-7x .(1)求f (0),f ⎝ ⎛⎭⎪⎫17,f ⎝ ⎛⎭⎪⎫111; (2)求函数的定义域.解:(1)f (0)=-1,f ⎝ ⎛⎭⎪⎫17=217=277, f ⎝ ⎛⎭⎪⎫111=2111-1-711=411-411=0. (2)要使函数有意义,则⎩⎪⎨⎪⎧x ≥0,1-7x ≥0,解得⎩⎨⎧x ≥0,x ≤17,所以0≤x ≤17. 所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x ≤17.17.已知函数y =1ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的值.解:已知函数y =1ax +1(a <0且a 为常数), 因为1ax +1≥0,a <0,所以x ≤-a ,即函数的定义域为(-∞,-a ]. 因为函数在区间(-∞,1]上有意义, 所以(-∞,1]⊆(-∞,-a ]. 所以-a ≥1,即a ≤-1.所以a 的取值范围是(-∞,-1].18.试画出函数f (x )=(x -2)2+1的图象,并回答下列问题: (1)求函数f (x )在x ∈[1,4]上的值域; (2)若x 1<x 2<2,试比较f (x 1)与f (x 2)的大小. 解:由描点法作出函数的图象如图所示.(1)由图象知,f (x )在x =2时有最小值为f (2)=1, 又f (1)=2,f (4)=5.所以函数f (x )在[1,4]上的值域为[1,5]. (2)根据图象易知,当x 1<x 2<2时,f (x 1)>f (x 2).第2章 函数 2.1 函数的概念 2.1.2 函数的表示方法A 级 基础巩固1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:因为f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,所以f (-7)=10.f (f (-7))=f (10)=10×10=100. 答案:A2.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-3解析:f (f (x ))=c ⎝ ⎛⎭⎪⎫cx 2x +32⎝ ⎛⎭⎪⎫cx 2x +3+3=c 2x 2cx +6x +9=x ,即x [(2c +6)x +9-c 2]=0,所以⎩⎪⎨⎪⎧2c +6=0,9-c 2=0,解得c =-3. 答案:B3.如果二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:由题意设f (x )=a (x -1)2+b (a >0),由于点(0,0)在图象上,所以a +b =0,a =-b ,故符合条件的是D.答案:D4.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图形纵轴表示该同学与学校的距离s ,横轴表示该同学出发后的时间t ,则比较符合该同学行进实际的是( )解析:依题意:s 表示该同学与学校的距离,t 表示该同学出发后的时间,当t =0时,s 最远,排除A 、B ,由于汽车速度比步行快,因此前段迅速靠近学校,后段较慢.故选D.答案:D5.g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),则f ⎝ ⎛⎭⎪⎫12=( )A .1B .3C .15D .30解析:由g (x )=12得:1-2x =12⇒x =14,代入1-x 2x 2得:1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15. 答案:C6.(2015·陕西卷)设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,x 2,x <0,则f (f (-2))=( )A .-1 B.14 C.12 D.32解析:f (-2)=(-2)2=4. 所以f (f (-2))=f (4)=1-4=-1. 答案:A7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+3x ,x ≤0,2,x >0,则方程f (x )=x 的解的个数为________.解析:x >0时,x =f (x )=2;x ≤0时,x 2+3x =x ⇒x =0或-2. 答案:38.如图所示,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2))=________.解析:由图象及已知条件知f (2)=0,即f (f (f (2)))=f (f (0)), 又f (0)=4,所以f (f (0))=f (4)=2. 答案:29.若某汽车以52 km/h 的速度从A 地驶向260 km 远处的B 地,在B 地停留32h 后,再以65 km/h 的速度返回A 地.则汽车离开A 地后行走的路程s 关于时间t 的函数解析式为________________.解析:因为260÷52=5(h),260÷65=4(h),所以s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝ ⎛⎭⎪⎫t -132,132<t ≤212. 答案:s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝⎛⎭⎪⎫t -132,132<t ≤212 10.设f (x )=⎩⎨⎧x +1,x ≥0,1x ,x <0.若f (a )>a ,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=a +1>a 恒成立. 当a <0时,f (a )=1a >a ,所以a <-1.综上a 的取值范围是a ≥0或a <-1. 答案:{a |a ≥0或a <-1}11.已知二次函数满足f (3x +1)=9x 2-6x +5,求f (x ). 解:设f (x )=ax 2+bx +c (a ≠0),则f (3x +1)=a (3x +1)2+b (3x +1)+c =9ax 2+(6a +3b )x +a +b +c .因为f (3x +1)=9x 2-6x +5,所以9ax 2+(6a +3b )x +a +b +c =9x 2-6x +5. 比较两端系数,得⎩⎪⎨⎪⎧9a =9,6a +3b =-6,a +b +c =5⇒⎩⎪⎨⎪⎧a =1,b =-4,c =8.所以f (x )=x 2-4x +8.12.已知f (x )=⎩⎪⎨⎪⎧x 2(-1≤x ≤1),1(x >1或x <-1).(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].B 级 能力提升13.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1.若f (f (0))=4a ,则实数a 的值为( )A .2B .1C .3D .4解析:易知f (0)=2,所以f (f (0))=f (2)=4+2a =4a ,所以a =2. 答案:A14.任取x 1,x 2∈[a ,b ]且x 1≠x 2,若f ⎝⎛⎭⎪⎫x 1+x 22>12[f (x 1)+f (x 2)],则f (x )在[a ,b ]上是凸函数,在以下图象中,是凸函数的图象是( )解析:只需在图形中任取自变量x 1,x 2,分别标出它们对应的函数值及x 1+x 22对应的函数值,并观察它们的大小关系即可. 答案:D15.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧C x ,x <A ,C A ,x ≥A ,A ,C 为常数.已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是( ) A .75,25B .75.16C .60,25D .60,16解析:由条件可知,x ≥A 时所用时间为常数,所以组装第4件产品用时必须满足第一段分段函数,即f (4)=C 4=30⇒C =60, f (A )=60A=15⇒A =16. 答案:D16.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值;(2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4,所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23∉[0,2],故无解. 当x 0>2时,由2x 0=8,得x 0=4.因此f (x 0)=8时,x 0的值为4.17.某市出租车的计价标准是:4 km 以内10元,超过4 km 且不超过18 km 的部分1.2 元/km ,超过18 km 的部分1.8 元/km.(1)如果不计等待时间的费用,建立车费与行车里程的函数关系式;(2)如果某人乘车行驶了20 km ,他要付多少车费?解:(1)设车费为y 元,出租车行驶里程为x km.由题意知,当0<x ≤4时,y =10;当4<x ≤18时,y =10+1.2(x -4)=1.2x +5.2;当x >18时,y =10+1.2×14+1.8(x -18)=1.8x -5.6.所以,所求函数关系式为y =⎩⎪⎨⎪⎧10,0<x ≤4,1.2x +5.2,4<x ≤18,1.8x -5.6,x >18.(2)当x =20时,y =1.8×20-5.6=30.4.所以乘车行驶了20 km 要付30.4元的车费.18.某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系用图①表示,该商品在30天内日销售量Q (件)与时间t (天)之间的关系如下表所示:t /天 5 15 20 30Q /件 35 25 20 10(1)根据提供的图象(图①),写出该商品每件的销售价格P 与时间t 的函数解析式;(2)在所给平面直角坐标系(图②)中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定一个日销售量Q 与时间t 的函数解析式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额=每件的销售价格×日销售量).解:(1)根据图象,每件的销售价格P 与时间t 的函数解析式为:P =⎩⎪⎨⎪⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N.(2)描出实数对(t ,Q )的对应点,如下图所示.从图象发现:点(5,35),(15,25),(20,20),(30,10)似乎在同一条直线上,为此假设它们共线于直线l :Q =kt +b .由点(5,35),(30,10)确定出l 的解析式为Q =-t +40,通过检验可知,点(15,25),(20,20)也在直线l 上.所以日销售量Q 与时间t 的一个函数解析式为Q =-t +40(0<t ≤30,t ∈N).(3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N. 因此y =⎩⎪⎨⎪⎧-(t -10)2+900,0<t <25,t ∈N ,(t -70)2-900,25≤t ≤30,t ∈N. 若0<t <25(t ∈N),则当t =10时,y max =900;若25≤t ≤30(t ∈N),则当t =25时,y max =1 125.因此第25天时销售金额最大,最大值为1 125元.第2章 函数2.2 函数的简单性质2.2.1 函数的单调性A 级 基础巩固1.函数f (x )的图象如图所示,则( )A .函数f (x )在[-1,2]上是增函数B .函数f (x )在[-1,2]上是减函数C .函数f (x )在[-1,4]上是减函数D .函数f (x )在[2,4]上是增函数解析:增函数具有“上升”趋势;减函数具有“下降”趋势,故A正确.答案:A2.已知函数f(x)是(-∞,+∞)上的增函数,若a∈R,则() A.f(a)>f(2a) B.f(a2)<f(a)C.f(a+3)>f(a-2) D.f(6)>f(a)解析:因为a+3>a-2,且f(x)在(-∞,+∞)上是增函数,所以f(a+3)>f(a-2).答案:C3.y=2x在区间[2,4]上的最大值、最小值分别是()A.1,12 B.12,1 C.12,14 D.14,12解析:因为函数y=2x在[2,4]上是单调递减函数,所以y max=22=1,y min=24=12.答案:A4.函数y=x2-6x的减区间是() A.(-∞.2] B.[2,+∞) C.[3,+∞) D.(-∞,3] 解析:y=x2-6x=(x-3)2-9,故函数的单调减区间是(-∞,3].答案:D5.下列说法中,正确的有()①若任意x1,x2∈I,当x1<x2时,f(x1)-f(x2)x1-x2>0,则y=f(x)在I上是增函数;②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数; ④函数y =1x的单调区间是(-∞,0)∪(0,+∞). A .0个 B .1个 C .2个 D .3个解析:当x 1<x 2时,x 1-x 2<0,由f (x 1)-f (x 2)x 1-x 2>0知f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),①正确;②③④均不正确.答案:B6.已知函数f (x )=4x -3+x ,则它的最小值是( )A .0B .1 C.34 D .无最小值解析:因为函数f (x )=4x -3+x 的定义域是⎣⎢⎡⎭⎪⎫34,+∞,且是增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫34=34. 答案:C7.函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是________________.解析:由图象可知函数f (x )的单调递增区间是(-∞,1]和(1,+∞).答案:(-∞,1]和(1,+∞)8.已知f (x )是R 上的减函数,则满足f (2x -1)>f (1)的实数x 的取值范围是________.解析:因为f (x )在R 上是减函数,且f (2x -1)>f (1),所以2x -1<1,即x <1.答案:(-∞,1)9.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则m 的取值范围是________.解析:因为f (x )=(x -1)2+2,其对称轴为直线x =1,所以当x =1时,f (x )min =2,故m ≥1.又因为f (0)=3,所以f (2)=3.所以m ≤2.故1≤m ≤2.答案:[1,2]10.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x (其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为________万元.解析:设公司在甲地销售x 台,则在乙地销售(15-x )台,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝ ⎛⎭⎪⎫x -1922+30+1924, 所以当x =9或10时,L 最大为120万元.答案:12011.讨论函数y =x 2-2(2a +1)x +3在[-2,2]上的单调性.解:因为函数图象的对称轴x =2a +1,所以当2a +1≤-2,即a ≤-32时,函数在[-2.2]上为增函数.当-2<2a +1<2,即-32<a <12时, 函数在[-2,2a +1]上是减函数,在[2a +1,2]上是增函数.当2a +1≥2,即a ≥12时,函数在[-2,2]上是减函数. 12.已知f (x )=x +12-x,x ∈[3,5]. (1)利用定义证明函数f (x )在[3,5]上是增函数;(2)求函数f (x )的最大值和最小值.解:(1)f (x )在区间[3,5]上是增函数,证明如下:设x 1,x 2是区间[3,5]上的两个任意实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+12-x 1-x 2+12-x 2=3(x 1-x 2)(2-x 1)(2-x 2). 因为3≤x 1<x 2≤5,所以x 1-x 2<0,2-x 1<0,2-x 2<0.所以f (x 1)<f (x 2).所以f (x )在区间[3,5]上是增函数.(2)因为f (x )在区间[3,5]上是增函数,所以当x =3时,f (x )取得最小值为-4,当x =5时,f (x )取得最大值为-2.B 级 能力提升13.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( )A .(-∞,40)B .[40,64]C .(-∞,40]∪[64,+∞)D .[64,+∞)。

