2020年重点初中入学考试数学模拟试题与答案(二)

合集下载

2020数学二模试卷及答案

2020数学二模试卷及答案

2020年初中中招适应性测试数学试题卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分) 1. 计算-7+4的结果是( )A .3B .-3C .11D .-112. 下列运算中,正确的是( )A .347x x x ⋅=B .65x x -=C .222()x y x y +=+D .347x y xy +=3. 一个几何体的三视图如图所示,该几何体是( )A .立方体B .四棱柱C .圆锥D .直三棱柱4. 在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基,拥有RNA 病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍.0.000 000 125用科学记数法表示为( ) A .61.2510-⨯B .71.2510-⨯C .61.2510⨯D .71.2510⨯5. 将一副直角三角板ABC 和EDF 如图放置(其中∠A =60°,∠F =45°),使点E落在AC 边上,且ED ∥BC ,则∠AEF 的度数为( ) A .145° B .155°C .165°D .170°6. 某校八年级三班进行中国诗词知识竞赛,共有10组题目,该班得分情况如下表:全班40名同学的成绩的众数和中位数分别是( )A .76,78B .76,76C .80,78D .76,80人数 2 5 13 10 7 3 成绩(分) 506576 80 92 100俯视图左视图主视图ABC DEF7. 若关于x 的一元二次方程2320mx x -+=有两个不相等的实数根,则实数m 的取值范围是( )A .98m >B .98m < C .809m m <≠且 D .908m m <≠且8. 如图,在平面直角坐标系中,□OABC 的顶点A 在x 轴上,OC =4,∠AOC =60°,且以点O 为圆心,任意长为半径画弧,分别交OA ,OC 于点D ,E ;再分别以点D ,E 为圆心,大于12DE 的长度为半径画弧,两弧相交于点F ,过点O作射线OF ,交BC 于点P ,则点P 的坐标为( ) A .(4,23)B .(6,23)C .(23,4)D .(23,6)A BC D EFO Pxy9. 如图,在Rt △ABC 中,∠BAC =90°,AB =AC .点D 为BC 中点,E 为边AB上一动点(不与A ,B 点重合),以点D 为直角顶点,以射线DE 为一边作 ∠MDN =90°,另一条边DN 与边AC 交于点F .下列结论中正确结论是( ) ①BE =AF ;②△DEF 是等腰直角三角形;③无论点E ,F 的位置如何,总有EF =DF +CF 成立;④四边形AEDF 的面积随着点E ,F 的位置不同发生变化. A .①③B .②③C .①②D .①②③④10. 如图,在正方形ABCD 中,边长CD 为3 cm .动点P 从点A 出发,以2cm/s的速度沿AC 方向运动到点C 停止.动点Q 同时从点A 出发,以1 cm/s 的速度沿折线AB →BC 方向运动到点C 停止.设△APQ 的面积y (cm 2),运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )ABC DPQABCDEFMNA .4.563x /s y /cm 2OB .O y /cm 2x /s 364.5C .O y /cm 2x /s 364.5D .O y /cm 2x /s 364.5二、填空题(每小题5分,共15分) 11. 计算:(π-3.14)0-9=__________.12. 不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,则(a +2)(b -2)的值等于________.13. 如图,电路图上有编号为①②③④⑤共5个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤都可使小灯泡发光,任意闭合电路上其中的两个开关,小灯泡发光的概率为__________.①②③④⑤N MEDCBAOGFED CBA第13题图 第14题图 第15题图14. 如图,正方形ABCD 边长为2,E 是AB 的中点,以E 为圆心,线段ED 的长为半径作半圆,交直线AB 于点M ,N .分别以线段MD ,ND 为直径作半圆,则图中阴影部分的面积为__________.15. 如图,矩形ABCD 中,AB =3,BC =4,对角线AC ,BD 相交于点O ,点E 是AD 边上一动点,将△AEO 沿直线EO 折叠,点A 落在点F 处,线段EF ,OD 相交于点G .若△DEG 是直角三角形,则线段DE 的长为__________.三、解答题(共8小题,共75分)16. (8分)先化简,再求值:12211122++-÷⎪⎭⎫⎝⎛+-+-x x x x x x ,其中22cos60x =+︒.17. (9分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题: 【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有_________;(只要填写序号即可)①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;④从全年级学生中随机抽取48名男生; 【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下: 成绩(单位:分) 频数 频率 A 类(80~100) 0.5 B 类(60~79) 0.25 C 类(40~59) 8 D 类(0~39) 4请根据图表中数据填空:①C 类和D 类部分的圆心角度数分别为_________,_________; ②估计全年级A ,B 类学生大约一共有_________名;(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校 平均数(分) 极差(分)方差 A ,B 类的频率和第一中学 71 52 432 0.75 第二中学 71804970.82你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.A 类50%C 类D 类B 类25%18. (9分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点E ,F .过点F 作⊙O 的切线交AB 于点M . (1)求证:MF ⊥AB ;(2)若⊙O 的直径是6,填空:①连接OF ,OM ,当FM =_________时,四边形OMBF 是平行四边形; ②连接DE ,DF ,当AC =__________时,四边形CEDF 是正方形.ABC D E FM O19. (9分)图1是一台实物投影仪,图2是它的示意图,折线B -A -O 表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: AO =6.4 cm ,CD =8 cm ,AB =40 cm ,BC =45 cm . (1)如图2,∠ABC =70°,BC ∥OE . ①填空:∠BAO =_________°;②投影探头的端点D 到桌面OE 的距离是________cm ;(2)如图3,将(1)中的BC 向下旋转,∠ABC =30°时,求投影探头的端点D 到桌面OE 的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,sin40°≈0.64,cos40°≈0.77)图1OA B C DE图270°EDC BAO图320. (9分)在学习函数时,我们经历了“确定函数的表达式—利用函数图象研究其性质—运用函数解决问题”的学习过程.在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义00a a a a a ⎧=⎨-<⎩≥()().结合上面经历的学习过程,现在来解决下面的问题: 在函数1y kx b =-+中,当x =0时,y =-2;当x =1时,y =-3. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;(3)函数3y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式31kx b x-+-≤的解集.x y O12345678654321-1-2-3-4-5-6-7-8-6-5-4-3-2-121. (10分)某宝网店销售甲、乙两种电器,已知甲种电器每个的售价比乙种电器多60元,马老师从该网店购买了3个甲种电器和2个乙种电器,共花费780元.(1)该店甲、乙两种电器每个的售价各是多少元?(2)根据销售情况,店主决定用不少于10 800元的资金购进甲、乙两种电器,这两种电器共100个,已知甲种电器每个的进价为150元,乙种电器每个的进价为80元.若所购进电器均可全部售出,请求出网店所获利润W (元)与甲种电器进货量m (个)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?22. (10分)已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中AB =AC ,AD =AE ,∠BAC =90°,∠DAE =90°. (1)观察猜想如图1,连接BE ,CD 交于点H ,再连接CE ,那么BE 和CD 的数量关系和位置关系分别是___________,____________; (2)探究证明将图1中的△ABC 绕点A 逆时针旋转到图2的位置时,分别取BC ,CE ,DE 的中点P ,M ,Q ,连接MP ,PQ ,MQ ,请判断MP 和MQ 的数量关系和位置关系,并说明理由; (3)拓展延伸已知AB =2,AD =4,在(2)的条件下,将△ABC 绕点A 旋转的过程中,若∠CAE =45°,请直接写出此时线段PQ 的长.ABC DEH图1图2H EDCBAQPMABCDE备用图23. (11分)如图,抛物线y =ax 2+bx 过A (4,0),B (1,-3)两点,点C ,B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H . (1)求抛物线的表达式;(2)点P 是抛物线上一动点,当△ABP 的面积为3时,求出点P 的坐标; (3)若点M 在直线BH 上运动,点N 在x 轴上运动,点R 是坐标平面内一点,当以点C ,M ,N ,R 为顶点的四边形为正方形时,请直接写出此时点R 的坐标.AB CH Oxy备用图AB CHOxy备用图2020年初中中招适应性测试数学试题卷【参考答案及评分标准】一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BADBCADBCD二、填空题(每小题3分,共15分)11. -2 12. -1213. 3514. 2515.1524或 三、解答题(共8个小题,共75分)16. (8分)解:原式=22211(1)12x x x x x --++⋅+-=(2)112x x x x -+⋅- =(1)x x -+=2x x --…………………….5分当122cos6022212x =+︒=+⨯=+时,………….1分原式=(1)x x -+=(21)(211)-+++=324-- ……………………………8分 17. (9分)解:(1)②、③;……………2分(填对一个,两个都给满分) (2)①60°,30°;…………4分(带不带°,都给分) ②432(名);……………7分(3)本题答案不唯一,以下两个答案仅供参考: (“好”—1分,理由—1分)答案一:第一中学成绩较好,两校平均分相同,极差、方差小于第二中学,说明第一中学学生两级分化较小,学生之间的差距较第二中学小.………………9分答案二:第二中学成绩较好,两校平均分相同,A ,B 类的频率和大于第一中学说明第二中学学生及格率比第一中学学生好. …………………9分18.(9分)解:证明:如图,连接OF,DF,图略∵CD是Rt△ABC斜边AB上的中线,∴CD=AD=BD∵CD是⊙O的直径,∴∠CFD=90°,∵∠ACB=90°,∴FD∥CA∴FB BDCF AD,即CF=FB又CO=OD,∴OF是△CDB的中位线∴OF∥AB∵FM是⊙O的切线∴∠CFM=90°∴∠FMB=∠CFM=90°,即MF⊥AB.…………………………………5分(2)①3;…………………………………………………………………7分②62.……………………………………………………………… 9分19.(9分)解:(1)①160.........................2分②36..................5分(2)如图3,延长CD交OE于点H,过点B作BM⊥CD,交DC的延长线于点M,过点A作AF⊥BM于点F则∠MBA=70°,∵∠ABC=30°∴∠CBM=40°在Rt△AFB中,AB=40,∠MBA=70°,∴AF=AB·sin70°=37.6,∴FO=AF+AO=37.6+6.4=44,在Rt△BMC中,BC=45,∠CBM=40°∴MC=BC·sin40°=28.8,∴DH=FO-MC-CD=44-28.8-8=7.2答:投影探头的端点D到桌面OE的距离为7.2 cm..................................9分G OA B C DE图170°F OA BC DE图270°HM FED CBA O图3(说明:此题方法不唯一,其它方法对应给分) 20. (9分)解:(1)把x =0,y =-2分别代入表达式,得1+b =-2. 把x =1,y =-3分别代入表达式,得13k b -+=-. 解得,k =1,b =-3.∴函数表达式为:13y x =--………………….3分(2)如图所示:…………………….5分(图不画全,扣1分)x yO12345678654321-1-2-3-4-5-6-7-8-6-5-4-3-2-1函数性质举例:①函数图象关于直线x =1对称(或函数图象是个轴对称图形); ②函数的最小值是-3;③当x ≤1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大; (局部增减性或交点坐标也正确) (写对两个即可)…….………7分(3)-3≤x <0或1≤x ≤3(对一个给1分,没写等号或多写不给分)……….9分21. (10分)解:(1)设甲种台灯每个的售价为x 元,乙种台灯每个的售价为y 元.根据题意可得6032780x y x y -=⎧⎨+=⎩,解得180120x y =⎧⎨=⎩.答:该店甲种台灯每个的售价为180元,乙种台灯每个的售价为120元.…4分 (2)①若购进甲种台灯m 个,则乙种台灯为(100-m )个. 根据题意可得,150m +80(100-m )≥10800. 解得m ≥40...……..……6分根据题意,可得W =(180-150)m +(120-80)(100-m )=-10m +4000. .……8分 ∵-10<0,∴W 随m 的增大而减小,且m ≥40,所以40≤m <100. ∴当m =40时,W 最大,W max 为3600,答:当m =40时,所获利润最大,最大利润为3600元.…………10分 (说明:此题方法不唯一,其它方法对应给分)22. (10分)解:(1)BE =CD ,BE ⊥CD ;……….…2分(相等或垂直;文字或符号均可) (2)PM =MQ ,PM ⊥MQ ,理由如下:记EB 与AD 交于点O ,∵△ABC 和△ADE 是两个不全等的等腰直角三角形∴AC =AB ,AE =AD ,∠CAB =∠EAD =90°, ∴∠CAD =∠EAB .∴△CAD ≌△EAB ………….…5分 ∴CD =BE ,∠AEB =∠ADC , ∵∠AOE =∠DOH , ∴∠EAO =∠DHO ,又∵△ADE 是等腰直角三角形,∴∠DHO =∠EAO =90°,即BE ⊥CD .………….…6分∵BC ,CE ,DE 的中点分别为P ,M ,Q ,∴PM 为△CBE 的中位线,MQ 为△ECD 的中位线,∴PM =12BE ,MQ =12CD ,PM ∥BE ,MQ ∥CD . ∵BE =CD ,BE ⊥CD ∴PM =MQ ,PM ⊥MQ .……….…8分 (3)5或13.…………10分 23. (11分)解:(1)把A (4,0),B (1,-3)的坐标分别代入抛物线y =ax 2+bx 中,得01643a ba b=+⎧⎨-=+⎩,解得,14a b =⎧⎨=-⎩ ∴抛物线解析式为24y x x =-.………………….3分(2)如图所示,过点P 作x 轴的垂线,交直线AB 于点G ,交x 轴于点K ,由A ,B 两点坐标可得l AB :y =x -4 设点P (m ,24m m -),则点G (m ,m -4) ∵点P 可能在直线AB 上方或下方, ∴PG =()244m m m ---=254m m -+. ∵211()35422ABP A B S x x PG m m =⋅-⋅=⨯⋅-+△, 且3ABPS =△,∴2542m m -+=, 解得15172m +=,25172m -=,32m =,43m =, ∴点P 的坐标为P 1(5172+,1172+),P 2(5172-,1172-),P 3(2,-4),P 4(3,-3).………………….9分(3)R 1(4,-1);R 2(-2,-5);R 3(0,-2);R 4(6,2).……………11分 (说明:此题方法不唯一,其它方法对应给分)K G P ABCH Oxy。

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三.解答题(共9小题)15.计算:16.先化简,再求值:,其中,a=﹣1.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案与试题解析一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.【解答】解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD =OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.【解答】解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三.解答题(共9小题)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.【解答】解:原式=,当时,原式=.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.【解答】解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD=22.5°,∴∠CBE=∠BED﹣∠BCD=22.5°,∴∠CBE=∠BCE,∴BE=CE=2,∴DE=BE=,∴CD+DE+CE=2+,答:船C离海岸线l的距离为(2+)km.20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【分析】(1)①证明DO∥AB,即可求解;②证明CDE∽△CAD,即可求解;(2)证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m=52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.【解答】解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。

山东省临清2020年初中学业水平第二次模拟考试数学试题(扫描版,含答案)

山东省临清2020年初中学业水平第二次模拟考试数学试题(扫描版,含答案)

2020年中考模拟考试(二)数学参考答案一、选择题:二、填空题:13. 3 14. 12π15. 1316. 2 17.a22020三、解答题:18.(本题满分7分)解:原式=2(2)8(2)(2)a aa a-++-·(2)2a aa-+=2(2)(2)(2)aa a++-·(2)2a aa-+-------------5分=a.------------7分19.(本题满分8分)(1)40 ------------1分(2)6------------2分12.5------------4分(3)C组对应扇形的圆心角度数为360°×1840=162°------------6分(4)400×8540+=130人.估计视力超过4.85的学生数为130人. ------------8分20.(本题满分8分)(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF -----------1分∵BE⊥AD,CF⊥AB∴∠AEB=∠BFC=90°-----------2分∴△AEB≌△BFC(AAS)-----------3分∴AE=BF -----------4分(2)解:∵E是AD中点,且BE⊥AD∴直线BE 垂直平分AD ------------6分 ∴BD =AB =2 ------------8分21. (本题满分8分) 解:(1)设每个篮球、足球的价格分别是x 元,y 元, 根据题意得:2040460030506100x y x y +=⎧⎨+=⎩,------------2分解得:7080x y =⎧⎨=⎩,------------3分经检验,方程组的解符合题意.答:每个篮球、足球的价格分别是70元,80元; ------------4分(2)设购买了篮球m 个,根据题意得:70m ≤80(60-m ), ------------6分解得:m ≤32,∴m 最多取32,答:最多可购买篮球32个. ------------8分22.(本题满分8分)解:在Rt △ABH 中,∠BHA =90°∵0.6BH =,∠BAH =37°, ∴0.61sin 0.6BH AB BAH =≈=∠,∵2AF FC ==米, ∴1BF =米,-----------------2分作FJ BG ⊥于点J ,作EK FJ ⊥于点K , 在Rt △FJB 中,∠FJB =90°∵1FB AB ==米,∠JFB =∠BAH =37° ∴BJ =BF sin37°≈0.6,------------4分在Rt △EKF 中,∠EKF =90° ∵EF =1.6,∠FEK =∠JFB =37° ∴EK =EF cos37°≈1.6×0.8=1.28,------------7分∴0.6 1.28 1.882BJ EK +=+=<,∴木箱上部顶点E 不会触碰到汽车货厢顶部.------------8分解:(1)作AD⊥y轴于D,∵点A的坐标为(m,3),∴OD=3,∵tan∠AOC=13.∴13ADOD=,即133AD=,∴AD=1,∴A(-1,3),∵在反比例函数y=kx(k为常数,k≠0)的图象上,∴k=-1×3=-3;------------2分(2)连接OB,∵点B与点A到原点的距离相符,∴OB=OA=10,设B(m,n)则m2+n2=10,mn=-3,可得m=3,n=-1,∴B(3,-1),------------3分∵A,B在一次函数y=ax+b的图象上,∴331a bk b-+=⎧⎨+=-⎩,解得12ab=-⎧⎨=⎩,∴直线AB的解析式为y=-x+2;------------5分(3)连接OB,由直线AB为y=-x+2可知,C(0,2),∵S△AOB=S△AOC+S△BOC=12×2×1+12×2×3=4,------------6分∵P是y轴上一点,∴设P(0,t),∴S△PBC=12|t-2|×3=32|t-2|,∵S△PBC=2S△AOB,∴32|t-2|=2×4,∴t=223或t=-103,∴P点的坐标为(0,223)或(0,-103).------------8分(1)证明:连接OC ,∵CD 是⊙O 的切线, ∴OC ⊥CD . ------------1分∵AD ⊥CD ,∴OC ∥AD , ∴∠1=∠3. 又OA =OC , ∴∠2=∠3,∴∠1=∠2, ∴CE =CB ; -----------4分(2)解:∵AB 是直径,∴∠ACB =90°,∵AC =25,CB =CE =5,∴AB =2222(25)(5)AC CB +=+=5.∵∠ADC =∠ACB =90°,∠1=∠2, ------------6分∴△ADC ∽△ACB , ∴AD AC DCAC AB CB ==,即25255==, ∴AD =4,DC =2.------------8分在Rt △DCE 中,DE =22EC DC -=1,∴AE =AD -ED =4-1=3.------------10分25.(本题满分12分) 解:(1)∵OB =2OC =4,∴点B ,C 的坐标分别为(4,0),(0,2),将点B ,C 坐标代入y =-12x 2+bx +c 得: 1016422b c c ⎧=-⨯++⎪⎨⎪=⎩,解得:322b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式为:y =-12x 2+32x +2. ------------3分11(2)令y =0,则-12x 2+32x +2=0 ∴x =-1或4x =,∴点A (-1,0);------------4分设点P (t ,-12t 2+32t +2)连接OP ,S △ACP =S △ACO + S △OCP -S △=12×OA ×OC+12×x P ×=1+t -12(-12t 2+32t +2)=14t 2+14t ; (3)设点M 的坐标为(m ,212m -∵tan ∠CBA =DN BD=CO OB,∴DN =4−m 2,∴点N 的坐标为(m ,4−m 2),∴MN =21342222m m m --++-=2122m m -+, ∵MN =2,∴2122m m -+=2,当0<m <4时,2122m m -+=2解得,m 1=m 2=2,∴点M 的坐标为(2,3);当m <0或m >4时,2122m m -+=-2,解得,m 1=2−2√2,m 2=2+2√2,∴点M 的坐标为(2−2√2,√2−1),(2+2√2,−√2−1). 综上所述,点M 的坐标为(2,3),(2−2√2,√2−1),(2+2√2,−√2−1).------------12分。

(湖北卷) 2020年中考数学第二次模拟考试-数学(参考答案)

(湖北卷) 2020年中考数学第二次模拟考试-数学(参考答案)