新教材苏教版高中数学必修第一册全册书学案讲义(知识点考点汇总及配套习题)

新教材苏教版高中数学必修第一册全册书学案讲义(知识点考点汇总及配套习题)

苏教版必修第一册学案第一章集合 (2)1.1 集合的概念与表示 (2)1.2 子集、全集、补集 (16)1.3 交集、并集 (28)章末复习 (37)第二章 常用逻辑用语 (41)2.1 命题、定理、定义 (41)2.2 充分条件、必要条件、充要条件 (49)2.3 全称量词命题与存在量词命题 (56)章末复习 (63)第三章 不等式 (67)3.1 不等式的基本性质 (67)3.2 ≤a +b 2(a ,b ≥0) (77)3.3 从函数观点看一元二次方程和一元二次不等式 ................................................ 96 章末复习 .. (123)第四章 指数与对数 (128)4.1 指数 (128)4.2 对数 ...................................................................................................................... 136 章末复习 .. (150)第五章函数概念与性质 (155)5.1 函数的概念和图象 (155)5.2 函数的表示方法 (172)5.3 函数的单调性 (184)5.4 函数的奇偶性 ...................................................................................................... 199 章末复习 .. (209)第六章 幂函数、指数函数和对数函数 (216)6.1 幂函数 (216)6.2 指数函数 (225)6.3 对数函数 .............................................................................................................. 243 章末复习 .. (260)第七章 三角函数 (266)7.1 角与弧度 (266)7.2 三角函数概念 (285)7.3 三角函数的图象和性质 (320)7.4 三角函数应用 ...................................................................................................... 367 章末复习 .. (376)第八章 函数应用 (385)8.1 二分法与求方程近似解 (385)8.2 函数与数学模型 .................................................................................................. 401 章末复习 .. (418)第一章集合1.1集合的概念与表示第1课时集合的概念学习任务核心素养1.通过实例了解集合的含义.(难点)2.掌握集合中元素的三个特性.(重点)3.体会元素与集合的“属于”关系,记住常用数集的表示符号并会应用.(重点、易混点)1.通过集合概念的学习,逐步养成数学抽象素养.2.借助集合中元素的互异性的应用,培养逻辑推理素养.在生活与学习中,为了方便,我们经常要对事物进行分类.例如,图书馆中的书是按照所属学科等分类摆放的,如图所示,作文学习可按照文体如记叙文、议论文等进行,整数可以分成正整数、负整数和零这三类……你能说出数学中其他分类实例吗?试着分析为什么要进行分类.知识点1元素与集合的概念(1)一般地,一定范围内某些确定的、不同的对象的全体组成一个集合.集合中的每一个对象称为该集合的元素,简称元.(2)集合中元素的特征:确定性、互异性、无序性.假如在军训时教官喊“全体高个子同学集合”,你会去集合吗?[提示]不去,不清楚自己是不是高个子.集合中的元素必须同时具备确定性、互异性、无序性.反过来一组对象若不具备这三个特性中任何一个,则这组对象不能构成集合.集合中元素的三个特性是判断一组对象能否构成集合的重要依据.1.思考辨析(正确的画√,错误的画×)(1)接近于-1的数可以组成集合.()(2)一个集合中可以找到两个相同的元素.()(3)组成集合的元素一定是数.()[答案](1)×(2)×(3)×知识点2元素与集合1.元素与集合的表示(1)元素的表示:通常用小写拉丁字母a,b,c,…表示集合中的元素.(2)集合的表示:通常用大写拉丁字母A,B,C,…表示集合.2.元素与集合的关系(1)属于(符号:∈),a是集合A中的元素,记作a∈A,读作“a属于A”.(2)不属于(符号:∉或∈),a不是集合A中的元素,记作a∉A或a∈A,读作“a不属于A”.2.已知集合A中有两个元素2和a-1且3∈A,则实数a=________.4[由题意知a-1=3,即a=4.]知识点3常用数集及表示符号名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R3.用“∈”或“∉”填空.3.5________N;-4________Z;0.5________R;2________N*;13________Q.∉∈∈∉∈[因为3.5不是自然数,故3.5∉N;因为-4是整数,故-4∈Z;因为0.5是实数,故0.5∈R;因为2不是正整数,故2∉N*;因为13是有理数,故13∈Q.]类型1集合的概念【例1】(1)考察下列每组对象,能构成集合的是()①中国各地的美丽乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④截止到2021年10月1日,参加一带一路的国家.A.③④B.②③④C.②③D.②④(2)下列说法中,正确的有________.(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中有3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.(1)B(2)②[(1)①中“美丽”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合,故选B.(2)①不正确.book的字母o有重复,共有3个不同字母,元素个数是3.②正确.集合M中有3个元素a,b,c,所以a,b,c都不相等,它们构成的三角形三边不相等,故不可能是等腰三角形.③不正确.小于10的自然数不管按哪种顺序排列,里面的元素都是0,1,2,3,4,5,6,7,8,9这10个数,集合是相同的,和元素的排列顺序无关.]一组对象能组成集合的标准是什么?[提示]判断一组对象是否为集合的三依据:(1)确定性:负责判断这组元素是否构成集合.(2)互异性:负责判断构成集合的元素的个数.(3)无序性:表示只要一个集合的元素确定,则这个集合也随之确定,与元素之间的排列顺序无关.[跟进训练]1.判断下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2020年在校的所有高个子同学;(4) 3的近似值的全体.[解](1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合.(2)能构成集合.(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数(如“2”)是不是它的近似值,所以不能构成集合.类型2元素与集合的关系【例2】(1)下列所给关系正确的个数是()①π∈R②3∈R③6∉Q④0∈N*⑤|-2|∈ZA.2 B.3C.4 D.5(2)已知集合A含有三个元素2,4,6,当a∈A,有6-a∈A.则a的值为________.(1)C(2)2或4[(1)①π是无理数∴π∈R故①正确,3是无理数∴3∈R,②正确.6是无理数∴6∉Q,④0是自然数是非负整数,0∈N,故④错误.|-2|=2∈Z正确.(2)集合A含有三个元素2,4,6且当a∈A,有6-a∈A.a=2∈A,6-a=4∈A,所以a=2或者a=4∈A,6-a=2∈A,所以a=4.综上所述,a=2或4.]判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.[跟进训练]2.集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素个数为________.3[∵63-x∈N,∴3-x=1或3-x=2或3-x=3或3-x=6.即x=2或1或0或-3.又x∈N.故x=0或1或2.即集合A中的元素个数为3.]类型3集合中元素的特性及应用【例3】已知集合A中含有两个元素1和a2,若a∈A,求实数a的值.若集合A中含有两个元素a,b,则a,b满足什么关系?若1∈A,则元素1与集合A中元素a,b存在怎样的关系?[提示]a≠b,a=1或b=1.[解]由题意可知,a=1或a2=a.(1)若a=1,则a2=1,这与a2≠1相矛盾,故a≠1.(2)若a2=a,则a=0或a=1(舍去).又当a=0时,A中含有元素1和0满足集合中元素的互异性,符合题意.综上可知,实数a的值为0.1.(变条件)本例若去掉条件“a∈A”,其他条件不变,求实数a的取值范围.[解]由集合中元素的互异性可知a2≠1,即a≠±1.2.(变条件)已知集合A含有两个元素a和a2,若1∈A,求a的值.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,所以a≠1.当a=-1时,集合A含有两个元素1,-1,符合集合中元素的互异性.所以a=-1.由集合中元素的特性求解字母取值(范围)的步骤[跟进训练]3.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.[解]因为-3∈A,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3和-1.符合要求.若-3=2a-1,则a=-1,此时集合A含有两个元素-4,-3.符合要求.综上所述,a的值为0或-1.课堂达标练习1.下列给出的对象中,能组成集合的是()A.一切很大的数B.好心人C.漂亮的小女孩D.方程x2-1=0的实数根[答案]D2.下列结论不正确的是()A.0∈N B.2∉QC.0∉Q D.8∈ZC[0是有理数,故0∈Q,所以C错误.]3.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形A[由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.]4.若集合A中的元素是由方程x2-2x-3=0的解构成的,若集合A中的元素是a,b,则a+b=________.2[因为方程x2-2x-3=0的解为3和-1,所以a+b=2.]5.已知集合A中有0,m,m2-3m+2三个元素,且2∈A,求m的值.[解]由2∈A可知,若m=2,则m2-3m+2=0.这与m2-3m+2≠0相矛盾.若m2-3m+2=2,则m=0或m=3,当m=0时与m≠0相矛盾.当m=3时,集合中含有3个元素0,2,3.故m的值为3.回顾本节知识,自我完成以下问题.1.元素与集合是怎样定义的?它们之间是什么关系.[提示]一般地,一定范围内某些确定的、不同的对象的全体组成一个集合.集合中的每一个对象称为该集合的元素.元素与集合之间为属于(或不属于)关系.2.利用集合中元素的特性解题时应注意什么?[提示]不要忽视集合中元素的互异性.第2课时集合的表示学习任务核心素养1.掌握集合的两种常用表示方法(列举法和描述法).(重点、难点)2.通过实例选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.1.通过学习描述法表示集合的方法,培养数学抽象的素养.2.借助描述法转化为列举时的运算,培养数学运算的素养.3.了解集合相等的概念,并能用于解决问题.(重点)4.了解集合的不同的分类方法.集合是数学中最基本的语言,在今后的数学中,我们都要用到它,要研究集合要在集合的基础上研究其他问题,首先要表示集合,为此我们来学习集合的表示方法.当集合中元素较少时,如何直观地表示集合?当集合中的元素具有一定的规律性,又该如何直观地表示集合?当集合中的元素具有一定的规律性,又该如何表示这类集合?知识点1集合的表示方法表示方法定义一般形式列举法将集合的元素一一列举出来,并置于花括号“{}”内{a1,a2,…,a n,…}描述法将集合的所有元素都具有的性质(满足的条件)表示出来{x|p(x)}Venn 图法用一个封闭曲线围成的平面区域的内部表示一个集合(1)中国的五岳组成的集合中的元素是什么?怎样列举出来?(2)不等式x-2<1的解集中的元素有什么共同特征?[提示](1)中的元素为泰山、华山、衡山、恒山、嵩山.(2)元素的共同特征为x∈R,且x<3.列举法通常适用于元素个数有限的集合.若集合中的元素有无限个,但有一定的规律性也可用列举法.描述法通常适用于元素个数较多而元素的排列又不呈现明显规律的集合或者根本就不能一一列举的集合.1.思考辨析(正确的画√,错误的画×)(1)0与{0}表示的是同一个集合.()(2)方程(x-1)2·(x-2)=0的所有解的集合可表示为{1,2}.()(3)集合A={x∈N|x>5}是用描述法表示的一个集合.()[答案](1)×(2)√(3)√知识点2集合的分类(1)集合的分类有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合,记作∅(2)集合相等如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.2.(1)集合{1,2,3}与{3,2,1}________相等集合.(填“是”或“不是”)(2)若集合{1,a}与集合{2,b}相等,则a+b=________.(1)是(2)3[(1)集合{1,2,3}与{3,2,1}元素完全相同,故两集合是相等集合.(2)由于{1,a}={2,b},故a=2,b=1,∴a+b=3.]类型1用列举法表示集合【例1】用列举法表示下列集合:(1)不大于10的非负偶数组成的集合A.(2)小于8的质数组成的集合B.(3)方程x2-x-2=0的实根组成的集合C.[解](1)不大于10的非负偶数有0,2,4,6,8,10.所以A={0,2,4,6,8,10}.(2)小于8的质数有2,3,5,7,所以B={2,3,5,7}.(3)方程x2-x-2=0的实根为2,-1,所以C={2,-1}.用列举法表示集合的3个步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{(2,3),(5,-1)}. [跟进训练]1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A ;(2)方程x 2-9=0的实数根组成的集合B ;(3)一次函数y =x +2与y =-2x +5的图象的交点组成的集合D .[解] (1)因为大于1且小于6的整数包括2,3,4,5,所以A ={2,3,4,5}.(2)方程x 2-9=0的实数根为-3,3,所以B ={-3,3}.(3)由⎩⎨⎧ y =x +2,y =-2x +5,得⎩⎨⎧x =1,y =3,所以一次函数y =x +2与y =-2x +5的交点为(1,3),所以D ={(1,3)}. 类型2 用描述法表示集合【例2】 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数集合;(3)平面直角坐标系中坐标轴上的点组成的集合.[解] (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故平面直角坐标系中坐标轴上的点的集合可表示为{(x ,y )|xy =0}.利用描述法表示集合应关注4点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R |x <1}不能写成{x <1}.(2)所有描述的内容都要写在花括号内.例如,{x ∈Z |x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z |x =2k ,k ∈Z }.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R |x 2-2x +1=0},也可写成{x |x 2-2x +1=0}. [跟进训练]2.用描述法表示下列集合:(1)函数y =-2x 2+x 图象上的所有点组成的集合;(2)不等式2x -3<5的解组成的集合;(3)如图中阴影部分的点(含边界)的集合;(4)3和4的所有正的公倍数构成的集合.[解] (1)函数y =-2x 2+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }.(2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)图中阴影部分的点(含边界)的集合可表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ 0≤x ≤32,0≤y ≤1. (4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.类型3 集合表示法的综合应用【例3】 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意;(2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0有两个相等的实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意.综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.1.本例若将条件“只有一个元素”改为“有两个元素”,其他条件不变,求实数k 的值组成的集合.[解] 由题意可知,方程kx 2-8x +16=0有两个不等实根,故k ≠0,且Δ=64-64k >0,即k <1,且k ≠0.所以实数k 组成的集合为{k |k <1,且k ≠0}.2.本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k 的取值范围.[解] 由题意可知,方程kx 2-8x +16=0至少有一个实数根.①当k =0时,由-8x +16=0得x =2,符合题意;②当k ≠0时,要使方程kx 2-8x +16=0至少有一个实数根,则Δ=64-64k ≥0,即k ≤1,且k ≠0.综合①②可知,实数k 的取值范围为{k |k ≤1}.(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3集合A 中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.(2)在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想. [跟进训练]3.已知集合A ={x |ax 2-3x +1=0,a ∈R }.若集合A 中有两个元素,求实数a 的取值范围.[解] 集合A 中有两个元素,即关于x 的方程ax 2-3x +1=0有两个不相等的实数根.∴a ≠0,且Δ=(-3)2-4a >0,解得a <94且a ≠0.类型4 集合相等【例4】 (1)集合A ={x |x 3-x =0,x ∈N }与B ={0,1}________相等集合.(填“是”或“不是”)(2)若集合A ={1,a +b ,a },集合B =⎩⎨⎧⎭⎬⎫0,b a ,b 且A =B ,则a =________,b =________.[思路点拨] (1)解出集合A ,并判断与B 是否相等;(2)找到相等的对应情况,解方程组即可.(1)是 (2)-1 1 [(1)x 3-x =x (x 2-1)=0,∴x =±1或x =0.又x ∈N ,∴A ={0,1}=B .(2)由题意知,a ≠0,故a +b =0,∴b =-a . ∴b a =-1,∴a =-1,b =1.]已知集合相等求参数,关键是根据集合相等的定义,建立关于参数的方程(组),求解时还要注意集合中元素的互异性.[跟进训练]4.已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值.[解] 若⎩⎨⎧ a +b =ax ,a +2b =ax 2,消去b ,则a +ax 2-2ax =0, ∴a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去;当x =1时,集合B 中的元素均为a ,故舍去.若⎩⎨⎧a +b =ax 2,a +2b =ax ,消去b ,则2ax 2-ax -a =0. 又∵a ≠0,∴2x 2-x -1=0,即(x -1)(2x +1)=0.又∵x ≠1,∴x =-12.经检验,当x =-12时,A =B 成立.综上所述,x =-12.课堂达标练习1.用列举法表示集合{x |x 2-2x -3=0}为( )A .{-1,3}B .{(-1,3)}C .{x =1}D .{x 2-2x -3=0}A [解方程x 2-2x -3=0,得x 1=-1,x 2=3.∴集合{x |x 2-2x -3=0}中有两个元素,用列举法得{x |x 2-2x -3=0}={-1,3},故选A.]2.(多选题)方程组⎩⎨⎧ x +y =3,x -y =-1的解集可表示为( ) A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪ ⎩⎨⎧ x +y =3,x -y =-1 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪ ⎩⎨⎧ x =1,y =2 C .{1,2} D .{(1,2)} ABD [方程组的解应为有序数对,故A 、B 、D 正确.]3.用描述法表示不等式3x +2>5的解集为________.{x |x >1} [由不等式3x +2>5得x >1,用描述法可表示为{x |x >1}.]4.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则a +b =________.1或34 [∵M =N ,则有⎩⎨⎧ a =2a ,b =b 2或⎩⎨⎧ a =b 2,b =2a ,解得⎩⎨⎧ a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12,∴a +b =1或34.]5.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.[解] 三个集合不相等,这三个集合都是描述法给出的,但各自的意义不一样.集合A 表示y =x 2+3中x 的范围,x ∈R ,∴A =R ,集合B 表示y =x 2+3中y 的范围,B ={y |y ≥3},集合C 表示y =x 2+3上的点组成的集合.回顾本节知识,自我完成以下问题.1.集合常用的表示方法有哪些?各有什么特点?[提示] 列举法、描述法.列举法通常适用于元素个数较少或元素有规律的集合.描述法通常适用于元素个数较多或无规律的集合.2.对集合的表示有什么要求?[提示] 要根据集合元素的特点,选择适当的方法表示集合.一般要符合最简原则.3.通过本节课培养了哪些核心素养和思想方法?[提示]培养数学运算素养和逻辑推理素养.思想方法有等价转化和分类讨论的思想.1.2子集、全集、补集第1课时子集、真子集学习任务核心素养1.理解集合间包含与相等的含义,能识别给定集合间是否有包含关系.(重点) 2.能通过分析元素的特点判断集合间的关系.(难点)3.能根据集合间的关系确定一些参数的取值.(难点、易错点)1.通过对集合之间包含与相等的含义以及子集、真子集概念的理解,培养数学抽象素养.2.借助子集和真子集的求解,培养数学运算素养.