2020届九年级第二次模拟考试【湖北卷】数学·参考答案12345678910CABBDBCD AA11.212.2.1×10813.–214.215.16.417.【解析】(a +2b )(a ﹣2b )+(a ﹣2b )2﹣2a (a ﹣b )=a 2﹣4b 2+a 2﹣4ab +4b 2﹣2a 2+2ab =﹣2ab ,∵a =6,b =13,∴原式=﹣2×6×13=﹣4.18.【解析】(1)∵AC BD ⊥,EF BD ⊥,∴ABC ∆和EDF ∆为直角三角形,∵CD BF =,∴CF BF CF CD +=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF =⎧⎨=⎩,∴()Rt ABC Rt EDF HL ∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,∴B D ∠∠=,∴//AB DE .19.【解析】(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.20.【解析】(1)证明:在AB 上截取BH ,使BH BE =,连接EH ,∵四边形ABCD 是正方形,∴AB BC =,90ABC BCD ∠=∠=︒,45BDC ∠=︒,∴45BHE BEH ∠=∠=︒,∴135+∠=∠∠=︒AHE ABC BEH ,∵//CF BD ,∴45DCF BDC ∠=∠=︒,∴135+∠=∠∠=︒ECF BCD DCF ,∴AHE ECF ∠=∠,∵90ABC AEF ∠=∠=︒,∴90BAE AEB CEF AEB ∠+∠=∠+∠=︒,∴BAE CEF ∠=∠,∵AB BC =,BH BE =,∴AB BH BC BE -=-,即AH EC =.在AHE 和ECF △中,BAE CEF AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴≅ AHE ECF (ASA ),∴AE EF =;(2)//CF EG 且=CF EG ;证明:∵90ABC ∠=︒,∴90CBG ABC ∠=∠=︒,在ABE △和CBG 中,AB BC ABC CBG BE BG =⎧⎪∠=∠⎨⎪=⎩,∴≅ ABE CBG (SAS ),∴BAE BCG ∠=∠,AE CG =,∵BAE CEF ∠=∠,AE EF =,∴BCG CEF ∠∠=,CG EF =,∴//CG EF ,∴四边形CFEG 是平行四边形,∴//CF EG 且=CF EG .21.【解析】(1)证明:连接O C.∴OA =OC ,∴∠ACO =∠BAC .∵CD ⊥AB ,CG ⊥AE ,∴∠CGA =∠CFA =90°,∵CG =CF ,AC =AC ,∴Rt △ACG ≌Rt △ACF ,∴∠CAG =∠CAB ,∴∠ACO =∠CAG ,∴OC ∥AG ,∴∠OCG +∠G =180°,∵∠CGA =90°,∴∠OCG =90°,即OC CG ⊥,∴CG 是⊙O 的切线.(2)过点O 作OM ⊥AE ,垂足为M ,则AM =ME =12AE =1,∠OMG =∠OCG =∠G =90°.∴四边形OCGM 为矩形,∴OC =MG =ME +EG =2.在Rt △AGC 和Rt △AFC 中,CG CFAC AC =⎧⎨=⎩,∴Rt △AGC ≌Rt △AFC ,∴AF =AG =AE +EG =3,∴OF =AF -OA =1,在Rt △COF 中,∵cos ∠COF =OF OC =12.∴∠COF =60°,CF =OC ·sin ∠COF =2×2∴S 弓形BC =2602360π⋅⋅-1223π-.22.【解析】(1)设每个A 型垃圾箱x 元,B 型垃圾箱y 元,依题意有3254032160x y y x +=⎧⎨-=⎩,解得100120x y =⎧⎨=⎩.故每个A 型垃圾箱100元,B 型垃圾箱120元;(2)设购买B 型垃圾箱m 个,则购买A 型垃圾箱(20﹣m )个,依题意有120m +100(20﹣m )≤2100,解得m ≤5.故该小区最多可以购买B 型垃圾箱5个.(3)由题知3≤m ≤5,故方案一:A 买17个,B 买3个,费用为:17×100+3×120=2060元;方案二:A 买16个,B 买4个,费用为:16×100+4×120=2080元;方案三:A 买15个,B 买5个,费用为:15×100+5×120=2100元;∴最省钱方案是A 买17个,B 买3个,费用2060元.23.【解析】(1)2(3)0b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作CE ⊥x 轴于E ,∵1a =-,3b =,∴A (–1,0),B (3,0),∴OA =1,OB =3,∴AB =4,∵在第三象限内有一点M (–2,m ),∴ME m m ==-,∴S △ABM =12AB ×ME =12×4×(m -)=2m -;(2)当32m =-时,点M 的坐标为(2-,32-),S △ABM =3232⎛⎫-⨯-= ⎪⎝⎭,∴PBM ABM 2236S S ==⨯= ,设直线BM 交y 轴于C 点,①当点P 在y 轴上时,如图:∵PBM MPC BPC 11PC 2PC 3622S S S =+=⨯+⨯= ,解得:PC =125,设直线BM 的解析式为y kx d =+,把点M (2-,32-),B (3,0)代入得:32203k d k d ⎧-=-+⎪⎨⎪=+⎩,解得:310910k d ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BM 的解析式为391010y x =-,当0x =时,910y =-,∴点C 的坐标为(0,910-),∴OC =910,当点P 在点C 的下方时,点P 的坐标为(0,129510--),即P (0,3310-),当点P 在点C 的上方时,点P 的坐标为(0,129510-),即1P (0,1510),②当P 在x 轴上且在点A 的左侧时,设P 点的坐标为(x ,0),如图:∵PBM ABM 2236S S ==⨯= ,∴PB =2AB ,∵B (3,0),AB =4,∴38x -=,∴5x =-,∴P 点的坐标为(5-,0),当P 在x 轴上且在点B 的D 右侧时,设P 点的坐标为(x ,0),如图:同理,PB =2AB ,∵B (3,0),AB =4,∴38x -=,∴11x =,∴P 点的坐标为(11,0),综合上述:P 点的坐标为(5-,0)或(11,0)或(0,3310-)或(0,1510).24.【解析】(1)∵抛物线y =ax 2+bx +2经过A (﹣1,0),B (4,0)两点,∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩.∴抛物线解析式为213y x x 222=-++.当y =2时,213x x 2222-++=,解得:x 1=3,x 2=0(舍去).∴点D 坐标为(3,2).(2)A ,E 两点都在x 轴上,AE 有两种可能:①当AE 为一边时,AE ∥PD ,∴P 1(0,2).②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,可知P 点、D 点到直线AE (即x 轴)的距离相等,∴P 点的纵坐标为﹣2.代入抛物线的解析式:213x x 2222-++=-,解得:123x x 22-==.∴P点的坐标为(2,﹣2),(32,﹣2).综上所述:P 1(0,2);P 2(2,﹣2);P 3(32-,﹣2).(3)存在满足条件的点P ,显然点P 在直线CD 下方.设直线PQ 交x 轴于F ,点P 的坐标为(213222a a a -++,),①当P 点在y 轴右侧时(如图1),CQ =a,PQ =2213132a a 2=a a 2222⎛⎫--++- ⎪⎝⎭.又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,∴Q 'C Q 'P =CO FQ ',即213a aa 22= 2FQ '-,解得FQ ′=a ﹣3∴OQ ′=OF ﹣FQ ′=a ﹣(a ﹣3)=3,CQ=CQ 此时a,点P 的坐标为().②当P 点在y 轴左侧时(如图2)此时a <0,,213a a 222-++<0,CQ =﹣a ,(无图)PQ =2213132a a 2=a a 2222⎛⎫--++- ⎪⎝⎭.又∵∠CQ ′O +∠FQ ′P =90°,∠CQ ′O +∠OCQ ′=90°,∴∠FQ ′P =∠OCQ ′,∠COQ ′=∠Q ′FP =90°.∴△COQ ′∽△Q ′FP .∴Q 'C Q 'P =CO FQ ',即213a aa 22= 2FQ '--,解得FQ ′=3﹣A .∴OQ ′=3,CQ=CQ .此时a =,点P的坐标为(92--,).综上所述,满足条件的点P 坐标为(),(92--,).。

2020年中考数学模拟试卷(含答案解析) (2)

2020年中考数学模拟试卷(含答案解析) (2)

中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。

湖南省湘潭市2020年中考数学模拟试题(二)有答案精析

湖南省湘潭市2020年中考数学模拟试题(二)有答案精析

湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。

广东2020中考数学综合模拟测试卷2(含答案)

广东2020中考数学综合模拟测试卷2(含答案)

2020 广东省初中毕业生学业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题, 共 30分)一、选择题( 本大题共10 小题 , 每题3分,共30 分 ) 在每题列出的四个选项中, 只有一个是正确的.1. 在1,0,2,-3 这四个数中, 最大的数是( )A.1B.0C.2D.-32. 在以下交通标记图中, 既是轴对称图形, 又是中心对称图形的是( )3. 计算 3a-2a 的结果正确的选项是 ()A.1B.aC.-aD.-5a4. 把 x3-9x 分解因式 , 结果正确的选项是( )A.x(x 2-9)B.x(x-3) 2C.x(x+3) 2D.x(x+3)(x-3)5. 一个多边形的内角和是900°,这个多边形的边数是()A.10B.9C.8D.76.一个不透明的布袋里装有7 个只有颜色不一样的球 , 此中 3 个红球 ,4 个白球 , 从布袋中随机摸出 1 个球 , 摸出的球是红球的概率为( )A. B. C. D.7.如图 , 在?ABCD中 , 以下说法必定正确的选项是 ()A.AC=BDB.AC⊥BDC.AB=CDD.AB=BC8. 若对于x 的一元二次方程x2-3x+m=0 有两个不相等的实数根, 则实数m的取值范围是( )A.m>B.m<C.m=D.m<-9. 一个等腰三角形的两边长分别为 3 和 7, 则它的周长为 ()A.17B.15C.13D.13 或 1710. 二次函数2的大概图象如下图, 对于该二次函数, 以下说法错误的是y=ax +bx+c(a ≠0)()A. 函数有最小值B. 对称轴是直线x=C.当 x< 时 ,y 随 x 的增大而减少D.当 -1<x<2 时 ,y>0第Ⅱ卷 ( 非选择题 , 共 90 分)二、填空题 ( 本大题共 6 小题 , 每题 4 分 , 共 24 分 ) 请将以下各题的正确答案填写在相应的地点上 .11. 计算 :2x 3÷x=.12. 据报导 , 截止 2013 年 12 月我国网民规模达618 000 000 人 . 将 618 000 000 用科学记数法表示为.13. 如图 , 在△ ABC中, 点 D,E 分别是 AB,AC的中点 , 若 BC=6,则 DE=.14. 如图 , 在☉ O中 , 已知半径为5, 弦 AB的长为 8, 那么圆心O到 AB的距离为.15. 不等式组的解集是.-16. 如图 , △ABC绕点 A按顺时针旋转45°获得△ AB'C', 若∠BAC=90°,AB=AC= , 则图中暗影部分的面积等于.三、解答题 ( 一 ) (本大题共3小题,每题 6分,共 18分)17. 计算 : +|-4|+(-1) -0-.18. 先化简 , 再求值 : 2 此中 x= - .·(x -1),-19. 如图 , 点 D 在△ ABC的 AB边上 , 且∠ACD=∠ A.(1)作∠ BDC的均分线 DE,交 BC于点 E( 用尺规作图法 , 保存作图印迹 , 不要求写作法 );(2)在 (1) 的条件下 , 判断直线 DE与直线 AC的地点关系 ( 不要求证明 ).四、解答题 ( 二) (本大题共 3 小题 , 每题 7 分, 共 21 分)20.如图 , 某数学兴趣小组想丈量一棵树 CD的高度 . 他们先在点 A处测得树顶 C的仰角为 30°,而后沿 AD方向前行 10 m,抵达 B 点 , 在 B 处测得树顶 C 的仰角为 60 ° (A、B、D 三点在同向来线上 ). 请你依据他们的丈量数据计算这棵树CD 的高度 ( 结果精准到0.1 m).( 参照数据:≈1.414,≈1.732)21.某商场销售的一款空调机每台的标价是1 635 元 , 在一次促销活动中 , 按标价的八折销售 ,仍可盈余9%.(1) 求这款空调机每台的进价;收益率收益售价-进价进价进价(2) 在此次促销活动中, 商场销售了这款空调机100 台 , 问盈余多少元?22. 某高校学生会发现同学们就餐时节余饭菜许多, 浪费严重 , 于是准备在校内倡议“光盘行动”, 让同学们珍惜粮食. 为了让同学们理解此次活动的重要性, 校学生会在某天午饭后, 随机检查了部分同学这餐饭菜的节余状况, 并将结果统计后绘制成了如图 1 和图 2 所示的不完好的统计图 .(1) 此次被检查的同学共有名;(2)把条形统计图 ( 图 1) 增补完好 ;(3) 校学生会经过数据剖析, 预计此次被检查的全部同学一餐浪费的食品能够供200 人食用一餐 . 据此估量 , 该校 18 000 名学生一餐浪费的食品可供多少人食用一餐.五、解答题 ( 三 ) (本大题共 3 小题,每题 9 分,共 27 分)23.如图,已知 A- ,B(-1,2) 是一次函数y=kx+b(k ≠0) 与反比率函数 y= (m≠0,x<0) 图象的两个交点 ,AC⊥ x 轴于点 C,BD⊥ y 轴于点 D.(1) 依据图象直接回答: 在第二象限内 , 当 x 取何值时 , 一次函数的值大于反比率函数的值?(2)求一次函数的分析式及 m的值 ;(3)P 是线段 AB上一点 , 连接 PC,PD,若△ PCA与△PDB的面积相等 , 求点 P 的坐标 .24.如图 , ☉ O是△ABC的外接圆 ,AC 是直径 . 过点 O作线段 OD⊥ AB 于点 D, 延伸 DO交☉ O于点P, 过点 P 作 PE⊥ AC于点 E, 作射线 DE交 BC的延伸线于点F, 连接 PF.(1) 若∠POC=60°,AC=12, 求劣弧的长(结果保存π );(2)求证 :OD=OE;(3)求证 :PF 是☉ O的切线 .25.如图 , 在△ ABC中 ,AB=AC,AD⊥ BC于点 D,BC=10cm,AD=8cm. 点 P 从点 B 出发 , 在线段 BC上以每秒 3 cm的速度向点 C匀速运动 , 与此同时 , 垂直于 AD的直线 m从底边 BC出发 , 以每秒 2 cm 的速度沿DA方向匀速平移, 分别交 AB、 AC、 AD于点 E、 F、H. 当点 P 抵达点 C 时 , 点 P 与直线 m同时停止运动. 设运动时间为t 秒(t>0).(1)当 t=2 时 , 连接 DE,DF.求证 : 四边形 AEDF是菱形 ;(2)在整个运动过程中 , 所形成的△ PEF的面积蓄在最大值 . 当△ PEF的面积最大时 , 求线段 BP 的长 ;(3)能否存在某一时刻 t, 使△ PEF是直角三角形 ?若存在 , 恳求出现在 t 的值 ; 若不存在 , 请说明原因 .答案全解全析:一、选择题1.C ∵ - 3<0<1<2,∴2最大 . 应选 C.2.C A项既不是轴对称图形 , 也不是中心对称图形, 故 A 项错误 ;B 项既不是轴对称图形 , 也不是中心对称图形 , 故 B 项错误 ;C 项既是轴对称图形, 又是中心对称图形 , 故 C项正确 ;D 项是轴对称图形 , 但不是中心对称图形,故 D项错误.应选 C.评析此题考察了轴对称图形和中心对称图形的判断, 属简单题 .3.B 利用归并同类项的法例可知3a-2a=(3-2)a=a, 应选 B.4.D x3-9x=x(x 2-9)=x(x+3)(x-3). 应选 D.5.D 设这个多边形的边数为x, 则 180×(x -2)=900, 解得 x=7, 应选 D.6.B 由于随机摸出一球的全部等可能的结果共有7 种 , 此中摸出一个红球的等可能的结果有 3 种 , 因此摸出的球是红球的概率为,应选 B.7.C 利用平行四边形的性质可知, 只有 C 项必定正确 . 应选 C.8.B ∵ 一元二次方程有两个不相等的实数根, ∴(-3) 2- 4m>0,∴m< . 应选 B.9.A ∵ 三角形为等腰三角形, 且三角形随意两边之和大于第三边, ∴三角形的三边长分别为3,7,7, ∴周长为 17. 应选 A.10.D ∵ 抛物线的张口向上, ∴函数有最小值 , 故 A项正确 ;∵抛物线与 x 轴交于 (-1,0) 、(2,0) 两点 , ∴抛物线的对称轴是直线x= , 故 B 项正确 ; ∵抛物线的张口向上 , 对称轴为直线x= , ∴当 x< 时 ,y 随 x 的增大而减少 , 故 C项正确 ;∵当 -1<x<2 时 ,y<0, 故 D 项错误 . 应选 D.评析此题考察了二次函数的图象和性质及“数形联合”思想 , 考察了学生剖析问题、解决问题的能力 , 属于较难题 .二、填空题11.答案 2x2分析2x 3÷x=2(x 3÷x)=2x 2.12. 答案 6.18 ×10 8分析618 000 8000=6.18 × 10.13.答案 3分析∵D、 E 分别是 AB、 AC的中点 , ∴ DE是△ABC的中位线 , ∴ DE=BC=3.14.答案 3分析作 OC⊥ AB 于 C, 连接 OA,则 AC= AB=4, 又 OA=5,∴OC= -=-=3.15. 答案1<x<4分析由 2x<8, 得 x<4; 由 4x-1>x+2, 得 x>1, ∴不等式组的解集为1<x<4.16. 答案-1解析设 AC'与BC 的交点为 D,B'C' 与AB 的交点为E, 则 AD=AE=AC·cos45°=1. ∵AC'=AC=2 2 2 2-1. , ∴C'D= - 1, ∴S暗影 = AE- C'D = ×1- ×(-1) =评析此题考察了等腰直角三角形的性质、三角形的面积以及图形的旋转, 属较难题 .三、解答题 ( 一) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)17.分析原式 =3+4+1-2(4 分 )=6.(6 分 )18.分析原式==2(x+1)+(x-1)(3分) =3x+1.(4分)--·(x+1)(x-1)(2分)当 x=-时,原式=3×-+1=.(6分)19.分析 (1) 作图正确 ( 实线、虚线均可 ),结论 :DE 即为所求 .(3分)( 考生没有结论, 但作图正确给满分)(2)DE ∥ AC.(6 分 )四、解答题 ( 二) (本解答题参照答案只供给一种解法,考生选择其余解法只需答案正确,相应给分 .)20.分析∵∠ CAB=30°, ∠CBD=60°,∴∠ACB=60° - 30°=30°, ∴∠ CAB=∠ACB,∴B C=AB=10.(3 分 )在 Rt △ CBD中 ,sin 60 °= ,∴CD=BC·sin 60°=10×=5≈8.7(m).答: 这棵树高约8.7 m.(7 分)21. 分析(1) 设这款空调机每台的进价是x 元 ,(1分)依据题意 , 得 1 635 × 0.8-x=9%·x,(3分)解得 x=1 200.答: 该款空调机每台的进价是 1 200 元.(5分)(2)100 ×1 200×9%=10800( 元 ).答: 商场盈余 10 800 元 .(7 分 )22. 分析 (1)1 000.(2 分 )(2) 剩少许饭菜的人数为 :1 000-(400+250+150)=200.( 补全条形统计图正确 3 分 )(5 分 )(3)×18 000=3 600( 人 ).答: 预计可供 3 600 人食用一餐 .(7分)五、解答题 ( 三) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)23. 分析(1)-4<x<-1.(2 分 )(2) 将 A - ,B(-1,2)- 分别代入 y=kx+b, 得-解得 k= ,b=.∴一次函数的分析式为y= x+ .(4分) 将 B(-1,2)代入y=中,得=2,-∴m=-2.(6分)(3)∵点 P在线段 AB上 ,∴设 P 的坐标为.(7 分)∵S PCA=S PDB,△△∴ × ×(a+4)=×1×-, 解得 a=- ,(8分)∴a+ = × - + = .∴点 P 的坐标是 - .(9 分)24.分析 (1) ∵AC 是☉ O的直径 ,∴OC= AC= ×12=6.(1分)∴劣弧的长为=2π .(3分)(2) 证明 : ∵OD⊥ AB,PE⊥ AC,∴∠ ODA=∠OEP=90°.(4分)又∵ OA=OP, ∠AOD=∠POE,∴△ AOD≌△ POE,(5 分 )∴O D=OE.(6 分 )(3) 证明 : 连接 PA.∵OD=OE,∴∠ ODE=∠OED.∵∠ POC=∠ODE+∠ OED,∴∠ POC=2∠ OED.又∵∠ POC=2∠ PAC, ∴∠PAC=∠ OED.∴PA∥ DF,(7 分 )∴∠ PAD=∠FDB.∵OD⊥AB,∴AD=BD.∵AC是☉ O的直径 ,∴∠ DBF=∠ADP=90°.∴△ PAD≌△ FDB,∴P A=FD.∴四边形 PADF是平行四边形 .(8分)∴P F∥ AD,∴∠ FPD=∠ADP=90°,即 OP⊥PF,∵OP是☉ O的半径 ,∴P F 是☉O的切线 .(9 分 )25. 分析(1) 证明 : 如图 1, 当 t=2 时 ,HD=2t=4.∵A D=8,∴HD= AD.(1 分 )∵E F⊥ AD,AD⊥BC,∴EF∥ BC,图 1 ∴E,F 分别是 AB,AC的中点 .∵A B=AC,AD⊥ BC,∴D是 BC的中点 ,∴DE∥ AC,DF∥ AB,∴四边形 AEDF是平行四边形 .(2分)又∵ AD⊥EF,∴四边形 AEDF是菱形 .(3分)图 2 (2) 如图 2, ∵EF∥BC,∴ △ AEF∽△ ABC,∴= ,∴= - ,∴E F=10- t.(4 分)∴S PEF= EF·DH=-·2t=- t 2 +10t△=- (t-2)2+10.(5分)∴当 S△PEF取最大值时 ,t=2.此时 ,BP=3t=3× 2=6(cm).(6分)(3) 存在 .①如图 3, 若∠PEF=90°,则 PE∥ AD.图 3 ∴△ BEP∽△ BAD,∴=,∴=,∴t=0.∵当 t=0 时, △ EPF不存在 ,∴t=0 不合题意 , 舍去 .(7 分 )②如图 4, 若∠EPF=90°,在 Rt△ EPF中 ,图 4 连接 PH, ∵H是 EF 的中点 ,∴PH= EF= -=5- t.2 2 2=HD+DP,在 Rt △ HDP中 , ∵ HP∴ - =(2t) 2+(5-3t) 2.解得 t=0 或 t= .由① 知 ,t=0不合题意,舍去,∴t= .(8 分)③如图 5,图 5 若∠ PFE=90 °,则PF∥ AD.∴△ CPF∽△ CDA,∴=,∴=-,解得 t=.综上所述 , 当 t=或时,△ PEF是直角三角形.(9分)。

初中学业水平模拟考试数学试题二及答案2020年

初中学业水平模拟考试数学试题二及答案2020年

2020年初中学业水平第二次模拟检测数学试题一、选择题(本题有12小题,每小题4分,共48分,每小题只有一个选项是正确的,不选、多选、错选,均不得分) 题号 123456789101112答案 1.94的值等于 A .32 B .-32 C .±32 D .81162.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是A .B .C .D .3.下列结论正确的是A .如果a >b ,c >d ,那么a -c >b -dB .如果a >b ,那么ab >1C .如果a >b ,那么1a <1bD .如果a c 2<bc2,那么a <b4.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结OE .若∠ABC =50°,∠BAC =80°,则∠1的度数为 A .60° B .50° C .40° D .25°第4题图 第6题图5.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差s 2(单位:千克2)如表所示:甲乙 丙 丁 x 23 23 24 24 s 22.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是 A .甲 B .乙 C .丙 D .丁6.已知二次函数y =ax 2+bx +c 的图象如图所示,则在同一直角坐标系中,一次函数y =ax +b 和反比例函数y =cx的图象大致是A .B .C .D .7.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为A .-14B .-1.06C .-3.94D .-3.78.已知α,β是方程x 2+2020x +1=0的两个根,则(1+2022α+α2)(αβ+β2)的值为 A .-4040 B .4044 C .-2022 D .20209.如图,正方形ABCD 中,AB =6,将△ADE 沿AE 对折至△AEF ,延长EF 交BC 于点G ,G 刚好是BC 边的中点,则ED 的长是 A .1 B .1.5 C .2 D .2.5第9题图 第11题图10.某数学小组在研究了函数y 1=x 与y 2=4x 性质的基础上,进一步探究函数y =y 1+y 2的性质,经过讨论得到以下几个结论:①函数y =y 1+y 2的图象与直线y =3没有交点;②函数y =y 1+y 2的图象与直线y =a 只有一个交点,则a =±4;③点(a ,b )在函数y =y 1+y 2的图象上,则点(-a ,-b )也在函数y =y 1+y 2的图象上. 以上结论正确的是A .①②B .①②③C .②③D .①③11.如图,在矩形ABCD 中,AB =6,BC =10,P 是AD 边上一动点(不含端点A ,D ),连接PC ,E 是AB 边上一点,设BE =a ,若存在唯一点P ,使∠EPC =90°,则a 的值是 A .103 B .116C .3D .612.对于二次函数y =ax 2-(2a -1)x +a -1(a ≠0),有下列结论:①其图象与x 轴一定相交;②其图象与直线y =x -1有且只有一个公共点;③无论a 取何值,抛物线的顶点始终在同一条直线上;④无论a 取何值,函数图象都经过同一个点.其中正确结论的个数是 A .1 B .2 C .3 D .4二、填空题(共6小题,每小题4分,满分24分) 13.若a m =8,a n =2,则a m -2n 的值是 .14.如果x 2+mx +6=(x -2)(x -n ),那么m +n 的值为 . 15.如图,菱形ABCD ,∠B =60°,AB =4,⊙O 内切于菱形ABCD ,则⊙O 的半径为 .第15题图 第16题图 第17题图16.如图,已知矩形ABCD ,AB =8,AD =4,E 为CD 边上一点,CE =5,点P 从B 点出发,以每秒1个单位的速度沿着BA 边向终点A 运动,连接PE ,设点P 运动的时间为t 秒,则当t 的值为 时,△PAE 是以PE 为腰的等腰三角形. 17.如图,二次函数y =415x 2-815x -4的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,其对称轴与x 轴交于点D ,若P 为y 轴上的一个动点,连接PD ,则35PC +PD 的最小值为 .三、解答题(共7小题,共52分) 18.计算:(−12)−1+|3−2|+tan60°.AC ,DF .请判断四边形ACDF 的形状,并说明理由.20.某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查.问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如下表:社团名称A酵素制作社团B回收材料小制作社团C垃圾分类社团D环保义工社团E绿植养护社团人数10 15 5 10 5 (1)根据以上信息填空:这5个数的中位数是;扇形图中没选择的百分比为;多少学生愿意参加环保义工社团;(3)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?22.如图,一次函数y 1=k 1x +b ,与反比例函数y 2=k 2x 交于点A (3,1)、B (-1,n ),y 1交y 轴于点C ,交x 轴于点D . (1)求反比例函数及一次函数的解析式; (2)求△OBD 的面积;(3)根据图象直接写出k 1x +b >k 2x 的解集.23. 如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,过点D 作FG ⊥AC 于点F ,交AB 的延长线于点G . (1)求证:GD 为⊙O 切线; (2)求证:DE 2=EF •AC .(3)若tan ∠C =2,AB =5,求AE 的长.24.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B (3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点的三角形,是以AC为直角边的直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.2020年初中学业水平第二次模拟检测数学试题参考答案一、选择题:本题共12小题,每小题4分,共48分 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 AC DBD AC AC BB D二、填空题:每小题4分,共20分题号 13 14 15 16 17 答案 2-232或236165三、解答题:18.解:原式=-2+2-3+3=0.…………………………5分 19.解:四边形ACDF 是平行四边形,理由如下:∵四边形ABCD 是矩形, ∴AB ∥CD ,∠BCD =∠B =90°, ∴∠FAE =∠CDE , ∵E 是AD 的中点, ∴AE =DE , 在△FAE 和△CDE 中,⎩⎪⎨⎪⎧∠FAE =∠CDE ,AE =DE ,∠AEF =∠DEC ., ∴△FAE ≌△CDE (A S A ), ∴CD =FA ,又∵CD ∥AF , ∴四边形ACDF 是平行四边形.………………………………5分 20.解:(1)将这五个数从小到大排列,处在第3位的数是10,因此中位数是10, (50-10-15-5-10-5)÷50=10%, 故答案为:10,10%.…………………2分 (2)①补全条形图如图所示:………………3分②1400×20%=280名,答:全校约有280名学生愿意参加环保义工社团.……………………5分 (3)酵素制作社团、绿植养护社团分别用A 、B 表示,画树状图如上右图:由树状图知共有4种等可能结果,其中两人同时选择绿植养护社团只有一种情况, ∴两人同时选择绿植养护社团的概率为14.…………………………8分21.解:(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:⎩⎨⎧8x +18y =1700,10x +20y =1700+300. ,解得:⎩⎨⎧x =100,y =50..答:该店5月份购进甲种水果100千克,购进乙种水果50千克.……………………4分(2)设购进甲种水果a 千克,需要支付的总货款为w 元,则购进乙种水果(120-a )千克,根据题意得:w =10a +20(120-a )=-10a +2400.∵甲种水果不超过乙种水果的3倍, ∴a ≤3(120-a ),解得:a ≤90. ∵k =-10<0, ∴w 随a 值的增大而减小, ∴当a =90时,w 取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.……………………………8分 22.解:(1)∵反比例函数y 2=k 2x 的图象经过A (3,1), ∴k =3×1=3, ∴反比例函数的解析式为y 2=3x ;把B (-1,n )代入反比例函数解析式,可得n =-3, ∴B (-1,-3), 把A (3,1),B (-1,-3)代入一次函数y 1=k 1x +b ,可得⎩⎨⎧1=3k 1+b ,−3=−k 1+b . ,解得⎩⎨⎧k 1=1,b =−2.,∴一次函数的解析式为y 1=x -2;…………………3分 (2)令y 1=0,有0=x -2,即x =2, ∴D (2,0),OD =2,如图,过B 作BE ⊥x 轴于点E , ∵B (-1,-3), ∴BE =3,∴S △BOD =12×OD ×BE =12×2×3=3;………………………6分(3)由图象可知,当-1<x <0或x >3时,一次函数图象落在反比例函数图象的上方,所以k 1x +b >k 2x 的解集是-1<x <0或x >3.………………8分 23.(1)证明:如图1,连接OD , ∵OD =OB , ∴∠ODB =∠OBD , ∵AB =AC , ∴∠ABC =∠C , ∴∠ODB =∠C , ∴OD ∥AC , ∵DG ⊥AC , ∴OD ⊥DF ,∴GD 为⊙O 切线;………………………………3分 (2)证明:如图2,连接AD , ∵AB 为直径, ∴∠ADB =90°,即AD ⊥BC ,∵AB =AC , ∴CD =BD ,∠EAD =∠BAD , ∴BD =DE =CD ,∵DF ⊥AC , ∴CF =EF , ∵∠CFD =∠CDA =90°,∠FCD =∠ACD , ∴Rt △CDF ∽ Rt △CAD , ∴CD AC =CF CD , 即CD 2=CF •AC ,∴DE 2=EF •AC .………………6分 (3)解:如图2,∵AB =AC ,∴∠ABC =∠C ,tan ∠ABC =tan ∠C =ADBD =2,AB =5,∴BD =DC =5,∵在Rt △CDF 中,tan ∠C =2, ∴CF =1,由(2)知,EF =CF ,∴EF =CF =1,CE =2, ∴AE =AC -CE =AB -CE =5-2=3.……………………9分 24.解:(1)设抛物线解析式为y =a (x +1)(x -3), 即y =ax 2-2ax -3a ,∴-2a =2,解得a =-1,∴抛物线解析式为y =-x 2+2x +3;…………………3分 (2)当x =0时,y =-x 2+2x +3=3,则C (0,3), 设直线AC 的解析式为y =p x +q ,把A (-1,0),C (0,3)代入得 ⎩⎨⎧−p +q =0,q =3. ,解得⎩⎨⎧p =3,q =3.,∴直线AC 的解析式为y =3x +3,如图1,过D 作DG 垂直抛物线对称轴于点G ,设 D (x ,-x 2+2x +3),∵DF ∥AC ,∴∠DFG =∠ACO ,易知抛物线对称轴为x =1, ∴DG =x -1,DF =10(x -1),∴DE +DF =-x 2+2x +3+10(x -1)=-x 2+(2+10)x +3-10=-(x −2+10 2)2+13 2 , ∵-1<0, ∴当x =2+10 2 ,DE +DF 有最大值为13 2 ;……………………6分 (3)①存在;如图2,过点C 作AC 的垂线交抛物线于点P 1,∵直线AC 的解析式为y =3x +3, ∴直线P 1C 的解析式可设为y =−13x +m ,把C (0,3)代入得m =3, ∴直线P 1C 的解析式为y =−13x +3,解方程组⎩⎪⎨⎪⎧y =−x 2+2x +3,y =−1 3 x +3. ,解得⎩⎨⎧x =0,y =3. 或⎩⎨⎧x =7 3,y =20 9. ,则此时P 1点坐标为(7 3 ,209);过点A 作AC 的垂线交抛物线于P 2,直线AP 2的解析式可设为y =−1 3 x +n , 把A (-1,0)代入得n =−1 3, ∴直线PC 的解析式为y =−1 3 x −13,解方程组⎩⎪⎨⎪⎧y =−x 2+2x +3,y =−1 3 x −1 3 . ,解得⎩⎨⎧x =−1,y =0. 或⎩⎨⎧x =103 ,y =−13 9.,则此时P 2点坐标为(10 3 ,−139), 综上所述,符合条件的点P 的坐标为(7 3 ,20 9)或(10 3 ,−139);………………8分②答:−2 3 <t <1或2<t <83.………………………………………………………9分 如图3,抛物线y =-x 2+2x +3对称轴为直线x =1,过点C 作CQ 1⊥AC 交对称轴于Q 1,过点A 作AQ ⊥AC 交对称轴于Q ,∵A (-1,0),C (0,3)∴直线AC 解析式为y =3x +3, ∵CQ 1⊥AC ∴直线CQ 1解析式为y =-13 x +3,令x =1,得y =−1 3 ×1+3=8 3 ∴Q 1(1,83); ∵AQ 2⊥AC∴直线AQ 2解析式为y ═-1 3 x -1 3 ,令x =1,得y =−13 ×1-1 3 =-23∵∠AQC =90°时,AQ 2+CQ 2=AC 2 ∴(-1-1)2+t 2+(1-0)2+(t -3)2=(10)2,解得:t 1=1,t 2=2, ∴当1≤t ≤2时,∠AQC ≥90°,∵△ACQ 为锐角三角形,点Q (1,t )必须在线段Q 1Q 2上(不含端点Q 1、Q 2), ∴−2 3 <t <1或2<t <8 3.。

2020秋重点中学初一上(七年级)入学分班数学模拟考试测试卷及答案 共3套

2020秋重点中学初一上(七年级)入学分班数学模拟考试测试卷及答案 共3套
24.问题:你能比较两个数 20182019 与 20192018 的大小吗?为了解决这个问题,我们先把它抽象成这样的问题:
写成它的一般形式,即比较 nn1 和 n 1n 的大小( n 是非零自然数).然后,我们分析 n 1, n 2, n 3 ...
这些简单情形入手,从而发现规律,经过归纳,猜想出结论.
即需要(24x+36y)平方米的壁纸. 24.解:(1)①∵12=1,21=2, ∴12<21; ②∵23=8,32=9, ∴23<32; ③∵34=81,43=64, ∴34>43; ④∵45=1024,54=625, ∴45>54; ⑤∵56=15625,65=7776, ∴56>65; ⑥∵67=279936,76=117649, ∴67>76; (2)n<3 时,nn+1<(n+1)n, n≥3 时,nn+1>(n+1)n;
21. 在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系,用蟋蟀1min 叫的次
数除以 7 .然后再加上 3 .就近似地得到该地当时的温度 C
1 用代数式表示该地当时的温度; 2 当蟋蟀1min 叫的次数分别是 84,105 和126 时,该地当时的温度的是多少?
22. 先化简,再求值: 6a2 6ab 12b2 3 2a2 4b2 ,其中 a 1 , b 8 . 2
23.如图是小明家的住房结构平面图(单位:米),他打算把卧室以外的部分都铺上地砖.
1 若铺地砖的价格为 80 元平方米,那么购买地砖需要花多少钱(用代数式表示)? 2 已知房屋的高为 3 米,现需要在客厅和卧室的墙壁上贴壁纸,那么需要多少平方米的壁纸(计算时不扣
除门、窗所占的面积)(用代数式表示)?