如果一个班级中,所有同学组成的集合记为S,而所有女同学组成的集合记为F,你觉得集合S和F之间有怎样的关系?你能从集合元素的角度分析它们的关系吗?知识点1子集的概念及其性质(1)子集定义如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),那么集合A称为集合B的子集符号表示A⊆B(或B⊇A)读法集合A包含于集合B(或集合B包含集合A) 图示①A⊆A,即任何一个集合是它本身的子集.②∅⊆A,即空集是任何集合的子集.③若A⊆B,B⊆C,则A⊆C,即子集具备传递性.(3)集合相等若A⊆B且B⊆A,则A=B.1.(1)任何两个集合之间是否一定有包含关系?(2)符号“∈”与“⊆”有何不同?[提示](1)不一定,如集合A={1,2}与B={3,4}这两个集合之间没有包含关系.(2)符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.不能把“A⊆B”理解为“A是B中部分元素组成的集合”因为集合A 可能是空集,也可能是集合B.1.思考辨析(正确的画√,错误的画×)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B且B⊆A.()(4)若a∈A,则{a}⊆A.()[答案](1)×(2)√(3)√(4)√知识点2真子集的概念与性质(1)真子集的概念如果A⊆B,并且A≠B,那么集合A称为集合B的真子集,记为A B或B A,读作“A真包含于B”或“B真包含A”.(2)性质①∅是任一非空集合的真子集.②若A B,B C,则A C.2.{0}与∅相等吗?[提示]不相等.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.2.集合A={x|0≤x<2,x∈N}的真子集的个数为________.3[集合A={0,1},其真子集分别为∅,{0},{1}共3个.]类型1确定集合的子集、真子集【例1】设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集与真子集.[解]由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4,或x=-1或x=4,故集合A={-4,-1,4}.由0个元素构成的子集为:∅;由1个元素构成的子集为:{-4},{-1},{4};由2个元素构成的子集为:{-4,-1},{-4,4},{-1,4};由3个元素构成的子集为:{-4,-1,4};故集合A的子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}共8个子集.真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}共7个.确定子集、真子集的关键点是什么?有什么规律?[提示] 1.有限集的子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;(3)注意两个特殊的集合,即空集和集合本身.2.与子集、真子集个数有关的三个结论假设集合A中含有n个元素,则有:(1)A的子集的个数为2n个;(2)A的真子集的个数为2n-1个;(3)A的非空真子集的个数为2n-2个.[跟进训练]1.已知集合M满足{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.[解]由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.类型2集合关系的判断【例2】指出下列各对集合之间的关系:(1)A={-1,1},B={x∈N|x2=1};(2)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(3)P={x|x=3n-1,n∈Z},Q={x|x=3n+2,n∈Z};(4)A={x|x是等边三角形},B={x|x是三角形};(5)A={x|-1<x<4},B={x|x-5<0}.[解](1)用列举法表示集合B={1},故B A.(2)集合A的代表元素是数,集合B的代表元素是实数对,故A与B之间无包含关系.(3)∵P表示3的整数倍少1的数构成的数集,Q表示3的整数倍多2的数构成的数集,∴P=Q.(4)等边三角形是三边相等的三角形,故A B.(5)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可发现A B.判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.提醒:若A ⊆B 和A B 同时成立,则A B 更能准确表达集合A ,B 之间的关系. [跟进训练]2.判断下列各组中集合之间的关系:(1)A ={x |x 是12的约数},B ={x |x 是36的约数};(2)A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是四边形},D ={x |x 是正方形}. [解] (1)因为若x 是12的约数,则必定是36的约数,反之不成立,所以A B .(2)由图形的特点可画出Venn 图如图所示,从而D B A C .类型3 集合之间的包含关系【例3】 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. 若B A ,求实数m 的取值范围?集合B 中的元素有何特点?可能为空集吗?m 满足什么条件时B =∅.[提示] 集合B 中的元素不确定,随m 的变化而变化.B 可能为空集. 当m +1>2m -1时B =∅.[解] (1)当B =∅时,由m +1>2m -1,得m <2.(2)当B ≠∅时,如图所示.∴⎩⎨⎧ m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎨⎧ m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3.综上可得,m 的取值范围是{m |m ≤3}.1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.[解] (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示,∴⎩⎨⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎨⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. [解] 当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎨⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎨⎧m >2,m ≤-3,m ≥3,∴m 不存在.即不存在实数m 使A ⊆B .1.对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.2.两个易错点(1)当B ⊆A 时,应分B =∅和B ≠∅两种情况讨论; (2)列不等关系式时,应注意等号是否成立.[跟进训练]3.已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1}且B ⊆A .求实数m 的取值范围.[解] ∵B ⊆A ,∴可以分B =∅或B ≠∅讨论.(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎨⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上可得m ≥-1.课堂达标练习1.设集合M ={1,2,3},N ={1},则下列关系正确的是( ) A .N ∈M B .N ∉M C .N ⊇MD .N ⊆MD [∵1∈{1,2,3},∴1∈M ,又2∉N ,∴N ⊆M .] 2.(多选题)下列四个集合中,不是空集的为( ) A .{0}B .{x |x >8,且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}ACD [满足x >8且x <5的实数不存在,故{x |x >8,且x <5}=∅.] 3.集合A ={x |x (x -2)=0},则集合A 的子集的个数为________. 4 [由x (x -2)=0得x =0,或x =2,所以A ={0,2}. A 的子集有∅,{0},{2},{0,2}.] 4.设x ,y ∈R ,A ={(x ,y )|y =x },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪yx =1,则A ,B 的关系是________.B A[∵B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪yx =1={(x ,y )|y =x ,且x ≠0},故B A .]5.已知集合A ={x |x ≥1},B ={x |x ≥a }.若B ⊆A ,则实数a 的取值范围为________.a ≥1 [结合数轴知a ≥1.]回顾本节知识,自我完成以下问题.1.两个集合间的基本关系有哪些?如何判断两个集合间的关系?[提示] A ⊆B 或A B .从集合中元素入手,根据集合间关系的定义得出结论.2.本节课中有哪些易错地方?[提示](1)忽略对集合是否为空集的讨论.(2)忽视是否能够取到端点值.3.本节课主要学习了哪些数学思想方法.[提示]分类讨论、数形结合.第2课时全集、补集学习任务核心素养1.了解全集的意义,理解补集的含义.(重点)2.能在给定全集的基础上求已知集合的补集.(难点)1.通过补集的运算培养数学运算素养.2.借助集合思想对实际生活中的对象进行判断归类,培养数学抽象素养.某学习小组学生的集合为S={甲,乙,丙,丁},其中在学校应用文写作比赛与数学建模大赛中获得过金奖的学生集合为A={甲,乙},那么没有获奖的学生有哪些?若用集合B表示没有获奖的同学,则集合B与S,集合A、B和S之间有怎样的关系?知识点1补集(1)定义:设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A 的补集,记为∁S A(读作“A在S中的补集”).(2)符号表示∁S A={x|x∈S,且x∉A}.(3)图形表示:(4)补集的性质①∁S∅=S,②∁S S=∅,③∁S(∁S A)=A.知识点2全集如果一个集合包含我们所研究问题中涉及的所有元素,那么就称这个集合为全集,全集通常记作U.两个不同的集合A、B在同一个全集U中的补集可能相等吗?[提示]不可能相等.因为集合A、B是两个不同的集合.所以必定存在元素在集合A的补集中,但不在集合B的补集中.补集符号∁S A有三层含义:(1)A是S的一个子集,即A⊆S;(2)∁S A表示一个集合,且∁S A⊆S;(3)∁S A是S中所有不属于A的元素构成的集合.1.思考辨析(正确的画√,错误的画×)(1)全集一定含有任何元素.()(2)集合∁R A=∁Q A.()(3)一个集合的补集一定含有元素.()(4)研究A在S中的补集时,A可以不是S的子集.()[答案](1)×(2)×(3)×(4)×2.已知全集U={-1,0,1},且∁U A={0},则A=()A.{-1,1} B.{-1,0,1}C.{0,1} D.{-1,0}A[∵U={-1,0,1},∁U A={0},∴A={-1,1}.]3.若集合A={x|x>1},则∁R A=________.{x|x≤1}[∵A={x|x>1},∴∁R A={x|x≤1}.]类型1全集与补集【例1】(1)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.(1){2,3,5,7}(2){x|x<-3或x=5}[(1)A={1,3,5,7},∁U A={2,4,6},。

新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析

新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析

第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。

【创新设计】高中数学(苏教版必修一)配套练习:3.4.1函数与方程第1课时(含答案解析)

【创新设计】高中数学(苏教版必修一)配套练习:3.4.1函数与方程第1课时(含答案解析)

§3.4 函数的应用3.4.1 函数与方程第1课时函数的零点课时目标 1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系2.一般地,我们把使函数y=f(x)的值为0的实数x称为函数y=f(x)的______.3.函数y=f(x)的零点就是方程f(x)=0的________,也就是函数y=f(x)的图象与x轴的交点的______.4.方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有______⇔函数y=f(x)有______.函数零点的存在性的判断方法若函数f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.一、填空题1.二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是________.2.若函数y =f(x)在区间[a ,b]上的图象为一条连续不断的曲线,则下列说法不正确的是________.(填序号)①若f(a)f(b)>0,不存在实数c ∈(a ,b)使得f(c)=0;②若f(a)f(b)<0,存在且只存在一个实数c ∈(a ,b)使得f(c)=0; ③若f(a)f(b)>0,有可能存在实数c ∈(a ,b)使得f(c)=0; ④若f(a)f(b)<0,有可能不存在实数c ∈(a ,b)使得f(c)=0.3.若函数f(x)=ax +b(a≠0)有一个零点为2,那么函数g(x)=bx 2-ax 的零点是________.4.已知函数y =f(x)是偶函数,其部分图象如图所示,则这个函数的零点至少有________个.5.函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3, x≤0,-2+ln x , x>0零点的个数为________.6.已知函数y =ax 3+bx 2+cx +d 的图象如图所示,则实数b 的取值范围是________.7.已知函数f(x)是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______. 8.函数f(x)=ln x -x +2的零点个数为________.9.根据表格中的数据,可以判定方程e x -x -2=0的一个实根所在的区间为(k ,k +1)(k ∈N),则k 的值为________.二、解答题10.证明:方程x 4-4x -2=0在区间[-1,2]内至少有两个实数解.11.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围. 能力提升12.设函数f(x)=⎩⎪⎨⎪⎧x 2+bx +c ,x≤0,2, x>0,若f(-4)=f(0),f(-2)=-2,则方程f(x)=x 的解的个数是_______________________.13.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围.1.方程的根与方程所对应函数的零点的关系(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.(2)根据函数零点定义可知,函数f(x)的零点就是方程f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.§2.5 函数与方程 2.5.1 函数的零点知识梳理1.2个 1个 0个 2个 1个 2.零点 3.实数根 横坐标 4.交点 零点 作业设计 1.2个解析 方程ax 2+bx +c =0中,∵ac<0,∴a≠0, ∴Δ=b 2-4ac>0,即方程ax 2+bx +c =0有2个不同实数根, 则对应函数的零点个数为2个. 2.①②④解析 对于①,可能存在根; 对于②,必存在但不一定唯一; ④显然不成立. 3.0,-12解析 ∵a≠0,2a +b =0, ∴b≠0,a b =-12.令bx 2-ax =0,得x =0或x =a b =-12.4.4解析 由图象可知,当x>0时,函数至少有2个零点,因为偶函数的图象关于y 轴对称,故此函数的零点至少有4个. 5.2解析 x≤0时,令x 2+2x -3=0,解得x =-3. x>0时,f(x)=ln x -2在(0,+∞)上递增, f(1)=-2<0,f(e 3)=1>0,∴f(1)f(e 3)<0, ∴f(x)在(0,+∞)上有且只有一个零点. 综上,f(x)在R 上有2个零点. 6.(-∞,0)解析 设f(x)=ax 3+bx 2+cx +d ,则由f(0)=0可得d =0,f(x)=x(ax 2+bx +c)=ax(x -1)(x -2)⇒b =-3a ,又由x ∈(0,1)时f(x)>0,可得a>0,∴b<0.7.3 0解析 ∵f(x)是R 上的奇函数,∴f(0)=0,又∵f(x)在(0,+∞)上是增函数,由奇函数的对称性可知,f(x)在(-∞,0)上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞)上只有一个零点,综上f(x)在R 上共有3个零点,其和为-2+0+2=0. 8.2解析 该函数零点的个数就是函数y =ln x 与y =x -2图象的交点个数.在同一坐标系中作出y =ln x 与y =x -2的图象如下图:由图象可知,两个函数图象有2个交点,即函数f(x)=ln x -x +2有2个零点. 9.1解析 设f(x)=e 2-(x +2),由题意知f(-1)<0,f(0)<0,f(1)<0,f(2)>0,所以方程的一个实根在区间(1,2)内,即k =1.10.证明 设f(x)=x 4-4x -2,其图象是连续曲线. 因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0. 所以在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解. 11.解 令f(x)=mx 2+2(m +3)x +2m +14.依题意得⎩⎨⎧m>0或⎩⎨⎧m<0,即⎩⎪⎨⎪⎧ m>026m +38<0或⎩⎪⎨⎪⎧m<026m +38>0,解得-1913<m<0.12.3解析 由已知⎩⎪⎨⎪⎧ 16-4b +c =c ,4-2b +c =-2,得⎩⎪⎨⎪⎧b =4,c =2.∴f(x)=⎩⎪⎨⎪⎧x 2+4x +2,x≤0,2, x>0.当x≤0时,方程为x 2+4x +2=x , 即x 2+3x +2=0, ∴x =-1或x =-2; 当x>0时,方程为x =2, ∴方程f(x)=x 有3个解.13.解 设f(x)=x 2+(k -2)x +2k -1.∵方程f(x)=0的两根中,一根在(0,1)内,一根在(1,2)内,∴⎩⎪⎨⎪⎧ ,即⎩⎪⎨⎪⎧2k -1>01+k -2+2k -1<04+2k -4+2k -1>0∴12<k<23.。