14.观察如图所示的组图形,其中图形 ① 中共有 2 颗星,图形 ② 中共有 6 颗星,图形 ③ 中共有11颗星,

2020年中考第二次模拟测试《数学卷》带答案解析

2020年中考第二次模拟测试《数学卷》带答案解析

中考数学综合模拟测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.4的平方根是( )A. 2B. -2C. 2和-2D. 162.图1是数学家皮亚特•海恩(Piet Hein )发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图( )A. B. C. D. 3.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A. a <﹣3B. ﹣3<a <1C. a >﹣3D. a >14.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A. 20B. 24C. 28D. 305.抛物线y=(x-3)²-1可以由抛物线y=x²+1平移得到,则下列平移方法正确的是( ) A. 先向左平移3个单位,再向上平移2个单位B. 先向左平移3个单位,再向下平移2个单位C. 先向右平移3个单位,再向上平移2个单位D. 先向右平移3个单位,再向下平移2个单位6.如图,∠1,∠2,∠3是五边形ABCDE 的三个外角,边CD ,AE 的延长线交于点F ,如果∠1+∠2+∠3=225°,则∠DFE 的度数是( )A. 35°B. 45°C. 55°D. 65° 7.一次函数y ax b =+和反比例函数ab y x =在同一坐标系中的大致图象是( ) A.B. C .D.8.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,过点C 作⊙O 的切线,交直径AB 的延长于点D ,若∠ABC=65°,则∠D 的度数是( )A. 25°B. 30°C. 40°D. 50°9.如图所示是边长分别为60cm 和80cm 的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm 的正方形地砖的造价为( )A. 120元B. 160元C. 180元D. 270元10.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()A. 24B. 40C. 56D. 60二、填空题(每小题3分,共15分)11.若二次根式x2有意义,则x的取值范围是___.12.如图,在过直线AB外一点P作直线AB的平行线时,可以按如下步骤进行:①在直线AB上任取两点C,D;②分别以点P,D为圆心,CD与PC为半径画弧,两弧交于点E;③作直线PE,则PE∥AB.在上面作图过程中,PE∥AB的依据是________.13.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y尺,可列方程组为__________________.14.如图所示是一个圆形飞镖靶的示意图,其中A,B,C,D,E,F是⊙O的六等分点,如果向该飞镖靶上任意投一枚飞镖,则飞镖落在阴影区域的概率是_______.15.在太原迎泽西大街上有一种智能垃圾桶,这种智能垃圾桶不仅可以供行人休息,灯箱边的中部还有USB 接口可供行人充电.此种垃圾桶的侧面示意图如图所示,其中AC∥ED,AB∥EF∥GH,CD=20cm,DE=60cm,EF=100m,GH=80cm,∠CDE=∠EFG=90°,∠DEF=130°,则此种垃圾桶的高度(C到地面的距离)约为________cm.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤) 16.(1)分解因式:()()413x x x -++.(2)计算:22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭17.已知关于x 的一元二次方程x²-3x+m-2=0有实数根. (1)求m 的取值范围;(2)当m 为符合条件的最大整数时,求此时方程的解.18.如图,在矩形ABCD 中,O 为AC 的中点,直线EF 经过点O ,并且与AB 交于点E ,与DC 交于点F ,∠DFE=∠BFE .(1)求证:四边形DEBF 是菱形;(2)若AD=4,AB=8,则线段EF 的长是_______.(直接写出答案即可)19.某公司招聘一名职员,先对应聘者进行笔试考核,笔试进入前两名的选手再进入面试方面的考核,最终在参加面试的两人中录取一人.该公司将应聘者的笔试成绩划分了4个等级:设应聘者的成绩为x (单位:分),当60≤x <70时为不合格;当70≤x <80时为合格;当80≤x <90时为良好;当90≤x≤100时为优秀.下面是参加笔试的10名应聘者的成绩:86 75 67 86 92 75 82 90 86 78(1)这10名应聘者的笔试成绩的中位数是_______,众数是_______;(2)请将下面表示上述4个等级的统计图补充完整;(3)该公司对进入笔试前两名的甲、乙二人进行了面试考核,面试中包括形体、口才、人际交往、创新能力,他们的成绩(百分制)如下表:候选人面试项目形体口才 人际交往 创新能力 甲86 90 95 90 乙95 8590 92如果公司根据经营性质和岗位要求,以面试成绩中形体占10%,口才占20%,人际交往40%,创新能力占30%确定成绩,那么你认为该公司应该录取谁?请通过计算说明理由.20.阅读下列材料,解决所提的问题:勾股定理a²+b²=c²本身就是一个关于a ,b ,c 的方程,我们知道这个方程有无数组解,满足该方程的正整数解(a ,b ,c )通常叫做勾股数组.关于勾股数组的研究我国历史上有非常辉煌的成就,根据我国古代数学书《周髀算经》记载,在约公元前1100年,人们就已经知道“勾广三、股修四、径隅五”(古人把较短的直角边称为勾,较长的直角边称为股,而斜边则为弦),即知道了勾股数组(3,4,5).类似地,还可以得到下列勾股数组:(3,4,5),(5,12,13),(7,24,25),(9,40,41),…等等,这些数组也叫做毕达哥拉斯勾股数组.上述勾股数组的规律,可以用下面表格直观表示:观察分析上述勾股数组,可以看出它们具有如下特点:特点1:最小的勾股数的平方等于另两个勾股数的和;特点2:____________________________________.…学习任务:(1)请你再写出上述勾股数组的一个特点:________________;(2)如果n表示比1大的奇数,则上述勾股数组可以表示为(n,______,______)(3)请你证明(2)的结论.21.晋阳湖公园是华北最大的城市公园,是太原市未来的“城市客厅”,是工业文明与人文历史的交融.园内的晋阳湖是华北最大的人工湖,素称“中国北湖”.为满足晋阳湖景区水秀综合演艺的调试和表演用水需求,工程部按计划从4月1日开始向晋阳湖公园南扩湖供水,供水总量为120万立方米,经过计算,如果将原计划的每日供水量提高25%,则完成供水所需的时间将比原计划时间提前6天完成.(1)求原计划每日的供水量与供水的天数分别是多少?(2)工程部按原计划供水12天后,接到上级指挥部的命令,要求工程部务必与4月28日前完成供水任务.则在后一阶段的供水中,至少需将每日的供水量提高百分之多少,才能在指挥部要求的期限内完成供水任务?22.综合与实践问题情境数学活动课上,老师让同学们根据如下问题情境,发现并提出问题.如图1,△ABC与△EDC都是等腰直角三角形,点E,D分别在AC和BC上,连接EB.将线段EB绕点B 顺时针旋转90°,得到的对应线段为BF.连接DF.“兴趣小组”提出了如下两个问题:①AE=BD,AE⊥BD;②DF=AB,DF⊥AB.解决问题:(1)请你证明“兴趣小组”提出的第②个问题.探索发现:(2)“实践小组”在图1的基础上,将△EDC 绕点C 顺时针旋转角度α(0°<α<90°),其它条件保持不变,得到图2.①请你帮助“实践小组”探索:“兴趣小组”提出的两个问题是否还成立?如果成立,请给出证明;若不成立,请说明理由.②如图3,当AD=AF 时,请求出此时旋转角α的大小.23.综合与探究:如图,二次函数212y x bx c =-++经过点B (4,0)和点E (-2,-3)两点,与x 轴的另一个交点为A .点D 是线段BE 上的动点,过点D 作DF ⊥BE ,交y 轴于点F ,交抛物线于点P .(1)求出抛物线和直线BE 的解析式;(2)当△DCF ≌△BOC 时,求出此时点D 的坐标;(3)设点P 的横坐标为m .①请写出线段PD 的长度为(用含m 的式子表示);②当m为何值时,线段PD有最大值,并写出其最大值为多少?答案与解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.4的平方根是()A. 2B. -2C. 2和-2D. 16【答案】C【解析】【分析】根据平方根的定义即可得答案.【详解】∵22=4,(-2)2=4,∴4的平方根是2和-2,故选:C.【点睛】本题考查平方根,一个正数的平方根有两个,它们互为相反数;熟练掌握平方根点定义是解题关键.2.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A. B. C. D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B 、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C 、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D 、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C .【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形. 3.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A. a <﹣3B. ﹣3<a <1C. a >﹣3D. a >1【答案】A【解析】【分析】 根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P (1﹣a ,2a+6)在第四象限,∴10260a a ->⎧⎨+<⎩解得a <﹣3.故选A . 【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 4.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( ) A. 20B. 24C. 28D. 30 【答案】D【解析】 【详解】试题解析:根据题意得9n=30%,解得n=30, 所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D .考点:利用频率估计概率.5.抛物线y=(x-3)²-1可以由抛物线y=x²+1平移得到,则下列平移方法正确的是()A. 先向左平移3个单位,再向上平移2个单位B. 先向左平移3个单位,再向下平移2个单位C. 先向右平移3个单位,再向上平移2个单位D. 先向右平移3个单位,再向下平移2个单位【答案】D【解析】【分析】根据二次函数图象“左加右减,上加下减”的平移规律即可得答案.【详解】把抛物线y=x²+1向右平移3个单位看到抛物线y=(x-3)2+1,把y=(x-3)2+1向下平移2个单位可得抛物线y=(x-3)²-1,∴抛物线y=x²+1先向右平移3个单位,再向下平移2个单位可得抛物线y=(x-3)²-1,故选:D.【点睛】本题考查二次函数图象的平移,熟记“左加右减,上加下减”的平移规律是解题关键.6.如图,∠1,∠2,∠3是五边形ABCDE的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,则∠DFE的度数是()A. 35°B. 45°C. 55°D. 65°【答案】B【解析】【分析】根据多边形外角和定理可得∠FDE+∠FED=360°-(∠1+∠2+∠3)=135°,根据三角形内角定理即可得答案.【详解】∵∠1+∠2+∠3=225°,∠1、∠2、∠3、∠FDE、∠FED是五边形ABCDE的五个外角,∴∠FDE+∠FED=360°-(∠1+∠2+∠3)=135°,∴∠DFE=180°-(∠FDE+∠FED)=45°,故选:B.【点睛】本题考查多边形外角和定理及三角形内角和定理,多边形的外角和为360°;三角形的内角和等于180°.7.一次函数y ax b =+和反比例函数ab y x=在同一坐标系中的大致图象是( ) A. B.C. D.【答案】A【解析】【分析】根据一次函数和反比例函数的性质逐一判断即可得答案.【详解】A.由一次函数图象得:a >0,b >0,∴ab >0,∴反比例函数图象应在一、三象限,故该选项正确,符合题意,B.由一次函数图象得:a >0,b >0,∴ab >0,∴反比例函数图象应在一、三象限,故该选项错误,不符合题意,C.由一次函数图象得:a <0,b >0,∴ab <0,∴反比例函数图象应在二、四象限,故该选项错误,不符合题意,D.由一次函数图象得:a <0,b <0,∴ab >0,∴反比例函数图象应在一、三象限,故该选项错误,不符合题意,故选:A .【点睛】本题考查一次函数和反比例函数的性质,对于一次函数y=kx+b(k≠0),k >0时,图象经过一、三象限;k <0时,图象经过二、四象限;当b >0时,图象与y 轴交于正半轴,b <0时,图象与y 轴交于负半轴;对于反比例函数kyx(k≠0),k>0时,图象经过一、三象限;k<0时,图象经过二、四象限;熟练掌握相关性质是解题关键.8.如图,AB是⊙O的直径,点C为⊙O上一点,过点C作⊙O的切线,交直径AB的延长于点D,若∠ABC=65°,则∠D的度数是()A. 25°B. 30°C. 40°D. 50°【答案】C【解析】【分析】如图,连接OC,根据切线的性质可得∠OCD=90°,根据AB是直角可得∠ACB=90°,根据角的和差关系可得∠BCD=∠CAB,根据直角三角形两锐角互余的性质可求出∠CAB的度数,利用三角形外角性质即可求出∠D的度数.【详解】如图,连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=65°,∴∠CAB=90°-∠ABC=25°,∵∠OCA+∠OCB=∠BCD+∠OCB=90°,∴∠BCD=∠OCA,∵OA=OC,∴∠OCA=∠CAB,∴∠BCD=∠CAB=25°,∴∠D=∠ABC-∠BCD=40°,故选:C.【点睛】本题考查切线的性质、圆周角定理、等腰三角形的性质及三角形外角性质,圆的切线垂直于过切点的半径;直径所对的圆周角是直角;三角形的外角等于和它不相邻的两个内角的和;熟练掌握相关定理和性质是解题关键.9.如图所示是边长分别为60cm和80cm的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm的正方形地砖的造价为()A. 120元B. 160元C. 180元D. 270元【答案】B【解析】【分析】设边长为80cm的正方形地砖的造价为x,根据每平方厘米的造价相同列方程求出x的值即可得答案.【详解】设边长为80cm的正方形地砖的造价为x元,∵两种地砖每平方厘米的造价相同,∴9060608080x=⨯⨯,解得:x=160,故选:B.【点睛】本题考查一元一次方程的应用,正确得出等量关系列出方程是解题关键.10.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()A. 24B. 40C. 56D. 60【答案】A【解析】【分析】由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.【详解】∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD的面积为AB·BC=24,故选:A.【点睛】本题考查分段函数的图象,根据△PAB面积的变化,正确从图象中得出所需信息是解题关键.二、填空题(每小题3分,共15分)11.若二次根式x2-有意义,则x的取值范围是___.≥【答案】x2【解析】【详解】试题分析:根据题意,使二次根式2x-有意义,即x﹣2≥0,解得x≥2.故答案是x≥2.【点睛】考点:二次根式有意义的条件.12.如图,在过直线AB外一点P作直线AB平行线时,可以按如下步骤进行:①在直线AB上任取两点C,D;②分别以点P,D为圆心,CD与PC为半径画弧,两弧交于点E;③作直线PE,则PE∥AB.在上面作图过程中,PE∥AB的依据是________.【答案】两组对边分别相等的四边形是平行四边形,平行四边形的两组对边分别平行【解析】【分析】由作图步骤可知PE=CD,DE=PC,根据两组对边分别相等的四边形是平行四边形,可得四边形PCDE是平行四边形,根据平行四边形两组对边分别平行即可得PE//AB.【详解】∵分别以点P,D为圆心,CD与PC为半径画弧,两弧交于点E;∴PE=CD,DE=PC,∴四边形是平行四边形,∵平行四边形的两组对边分别平行,∴PE//AB,故答案为:两组对边分别相等的四边形是平行四边形,平行四边形的两组对边分别平行【点睛】本题考查平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题关键.13.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y尺,可列方程组为__________________.【答案】55 2x yxy=+⎧⎪⎨=-⎪⎩【解析】【分析】设绳索长x尺,竿长y尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x y,的二元一次方程组,此题得解.【详解】设绳索长x尺,竿长y尺,根据题意得:552x yxy=+⎧⎪⎨=-⎪⎩.故答案为55 2x yxy=+⎧⎪⎨=-⎪⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.14.如图所示是一个圆形飞镖靶的示意图,其中A,B,C,D,E,F是⊙O的六等分点,如果向该飞镖靶上任意投一枚飞镖,则飞镖落在阴影区域的概率是_______.【答案】1 2【解析】【分析】如图,连接ED、BC、AF、OF、OD、OB,由A,B,C,D,E,F是⊙O的六等分点可得六边形ABCDEF 是正六边形,可得S△OFD=S△EFD,S△OBD=S△CBD,S△OFB=S△AFB,弓形阴影部分的面积和=弓形空白部分的面积和,可得图中阴影部分面积=空白部分面积,利用规律公式即可得答案.【详解】如图,连接ED、BC、AF、OF、OD、OB,∵A,B,C,D,E,F是⊙O的六等分点,∴»»»»º»AB BC CD DE EF FA=====,∴AB=BC=CD=DE=EF=FA,∴六边形ABCDEF是正六边形,∴S△OFD=S△EFD,S△OBD=S△CBD,S△OFB=S△AFB,弓形阴影部分的面积和=弓形空白部分的面积和,∴图中阴影部分面积=空白部分面积,∴镖落在阴影区域的概率是:12,故答案为:1 2【点睛】本题考查正六边形的性质、概率计算及弧、弦、圆心角的关系,在同圆或等圆中,弧、弦、圆心角,有一组量相等,其余两组量也相等;概率=所求情况数与总情况数的比.15.在太原迎泽西大街上有一种智能垃圾桶,这种智能垃圾桶不仅可以供行人休息,灯箱边的中部还有USB 接口可供行人充电.此种垃圾桶的侧面示意图如图所示,其中AC∥ED,AB∥EF∥GH,CD=20cm,DE=60cm,EF=100m,GH=80cm,∠CDE=∠EFG=90°,∠DEF=130°,则此种垃圾桶的高度(C到地面的距离)约为________cm.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【答案】233.8【解析】【分析】如图,过点E作EN⊥EF,过点D作MN⊥EN于N,过点C作CM⊥MN于M,可得∠DEN=40°,根据角的和差关系可得∠CDM=∠DEN=40°,利用∠CDM和∠DEN的三角函数可求出MD和DN的长,根据垃圾桶的高度为MD+DN+EF+GH即可得答案.【详解】如图,过点E作EN⊥EF,过点D作MN⊥EN于N,过点C作CM⊥MN于M,∴∠END=90°,∠M=90°,∵∠DEF=130°,∴∠DEN=∠DEF-90°=40°,∵∠CDE=90°,∴∠DEN+∠EDN=90°,∠CDM+∠EDN=90°,∴∠CDM=∠DEN=40°,∵CD=20cm,DE=60cm,∴DM=CD·cos∠CDM≈20×0.77=15.4cm,DN=DE·sin∠DEN≈60×0.64=38.4cm,∴DM+DN+EF+GH=15.4+38.4+80+100=233.8cm,∴此种垃圾桶的高度约为233.8cm.故答案为:233.8【点睛】本题考查解直角三角形的应用,正确构造直角三角形并熟练掌握三角函数的定义是解题关键.三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤) 16.(1)分解因式:()()413x x x -++.(2)计算:22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭【答案】(1)()()22x x +-;(2)1a b-. 【解析】【分析】(1)先利用多项式乘以多项式计算法则展开,合并,再利用平方差公式分解因式即可;(2)先把括号内的式子通分,按照分式加减法法则计算,再根据分式除法法则计算即可.【详解】(1)原式=2343x x x --+=24x -=()()22x x +-. (2)原式=222a b a ab b a a ⎛⎫--+÷ ⎪⎝⎭=()2a b a a a b -⨯- =1a b-. 【点睛】本题考查因式分解及分式的混合运算,熟练掌握平方差公式及分式的运算法则是解题关键.17.已知关于x 的一元二次方程x²-3x+m-2=0有实数根.(1)求m的取值范围;(2)当m为符合条件的最大整数时,求此时方程的解.【答案】(1)m≤174;(2)x1=1,x2=2【解析】【分析】(1)根据一元二次方程根与判别式的关系可得答案;(2)根据(1)中m的取值范围可得出m的值,即可得出此时的方程,解方程即可得答案.【详解】(1)∵关于x的一元二次方程x²-3x+m-2=0有实数根,∴△=(-3)²-4(m-2)=9-4m+8=17-4m≥0,∴m≤174.(2)∵m≤174,m为最大的整数,∴m=4,∴方程为x²-3x+2=0.(x-1)(x-2)=0解得:x1=1,x2=2.∴m为符合条件的最大整数时,方程得根为x1=1,x2=2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式,△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.18.如图,在矩形ABCD中,O为AC的中点,直线EF经过点O,并且与AB交于点E,与DC交于点F,∠DFE=∠BFE.(1)求证:四边形DEBF是菱形;(2)若AD=4,AB=8,则线段EF的长是_______.(直接写出答案即可)【答案】(1)证明见解析;(2)25【分析】(1)根据矩形的性质可得∠OAE=∠OCF ,利用ASA 可证明△AOE ≌△COF ,可得AE=CF ,即可证明BE=DF ,可证明四边形DEBF 是平行四边形,根据∠DFE=∠BFE 及矩形性质可得∠BFE=∠BEF ,即可得出BE=BF ,可得四边形DEBF 是菱形;(2)如图,连接BD ,由矩形的性质可得点O 为BD 中点,根据菱形的性质可得EF ⊥BD ,利用勾股定理可求出BD 的长,设BE=x ,则DE=x ,AE=8-x ,利用勾股定理可求出x 的长,再利用勾股定理即可求出OE 的长,进而可得EF 的长.【详解】(1)∵四边形ABCD 是矩形, ∴DC ∥AB ,DC=AB . ∴∠OAE=∠OCF .∵OA=OC ,∠AOE=∠COF , ∴△AOE ≌△COF , ∴AE=CF , ∴BE=DF ,∴四边形DEBF 是平行四边形, ∵∠DFE=∠BFE ,∠DFE=∠FEB , ∴∠BFE=∠BEF , ∴BE=BF ,∴四边形DEBF 是菱形. (2)如图,连接BD , ∵AB=8,AD=4,∴∵点C 为矩形ABCD 对角线AC 的中点,∴点O 为BD 中点,即OB=12BD= ∵四边形DEBF 是菱形, ∴EF ⊥BD ,EF=2OE , 设BE=x , ∵AB=8,∴DE=BE=x ,AE=8-x ,∴x2=42+(8-x)2,解得:x=5,即BE=5,∴OE=22=5,BE OB∴EF=2OE=25.【点睛】本题考查矩形的性质、菱形的判定与性质及勾股定理,有一组对边平行且相等的四边形是平行四边形;有一组邻边相等的平行四边形是菱形;菱形的对角线互相垂直且平分;矩形的对角线互相平分;熟练掌握相关性质是解题关键.19.某公司招聘一名职员,先对应聘者进行笔试考核,笔试进入前两名的选手再进入面试方面的考核,最终在参加面试的两人中录取一人.该公司将应聘者的笔试成绩划分了4个等级:设应聘者的成绩为x(单位:分),当60≤x<70时为不合格;当70≤x<80时为合格;当80≤x<90时为良好;当90≤x≤100时为优秀.下面是参加笔试的10名应聘者的成绩:86 75 67 86 92 75 82 90 86 78(1)这10名应聘者的笔试成绩的中位数是_______,众数是_______;(2)请将下面表示上述4个等级的统计图补充完整;(3)该公司对进入笔试前两名的甲、乙二人进行了面试考核,面试中包括形体、口才、人际交往、创新能力,他们的成绩(百分制)如下表:面试项目候选人形体口才人际交往创新能力甲 86 90 95 90 乙 95859092如果公司根据经营性质和岗位要求,以面试成绩中形体占10%,口才占20%,人际交往40%,创新能力占30%确定成绩,那么你认为该公司应该录取谁?请通过计算说明理由. 【答案】(1)84;86;(2)见解析;(3)录取甲,理由见解析. 【解析】 【分析】(1)把这组数据从小到大排列,根据中位数和众数的定义即可得答案;(2)根据成绩得出个等级人数,进而求出合格和良好的百分比,据此补全统计图即可; (3)分别计算甲、乙两人的平均成绩,即可得答案.【详解】(1)把这组数据从小到大排列得:67 75 75 78 82 86 86 86 90 92, ∵中间两个数据为82和86, ∴这组数据的中位数是82862=84, ∵这组数据86出现的次数最多, ∴这组数据的众数是86, 故答案为:84;86(2)∵合格的有:75、75、78,共3人,良好的有:82、86、86、86,共4人, ∴合格的百分比为310×100%=30%,良好的百分比为410×100%=40%, ∴补全统计图如下:(3)甲的平均成绩为:86×10%+90×20%+95×40%+90×30%=91.6. 乙的平均成绩为:95×10%+85×20%+90×40%+92×30%=90.1. ∵91.6>90.1,∴应该录取甲.【点睛】本题考查了中位数、众数及加权平均数的计算,熟练掌握相关定义是解题关键.20.阅读下列材料,解决所提的问题:勾股定理a²+b²=c²本身就是一个关于a,b,c的方程,我们知道这个方程有无数组解,满足该方程的正整数解(a,b,c)通常叫做勾股数组.关于勾股数组的研究我国历史上有非常辉煌的成就,根据我国古代数学书《周髀算经》记载,在约公元前1100年,人们就已经知道“勾广三、股修四、径隅五”(古人把较短的直角边称为勾,较长的直角边称为股,而斜边则为弦),即知道了勾股数组(3,4,5).类似地,还可以得到下列勾股数组:(3,4,5),(5,12,13),(7,24,25),(9,40,41),…等等,这些数组也叫做毕达哥拉斯勾股数组.上述勾股数组的规律,可以用下面表格直观表示:观察分析上述勾股数组,可以看出它们具有如下特点:特点1:最小的勾股数的平方等于另两个勾股数的和;特点2:____________________________________.…学习任务:(1)请你再写出上述勾股数组的一个特点:________________;(2)如果n表示比1大的奇数,则上述勾股数组可以表示为(n,______,______)(3)请你证明(2)的结论.【答案】(1)最小的勾股数与比它大1的整数的乘积等于各个勾股数的和;(2)212n-,212n+;(3)见解析.【解析】【分析】(1)由3×4=3+4+5,5×6=5+12+13,7×8=7+24+25,……可得最小的勾股数与比它大1的整数的乘积等于各个勾股数的和,即可得答案;(2)由23142-=,23152+=;251122-=,2512+=13;271242-=,271252+=……可得勾数为大于1的奇数时,股数等于勾数的平方减1的一半,弦数等于勾数的平方加1的一半,即可得答案;(3)根据整式的运算得出n 2+(212n -)2=(212n +)2即可. 【详解】(1)3×4=3+4+5, 5×6=5+12+13, 7×8=7+24+25, ……∴最小的勾股数与比它大1的整数的乘积等于各个勾股数的和.故答案为:最小的勾股数与比它大1的整数的乘积等于各个勾股数的和 (2)23142-=,23152+=, 251122-=,2512+=13, 271242-=,271252+=, ……∴股数等于勾数的平方减1的一半,弦数等于勾数的平方加1的一半,∴勾数为大于1的奇数时,股数等于勾数的平方减1的一半,弦数等于勾数的平方加1的一半,∴n 为比1大的奇数时,上述勾股数组可以表示为(n ,212n -,212n +)故答案为:212n -,212n +(3)∵22422212124n n n n n ⎛⎫--++=+⎪⎝⎭=2424214n n n +-+。