新教材高中数学第1章直线与方程直线的一般式方程课后素养落实含解析苏教版选择性必修第一册

新教材高中数学第1章直线与方程直线的一般式方程课后素养落实含解析苏教版选择性必修第一册

新教材高中数学苏教版选择性必修第一册:课后素养落实(四) 直线的一般式方程(建议用时:40分钟)一、选择题1.直线x +3y +1=0的倾斜角为( ) A .π6 B .π3 C .2π3 D .5π6D [直线x +3y +1=0的斜率k =-33,所以直线倾斜角为5π6.] 2.将直线x 3+y4=1化成一般式方程为( )A .y =-43x +4B .y =-43(x -3)C .4x +3y -12=0D .4x +3y =12C [直线x 3+y4=1化成一般式方程为4x +3y -12=0.]3.下列直线中,斜率为-43,且不经过第一象限的是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0B [将一般式化为斜截式,斜率为-43的有B ,C 两项.又y =-43x +14过点(0,14),即直线过第一象限,所以只有B 项正确.]4.如果A ·B >0且B ·C <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [由A ·B >0且B ·C <0,可得直线Ax +By +C =0的斜率为-AB <0,直线在y 轴上的截距-CB>0,故直线不经过第三象限,故选C .]5.一条光线从点A ⎝⎛⎭⎫-12,0处射到点B (0,1)后被y 轴反射,则反射光线所在直线的方程为( )A .y =2x +1B .y =-2x +1C .y =12x -12D .y =-12x -12B [由光的反射定律可得,点A ⎝⎛⎭⎫-12,0关于y 轴的对称点M ⎝⎛⎭⎫12,0在反射光线所在的直线上.再由点B (0,1)也在反射光线所在的直线上,用两点式可求得反射光线所在的直线方程为y -01-0=x -120-12,即y =-2x +1.]二、填空题6.已知三点(2,-3),(4,3),⎝⎛⎭⎫5,k2在同一条直线上,则实数k 的值为________. 12 [∵3-(-3)4-2=3=k2-35-4,∴k =12.]7.已知直线l 的斜率是直线2x -3y +12=0的斜率的12,l 在y 轴上的截距是直线2x -3y+12=0在y 轴上的截距的2倍,则直线l 的方程为________.x -3y +24=0 [由2x -3y +12=0知,斜率为23,在y 轴上截距为4.根据题意,直线l的斜率为13,在y 轴上截距为8,所以直线l 的方程为x -3y +24=0.]8.已知直线l 的倾斜角为α,sin α=35,且这条直线l 经过点P (3,5),则直线l 的一般式方程为________.3x -4y +11=0或3x +4y -29=0 [因为sin α=35,所以cos α=±1-sin 2α=±45,所以直线l 的斜率为k =tan α=±34,又因为直线l 经过点P (3,5),所以直线l 的方程为y -5=34(x -3)或y -5=-34(x -3),所以直线l 的一般式方程为3x -4y +11=0或3x +4y -29=0.]三、解答题9.直线l 过点(1,2)和第一、二、四象限,若直线l 的横截距与纵截距之和为6,求直线l 的方程.[解] 设直线l 的横截距为a ,由题意可得纵截距为6-a , 所以直线l 的方程为x a +y6-a=1,因为点(1,2)在直线l 上,所以1a +26-a =1,解得a =2或a =3.当a =2时,直线的方程为2x +y -4=0,直线经过第一、二、四象限; 当a =3时,直线的方程为x +y -3=0,直线经过第一、二、四象限. 综上所述,所求直线方程为2x +y -4=0或x +y -3=0.10.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别求m 的值.(1)在x 轴上的截距为1; (2)斜率为1;(3)经过定点P (-1,-1).[解] (1)∵直线过点P ′(1,0),∴m 2-2m -3=2m -6. 解得m =3或m =1.又∵m =3时,直线l 的方程为y =0,不符合题意, ∴m =1.(2)由斜率为1,得⎩⎪⎨⎪⎧-m 2-2m -32m 2+m -1=1,2m 2+m -1≠0,解得m =43.(3)直线过定点P (-1,-1),则-(m 2-2m -3)-(2m 2+m -1)=2m -6, 解得m =53或m =-2.11.(多选题)关于直线l :3x -y -1=0,下列说法正确的有( ) A .过点(3,-2) B .斜率为3 C .倾斜角为60° D .在y 轴上的截距为1BC [对于A ,将(3,-2)代入l :3x -y -1=0,可知不满足方程,故A 不正确; 对于B ,由3x -y -1=0,可得y =3x -1,所以k =3,故B 正确; 对于C ,由k =3,即tan α=3,可得直线倾斜角为60°,故C 正确;对于D ,由3x -y -1=0,可得y =3x -1,直线在y 轴上的截距为-1,故D 不正确.] 12.直线l :mx +(2m -1)y -6=0与两坐标轴所围成的三角形的面积为3,则m 的值为( )A .2B .-32C .3D .2或-32D [在mx +(2m -1)y -6=0中令x =0,得y =62m -1,令y =0,得x =6m ,即交点分别为⎝⎛⎭⎫6m ,0,⎝⎛⎭⎫0,62m -1,据题意:12×⎪⎪⎪⎪6m ×⎪⎪⎪⎪62m -1=3,解得m =2或m =-32.] 13.设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的斜率为12,那么直线PB 的斜率为________.-12 [由条件可知P A 与PB 两直线的倾斜角互补,故k PB =-k P A =-12.] 14.已知直线Ax +By +C =0的斜率为5,且A -2B +3C =0,则直线的方程是________. 15x -3y -7=0 [因为直线Ax +By +C =0的斜率为5,所以B ≠0,且-AB =5,即A =-5B ,又A -2B +3C =0,所以-5B -2B +3C =0,即C =73B .此时直线的方程化为-5Bx +By+73B =0. 即-5x +y +73=0,故所求直线的方程为15x -3y -7=0.]15.一河流同侧有两个村庄A 、B ,两村庄计划在河上共建一水电站供两村使用,已知A 、B 两村到河边的垂直距离分别为300 m 和700 m ,且两村相距500 m ,问:水电站建于何处送电到两村的电线用料最省?[解] 如图,以河流所在直线为x 轴,y 轴通过点A ,建立直角坐标系,则点A (0,300),B (x ,700),设B 点在y 轴上的射影为H ,则x =|BH |=AB 2-AH 2=300,故点B (300,700),设点A 关于x 轴的对称点A ′(0,-300),则直线A ′B 的斜率k =103,直线A ′B的方程为y =103x -300.令y =0得x =90,得点P (90,0),故水电站建在河边P (90,0)处电线用料最省.。

(苏教版 提高版)高中数学 必修第一册答案

(苏教版 提高版)高中数学 必修第一册答案
( ) 意;若|犪|=2且犪≠2,即犪=-2,则犃={-2,2,-4},符合题意 6.B 提示 存在狓=0∈犙,使2狓-
狓3=0成立,A是真命题.狓2+狓+1= 狓+12 2+34>0(狓∈犚)恒成立,因此不存在狓∈犚,使狓2+狓+ 1=0,B是假命题;2是偶数,C是真命题;0是有理数,0没有倒数,D是真命题 7.C 提示 由题意知 犃犆,则瓓犝犆瓓犝犃.由犅瓓犝犆,得犃∩犅=.若犃∩犅=,则存在集合犆,使得犃犆,犅瓓犝犆,所以 “存在集合犆,使得犃犆,犅瓓犝犆”是“犃∩犅=”的充要条件 8.C 提示 因为犅犃={-3,2},所 以若犅=,则犿=0;若犅≠,则狓=-3或狓=2,所以-3犿+1=0或2犿+1=0,解得犿=13或犿= -12.综上,犿=0或 13 或- 12 9.ABCD 提示 对于 A,方程 槡2狓-1+|3狔+3|=0的解集为
得犪≤0或犪≥4,所以实数犪 的取值范围是(-∞,0]∪[4,+∞) 20.(1)当犪=2时,犃={狓|1<狓< 7},犅={狓|-2≤狓≤4},所以犃∩犅={狓|1<狓≤4}.又犝=犚,所以(瓓犝犃)∪(瓓犝犅)=瓓犝(犃∩犅)={狓|
{ [ ] 狓≤1或狓>4} (2)若犃∪犅=犅,则犃犅.当犪-1≥2犪+3,即犪≤-4时,犃=,满足题意;当犪>-4
时,应满足 犪2犪-+13≥≤-42,,解得-1≤犪≤12.综上,实数犪的取值范围是(-∞,-4]∪ -1,12 21.①必 要性:因为犪+犫=1,所以犫=1-犪,所以犪3+犫3+犪犫-犪2-犫2=犪3+(1-犪)3+犪(1-犪)-犪2-(1-犪)பைடு நூலகம்= 犪3+1-3犪+3犪2-犪3+犪-犪2-犪2-1+2犪-犪2=0.②充分性:因为犪3+犫3+犪犫-犪2-犫2=0,即(犪+犫)·
{( )} 12,-1 ;对于B,方程狓2-狓-6=0的解集为{-2,3};对于C,犕 是数集,犖 是点集;对于D,方程

苏教版必修1高一数学《集合》练习及答案.doc

苏教版必修1高一数学《集合》练习及答案.doc

高一数学《集合》练习05、9姓名 ________ 学号_____ 成绩____一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C 一切很大的书D倒数等于它自身的实数2、集合{a, b, c}的真子集共有__________个()A 7B 8C 9D 103、若{1, 2}G A Q{1, 2, 3, 4, 5}则满足条件的集合A的个数是()A. 6B. 7C. 8D. 94、若U={1, 2, 3, 4}, M={1, 2}, N={2, 3},贝U Cu CMUN)= ()A. {1, 2, 3}B. {2}C. {1, 3, 4}D. {4}f x+y=l5、方程组I x-尸-1 的解集是()A.{x=0,y=l}B. {0,1}C. {(0,1)}D. {(x,y)lx=0 或y=l}6、以下六个关系式:0 G {o}, {0} n 0 , 0.3^0, Qe N , [a,b] cz [b,a],{.rl.r-2^0,.reZ}是空集中,错误的个数是()A 4B 3C 2D 17、点的集合皿={ (x, y) | xy20}是指()A.第一象限内的点集B.第三象限内的点集C.第一、第三象限内的点集D.不在第二、第四象限内的点集8、设集合A={x|l<x<2}, B={x|x<a},若AgB,则a的取值范围是()A {a|a>2}B {a|aVl}C {a|a〉l}D {a|a<2}9、满足条件MU {1} ={1,2,3}的集合M的个数是()A 1B 2C 3D 410、集合P = {x 丨x = w Z}, Q = [x \ x = 2k +l,k E , R = [x \ x = 4k + l,k e Z}, ^.aeP,beQ,则有()A a+b e PB a-\-b G QDa+b不属于P、Q、R中的任意一个二、填空题(每题3分,共18分)11、若A = {—2,2,3,4}, B = {x\x = t2,teA],用列举法表示 B ________________12> 集合A={xl X2+X-6=0}, B={xl ax+l=O},若BuA,则a= ___________13、设全集U ={2,3,y + 2Q— 3} , A={2,b}, Ct/A={5},贝, b — __________________ 。