2020年中考数学模拟试卷(二)含答案

2020年中考数学模拟试卷(二)含答案

2020年中考数学模拟试卷(二)一、选择题(本大题共16小题,1-10小题每题3分,11-16题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3B.﹣1C.1D.32.(3分)下列说法正确的是()A.1的相反数是﹣1B.1的倒数是﹣1C.1的立方根是±1D.﹣1是无理数3.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a5•a3=a8B.3690000=3.69×107C.(﹣2a)3=﹣6a3D.20160=05.(3分)如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为()A.100°B.110°C.120°D.130°6.(3分)如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C7.(3分)如图,四边形ABCD内接于⊙O,已知∠ADC=150°,则∠AOC的大小是()A.75°B.100°C.60°D.30°8.(3分)某件品牌上衣经过两次降价,每件零售价由1000元降为810元.已知两次降价的百分率都为x,那么x满足的方程是()A.1000(1+x)2=810B.1000x2=810C.1000(1﹣x%)2=810D.1000(1﹣x)2=8109.(3分)在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC10.(3分)已知甲、乙两地相距30千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t (单位:小时)关于行驶速度v(单位:千米/小时)的函数图象为()A.B.C.D.11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1C.2a+b=﹣1D.2a+b=1 12.(2分)如果不等式组的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥213.(2分)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.B.C.D.14.(2分)如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.折叠后∠ABE和∠CBD一定相等B.△EBD是等腰三角形,EB=EDC.折叠后得到的整个图形是轴对称图形D.△EBA和△EDC一定是全等三角形15.(2分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O 16.(2分)在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点O为边AB上一点(不与A 重合)⊙O是以点O为圆心,AO为半径的圆.当⊙O与三角形边的交点个数为3时,则OA的范围()A.0<OA≤或2.5≤OA<5B.0<OA或OA=2.5C.OA=2.5D.OA=2.5或二、填空题:(共3小题.第17题3分,18、19题每空2分,共11分,请把答案填写在答题纸的横线上)17.(3分)因式分解:a2b﹣b=.18.(4分)如图,在平面直角坐标系中,A(6,0),B(0,2),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为.扇形BAC的面积为.19.(4分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,2)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,则点B1的纵坐标为,然后以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt △B2019A2020B2020,则点B2020的纵坐标为.三、解答题:(本大题共6小题,共47分.解答应写出必要的文字说明、证明过程或演算步骤)20.(5分)在学习了实数的混合运算后,老师在黑板上出了如下两道题目:①3□=3×△2;②7□=7×△2.在上述两个等式中,“□”和“△”分别是“+﹣×÷”中的某一个运算符号.(1)判断“□”和“△”分别是什么运算符号?(2)若a□7>a×7△2,求a的取值范围.21.(6分)已知:如图,AD⊥BC,垂足为D,AD=BD,点E在AD上,∠CED=45°,(1)请写出图中相等的线段:.(不包括已知条件中的相等线段)(2)猜想BE与AC的位置关系,并说明理由.22.(7分)某校九年级有1500名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个不完整的统计图.请根据相关信息,解答下列问题:(1)本次参加跳绳测试的学生人数为,图1中m的值为;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?23.(8分)某地区一种商品的需求量y1(万件)、供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=﹣x+60,y2=2x﹣36.需求量为0时,即停止供应.当y1=y2时,该商品的价格称为稳定价格,需求量称为稳定需求量.(1)求该商品的稳定价格与稳定需求量;(2)价格在什么范围,该商品的需求量低于供应量;(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?24.(10分)如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.25.(11分)如图,在矩形ABCD中,AB=4,BC=3.点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA 方向以每秒2个单位长度的速度运动,设运动时间为t秒.以P为圆心,PC长为半径作半圆P,交直线AB分别于点G,H(点G在点H的左侧).(1)当t=1秒时,PC的长为,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,请直接写出扇形HPC的弧长为.2020年中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共16小题,1-10小题每题3分,11-16题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3B.﹣1C.1D.3解:比2大的数是3.故选:D.2.(3分)下列说法正确的是()A.1的相反数是﹣1B.1的倒数是﹣1C.1的立方根是±1D.﹣1是无理数解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.3.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A.B.C.D.解:从左面可看到从左往右2列小正方形的个数依次为:2,1.故选:A.4.(3分)下列运算正确的是()A.a5•a3=a8B.3690000=3.69×107C.(﹣2a)3=﹣6a3D.20160=0解:A、结果是a8,故本选项符合题意;B、结果是3.69×106,故本选项不符合题意;C、结果是﹣8a3,故本选项不符合题意;D、结果是1,故本选项不符合题意;故选:A.5.(3分)如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为()A.100°B.110°C.120°D.130°解:∵AB∥CD,∴∠ABC=∠C=35°,∵CB平分∠ABD,∴∠ABD=2∠ABC=2×35°=70°,∵AB∥CD,∴∠D=180°﹣∠ABD=180°﹣70°=110°.故选:B.6.(3分)如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C解:∵6.25<8<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选:A.7.(3分)如图,四边形ABCD内接于⊙O,已知∠ADC=150°,则∠AOC的大小是()A.75°B.100°C.60°D.30°解:∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∵∠ADC=150°∴∠B=180°﹣150°=30°.∴∠AOC=2∠B=60°.故选:C.8.(3分)某件品牌上衣经过两次降价,每件零售价由1000元降为810元.已知两次降价的百分率都为x,那么x满足的方程是()A.1000(1+x)2=810B.1000x2=810C.1000(1﹣x%)2=810D.1000(1﹣x)2=810解:设两次降价的百分率均是x,由题意得:x满足方程为1000(1﹣x)2=810.故选:D.9.(3分)在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC解:A,不能,只能判定为矩形;B,不能,只能判定为平行四边形;C,能;D,不能,只能判定为菱形.故选:C.10.(3分)已知甲、乙两地相距30千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t (单位:小时)关于行驶速度v(单位:千米/小时)的函数图象为()A.B.C.D.解:由题意可得:t=,当t=1时,v=30,故只有选项D符合题意.故选:D.11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1C.2a+b=﹣1D.2a+b=1解:由作法得OP为第二象限的角平分线,所以2a+b+1=0,即2a+b=﹣1.故选:C.12.(2分)如果不等式组的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥2解:解第一个不等式得,x<2,∵不等式组的解集是x<2,∴m≥2,故选:D.13.(2分)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.B.C.D.解:∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是=.故选:A.14.(2分)如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.折叠后∠ABE和∠CBD一定相等B.△EBD是等腰三角形,EB=EDC.折叠后得到的整个图形是轴对称图形D.△EBA和△EDC一定是全等三角形解:∵四边形ABCD为矩形,∴∠A=∠C,AB=CD,AD∥BF,在△EBA和△EDC中,∴△AEB≌△CED(AAS)(故D选项正确,不合题意)∴BE=DE,△EBD是等腰三角形(故B选项正确,不合题意),∠ABE=∠CBD(故A选项不正确,符合题意)∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确,不合题意)故选:A.15.(2分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O解:A、从A点到O点y随x增大一直减小,从O到B先减小后增发,故A不符合题意;B、从B到A点y随x的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在A点距离最大,故B不符合题意;C、从B到O点y随x的增大先减小再增大,从O到C点y随x的增大先减小再增大,在B、C点距离最大,故C符合题意;D、从C到M点y随x的增大而减小,一直到y为0,从M点到B点y随x的增大而增大,明显与图象不符,故D不符合题意;故选:C.16.(2分)在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点O为边AB上一点(不与A 重合)⊙O是以点O为圆心,AO为半径的圆.当⊙O与三角形边的交点个数为3时,则OA的范围()A.0<OA≤或2.5≤OA<5B.0<OA或OA=2.5C.OA=2.5D.OA=2.5或解:如右图所示,当圆心从O1到O3的过程中,⊙O与三角形边的交点个数为3,当恰好到达O3时则变为4个交点,作O3D⊥BC于点D,则∠O3BD=∠ABC,∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,设O3A=a,则O3B=5﹣a,∴,得a=,∴当0<OA时,⊙O与三角形边的交点个数为3,当点O为AB的中点时,⊙O与三角形边的交点个数为3,此时OA=2.5,由上可得,0<OA或OA=2.5时,⊙O与三角形边的交点个数为3,故选:B.二、填空题:(共3小题.第17题3分,18、19题每空2分,共11分,请把答案填写在答题纸的横线上)17.(3分)因式分解:a2b﹣b=b(a+1)(a﹣1).解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).18.(4分)如图,在平面直角坐标系中,A(6,0),B(0,2),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(6﹣4,0),.扇形BAC 的面积为4π.解:由题意得,OB=2,OA=6,∴AB===4,则AC=4,∴OC=AC﹣OA=4﹣6,∴点C坐标为(6﹣4,0),∵tan A===,∴∠A=30°,∴S扇形ABC==4π,故答案为:(6﹣4,0),4π.19.(4分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,2)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,则点B1的纵坐标为4,然后以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2019A2020B2020,则点B2020的纵坐标为22021.解:由已知可知点A、A1、A2、A3……A2020各点在正比例函数y=x的图象上点B、B1、B2、B3……B2020各点在正比例函数y=x的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为x①当A(B)点横坐标为时,由①AB=1,则BA1=,则点A1横坐标为=2,B1点纵坐标为=4=22;当A1(B1)点横坐标为,由①A1B1=2,则B1A2=2;则点A2横坐标为2=4,B2点纵坐标为=8=23;当A2(B2)点横坐标为4,由①A2B2=4,则B2A3=4,则点A3横坐标为4=8,B3点纵坐标为=16=24;依稀类推点B2020的纵坐标为22021故答案为4,22021.三、解答题:(本大题共6小题,共47分.解答应写出必要的文字说明、证明过程或演算步骤)20.(5分)在学习了实数的混合运算后,老师在黑板上出了如下两道题目:①3□=3×△2;②7□=7×△2.在上述两个等式中,“□”和“△”分别是“+﹣×÷”中的某一个运算符号.(1)判断“□”和“△”分别是什么运算符号?(2)若a□7>a×7△2,求a的取值范围.解:(1)∵①3﹣=3×+2;②7﹣=7×+2;∴上述两个等式中,“□”表示“﹣”,“△”表示“+”;(2)∵a□7=a×7△2,∴a﹣7>7a+2,解得a<﹣1.5.21.(6分)已知:如图,AD⊥BC,垂足为D,AD=BD,点E在AD上,∠CED=45°,(1)请写出图中相等的线段:DE=DC,BE=AC.(不包括已知条件中的相等线段)(2)猜想BE与AC的位置关系,并说明理由.解:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠CED=45°,∴∠ECD=45°,∴∠ECD=∠CED,∴DE=DC,在△BDE和△ADC中∴△BDE≌△ADC(SAS)∴BE=AC,由上可得,图中相等的线段:DE=DC,BE=AC,故答案为:DE=DC,BE=AC;(2)BE与AC的位置关系是互相垂直,理由:由(1)知,△BDE≌△ADC,则∠DBE=∠DAC,∵∠EDB=90°,∴∠DBE+∠DEB=90°,∵∠DEB=∠AEF,∴∠DBE+∠AEF=90°,∴∠DAC+∠AEF=90°,∴∠AFE=90°,∴BF⊥AC,即BE与AC的位置关系是互相垂直.22.(7分)某校九年级有1500名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个不完整的统计图.请根据相关信息,解答下列问题:(1)本次参加跳绳测试的学生人数为500,图1中m的值为10;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?解:(1)本次参加跳绳测试的学生人数为100÷20%=500(人),m%=×100%=10%,即m=10;故答案为:500,10;(2)3分的人数有500﹣100﹣250﹣100=50人,平均数是:(100×2+50×3+250×4+100×5)=3.7(分),∵4分出现的次数最多,出现了250次,∴众数是:4分;把这些数从小到大排列,则中位数是:4分;(3)该校九年级跳绳测试中得3分的学生约有:1500×10%=150(人).23.(8分)某地区一种商品的需求量y1(万件)、供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=﹣x+60,y2=2x﹣36.需求量为0时,即停止供应.当y1=y2时,该商品的价格称为稳定价格,需求量称为稳定需求量.(1)求该商品的稳定价格与稳定需求量;(2)价格在什么范围,该商品的需求量低于供应量;(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?解:(1)当y1=y2时,有﹣x+60=2x﹣36.∴x=32,此时﹣x+60=28,所以该商品的稳定价格为32元/件,稳定需求量为28万件;(2)因为“需求量为0时,即停止供应”,∴当y1=0时,有x=60,又﹣x+60<2x﹣36解得:x>32,∴当价格大于32元/件而小于60元/件时,该商品的需求量低于供应量;(3)设政府部门对该商品每件应提供a元补贴.根据题意,得方程组解这个方程组,得.所以,政府部门对该商品每件应提供6元的补贴.24.(10分)如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)由已知可求B(6,0),C(0,4),将点B(6,0),C(0,4)代入y=﹣+bx+c,则有,解得,∴y=﹣x2+x+4,令y=0,则﹣x2+x+4=0,解得x=﹣1或x=6,∴A(﹣1,0);(2)∵点D在抛物线上,且横坐标为3,∴D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;∴E(0,8),F(6,8),∴S△BCD=S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF =×(4+8)×6﹣×4×3﹣×3×8=36﹣6﹣12=18;(3)设P(m,﹣m2+m+4),∵PQ垂直于x轴,∴Q(m,0),且∠PQO=90°,∵∠COB=90°,∴点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△P AQ∽△CBO时,==,∴=,解得m=5或m=﹣1,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=5,∴P(5,4);②△P AQ∽△BCO时,==,∴=,解得m=﹣1或m=,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=,∴P(,);综上所述:P(5,4)或P(,)时,点A、P、Q为顶点的三角形与△BOC相似.25.(11分)如图,在矩形ABCD中,AB=4,BC=3.点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒2个单位长度的速度运动,设运动时间为t秒.以P为圆心,PC长为半径作半圆P,交直线AB分别于点G,H(点G在点H的左侧).(1)当t=1秒时,PC的长为,t=秒时,半圆P与AD相切;(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;(3)若∠MCP=15°,请直接写出扇形HPC的弧长为π或π.解:(1)当t=1秒时,PQ=2,∴BP=BQ﹣PQ=2,在Rt△BCP中,BP=2,BC=3,∴PC==,设当半圆P与AD相切时,BP=x,则PC=P A=4﹣x,∴x2+32=(4﹣x)2,解得:x=,∴PQ=4+=,∴当t=时,半圆P与AD相切;故答案为:;;(2)过点B作BE⊥AC于点E,如图2所示.∵AB=4,BC=3,∴AC==5,∴BE==.在Rt△BCE中,BC=3,BE=,∴CE==,∴半圆P被矩形ABCD的对角线AC所截得的弦长为×2=;(3)分两种情况考虑,如图3所示:①当点P在点M的右侧时,∵∠CMB=45°,∠MCP=15°,∴∠MCB=45°,∠PCB=30°,∴∠CPB=60°,CP===2,∴扇形HPC的弧长为=π;②当点P在点M的左侧时,∵∠MCB=45°,∠MCP=15°,∴∠PCB=∠MCB+∠MCP=60°,∴∠CPB=30°,CP===6,∴扇形HPC的弧长为=π,综上所述,若∠MCP=15°,扇形HPC的弧长为π或π,故答案为:π或π.。

2020年中考数学二模试卷(含解析) (2)

2020年中考数学二模试卷(含解析) (2)

2020年中考数学二模试卷一、选择题1.下列四个数中,是正整数的是()A.﹣1B.0C.D.12.下列图形中不具有稳定性是()A.B.C.D.3.分式﹣可变形为()A.﹣B.C.﹣D.4.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°5.计算:cos245°+sin245°=()A.B.1C.D.6.下列各式中,不能用平方差公式计算的是()A.(﹣x﹣y)(x﹣y)B.(x﹣y)(﹣x+y)C.(x+y)(﹣x+y)D.(﹣x+y)(﹣x﹣y)7.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点8.如图,在长方形ABCD中,AB=4,AD=5,E为AB的中点,点F,G分别在CD,AD 上,△EFG为等腰直角三角形,则四边形BCFE的面积为()A.10B.9C.D.9.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差10.解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=411.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<512.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.13.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,30分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.海里/小时B.15海里/小时C.里/小时D.30海里/小时14.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个()A.400B.401C.402D.40315.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y=在第二四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点连接OQ,当S△ODQ=S△OCD时,b的值是()A.﹣1B.C.D.16.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=3x2B.y=4x2C.y=8x2D.y=9x2二、填空题(本大题有3个小题,共12分,17~18小题各3分;19小题有2个空,每空3分,把答案写在题中横线上)17.已知点P(3﹣m,m)在第二象限,则m的取值范围是.18.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.19.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右数第5个阴影三角形的面积是,第2019个阴影三角形的面积是.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:=======﹣1以上这种化简的步骤叫做分母有理化.(1)化简(2)化简.(3)化简:+++…+.21.某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.(1)参加考试的人数是,扇形统计图中D部分所对应的圆心角的度数是,请把条形统计图补充完整;(2)若公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为A等级的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率.(精确到0.01,=2.236)22.如图,某公路局施工队要修建一条东西方向的公路MN,已知C点周围100米范围内为古建筑保护群,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走400米到达B处,测得C在点B的北偏西60°方向上.(参考数据:≈1.414,≈1.732)(1)MN是否穿过古建筑保护群?为什么?(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高20%,则原计划完成这项工程需要多少天?23.一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=.△OAB的外接圆的圆心M的横坐标为﹣3.(1)求一次函数的解析式;(2)求图中阴影部分的面积.24.已知,在△ABC中,∠A=90°,AB=AC=4,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,试探BE和AF的数量关系;并说明四边AEDF的面积是定值吗?若是,请求出;若不是,请说明理由.(2)若E、F分别AB、CA延长线上的点,DE⊥DF,那BE=AF吗?请利用图②说明理由.25.实践操作如图1,将矩形纸ABCD沿对角线AC翻折,使B′落在矩形ABCD所在平面内,B′C 和AD相交于E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为;②△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;拓展应用(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为.26.如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.参考答案一、选择题(本大题共16个小题,共42分,1~10小题,每小题3分;11~16小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数中,是正整数的是()A.﹣1B.0C.D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.解:A、﹣1是负整数,故选项错误;B、0是非正整数,故选项错误;C、是分数,不是整数,错误;D、1是正整数,故选项正确.故选:D.2.下列图形中不具有稳定性是()A.B.C.D.【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然B选项中有四边形,不具有稳定性.故选:B.3.分式﹣可变形为()A.﹣B.C.﹣D.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.解:﹣=﹣=,故选:D.4.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A.80°B.90°C.100°D.105°【分析】根据题意得出∠FBD的度数以及∠FBC的度数,进而得出答案.解:由题意可得:AN∥FB,EC∥BD,故∠NAB=∠FBD=75°,∵∠CBF=25°,∴∠CBD=100°,则∠ECB=180°﹣100°=80°.故选:A.5.计算:cos245°+sin245°=()A.B.1C.D.【分析】首先根据cos45°=sin45°=,分别求出cos245°、sin245°的值是多少;然后把它们求和,求出cos245°+sin245°的值是多少即可.解:∵cos45°=sin45°=,∴cos245°+sin245°===1.故选:B.6.下列各式中,不能用平方差公式计算的是()A.(﹣x﹣y)(x﹣y)B.(x﹣y)(﹣x+y)C.(x+y)(﹣x+y)D.(﹣x+y)(﹣x﹣y)【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.解:A、(﹣x﹣y)(x﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项错误;B、(x﹣y)(﹣x+y)不符合平方差公式的特点,不能用平方差公式进行计算,故本选项正确.C、(x+y)(﹣x+y)符合平方差公式的特点,能用平方差公式计算,故本选项错误;D、(﹣x+y)(﹣x﹣y)符合平方差公式的特点,能用平方差公式进行计算,故本选项错误.故选:B.7.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选:D.8.如图,在长方形ABCD中,AB=4,AD=5,E为AB的中点,点F,G分别在CD,AD 上,△EFG为等腰直角三角形,则四边形BCFE的面积为()A.10B.9C.D.【分析】首先根据等腰三角形的性质证得△AEG≌△DGF,从而得到AE=DG=6,AG =DF=8,两次利用勾股定理求得结论即可.解:∵△GEF为等腰直角三角形,∴GE=GF,∠EGF=90°,∴∠AGE+∠DGF=90°,∵∠AEG+∠AGE=90°,∴∠AEG=∠DGF,∴△AEG≌△DGF(AAS),∴AE=GD,AG=DF,∵AB=4,AD=5,E为AB的中点,∴DG=AE=2,AG=DF=AD﹣DG=3,∴CF=CD﹣DF=4﹣3=1,∴S四边形BCFE=(2+1)×5=,故选:D.9.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.解:A、原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D、原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选:D.10.解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=4【分析】分式方程去分母转化为整式方程,即可作出判断.解:去分母得:1﹣3(x﹣2)=﹣4,故选:B.11.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<5【分析】先把a看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.解:由>1得,x>,由>0得,x>﹣,∵关于x的不等式>1的解都是不等式>0的解,∴≥﹣,解得a≤5.即a的取值范围是:a≤5.故选:C.12.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C是符合要求的.解:观察选项可得:只有C是轴对称图形.故选:C.13.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,30分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.海里/小时B.15海里/小时C.里/小时D.30海里/小时【分析】易得△ABC是直角三角形,利用三角函数的知识即可求得答案.解:∵∠CAB=10°+20°=30°,∠CBA=80°﹣20°=60°,∴∠C=90°,∵AB=10海里,∴AC=AB•cos30°=15(海里),∴救援船航行的速度为:15÷=30(海里/小时).故选:D.14.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个()A.400B.401C.402D.403【分析】由第1个图形有9个面积为1的小正方形,第2个图形有9+5=14个面积为1的小正方形,第3个图形有9+5×2=19个面积为1的小正方形,…由此得出第n个图形有9+5×(n﹣1)=5n+4个面积为1的小正方形,由此求得答案即可.解:第1个图形面积为1的小正方形有9个,第2个图形面积为1的小正方形有9+5=14个,第3个图形面积为1的小正方形有9+5×2=19个,…第n个图形面积为1的小正方形有9+5×(n﹣1)=5n+4个,根据题意得:5n+4=2019,解得:n=403.故选:D.15.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y=在第二四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点连接OQ,当S△ODQ=S△OCD时,b的值是()A.﹣1B.C.D.【分析】根据待定系数法求出反比例函数的解析式,由直线y=﹣x+b(b≠0)表示出C (b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.解:∵反比例函数y=的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4,∴反比例函数为y=﹣,在直线y=﹣x+b(b≠0)中,当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b=(舍去),∴b的值为﹣,故选:B.16.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=3x2B.y=4x2C.y=8x2D.y=9x2【分析】设正方形的边长为a,易证四边形AFCE是平行四边形,所以四边形EHFG是矩形,由锐角三角函数可知,从而可用x表示出EG,从而可求出y与x之间的关系式;解:设正方形的边长为2a,∴BC=2a,BE=a,∵E、F分别是AB、CD的中点,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∴AF∥CE,∵EG⊥AF,FH⊥CE,∴四边形EHFG是矩形,∵∠AEG+∠BEC=∠BCE+∠BEC=90°,∴∠AEG=∠BCE,∴tan∠AEG=tan∠BCE,∴=,∴EG=2x,∴由勾股定理可知:AE=x,∴AB=BC=2x,∴CE=5x,易证:△AEG≌△CFH,∴AG=CH,∴EH=EC﹣CH=4x,∴y=EG•EH=8x2,故选:C.二、填空题(本大题有3个小题,共12分,17~18小题各3分;19小题有2个空,每空3分,把答案写在题中横线上)17.已知点P(3﹣m,m)在第二象限,则m的取值范围是m>3.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数列出不等式组,求解即可.解:∵点P(3﹣m,m)在第二象限,∴解得:m>3;故答案为:m>3.18.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为﹣6.【分析】根据提公因式法和完全平方公式可以将所求式子因式分解,然后根据a+b=﹣1,ab=﹣6,即可求得所求式子的值.解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.19.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右数第5个阴影三角形的面积是29,第2019个阴影三角形的面积是24037.【分析】根据一次函数图象上点的坐标特征结合等腰直角三角形的性质,即可得出OA1、A2B1、A3B2、A4B3的值,根据边的长度的变化即可找出变化规律“A n+1B n=B n B n+1=2n+1”,再根据三角形的面积即可得出S n+1=×(2n+1)2=22n+1,分别代入n=4、2018即可求出结论.解:当x=0时,y=x+2=2,∴OA1=OB1=2;当x=2时,y=x+2=4,∴A2B1=B1B2=4;当x=2+4=6时,y=x+2=8,∴A3B2=B2B3=8;当x=6+8=14时,y=x+2=16,∴A4B3=B3B4=16.∴A n+1B n=B n B n+1=2n+1,∴S n+1=×(2n+1)2=22n+1.当n=4时,S5=22×4+1=29;当n=2018时,S2019=22×2018+1=24037.故答案为:29,24037;三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:=======﹣1以上这种化简的步骤叫做分母有理化.(1)化简(2)化简.(3)化简:+++…+.【分析】(1)分子分母分别乘即可;(2)分子分母分别乘﹣即可;(3)分母有理化后,合并同类二次根式即可;解:(1)==(2)化简==﹣(3)化简:+++…+=(﹣1+﹣+﹣+…+﹣)=(﹣1)21.某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.(1)参加考试的人数是50,扇形统计图中D部分所对应的圆心角的度数是36,请把条形统计图补充完整;(2)若公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为A等级的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率.(精确到0.01,=2.236)【分析】(1)根据A等级的人数和所占的百分比求出总人数;用D等级所占的百分比乘以360°即可求出D部分所对应的圆心角的度数;用总人数减去其它等级的人数,求出C等级的人数,从而补全统计图;(2)用A等级的人数除以总人数即可得出所选人员考核为A等级的概率;(3)设平均每年的增长率是x,根据两年内考核A等级的人数达到30人列出方程,然后求解即可.解:(1)参加考试的人数是:24÷48%=50人;扇形统计图中D部分所对应的圆心角的度数是:360°×=36°;C等级的人数是:50﹣24﹣15﹣5=6人,补图如下:故答案为:50,36;(2)因为参考人数是50,考核为A等级的人数是24,∴P(考核为A等级)==;(3)设增长率是x,依题意列方程得:24(1+x)2=30,解得:x1=﹣1+≈0.12,x2=﹣1﹣(舍去),答:每年增长率为12%.22.如图,某公路局施工队要修建一条东西方向的公路MN,已知C点周围100米范围内为古建筑保护群,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走400米到达B处,测得C在点B的北偏西60°方向上.(参考数据:≈1.414,≈1.732)(1)MN是否穿过古建筑保护群?为什么?(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高20%,则原计划完成这项工程需要多少天?【分析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.解:(1)不穿过.理由:过点C作CH⊥AB于H,设CH=x,由已知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBH=30°,在Rt△ACH中,AH=CH=x,在Rt△BCH中,,∴,∴整理化简得,解得米>100米,∴MN不会穿过古建筑保护群;(2)设原计划完成这项工程需要y天,则实际完成工程需要(y﹣5)天.根据题意得:,解得:y=30,经检验:y=30是原方程的根,答:原计划完成这项工作需要30天.23.一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=.△OAB的外接圆的圆心M的横坐标为﹣3.(1)求一次函数的解析式;(2)求图中阴影部分的面积.【分析】(1)由垂径定理得:点N为OB的中点,MN=OA,则OA=6,即A(﹣6,0),而sin∠ABO=,OA=6,则B(0,),即可求解;(2)NB=OB=,MN=3,tan∠BMN==,则∠BMN=30°,则∠ABO=60°,即∠AMO=120°,即可求解.解:(1)过点M作MN⊥BO于点N,由垂径定理得:点N为OB的中点,∴MN=OA,∵MN=3,∴OA=6,即A(﹣6,0),∵sin∠ABO=,∴∠ABO=60°,∵OA=6,∴OB===,即B(0,),设y=kx+b,将A、B代入得:,(2)NB=OB=,MN=3,tan∠BMN==,则∠BMN=30°,∴∠ABO=60°,∴∠AMO=120°∴阴影部分面积为.24.已知,在△ABC中,∠A=90°,AB=AC=4,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,试探BE和AF的数量关系;并说明四边AEDF的面积是定值吗?若是,请求出;若不是,请说明理由.(2)若E、F分别AB、CA延长线上的点,DE⊥DF,那BE=AF吗?请利用图②说明理由.【分析】(1)连接AD.证明△BDE≌△ADF(ASA),得出BE=AF;四边形AEDF的面积是定值,总为4.(2)连接AD,证明△EDB≌△FDA(ASA),得出BE=AF.【解答】(1)证明:如图①所示,连接AD.∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴,∠FAD=45°,∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;∵△BDE≌△ADF,∴S△ADF=S△BDE,∴,∴四边形AEDF的面积是定值,总为4.(2)解:BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.25.实践操作如图1,将矩形纸ABCD沿对角线AC翻折,使B′落在矩形ABCD所在平面内,B′C 和AD相交于E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为BD'∥AC;②△AEC剪下后展开,得到的图形是菱形;(2)若图1中的矩形变为平行四边形(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;拓展应用(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为1:1或.【分析】(1)由平行线的性质和折叠的性质可得∠DAC=∠ACE,证得ED=EB',可得∠ADB'=∠ACE=∠DAC,可得AC∥B'D;由菱形的定义可求解;(2)证明∠ADB'=∠DAC,可证得结论①,证明△AEC是等腰三角形,可得出结论②;(3)①当AB:AD=1:1时,符合题意.②当AD:AB=时,也符合题意.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠B=∠ADC=90°,∴∠DAC=∠ACB,∵将矩形纸片ABCD沿对角线AC翻折,∴∠AB'C=∠B=90°,∠ACB=∠ACE,BC=CB',∴∠DAC=∠ACE,∴AE=EC,∵AD=BC,∴CB'=AD,∴ED=EB',∴∠EDB'=∠EB'D,∵∠AEC=∠DEB',∴∠ADB'=∠DAC,∴B'D∥AC,∵将△AEC剪下后展开,AE=EC,∴展开图形是四边相等的四边形,∴展开图形是菱形,故答案为:B'D∥AC;菱形;(2)若选择①,证明如下:∵四边形ABCD是平行四边形,∴AD=BC,∵将△ABC沿AC翻折至△AB'C,∴B'C=BC,∴B'C=AD,∴B'E=DE,∴∠CB'D=∠ADB',∵∠AEC=∠B'ED,∠ACB'=∠CAD,∴∠ADB'=∠DAC,∴B'D∥AC;若选择②,证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵将△ABC沿AC翻折至△AB'C,∴∠ACB'=∠ACB,∴∠DAC=∠ACB',∴AE=CE,∴△AEC是等腰三角形;∴将△AEC剪下后展开,得到的图形四边相等,∴将△AEC剪下后展开,得到的图形是菱形.(3)如图,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.综上,矩形纸片ABCD的长宽之比是1:1或:1.故答案为:1:1或:1.26.如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.【分析】(1)抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),代入可求出抛物线的解析式,点D在抛物线上且横坐标为﹣2,可求点D的坐标,根据A、D两点坐标,用待定系数法可求直线AD的解析式;(2)点P在AD上,点Q在抛物线上,当横坐标为m时,相应的纵坐标可以根据解析式表示出来,而PQ的长l就是P点、Q点纵坐标的差,于是可以得到l与m的函数关系式,再依据函数的最值,可求m为何值时,PQ最长,PQ的最大值也能求出;(3)使P,Q,D,R为顶点的四边形是平行四边形,可以分两种情况:一是PQ为一边时,点R必在直线x=﹣2上,再根据PQ为最大值以下的整数值,得到PQ的整数值,在直线x=﹣2上可以找到点R的位置,确定点R的坐标,得出在点D上方存在,在点D 下方也存在;二是PQ为一条对角线时,根据平行四边形的性质,PQ与DR互相平分,此时R与C重合.解:(1)将A(1,0),B(﹣3,0)代入y=ax2+bx﹣3得:解得:∴抛物线的解析式为:y=x2+2x﹣3,当x=﹣2时,y=(﹣2)2﹣4﹣3=﹣3,∴D(﹣2,﹣3),设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入得:解得:∴直线AD的解析式为y=x﹣1;因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣3.(2)∵点P在直线AD上,Q抛物线上,P(m,n),∴n=m﹣1 Q(m,m2+2m﹣3)∴PQ的长l=(m﹣1)﹣(m2+2m﹣3)=﹣m2﹣m+2 (﹣2≤m≤1)∴当m=时,PQ的长l最大=﹣()2﹣()+2=.答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2 (﹣2≤m≤1)当m=时,PQ最长,最大值为.(3)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:∵PQ的长为0<PQ≤的整数,∴PQ=1或PQ=2,当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);当PQ=2时,则DR=2,此时,在点D上方有R3(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,当PQ=1时,即:x﹣1﹣(x2+2x﹣3)=1,此时x不是整数,当PQ=2时,即x﹣1﹣(x2+2x﹣3)=2,此时x1=﹣1,x2=0;当x1=﹣1,R与点C 重合,即R5(0,﹣3),当x2=0;此时R6(2,﹣1)综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣3),R6(2,﹣1).答:符合条件的点R共有6个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣3)R6(2,﹣1).。

六年级下册数学试题-2020年西安某远东一中入学数学模拟卷(二)人教版 (含答案)

六年级下册数学试题-2020年西安某远东一中入学数学模拟卷(二)人教版 (含答案)

2020年西安某远东一中入学数学模拟卷(二)一、填空题(每题2分,共30分)1.大西洋的面积是135636000平方千米,这个数读作__________,把这个数改写成用“亿”为单位的数是__________平方千米(保留一位小数). 【答案】一亿三千五百六十三万六千;1.4亿【解析】要读出一个大数,按照四位一级先划分数级,这个数可以划分为135636000,然后分级来读,亿级部分读作一亿,万级部分读作三千五百六十三万,个级部分读作六千,合起来就是一亿三千五百六十三万六千;改写为用“亿”为单位的数,在亿位的后面加上小数点,也就是说135636000 1.35636=亿,保留一位小数,那么看小数点后面的第二位数字,第二位数字是5,可以进位,因此,135636000 1.4≈亿.2.在58,0.65,916,1318这四个数中最大的数是__________,最小的数是__________.【答案】1318;916【解析】比较大小和分数的大小,观察到题目中几个分数的分母不容易通分,直接把分数化成小数,再按照小数的大小比较方法进行比较.50.6258=,90.562516=,130.7218≈,因此最大的数是1318,最小的数是916.3.张叔叔买了4.5千克梨和3千克苹果,总价都是40.50元,梨和苹果质量的最简整数比是__________,单价的最简整数比是__________. 【答案】3:2;2:3【解析】质量的比是4.5:33:2=;单位的比是(40.5 4.5):(40.53)2:3÷÷=.4.用含有字母的式子表示如图组合图形的周长L =__________;面积S =__________.【答案】()2a b c ++⨯;ab bc +【解析】计算图中组合图形的周长,可以把凹进去的部分,也就是水平和竖直的两条线段平移到边上,正好组成一个一边长a ,另一边长为b c +的长方形,周长为()2a b c ++⨯;图形的面积可以分成上下两个长方形,上面的长方形长是a ,宽是b ,面积为ab ;下面的长方形长是b ,宽是c ,面积为bc ,因此组合图形的面积为ab bc +.5.如图,如果圆的直径是8cm ,则阴影部分的面积是__________.ba bc【答案】218.24cm【解析】观察图形,可以发现阴影部分的面积可以用一个圆的面积减去一个正方形的面积算出,圆的直径是8cm ,则半径8 2 4(cm)÷=,所以圆的面积为223. 14450(). 24cm ⨯=;再计算正方形的面积,正方形可以看作是两个三角形组成,每个三角形的底是8cm ,高是4cm ,因此正方形的面积为2844232(cm )⨯÷⨯=,则阴影部分的面积为250.243218.24(cm )-=.6.下图是两块同样的长方体木块,其中一个长方形的体积是__________3cm ;如果把它们拼成表面积最小的长方体,则拼成的长方体的表面积是__________2cm ,如果拼成表面积最大的长方形,其表面积减少了__________2cm .【答案】60;148;24【解析】长方体的体积为354360(cm )⨯⨯=;两个这样的长方体要拼成表面积最小的大长方体,那么相 邻的面必须是面积最大的面,因此组成的大长方体的长为3(cm) 3 6+=,宽是4cm ,高是5cm ,表面积为:264265245148(cm )⨯⨯+⨯⨯+⨯⨯=;要拼成表面积最大的长方体,那么相邻的面必须是面积 最小的面,也就是34⨯这个面,因此表面积减少了234224(cm )⨯⨯=.7.下表是某餐厅一星期的盈亏情况记录表. (盈为正)期该餐厅是__________.(填“盈亏”或“亏损”) 【答案】2;五;盈利【解析】盈利为正,那么亏损的用负数表示,观察表格,可以发现周二和周五是亏损的,因此共有2天是亏损的;周二亏损了1000元,周五亏损了5000元,因此,周五亏损最多;20001000100010005000500060009000-++-++=(元),因此这个星期餐厅是盈利的.8.一袋大米,吃了25,剩下的比吃了的多5千克,还剩__________千克.【答案】5【解析】吃了25,那么剩了23155-=.剩余的比吃了的多321555-=,也就是说5千克就是全部大米的15,那么大米的总重量为15255÷=(千克),还剩余的数量为325155⨯=(千克).3cm4cm5cm5cm4cm3cm9.如果 54A B A B =-△,且(52)14x =△△,那么x =__________. 【答案】16.4【解析】根据题意先算出5 2 554217=⨯-⨯=△,则52() 5417x x =-⨯△△,得到方程541714x -⨯=, 解得16.4x =.10.A 、B 两地相距700千米,甲、乙两车分别从两地同时出发相向而行,2小时后,余下的路程与已 行的路程之比是4:3,则两车还需要经过__________小时才相遇. 【答案】223【解析】2小时行的路程是3份,那么行每份需要的时间是23小时,余下的路程占4份,需要的时间是224233⨯=(小时).11.一个圆锥的体积是 712立方米,与它等底等高的圆柱的体积是__________立方米,如果圆锥的高是14米,那么它的底面积是__________平方米. 【答案】314;7【解析】等底等高的圆柱体积是圆锥体积的3倍,因此与它等底等高的圆柱体积为7331124⨯=(立方米);圆锥的底面积为7137124⨯÷=(平方米).12.如图,一个大长方形由五个小长方形拼成,这个大长方形长与宽的比是__________.【答案】6:5【解析】把小长方形的宽看作单位“1”,那么小长方形的长就是32 1.5÷=,大长方形的长是3,宽是 1.51 2.5+=,因此大长方形的长与宽的比是3:2.56:5=.13.如图是一座建筑物的平面图,图中不同字母表示长度不同的各条边长,若 50b =米,30c =米,10g =米,则该建筑物平面图周长是__________米.【答案】180【解析】平面图中的f 和h 向上平移与d 正好组成一个b ,()e g -向左移动到左边,正好与a 组成一个abc def g hc ,还剩余2个g ,因此,平面图的周长222502302102180b c g =⨯+⨯+⨯=⨯+⨯+⨯=(米).14.如图,三角形ABC 的边BC 延长到E ,AB 延长到D ,已知180=∠°,4120=∠°,那么5=∠__________°,3=∠__________°.【答案】140;60【解析】因为3∠和4∠组成一个平角,所以3180418012060=︒-=︒-︒=︒∠∠,又因为三角形内角和是180︒,所以218013*********=︒--=︒-︒-︒=︒∠∠∠,同理得到5180218040140=︒-=︒-︒=︒∠∠.15.水果店购进苹果1000kg ,在运输途中碰坏了一些,没有碰坏的苹果卖完后利润率为40%,碰坏的苹果降价出售后亏了60%,最后结算时发现总利润率为32%,则碰坏的苹果为__________kg . 【答案】80【解析】把苹果的单价看作单位“1”,假设碰坏的苹果为x 千克,那么没有碰坏的为(1000)x -千克,根据总利润率为32%可得:(1000)140%160%1000132%x x -⨯⨯-⨯⨯=⨯⨯,解得80x =.二、判断题(每题1分,共5分)1.折线统计图可以看出数据增减变化的情况( ). 【答案】√【解析】折线统计图可以根据折线的变化,清楚地看到数据的变化情况,题目说法正确,2.如图中阴影部分可以用21cm 7表示( ).【答案】×【解析】图中阴影部分比7份中的1份少点,不能用17来表示.3.一种商品的价格降价10%,然后又提高现价的19,结果与原价相等( ).【答案】√【解析】把原价看作单位“1”,那么降价10%后价格为1110()%0.9⨯-=,再提高价格的19,就是10.9119⎛⎫⨯+= ⎪⎝⎭,正好与原价相等.4.长方形、正方形和平行四边形都轴对称图形( ). 【答案】×【解析】轴对称图形就是可以找到一条直线,把这个图形沿着这条直线对折,直线两旁的部分能完全51234D A B CE重合,长方形有2条这样的直线,正方形有4条这样的直线,一般的平行四边形不能找到这样的直线,因此,题目的说法是错误的.5.甲、乙两数不相等,甲数的34等于乙数的35,则甲数比乙数大( ). 【答案】×【解析】根据两个分数的分子都是3,把甲数的34和乙数的35都看作3,那么甲数就是3344÷=,乙数就是3355÷=,因此,甲数比乙数小,题目的说法是错误的.三、选择题(每题1分,共6分)1.把一个小数的小数点向左移动两位,所得到的数是( ). A .原数的2倍 B .原数的110C .原数的100倍D .原数的1100【答案】D【解析】根据小数点移动的规律,向左移动,数变小,向左移动一位,变成原来的110,向左移动两位,变成原来的2.下面各句中,错误的一句是( ). A .1既不是质数也不是合数B .大于19并小于89的真分数刚好有6个C .角的大小与边的长短无关D .一个三角形的两个锐角的和大于90°,这个三角形一定是锐角三角形 【答案】B【解析】选项A ,1的因数的个数只有1个,故1既不是质数也不是合数;选项B ,两个不同大小的数之间的数有无数个,满足题目条件的分母是9的真分数有6个,分母是其他数字的还有无数个,因此题目说法错误;选项C ,角的大小与开口的大小有关,与边的长度无关;选项D ,根据三角形的内角和是180︒,如果两个锐角的和大于90︒,那么剩下的角度数必然小于90︒,也就是一个锐角,三个角都是锐角的三角形是锐角三角形.3.如果甲、乙两数的和是60,并且甲数是乙数的3倍,那么乙数是( ). A .15B .20C .40D .45【答案】A【解析】根据甲数是乙数的3倍,那么两个数的和就相当于乙数的314+=倍,因此乙数60415=÷=.4.在一个比例中,如果两个内项是互为倒数,那么两个外项的比例关系是( ). A .成正比例B .成反比例C .不成比例D .不能确定【答案】B【解析】如果两个内项互为倒数,那么它们的乘积就是1,根据比例的内项之积等于外项之积,那么两个外项的积也是1,也就是说两个外项的积是一个定值,因此,它们成反比例关系.5.一个直角三角形,三条边的长度分别是3cm 、4cm 、5cm ,这个三角形的面积是( ). A .26cmB .27.5cmC .210cmD .212cm【答案】A【解析】根据直角三角形中两直角边的平方和等于斜边的平方,得到这个直角三角形的两条直角边为3cm 和4cm ,因此面积为23426(cm )⨯÷=.6.如果直角三角形ABC 的两条直角边长度分别是4cm 、3cm ,如果以AB 为轴旋转一周,所形成的图形的体积是( ).A .3150.72cmB .3113.04cmC .350.24cmD .337.67cm【答案】D【解析】按照题目的旋转方法,可以得到一个圆锥,这个圆锥的底面圆半径是3cm ,高是4cm ,那么圆锥的体积:233.1434337.6m )8c (⨯⨯÷=.四、计算题(共22分)1.下列各题,能简便的要用简便方法计算.(每题2分,共16分) (1)8400.25 1.25⨯⨯⨯. (2)3141.757145⎛⎫--⨯ ⎪⎝⎭.(3)521363122⨯-÷.(4)1139122736⎡⎤⎛⎫+⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦.(5)7.0537647.057.05⨯+⨯-. (6)81453521521⎛⎫⨯+÷⨯ ⎪⎝⎭.(7)5543539111867768⎡⎤⎛⎫-⨯+⨯÷ ⎪⎢⎥⎝⎭⎣⎦.(8)43510.712150.7159494⨯+⨯+⨯+⨯.【答案】见解析【解析】(1)解:原式(8 1.25)(400.25)=⨯⨯⨯ 1010=⨯100=.(2)解:原式7614414145⎛⎫=--⨯ ⎪⎝⎭7614414145⎡⎤⎛⎫=-+⨯ ⎪⎢⎥⎝⎭⎣⎦ 714425⎛⎫=-⨯ ⎪⎝⎭ 5445=⨯ 1=.C(3)解:原式521263123=⨯-⨯5126123⎛⎫=-⨯ ⎪⎝⎭ 3243=⨯ 12=. (4)解:原式1139122736⎛⎫=+⨯⨯- ⎪⎝⎭1139129122736=+⨯⨯-⨯⨯ 343=+-4=.(5)解:原式7.05(37641)=⨯+- 7.05100=⨯ 705=.(6)解:原式1843552121⎛⎫=⨯+⨯ ⎪⎝⎭143557=⨯⨯ 4=.(7)解:原式7711431186778⎡⎤⎛⎫=-⨯+÷ ⎪⎢⎥⎝⎭⎣⎦771188611⎡⎤=-⨯⎢⎥⎣⎦ 778118811611=⨯-⨯ 473=-253=. (8)解:原式45310.711529944⎛⎫⎛⎫=⨯++⨯+ ⎪ ⎪⎝⎭⎝⎭0.72153=⨯+⨯1.445=+ 46.4=.2.解方程(每题3分,共6分) (1)3.2:0.8:40x =.(2)112222x x x ++-=+. 【答案】见解析【解析】(1)3.2:0.8:40x = 0.8 3.240x =⨯ 0.8128x =160x =.(2)112222x x x ++-=+ 112222x x x ++-=+221x x -=+ 3x =.五、图形操作题(5分)如图,圆环的面积是1413.平方厘米,那么阴影部分的面积是多少平方厘米?【答案】见解析【解析】解:设大圆半径为R ,小圆半径为r ,那么22ππ141.3R r -=,则2245R r -=,阴影部分的面积:2245R R r r R r ⨯-⨯=-=(平方厘米). 答:阴影部分的面积为45平方厘米.六、解决问题(每题4分,共32分) 1.一项工程由甲乙两人合作5天可以完成14,如果甲单独做4天,乙单独做5天可以完成这项工程的1360,问甲单独完成需要多少天? 【答案】见解析【解析】解:11311554(54)4604⎡⎤⎛⎫÷÷-÷⨯÷- ⎪⎢⎥⎝⎭⎣⎦1112060⎛⎫=÷- ⎪⎝⎭1130=÷30=(天) 答:甲单独完成需要30天.2.王老师享受医疗保险,这种医疗保险规定:配甲类药,自己不用付钱,配乙类药,自己要付药费的5%,配丙类药,则全部由自己付钱.下面是王老师某次看病配药的打印清单,但有的地方看不清楚了,王老师这次配药总金额是多少元?【答案】见解析【解析】解:乙类药的金额:24. 3116.85%0.(2)15-÷=(元) 配药的总金额:48.5150.216.8215.5++=(元)答:王老师这次配药的总金额是215.5元. 3.有三批食物共值152万元,这三批食物的重量比是2:4:3,单价是6:5:2,这三批货物各值多少钱? 【答案】见解析【解析】解:总价比为(26):(45):(32)6:10:3⨯⨯⨯=, 152(6103)8÷++=(万元),6848⨯=(万元), 10880⨯=(万元),3824⨯=(万元),答:这三批货物各值48万元、80万元和24万元.4.两列火车同时从甲乙两地相向而行,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米,两车相遇时,第一列火车比第二列火车多行了20千米,求甲乙丙地间的距离. 【答案】见解析【解析】解:行驶的时间:2060(4)55÷-=(小时), 距离:(6055)4460+⨯=(千米),答:甲乙两地之间的距离是460千米.5.一个圆锥的底面周长是18.84厘米,高是4厘米,从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?【答案】见解析【解析】解:底面直径:18.84 3.146÷=(厘米) 增加的表面积:642224⨯÷⨯=(平方厘米)答:表面积增加了24平方厘米.6.近几年米,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级.A .非常了解;B .比较了解;C .基本了解;D .不了解,根据调查统计结果,绘制了不完整的三种统计图(表).对雾霾天气了解程度的统计表对雾霾天气了解程度 的条形统计图对雾霾天气了解程度 的扇形统计图C请结合统计图表,回答下列问题(1)表格中m =__________,n =__________.(2分)(2)图②所示的扇形统计图中,D 部分扇形所对应的圆心角是__________度.(1分) (3)请补全图①的条形统计图.(1分) 【答案】见解析【解析】解:(1)60(205%)15%m =÷÷=, 100%5%15%45%35%n =---=.(2)36035%126︒⨯=︒.(3)总人数:2050%400÷=(人)D 类人数:40035%140⨯=(人),补全条形统计图, 如图.7.河里和河边各有一群鸭子,如果河里的鸭子有28只跑上河边,两群鸭子的只数相同,如果河边的鸭子有28只跑下河里,则河里鸭子的只数是河边的3倍,原来河里和河边各有多少只鸭子? 【答案】见解析【解析】解:设河里的鸭子数为x 只,那么河边有(282)x -⨯只鸭子,根据题意可得: 283(28228)x x +=⨯-⨯-,解得140x =, 2821405684x -⨯=-= (只),答:原来河里有140只鸭子,河边有84只鸭子.8.甲、乙、丙三村准备合作修一条公路,他们原计划按9:8:3派工,后因丙村不出工,将丙村承担的图①图②5%C 45%BAD任务交由甲、乙两村分担,由丙出资360元,结果甲村共派出45人,乙村共派出35人,完成了修路任务.问:甲、乙两村各应分得丙村所付工资的多少元?【答案】见解析【解析】解:(4535)(983)4+÷++=(人),甲村多派工:45949-⨯=(人),乙村多派工:35843-⨯=(人),甲村分得钱数:360939(0)27÷⨯+=(元),乙村分得钱数:36027090-=(元),答:甲村应分得270元,乙村应分得90元.。