苏教版必修1高一数学《对数函数》习题及答案

苏教版必修1高一数学《对数函数》习题及答案

苏教版必修1高一数学《对数函数》习题及答案一、选择题1、f(x)是定义在R上的以3为周期的偶函数,且f(2)=0.则方程f(x)=0在区间(0,6)内解的个数的最小值是( )A.5 B.4 C.3D.22、已知(0.71.3)m<(1.30.7)m,则实数m的取值范围是( )A.(0,+∞) B.(1,+∞)C.(0,1) D.(-∞,0)3、若x≥0,y≥0,且x+2y=1,那么2x+3y2的最小值为( )A.2 B.C. D.04、已知幂函数y=f(x)的图象经过点,则f(2)=( )A.B.4C. D.5、给出下列结论:①当a<0时,(a2)=a3;②=|a|(n>1,n∈N*,n为偶数);③函数f(x)=(x-2) -(3x-7)0的定义域是 {x|x≥2且x≠};④若2x=16,3y=,则x+y=7.其中正确的是( )A.①② B.②③ C.③④ D.②④6、已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于( )A.5 B.7 C.9 D.11 7、函数y=ln(1-x)的图象大致为( )8、函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是( )9、函数y=ln的图象为( )10、已知f(x)=,则如图中函数的图象错误的是( )11、在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元,下面给出了四个图像,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是 ( )12、今有一组实验数据如下表所示:t 1.99 3.0 4.0 5.1 6.12u 1.5 4.04 7.5 12 18.0 1则体现这些数据关系的最佳函数模型是 ( )A.u=log2t B.u=2t-2 C.u= D.u=2t-2 13、定义运算a⊕b=则函数f(x)=1⊕2x的图象是( )14、给出四个说法:①当α=0时,y=xα的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=xα在第一象限为减函数,则α<0.其中,正确的说法个数是( )A.1 B.2C.3 D.415、在养分充足的情况下,细菌的数量会以指数函数的方式增加.假设细菌A的数量每2个小时可以增加为原来的2倍;细菌B的数量每5个小时可以增加为原来的4倍.现在若养分充足,且一开始两种细菌的数量相等,要使细菌A的数量是B的数量的两倍,需要的时间为( )A.5 h B.10 hC.15 h D.30 h16、某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为( )A.10% B.12%C.25% D.40%17、若方程m x-x-m=0(m>0,且m≠1)有两个不同实数根,则m的取值范围是( )A.m>1 B.0<m<1C.m>0 D.m>2二、填空题(每空?分,共?分)18、拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈________.19、已知函数f(x)=4x+m·2x+1有且只有一个零点,则实数m的值为________.20、若函数f(x)=e x+2x-6(e≈2.718)的零点属于区间(n,n+1)(n∈Z),则n=________.21、已知定义在[0,+∞)上的函数y=f(x)和y=g(x)的图象如图所示,则不等式f(x)·g(x)>0的解集是____________.22、已知f(x)是定义在R上的偶函数,并满足f(x+2)=,当1≤x≤2时,f(x)=x -2,则f(6.5)=________.23、已知函数y=a x+2-2(a>0,a≠1)的图象恒过定点A(其坐标与a无关),则定点A的坐标为__________.24、当x∈[-2,0]时,函数y=3x+1-2的值域是__________.三、综合题评卷人得分(每空?分,共?分)25、设(1)若且对任意实数均有成立,求的表达式;(2)在(1)条件下,当是单调递增,求实数k的取值范围。

苏教版高中数学必修1全册课时作业及答案

苏教版高中数学必修1全册课时作业及答案

苏教版高中数学必修1 全册课时作业目录1.1第1课时集合的含义1.1第2课时集合的表示1.2子集、全集、补集1.3交集、并集2.1.1函数的概念和图象2.1.2习题课2.1.2函数的表示方法2.1.3习题课2.1.3第1课时函数的单调性2.1.3第2课时函数的最大(小)值2.1.3第3课时奇偶性的概念2.1.3第4课时奇偶性的应用2.1.4映射的概念2.2.1函数的单调性(一)2.2.1函数的单调性(二)2.2.1分数指数幂2.2.2 习题课2.2.2习题课2.2.2函数的奇偶性2.2.2指数函数(一)2.2.2指数函数(二)2.2习题课2.3.1第1课时对数的概念2.3.1第2课时对数运算2.3.2习题课2.3.2对数函数(一)2.3.2对数函数(二)2.3映射的概念2.4幂函数2.5.1函数的零点2.5.2用二分法求方程的近似解2.5习题课2.6习题课2.6函数模型及其应用3.1.1分数指数幂3.1.2指数函数(一)3.1.2指数函数(二)3.1习题课3.2.1第1课时对数(一)3.2.1第2课时对数(二)3.2.2对数函数(一)3.2.2对数函数(二)3.2习题课3.3幂函数3.4.1习题课3.4.1第1课时函数的零点3.4.1第2课时用二分法求方程的近似解3.4.2习题课3.4.2函数模型及其应用第1章集合§1.1集合的含义及其表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.一般地,一定范围内某些确定的、不同的对象的全体构成一个________.集合中的每一个对象称为该集合的________,简称______.2.集合通常用________________表示,用____________________表示集合中的元素.3.如果a是集合A的元素,就说a________集合A,记作a____A,读作“a______A”,如果a不是集合A的元素,就说a__________A,记作a____A,读作“a________A”.4.集合中的元素具有________、________、________三种性质.5.实数集、有理数集、整数集、自然数集、正整数集分别用字母____、____、____、____、____或______来表示.一、填空题1.下列语句能确定是一个集合的是________.(填序号)①著名的科学家;②留长发的女生;③2010年广州亚运会比赛项目;④视力差的男生.2.集合A只含有元素a,则下列各式正确的是________.(填序号)①0∈A;②a∉A;③a∈A;④a=A.3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是________.(填序号)①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形.4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是________.(填序号)①1;②-2;③6;④2.5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有________个元素.7.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2______R,-3______Q,-1_______N,π______Z.二、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升 12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第1章集合§1.1集合的含义及其表示第1课时集合的含义知识梳理1.集合元素元 2.大写拉丁字母A,B,C…小写拉丁字母a,b,c,… 3.属于∈属于不属于∉不属于4.确定性互异性无序性 5.R Q Z N N*N+作业设计1.③解析①、②、④都因无法确定其构成集合的标准而不能构成集合.2.③解析由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”.3.④解析集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的.4.③解析因A中含有3个元素,即a2,2-a,4互不相等,将各项中的数值代入验证知填③. 5.3解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.6.2解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素. 7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的. (2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素. (4)不正确,因为个子高没有明确的标准. 11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A .又∵2∈A ,∴11-2=-1∈A .∵-1∈A ,∴11--1=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.第2课时 集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法将集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.两个集合相等如果两个集合所含的元素____________,那么称这两个集合相等. 3.描述法将集合的所有元素都具有的______(满足的______)表示出来,写成{x |p (x )}的形式. 4.集合的分类(1)有限集:含有________元素的集合称为有限集. (2)无限集:含有________元素的集合称为无限集. (3)空集:不含任何元素的集合称为空集,记作____.一、填空题1.集合{x ∈N +|x -3<2}用列举法可表示为___________________________________. 2.集合{(x ,y )|y =2x -1}表示________.(填序号) ①方程y =2x -1; ②点(x ,y );③平面直角坐标系中的所有点组成的集合; ④函数y =2x -1图象上的所有点组成的集合.3.将集合⎩⎪⎨⎪⎧x ,y |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法为______________.4.用列举法表示集合{x |x 2-2x +1=0}为________.5.已知集合A ={x ∈N |-3≤x ≤3},则有________.(填序号) ①-1∈A ;②0∈A ;③3∈A ;④2∈A .6.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集不可表示为________.①{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1};②{(x ,y )|⎩⎪⎨⎪⎧x =1y =2};③{1,2};④{(1,2)}.7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=______________________________.8.下列各组集合中,满足P =Q 的为________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }.9.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}. 二、解答题10.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合; ③不等式x -2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是________.①{x |x =1};②{y |(y -1)2=0};③{x =1};④{1}.13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是____________________________________________________.1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.完全相同 3.性质 条件 4.(1)有限个 (2)无限个 (3)∅ 作业设计 1.{1,2,3,4}解析 {x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}. 2.④解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合. 3.{(2,3)}解析 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}.4.{1}解析 方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}. 5.② 6.③解析 方程组的集合中最多含有一个元素,且元素是一对有序实数对,故③不符合. 7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N ,∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N }; ③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ; 集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3, 所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P是抛物线y =x 2+3上的点}. 12.③解析 由集合的含义知{x |x =1}={y |(y -1)2=0} ={1},而集合{x =1}表示由方程x =1组成的集合. 13.x 0∈N解析 M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数, ∴x 0∈M 时,一定有x 0∈N .§1.2子集、全集、补集课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.1.子集如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A. 2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.4.补集设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.5.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.集合A相对于全集U的补集用Venn图可表示为一、填空题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁U B=______,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.二、解答题10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.(1)求∁U(A∪B),∁U(A∩B);(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.能力提升12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.3.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.§1.2子集、全集、补集知识梳理1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A3.空集空集 4.补集∁S A 5.全集作业设计1.P Q解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},∴P Q.2.7解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.{3,9}解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.4.{x|x<-2或x>2}解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.5.②解析由N={-1,0},知N M.6.S P=M解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.9.∁U B∁U A解析画Venn图,观察可知∁U B∁U A.10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}.(3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).11.解 因为B ⊆A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1. 当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.13.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.§1.3交集、并集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.交集(1)定义:一般地,由____________________元素构成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=__________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔______.2.并集(1)定义:一般地,________________________的元素构成的集合,称为集合A与B的并集,记作______.(2)并集的符号语言表示为A∪B=______________.(3)并集的图形语言(即Venn图)表示为图中的阴影部分:(4)性质:A∪B=______,A∪A=____,A∪∅=____,A∪B=A⇔______,A____A∪B,A∩B____A∪B.一、填空题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=________.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B=________.3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是________.①A⊆B;②B⊆C;③A∩B=C;④B∪C=A.4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N=________. 5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于________.6.集合M={1,2,3,4,5},集合N={1,3,5},则下列关系正确的是________.①N∈M;②M∪N=M;③M∩N=M;④M>N.7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.二、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为________.13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B⇔A ∩B =A .这种转化在做题时体现了化归与转化的思想方法,十分有效.§1.3 交集、并集知识梳理 1.(1)所有属于集合A 且属于集合B 的 A ∩B (2){x |x ∈A ,且x ∈B } (4)B ∩A A ∅ A ⊆B 2.(1)由所有属于集合A 或属于集合B A ∪B (2){x |x ∈A ,或x ∈B } (4)B ∪A A A B ⊆A ⊆ ⊆ 作业设计1.{0,1,2,3,4} 2.{x |-1≤x <1}解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}. 3.④解析 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C . 4.{(3,-1)}解析 M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.5.3解析 依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3. 6.②解析 ∵N M ,∴M ∪N =M . 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ), ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3.11.解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.6解析 x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6. 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}. ③M ={1,2,3},N ={1,3}. 共3个.第2章 函数 §2.1 函数的概念 2.1.1 函数的概念和图象课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个________,通常记为y =f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫做函数y =f(x)的________. 2.若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的________. 3.函数的三要素是指函数的定义域、值域、对应法则.一、填空题1.对于函数y =f(x),以下说法正确的有________个. ①y 是x 的函数;②对于不同的x ,y 的值也不同;③f(a)表示当x =a 时函数f(x)的值,是一个常量; ④f(x)一定可以用一个具体的式子表示出来.2.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有________.3.下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f(x)=x 2和g(x)=(x +1)2;④f(x)=x 2x 和g(x)=xx2. 4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有________个. 5.函数y =1-x +x 的定义域为________. 6.函数y =x +1的值域为________.7.已知两个函数f(x)和g(x)的定义域和值域都是{1,2,3},其定义如下表:x 1 2 3 f(x) 2 3 1x 1 2 3 g(x) 1 3 2x 1 2 3 g[f(x)]填写后面表格,其三个数依次为:________.8.如果函数f(x)满足:对任意实数a ,b 都有f(a +b)=f(a)f(b),且f(1)=1,则f 2f 1+f 3f 2+f 4f 3+f 5f 4+…+f 2 011f 2 010=________. 9.已知函数f(x)=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.二、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应法则是否为函数,关键是看对于数集A中的任一个值,按照对应法则所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应法则,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象2.1.1 函数的概念和图象知识梳理1.函数定义域 2.值域作业设计1.2解析①、③正确;②不对,如f(x)=x2,当x=±1时y=1;④不对,f(x)不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示. 2.②③解析 ①的定义域不是集合M ;②能;③能;④与函数的定义矛盾. 3.④解析 ①中的函数定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 4.9解析 由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”. 5.{x|0≤x≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x≥0,x≥0,解得0≤x≤1.6.[0,+∞) 7.3 2 1解析 g[f(1)]=g(2)=3,g[f(2)]=g(3)=2,g[f(3)]=g(1)=1. 8.2 010解析 由f(a +b)=f(a)f(b),令b =1,∵f(1)=1,∴f(a+1)=f(a),即f a +1f a=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f 2f 1=f 3f 2=…=f 2 011f 2 010=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x=1,2,3,4,5,∴f(x)=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x≤1,0≤x+23≤1,得⎩⎪⎨⎪⎧0≤x≤12,-23≤x≤13,即x∈[0,13].11.解 由1-x 1+x =2,解得x =-13,所以f(2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10:30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11:00至12:00他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h)m ,高为h m ,∴水的面积A =[2+2+2h ]h 2=h 2+2h(m 2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)函数图象如下确定.由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.2.1.2 函数的表示方法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.1.函数的三种表示法(1)列表法:用列表来表示两个变量之间函数关系的方法. (2)解析法:用等式来表示两个变量之间函数关系的方法. (3)图象法:用图象表示两个变量之间函数关系的方法. 2.分段函数在定义域内不同部分上,有不同的解析表达式,像这样的函数通常叫做分段函数.一、填空题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为________.2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是________.3.如果f (1x )=x1-x,则当x ≠0时,f (x )=________.4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )=__________________________________. 5.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6f x +2x <6,则f (3)=_________________________________. 6.已知f (x )=⎩⎪⎨⎪⎧x -3 x ≥9f [f x +4] x <9,则f (7)=________________________________.7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________.8.已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为____________.9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 二、解答题 10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应法则f 的本质与特点(对应法则就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法). 3.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集. 分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.1.2 函数的表示方法作业设计1.y =50x(x>0)解析 由x +3x2·y=100,得2xy =100.∴y =50x (x>0).2.1解析 由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.3.1x -1解析 令1x =t ,则x =1t ,代入f(1x )=x1-x,则有f(t)=1t 1-1t=1t -1.4.2x -1解析 由已知得:g(x +2)=2x +3, 令t =x +2,则x =t -2, 代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1. 5.2解析 ∵3<6,∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2. 6.6解析 ∵7<9,∴f(7)=f[f(7+4)]=f[f(11)]=f(11-3)=f(8). 又∵8<9,∴f(8)=f[f(12)]=f(9)=9-3=6. 即f(7)=6.7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x(x≠0)解析 ∵f(x)=2f(1x)+x ,①∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a 2x +ab +b.∴⎩⎪⎨⎪⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8.10.解 设f(x)=ax 2+bx +c(a≠0). 由f(0)=f(4)知⎩⎪⎨⎪⎧f 0=c ,f 4=16a +4b +c ,f 0=f 4,得4a +b =0.①又图象过(0,3)点, 所以c =3.②设f(x)=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 …y … -5 0 3 4 3 0 -5…连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧S 2 0≤v <25212 500v 2S v ≥252.13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1,∴f (x )=x (x +1)+1=x 2+x +1.。