2020年中考数学二模试卷(附答案)

2020年中考数学二模试卷(附答案)

2020年中考数学二模试卷(附答案)一、选择题(共36分)(共12题;共36分)1.在、0、1、﹣2这四个数中,最小的数是()A. B. 0 C. 1 D. ﹣22.下列运算正确的是()A. x2+x2=x4B. (a﹣b)2=a2﹣b2C. (﹣a2)3=﹣a6D. 3a2•2a3=6a63.下列命题中的真命题是()A. 全等的两个图形是中心对称图形B. 关于中心对称的两个图形全等C. 中心对称图形都是轴对称图形D. 轴对称图形都是中心对称图形4.“宁安”高铁接通后,某市交通通行和转换能力成倍增长,极大地方便了广大市民出行,该工程投资预算930000万元,这一数据用科学记数法表示为( )A. 9.3×105B. 9.3×106C. 0.93×106D. 9.3×1045.如图,AB∥CD,AD平分∠BAC,且∠D=72°,则∠C的度数为()A. 36°B. 72°C. 108°D. 144°6.如图所示的几何体的主视图是()A. B. C. D.7.一组数据:1,3,3,5,若添加一个数据3,则发生变化的统计量是()A. 平均数B. 众数C. 中位数D. 方差8.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的百分率为()A. B. C. D.9.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A,C,E三点在同一水平直线上,则旗杆AB的高度为()A. 4.5mB. 4.8mC. 5.5mD. 6 m10.如图,在△ABC中,∠C=90°,∠B=15°,AC=1,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则AD的长为( )A. 1.5B.C. 2D.11.已知二次函数y=ax2+bx+c(a>0)的图象的对称轴为直线x=1,且(x1,y1),(x2,y2)为其图象上的两点,()A. 若x1>x2>1,则(y1-y2)+2a(x1-x2)<0B. 若1>x1>x2,则(y1-y2)+2a(x1-x2)<0C. 若x1>x2>1,则(y1-y2)+a(x1-x2)>0D. 若1>x1>x2,则(y1-y2)+a(x1-x2)>012.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论①∠DCF= ∠BCD,②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF中一定成立的是()A. ①②B. ①②④C. ①③④D. ①②③④二、填空题(共12分)(共4题;共12分)13.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是________.14.掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是________.15.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为________.16题16.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=10,则CE=________.三、解答题(共52分)(共7题;共52分)17.计算:-tan60°++| -2|.18.先化简,再求值:,请你选取一个使原分式有意义的a的值代入求值.19.随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统图,根据以下信息解答下列问题:(1)2017年“五一”期间,该市共接待游客________人,扇形统计图中A景点所对应的圆心角的度数是________°.(2)补全条形统计图;(3)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择来该市旅游,请估计有多少万人会选择去E景点旅游?20.如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.21.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.22.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长.23.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?答案一、选择题(共36分)1.D2.C3.B4. A5. A6.A7.D8. B9. D 10. C 11. C 12.B二、填空题(共12分)13. (x﹣2)214. 15.144°16. 5三、解答题(共52分)17. 解:原式=4--2+2-=4-2 .18. 解:原式= ,当a=2时,原式= =-219.(1)50(万人);108(2)解:补全条形统计图如下:(3)解:∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人)20. (1)证明: ∵AD平分∠BAC,∠C=90, DE⊥AB∴CD=ED∵在Rt△CDF和Rt△EDB中,BD=DF,CD=ED∴Rt△CDF≌Rt△EDB(HL)∴CF=EB(2)证明: 又∵在Rt△ADE和Rt△ADC中,AD=AD ,CD=ED∴Rt△ADE≌Rt△ADC(HL)∴AC=AE∴AB=AE+EB=AF+CF+EB 即AB=AF+2EB21. (1)解:作BH⊥PQ于点H.在Rt△BHP中,由条件知,PB=480,∠BPQ=75°﹣45°=30°,∴BH=480sin30°=240<260,∴本次台风会影响B市.(2)解:如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=240,由条件得BP1=BP2=260,∴P1P2=2 =200,∴台风影响的时间t= =5(小时).故B市受台风影响的时间为5小时.22.(1)证明:连接CD. ∵AD是⊙O 的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°. 又∵∠PAC=∠PBA,∵弧AC=弧AC ∴∠ADC=∠PBA,∴∠PAC=∠ADC,∴∠CAD+∠PAC=90°.∴PA⊥OA,OA是半径∴PA是⊙O的切线。

2020年中考数学模拟试题(二)及答案解析

2020年中考数学模拟试题(二)及答案解析

绝密★启用前2020 年中考数学模试一试卷(二)学校 :___________姓名: ___________班级: ___________考号: ___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题 )评卷人得分6 题,每题 4 分,满分 24 分。

以下各题一、选择题(本大题共的四个选项中,有且只有一个选项是正确的)1.如图,在△ ABC 中,AC=,则AB等于()A .4B.5C.6 D. 72.广场上水池中的喷头微露珠面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)对于水珠和喷头的水平距离x(米)的函数分析式是 y 3 x2 6x 0 x 4 ,那么2水珠的高度达到最大时,水珠与喷头的水平距离是()A.1 米B.2米C.5 米D.6 米3.如图是小刘做的一个风筝支架表示图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则 CQ 的长是()A .8cm B.12cm C.30cm D.50cmr r r r r4.已知a,b和c都是非零向量,以下结论中不可以判断 a ∥b的是()r r r r r r rr r r r rA .a // c,b // cB .a 1 c, b 2c C. a 2b D .a b15.将二次函数y=x 2的图象向右平移一个单位长度,再向上平移 3 个单位长度所得的图象分析式为2x 1 2 2A .yx 13 B. y 3 C. y x 1 3D .y x 1 236.如图,△ ABC 内接于⊙O,AB 是⊙ O 的直径,∠ B=30°, CE 均分∠ ACB 交⊙O 于△ADE :S△CDB 的值等于()E,交 AB 于点 D,连结 AE ,则 SA .1:B.1:C.1:2D.2:3第 II卷(非选择题)评卷人得分二、填空题(本大题共12 题,每题 4 分,满分48 分)7 .假如抛物线 y x2 bx 的对称轴为 y 轴,那么实数 b 的值等于 ____________________8 .二次函数 y=2x2+bx+3 的图象的对称轴是直线x= 1 ,则常数 b 的值为 _____.9.在 Rt△ABC 中, sinA=1,则∠ A 等于 ______°.210 . 4 与 9 的比率中项是 _____.11 .已知二次函数y= ax2+bx+c 中,函数 y 与自变量 x 的部分对应值如表所示:x ﹣ 5 ﹣4 ﹣ 3 ﹣ 2 ﹣1y ﹣ 8 ﹣3 0 1 0当 y<﹣ 3 时, x 的取值范围是 _____.12.如图,在Rt△AOB 中,∠ AOB=90°, AO= 3 ,BO=1,AB的垂直均分线交AB 于点 E,交射线 BO 于点 F.点 P 从点 A 出发沿射线AO 以每秒2 3 个单位的速度运动,同时点 Q 从点 O 出发沿 OB 方向以每秒 1 个单位的速度运动,当点Q 抵达点 B 时,点P、 Q 同时停止运动.设运动的时间为t 秒.( 1)当 t=时,PQ∥ EF;( 2)若 P、 Q 对于点 O 的对称点分别为P′、 Q′,当线段P′Q与′线段 EF 有公共点时,t 的取值范围是.13.如图,为了使电线杆牢固的垂直于地面,双侧常用拉紧的钢丝绳子固定,因为钢丝绳的交点 E 在电线杆的上三分之一处,因此知道BE 的高度就能够知道电线杆AB 的高度了.要想获得BE 的高度,需要丈量出一些数据,而后经过计算得出.请你设计出要丈量的对象:________;请你写出计算AB 高度的思路:________.14.在阳光下,一名同学测得一根长为 1 米的垂直地面的竹竿的影长为0.6 米,同时另一名同学丈量树的高度时,发现树的影子不全落在地面上,有一部分落在教课楼的第一级台阶上,测得落在教课楼第一级台阶上的影子长为0.2 米,一级台阶高为0.3 米,如图所示,若此时落在地面上的影长为 4.42 米,则树高为_____米.15.如图,在等边VABC中,O为BC边上一点,E为AC边上一点,且ADE 6O o,BD 3 . CE 2 ,则AB的长为________.16.若线段 AB=6cm ,点 C 是线段 AB 的一个黄金切割点(AC >BC ),则 AC 的长为cm(结果保存根号).17.如图,矩形ABCD 的两个极点 A 、 B 分别落在x、 y 轴上,极点C、 D 位于第一象限,且 OA=3 , OB=2 ,对角线 AC 、 BD 交于点 G,若曲线?? y= ( x> 0)经过点 C、 G,??则 k=_______ .18.在 Rt VABC中,∠ A=90 °, AC=4, AB = a ,将V ABC沿着斜边 BC 翻折,点 A落在点 A1处,点D、E分别为边AC、BC的中点,联络DE并延伸交 A1 B 所在直线于点F ,联络A1E,假如△A1EF为直角三角形时,那么a____________评卷人得分三、解答题(共 6 小题,满分42 分,每题7 分)119.如图,在平面直角坐标系中,直线y=x+2 与 x 轴、 y 轴的交点分别为A、 B,直2线 y=﹣ 2x+12 交 x 轴于 C,两条直线的交点为 D ;点 P 是线段 DC 上的一个动点,过点 P 作 PE ⊥x 轴,交 x 轴于点 E,连结 BP ;( 1)求△ DAC 的面积;( 2)在线段 DC 上能否存在一点P,使四边形 BOEP 为矩形;若存在,写出 P 点坐标;若不存在,说明原因;(3)若四边形 BOEP 的面积为 S,设 P 点的坐标为( x,y),求出 S 对于 x 的函数关系式,并写出自变量 x 的取值范围.20.如图,小明在 A 处测得风筝( C 处)的仰角为30°,同时在 A 正对着风筝方向距 A 处 30 米的 B 处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保存根号)21.如下图,有一块形状是直角梯形的铁皮ABCD ,它的上底 AD15cm ,下底BC 40cm ,垂直于底的腰CD 30cm ,现要截成一块矩形铁皮MPCN ,使它的顶点M、P、N分别在AB、BC、CD边上,求矩形MPCN 的面积S对于 MN 的长x 的函数关系式.22.如图,在平面直角坐标系PH DQ 中,已知A(-3,0),B(4,0),C(0,4). 二次函数的图像经过 A 、B、C 三点.点 P 沿 AC 由点 A 处向点 C 运动,同时,点Q 沿BO 由点 B 处向点 O 运动,运动速度均为每秒 1 个单位长度 .当一个点停止运动时,另一个点也随之停止运动.连结PQ,过点 Q 作 QD⊥ x 轴,与二次函数的图像交于点D,连结 PD, PD 与 BC 交于点 E.设点 P 的运动时间为t 秒( t >0) .⑴ 求二次函数的表达式;⑵在点 P、 Q 运动的过程中,当∠ PQA+∠ PDQ=90°时,求t的值;⑶连结 PB、BD 、 CD ,尝试究在点P, Q 运动的过程中,能否存在某一时辰,使得四边形 PBDC 是平行四边形?若存在,恳求出此时t 的值与点 E 的坐标;若不存在,请说明原因 .23.在平面直角坐标系xOy 中抛物线y=ax2﹣2ax+3( a≠0)的极点 A 在第一象限,它的对称轴与x 轴交于点B,△ AOB 为等腰直角三角形.( 1)写出抛物线的对称轴为直线;5( 3)垂直于 y 轴的直线 L 与该抛物线交于点 P ( x 1, y 1), Q ( x 2, y 2)此中 x 1< x 2,直 线 L 与函数 y=6( x >0)的图象交于点 R ( x 3 3 PR⋯1 ,求 x 1 2 3的取值范x, y ),若 QR +x +x围.24.如图,四边形 ABCD 是矩形,点 P 是对角线 AC 上一动点 (不与 A 、 C重合 ),连接 PB ,过点 P 作 PE PB ,交射线 DC 于点 E ,已知 AD 3, AB 4 .(1) 求PE的值;PB(2) 当 PCE 是以 PC 为底的等腰三角形时 .恳求出 AP 的值 ;25.已知:图1图2 图3( 1)初步思虑:如图 1, 在PCB 中,已知 PB 2 , BC=4 , N 为 BC 上一点且 BN 1 ,试说明:PN1PC2( 2)问题提出:如图 2,已知正方形ABCD 的边长为 4,圆 B 的半径为 2,点 P 是圆 B 上的一个动点,求 PD1PC 的最小值.2( 3)推行运用:如图 3,已知菱形 ABCD 的边长为4,∠ B﹦60°,圆 B 的半径为2,点 P 是圆 B 上的一个动点,求 PD 1PC 的最大值.2绝密★启用前2020 年上海市中考数学模试一试卷(二)学校 :___________姓名: ___________班级: ___________考号: ___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题 )评卷人得分一、选择题(本大题共 6 题,每题 4 分,满分 24 分。

2020初中学业水平测试数学模拟试题二(附答案详解)

2020初中学业水平测试数学模拟试题二(附答案详解)

2020初中学业水平测试数学模拟试题二(附答案详解)1.下列运算正确的是( ) A .B .C .D .2.下列检查一个门框是否为矩形的方法中,正确的是( ) A .测量两条对角线,是否相等 B .测量两条对角线,是否互相平分 C .用曲尺测量门框的三个角,是否都是直角 D .用曲尺测量对角线,是否互相垂直3.如图,直线AB 与射线CD 相交于点C ,若∠BCD =20º,则∠ACD =( )A .70ºB .120ºC .150ºD .160º4.三个连续的奇数,中间的一个是2n+1,则三个数的和为( ) A .6n ﹣6 B .3n+6 C .6n+3 D .6n+65.已知a ,b 在数轴上的位置如图,则下列式子正确的是( )A .a 一b >aB .a <b 一aC .b 一a <a 一bD .一a <b6.3点30分时,时钟的时针与分针所夹的锐角是( ) A .70° B .75° C .80° D .90°7.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P 1,在乙种地板上最终停留在黑色区域的概率为P 2,则( )A .12P P >B .12P P <C .12P P = D .以上都有可能8.若x> y> 0,则11y yx x+-+的值为( )9.方程的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D .方程的根的情况与的取值有关10.近似数8.090精确程度是()A.精确到百分位B.精确到万分位C.精确到0.001 D.精确到0.0001 11.已知二次函数y =ax 2 + bx + c ( a ≠0)的图像如图所示,下列结论:①abc >0;②b < a + c ;③2 a + b =0;④a + b >m ( am + b )( m 为不等于1的实数),其中正确的结论有().A.1个B.2个C.3个D.4个12.从﹣32,﹣1,0,1这四个数中,任取一个数作为m 的值,恰好使得关于x,y的二元一次方程组22x y mx y-=-⎧⎨-=⎩有整数解,且使以x为自变量的一次函数y=(m+1)x+3m ﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.13.一包洽洽瓜子售价8元,商家为了促销,顾客每买一包洽洽瓜子获一张奖券,每4张奖券可兑换一包洽洽瓜子,则每张奖券相当于______元.14.若23)20x y++-=(,则(x+y)2017= _________.15.(1)____(2)____16.如图,在△ABC中,AB=AC,DE是AC的垂直平分线,AE=3cm,BD+AD=7cm,则△ABC的周长为______.17.下列说法正确的有__________________.(只填序号)①等腰三角形两边长为2和5,则它的周长是9或12.②18、3π、227和0.101001…都是无理数. ③已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是20π. ④3是81的平方根.⑤一组数据分别是:5,7,5,3,4,6.则这组数据的众数、中位数和方差分别是5,5,53. ⑥如果一个角的两边和另一个角的两边分别平行,则这两个角相等. 18.(1)9x 2=121 (2)(x-1)3-8 =019.如图,△ABC 中,AD ⊥BC ,EF 垂直平分 AC ,交 AC 于点 F ,交 BC 于点 E ,且 BD=DE .(1)若∠BAE=40°,求∠C 的度数;(2)若△ABC 周长 13cm ,AC=6cm ,求 DC 长.20.父母带着孩子一家三口去旅游,甲旅行社报价为大人每人a 元,小孩为2a元;乙旅行社的报价均为a 元,但三人均可按报价的8折收费,请问哪个旅行社收费高一些,高多少元?21.先化简,再求值:(2)(6)(2)a a a a --+-,其中2a =-. 22.如图,ΔABC ,ΔCDE 是等边三角形。

内蒙古东河区2020年初中升学考试模拟试卷二数学试题(含答案)

内蒙古东河区2020年初中升学考试模拟试卷二数学试题(含答案)

2020年初中升学模拟试卷数学一、选择题(本大题共有12小题,每小题3分,共36分,每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂票)1.计算43---的结果是( )A.-1B.5C.1D.-52.从5-,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( )A.15B.25C.35D.453.下列说法正确的是( )A.要调查现在人们在数字化时代的生活方式,宜采用全面调查方式B.一组数据3,4,4,6,8,5的中位数是5C.要调查某品牌圆珠笔芯的使用寿命,宜采用抽样调查方式D.若甲组数据的方差2 0.128S =甲,乙组数据的方差2 0.036S =乙,则甲组数据更稳定4.如图,在直角坐标系中,已知菱形OABC 的顶点(1,2)A ,(3,3)B .作菱形OABC 关于y 轴的对称图形OA B C ''',再作图形OA B C '''关于点O 的中心对称图形OA B C '''''',则点C 的对应点C ''的坐标是( )A.(2,1)-B.(1,2)-C.(2,1)-D.(2,1)--5.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为( )A.3πB.2πC.πD.126.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子正确的是( )A.a c b c ->-B.a c b c +<+C.ac bc >D.a c b b < 7.不等式组43262355x x x ->-⎧⎪⎨-≥-⎪⎩的整数解的个数为( ) A.1 B.2 C.3 D.48.如图,在ABC ∆中,90C ∠=︒,15B ∠=︒,1AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连结AD ,则BC 的长为( )A.2.5B.31+C.52+D.32+9.如图,已知O 的半径是4,点A ,B ,C 在O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A.8833π- B.16433π- C.16833π- D.8433π-10.下列命题中,真命题的个数是( )①同位角相等;②经过一点有且只有一条直线与这条直线平行;③若关于x 的一元二次方程210x bx ++=有实数解,则b 的值可以是-1;④当1k <时,一次函数1y kx k =+-(0k ≠)的图象一定交于y 轴的负半轴.A.1个B.2个C.3个D.4个11.如图所示,抛物线2y ax bx c =++(0)a ≠与x 轴交于点(2,0)A -、(1,0)B ,直线12x =-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD MC =,连接AC ,BC ,AD ,BD ,某同学根据图象写出下列结论:①0a b -=;②当12x <-时,y 随x 增大而增大;③四边形ACBD 是菱形;④930a b c -+>.你认为其中正确的是( )A.②③④B.①②③C.①③④D.①②③④12.如图,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为( )A.412,55⎛⎫- ⎪⎝⎭B.213,55⎛⎫- ⎪⎝⎭C.113,25⎛⎫- ⎪⎝⎭D.312,55⎛⎫- ⎪⎝⎭二、填空题(本大题共8小题,每小题3分共24分.请把答案填在对应的横线上.)13.截止到年5月12日18时,全球感染新型冠状肺炎的人数已经超过415万人,携手抗击疫情,刻不容缓.请将415万用科学记数法表示为_________.14.计算:0282sin 30(3)π-︒--=_________. 15.化简:2211121x x x x x +⎛⎫+÷= ⎪--+⎝⎭_________.16.如图,O 的半径为2,点A ,B ,C 在O 上,OA OB ⊥,60AOC ∠=︒,P 是OB 上一动点,则PA PC +的最小值为_________.17.如果m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,那么代数式22020n mn m -++=_________.18.如图,已知在ABCD 中,BD BC =,点E 是AB 的中点,连结DE 并延长,与CB 的延长线相交于点F ,连结AF .若5AD =,tan 2BDC ∠=,则四边形AFBD 的面积是_________.19.如图,双曲线k y x=(0k >)经过Rt AOB ∆的斜边AB 的中点C ,AF AO ⊥,BF BO ⊥,AF 、BF 与双曲线分别交于点D 、E .若四边形ODFE 的面积为36,则k 的值为_________.20.如图,ABCD 的对角线AC ,BD 交于点O ,CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE .下列结论:①EO AC ⊥;②4AOD OCF S S ∆∆=;③:217AC BD =;④2FB OF DF =⋅.其中正确的结论有_________.(填写所有正确结论的序号)三、解答题(本大题共6小题,共60分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.)21.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有_________人,条形统计图中m的值为_________;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为_________;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为_________人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.22.一艘轮船向正东方向航行,在A处测得灯塔P在A的北偏东60°方向,航行40海里到达B处,此时测得灯塔P在B的北偏东15°方向上.(1)求灯塔P到轮船航线的距离PD是多少海里?(结果保留根号)(2)当轮船从B处继续向东航行时,一艘快艇从灯塔P处同时前往D处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分钟到达D处,求轮船每小时航行多少海里?(结果保留根号)23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式并写出自变量的取值范围.(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.24.如图,ABC ∆内接于O ,CBG A ∠=∠,CD 为直径,OC 与AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD .(1)求证:PG 与O 相切; (2)若58EF AC =,求BE OC的值; (3)在(2)的条件下,若O 的半径为8,PD OD =,求OE 的长.25.问题:如图①,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,试判断BE ,EF ,FD 之间的数量关系.【发现证明】小聪把ABE ∆绕点A 逆时针旋转90°至ADG ∆,从而发现EF BE FD =+,请你利用图①证明上述结论.【类比引申】如图②,四边形ABCD 中,90BAD ∠≠︒,AB AD =,180B D ∠+∠=︒,点E ,F 分别在边BC ,CD 上,则当EAF ∠与BAD ∠满足_________关系时,仍有EF BE FD =+.【探究应用】如图③,在某公园的同一水平面上,四条通道围成四边形ABCD .已知80AB AD ==米,60B ∠=︒,120ADC ∠=︒,150BAD ∠=︒,道路BC ,CD 上分别有景点E ,F ,且AE AD ⊥,40(31)DF =-米,现要在E ,F 之间修一条笔直道路,求这条道路EF 的长(结果取整数,参考数据:2 1.41≈,3 1.73≈).26.如图,抛物线2y x bx c =++交x 轴于B ,C 两点,交y 轴于点A ,直线3y x =-+经过点A ,B .(1)求抛物线的解析式;(2)点P 是直线AB 下方的抛物线上一动点,过点P 作PE x ⊥轴于点E ,交直线AB 于点F .设点P 的横坐标为m ,若3PF PE =,求m 的值;(3)N 是第一象限对称轴右侧抛物线上的一点,连接BN ,AC ,抛物线的对称轴上是否存在点M .使得BMN ∆与AOC ∆相似,且BMN ∠为直角,若存在,请直接写出点M 的坐标,若不存在,请说明理由.2020年初中升学模拟试卷参考答案及评分标准数学参考答案一、选择题(每题3分,共36分)1.D2.B3.C4.A5.A6.B7.C8.D9.C10.A1.B12.A二、填空题(每空3分,共24分)13.64.1510⨯ 14.224- 15.11x x -+ 16.23 17.2027 18.2019.12 20.①③④三、解答题(共60分) 21.(1)60,10(2)96°(3)1020(4)由题意列树状图:由树状图可知,所有等可能的结果有12种,恰好抽到1名男生和1名女生的结果们8种, ∴恰好抽到1名男生和1名女生的概率为82123=.22.解:(1)作BC AP ⊥于C ,在Rt ABC ∆中,30A ∠=︒,∴1202BC AB ==,cos 203AC AB A =⋅=,∵15NBP ∠=︒,∴75PBD ∠=︒,∴180607545CBP ∠=︒-︒-︒=︒,∴20PC BC ==,∴20AP AC PC =+=,在Rt ADP ∆中,30A ∠=︒,∴1102PD AP ==,答:灯塔P 到轮船航线的距离PD 是(1010)+海里;(2)设轮船每小时航行x 海里,在Rt ADP ∆中,cos 30AD AP A =⋅=,∴10BD AD AB =-=,1560+=解得,60x =-,经检验,60x =-答:轮船每小时航行(60-海里.23.解:(1)设y kx b =+,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩∴2200y x =-+(4080x ≤≤);(2)(40)(2200)W x x =--+222808000x x =-+-22(70)1800x =--+,∴当70x =时,W 取得最大值为1800.答:售价为70元时获得最大利润,最大利润是1800元.(3)当1350W =时,得:2228080001350x x -+-=, 解得:55x =或85x =,∵该抛物线的开口向下,所以当5585x ≤≤时,1350W ≥,又∵每千克售价不低于成本,且不高于80元,即4080x ≤≤, ∴该商品每千克售价的取值范围是5580x ≤≤.24.解:(1)如图,连接OB ,则OB OD =,∴BDC DBO ∠=∠,∵BAC BDC ∠=∠、BDC GBC ∠=∠,∴GBC BDC ∠=∠,∵CD 是O 的直径,∴90DBO OBC ∠+∠=︒,∴90GBC OBC ∠+∠=︒,∴90GBO ∠=︒,∴PG 与O 相切;(2)过点O 作OM AC ⊥于点M ,连接OA , 则,12AOM COM AOC ∠=∠=∠,∵AC AC =,∴12ABC AOC ∠=,又∵90EFB OMA ∠=∠=︒,∴BEF OAM ∆∆∽, ∴EF BEAM OA =, ∵12AM AC =,OA OC =, ∴12EF BEOCAC =, 又∵58EF AC =,∴552284BE EF OC AC =⨯=⨯=;(3)∵PD OD =,90PBO ∠=︒,∴8BD OD ==, 在Rt DBC ∆中,2283BC DC BD =-=又∵OD OB =,∴DOB ∆是等边三角形,∴60ODB ∠=︒,∴30OCB ∠=︒,∴12EFCE =,FCEF =EF x =,则2EC x =,FC =.∴BF =,在Rt BEF ∆中,222BE EF BF =+,54BE OC =,∴584BE=,∴10BE =,∴22100)x =+,解得:6x =∵68>,(舍去),∴6x =-,∴12EC =-∴8(124OE =--=.25.解:【发现证明】证明:由旋转可得AE AG =,BE DG =,90B ADG ∠=∠=︒,90EAG BAD ∠=∠=︒. ∵四边形ABCD 为正方形,∴90ADC ∠=︒,∴∠180ADC ADG +∠=︒,∴G ,D ,C 三点共线.∵45EAF ∠=︒,∴45GAF ∠=︒,∴CAF FAE ∠=∠.又∵AF AF =,∴()AFG AFE SAS ∆∆≌,∴GF EF =.∵GF GD DF =+,∴ EF BE DF =+.【类比引申】12EAF BAD ∠=∠(2BAD EAF ∠=∠)理由如下:如图①,将ABE ∆绕点A 逆时针旋转BAD ∠的度数至ADG ∆,使AB 与AD 重合.由旋转可得AE AG =,BE DG =,B ADG ∠=∠,BAE DAG ∠=∠. ∵180B ADC ∠+∠=︒,∴180ADC ADG ∠+∠=︒,∴G ,D ,C 三点共线.∵BAE DAG ∠=∠,∴BAD EAG ∠=∠. ∵12EAF BAD ∠=∠,∴GAF FAE ∠=∠.又∵AF AF =,∴()AFG AFE SAS ∆∆≌,∴GF EF =.∵ GF GD DF =+, ∴ EF BE DF =+.故答案为12EAF BAD ∠=∠.【探究应用】∵150BAD ∠=︒,90DAE ∠=︒,∴60BAE ∠=︒.又∵60B ∠=︒,∴ABE ∆是等边三角形,∴ 80BE AB ==.如图②,连接AF ,过点A 作AH CD ⊥交CD 的延长线于点H .在Rt AHD ∆中,18060ADH ADC ∠=︒-∠=︒,80AD =,∴30HAD ∠=︒,1402HD AD ==,3AH =∵1)DF =,∴401)HF HD DF =+=+=∴在Rt AHF ∆中,AH HF =,∴45HAF ∠=︒,∴15DAF ∠=︒,∴901575EAF ∠=︒-︒=︒, ∴12EAF BAD ∠=∠.运用上面的结论可得801)40109EF BE DF =+=+=+≈. 即这条道路EF 的长约为109米.26.解:(1)∵3y x =-+经过点A 、B ,A 、B 分别在y 轴与x 轴上, ∴(0,3)A ,(3,0)B .∴抛物线2y x bx c =++经过点A ,B ,∴9303b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩∴抛物线的解析式为243y x x =-+.(2)∵点P 的横坐标为m ,∴由题意可知,点P 的坐标为()2,43m m m -+,点F 的坐标为(,3)m m -+. ①当点P 在x 轴上方时,()()22343343m m m m m -+--+=-+, 解得134m =或23m =(与点B 重合,舍去). ∴34m =②当点P 在x 轴下方时,()()22343343m m m m m -+--+=--+, 解得332m =或43m =(与点重合,舍去).∴32m =综上所述,m 的值为34或32(3)存在,点M 坐标为12,18⎛ ⎝⎭或92,2⎛+ ⎝⎭如图,设对称轴与x 轴交于点Q ,过N 点作NK QM ⊥交对称轴于点K .∵243(3)(1)y x x x x =-+=--与x 轴交于两点B 、C 两点, ∵(1,0)C ,∴1OC =∴抛物线的对称轴为直线2x =,1QB QC ==.①当NMB AOC ∆∆∽时,3NMAOBM OC ==.由一线三垂直模型得出,NKM MQB ∆∆∽. ∴3NKKMNMMQ QB BM ===,33KM QB ==,设MQ a =,则3KQ a =+,3KN a =∴32N x a =+,∴(32,3)N a a ++,∵点N 在抛物线上,∴2(32)4(32)33a a a +-++=+, 解得1114518a =,2114518a =.∴点M 的坐标为1145⎛- ⎝⎭②当BMN AOC ∆∆∽时,13NM OCBM AO ==同理NKM MQB ∆∆∽,∴13NKKMNMMQ QB BM ===,1133KM QB ==,设MQ a =,则13NK a =, ∴13KQ a =+123N x a =+,即112,33N a a ⎛⎫++ ⎪⎝⎭, ∵点N 在抛物线上, ∴21112423333a a a ⎛⎫⎛⎫+-++=+ ⎪ ⎪⎝⎭⎝⎭解得392a =,492a =(舍),∴点M 的坐标为⎛ ⎝⎭综上所述,存在点M ,点M 的坐标为⎛ ⎝⎭,⎛ ⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年重点初中入学考试数学模拟试题与答案(二)
(试卷满分100分,考试时间90分钟)
一、填一填(每小题2分,共20分)
1. 填上合适的单位名称:
一间教室面积是54()青青体重40()。

2. 0.78平方千米=()公顷 4.2吨=()千克。

3.一个圆锥的底面半径是3厘米,体积为18.84立方厘米,这个圆锥的高是( )厘米。

4. 今年的小麦产量比去年的增产二成三,表示今年比去年增产( )%,也就是今年的
产量相当于去年的( )%。

5. 一种大豆的出油率是10%,300千克大豆可出油()千克,要榨300千克豆油
需大豆()千克。

6. 一辆公共汽车共载客42人,其中一部分人在中途下车,每张票价6元,另一部分
人到终点下车,每张票价9元,售票员共收票款318元,中途下车的有()人。

7.一个三位小数“四舍五入”保留两位小数是 6.80,这个小数最小可能是(),最大可能是()。

8. 50以内6的倍数有()。

9. 一段木头砍成4段要6分钟,砍成8段要()分钟。

10.下面的图形中圆的半径为2㎝,阴影部分的面积为()。

二、选择(每题2分,共12分)
1. 一件商品,先提价20%,以后又降价20%,现在的价格与原来相比,()
A.提高了B.降低了C.不变D.无法确定
2. 1元和2角的纸币共20张,共15.2元,2角的纸币有( )张。

A.14
B.6
C.12
D.18
3.在钟面上,12时15分的时候,时针和分针所成的角是()
A. 平角
B. 直角
C. 钝角
D. 锐角、
4.下列图形中,对称轴最多的是(
)。

A. 长方形
B.
正方形 C.
等腰三角形 D.

5.两个数的比值是 1.2,如果比的前项扩大2倍,后项缩小两倍,比值是(

A .1.2 B
.2.4
C
.4.8
D
.9.6
6.王师傅加工一批零件,
小时加工了这批零件的,全部加工完还需要()小
时。

A .1
B .
C .
D .
三、判断(6分)
1. 在一个比例里,如果内项的积等于1,那么两个外项的积一定是1。



2. 一个圆和一个正方形的周长相等,比较它们的面积,结果是圆的面积大。



3. 长方体的底面积一定,高和体积成反比例。

()
4. 小刚在教室中的座位用数对表示为(
3,5),代表着他坐在第三行第五列。



5. 两条线段互相平行,它们也一定相等。



6. 盒子里有同样大小的红、黄、蓝三种颜色的球各
5个,要想摸出的球一定有
2个是
同色的,至少要摸出
4个球。



四、算一算。

(共26分)1. 能简算的要简算。

(12 分)
(1)2.5×7.1×4
(2)
5
11+
9
51+…+
37
331(3)
3
2+
9
2+
27
2+
81
2+
243
22. 求未知数的值。

(9分)
(1)x ﹣
X=
(2)6x-6.25=5.75
(3)
:10=6:x
3.图中的两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积.
四、应用题。

(每小题5分,共30分)
1. 一个等腰三角形,底角和顶角的度数比是1:3。

它的一个底角是多少度?
2. 新区器材厂用一根长120厘米的铁丝做成一个长方体框架,这个长方体长宽高的比
是3:2:1,这个长方体的体积是多少立方厘米?
3. 公园里栽了149棵杨树,再栽上22棵就是所栽柳树的3倍。

栽了多少棵柳树?(用
方程解答)
4. 食堂买来茄子和土豆共380 kg,茄子的质量比土豆的3倍还多8kg,茄子和土豆各
有多少千克?
5. 儿童节期间,学校准备用800元钱买节日礼物,其中30%的钱买糖果,剩余的钱按
3:5用来购买文具和图书。

学校购买文具和图书各用了多少元?
6. 一个圆柱形的游泳池,底面直径是10米,高是4米。

在它的四周和底部涂水泥,
每千克水泥可涂5平方米,共需多少千克水泥?
五、图图变换(6分)
画出三角形AOB绕点0点逆时针旋转90°后的图形。

参考答案
一、填一填(每小题2分,共20分)1. 平方米
公斤 2.
78
4200
3. 2
4. 23
123 5. 30 3000
6. 20
7. 6.795,6.804
8. 6
,12,18,24,30,36,42,48
9. 14 10. 6.88
平方厘米
二、选择(每题2分,共12分)
1.B
2.B
3.D
4.D
5.C
6.D 三、判断(6分)
1.√
2.√
3.×
4.×
5.×
6.√四、算一算。

(共26分)1. 能简算的要简算。

(12 分)
解:(1)2.5×7.1×4=(2.5×4)×7.1=10×7.1=71(2)
511

951
+…+
37
331
(3)
3
2+9
2+
27
2+
81
2+
243
2 =
41×(1-371) =1

2431 =
37
9
=
243
2422. 求未知数的值。

(9分)
(1)(1﹣
)X=
X= X = X= ×
X=
(2)解:6x-6.25=5.75
6x=5.75+6.25 6x=12 x=2
(3)解:
:10=6:x
x=60
x=600
3. 解:(10+6)×10÷2-10×10÷2
=16×10÷2-50
=80-50
=30(平方厘米)
答:阴影部分的面积是30平方厘米。

四、应用题。

(每小题5分,共30分)
1. 解:180× =36(度)
答:它的一个底角是36度.
2.1204=30(厘米)
30(3+2+1)=5(厘米)
5×3=15(厘米)
5×2=10(厘米)
5×1=5(厘米)
15×10×5=750(立方厘米)
答:这个长方体的体积是750少立方厘米。

3. 解:设栽了x棵柳树。

3x=149+22
解得x=57
答:栽了57棵柳树。

4.设土豆的质量是x千克,则茄子的质量是(3x+8)千克,根据题意可得:
x+(3x+8)=380
4x+8=380
4x=372
x=93
所以3x+8=287
答:