2020年苏教版高一数学必修1课后练习题:1.2子集、全集、补集2(含答案)

2020年苏教版高一数学必修1课后练习题:1.2子集、全集、补集2(含答案)

课后训练千里之行 始于足下1.给出下列关系①{3}∈{3,4};②{}{}a a ⊆;③{3,5}={3,1,5};④∅{2};⑤{1}{x |x <2};⑥{}250x x +=⊆∅.其中正确的序号是________.2.设集合A ={x |x 2-1=0},B ={x ||x |=1},C ={-1,0,1},则集合A ,B ,C 之间的关系是________.3.集合{x ∈N |x =5-2n ,n ∈N }的真子集的个数是______________.4.已知全集U =R ,集合M ={x |x 2-4≤0},则M =________.5.若集合M ={x |x =2n +1,n ∈Z },N ={x |x =4m ±1,m ∈Z },则集合M 与N 的关系是________.6.设全集为R ,A ={x |x <0,或x ≥1},B ={x |x ≥a },若A B ,则a 的取值范围是________.7.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2},且P ={-1},求实数a 的值.8.已知集合A ={x |x <-1,或x >6},B ={x |m -1≤x ≤2m +1},全集U =R .(1)当x ∈N *时,求集合A 的子集个数.(2)若U B A ⊆ð,求实数m 的取值范围.百尺竿头 更进一步已知集合U ={x |-1≤x ≤2,x ∈P },A ={x |0≤x <2,x ∈P },B ={x |-a <x ≤1,x ∈P }(-1<a <1).(1)若P =R ,求A 中最大元素m 与B 中最小元素n 的差m -n ;(2)若P =Z ,求B 和A 中所有元素之和及(B ).参考答案与解析千里之行1.②④⑥2.A =B C3.7 解析:当n =0,1,2时,得到x 的值分别为5,3,1.∴集合{x ∈N |x =5-2n ,n ∈N }={1,3,5}.其真子集有23-1=7个,分别是,{1},{3},{5},{1,3},{1,5},{3,5}.4.{x |x <-2,或x >2} 解析:因为集合M ={x |x 2-4≤0}={x |-2≤x ≤2},全集U =R ,∴{2,2}U M x x x =<->或ð.5.M =N 解析:方法一:∵M ={…,-5,-3,-1,1,3,5,…},N ={…,-5,-3,-1,1,3,5…},∴M =N .方法二:∵n ∈Z ,∴当n 为偶数时,令n =2m ,m ∈Z .则M ={x |x =4m +1,m ∈Z },当n 为奇数时,令n =2m -1,m ∈Z ,则M ={x |x =2(2m -1)+1,m ∈Z }={x |x =4m -1,m ∈Z }.∴M =N .方法三:M 为奇数集合,而N 中元素均为奇数,∴有N M ⊆,任取x ∈M ,则x =2n +1,当n 为偶数2m 时,有x =4m +1∈N ,当n 为奇数2m -1时,仍有x =4m -1∈N ,∴M N ⊆.∴M N ⊆且N M ⊆,故M =N .6.a ≥1 解析:∵A ={x |x <0,或x ≥1},∴A ={x |0≤x <1},∵B ={x |x ≥a },∴B ={x |x <a },将集合A ,B 在数轴上表示出来,如图所示.∵A B ,∴a ≥1.7.解:∵P ={-1},∴-1∈U ,且1P -∉.∴2231,20,a a a ⎧-=-⎪⎨--=⎪⎩解得a =2.经检验,a =2符合题意. 故实数a 的值为2.8.解:(1)∵A ={x |-1≤x ≤6}.∴当x ∈N *时,A ={1,2,3,4,5,6}.∴集合A 的子集个数为26=64(个).(2)∵B ⊆A ,∴分B =∅与B ≠∅讨论.①当B =∅时,m -1>2m +1,即m <-2.②当B ≠∅时,由B ⊆A ,借助数轴(如图所示).得121,11,21 6.m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩解得502m ≤≤.综上所述,m的取值范围是m<-2或5 02m≤≤.百尺竿头解:(1)由已知得A={x|-1≤x<0,或x=2},B={x|-1≤x≤-a,或1<x≤2},∴m =2,n=-1;∴m-n=2-(-1)=3.(2)∵P=Z,∴U={x|-1≤x≤2,x∈Z}={-1,0,1,2},A={x|0≤x<2,x∈Z}={0,1},B={1}或{0,1}.∴B={0}或B=∅.即B中元素之和为0,又A={-1,2}.其元素之和为-1+2=1.故所求元素之和为0+1=1.∵B={0},或B=∅,∴(B)={-1,1,2}或(B)=∅=U={-1,0,1,2}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档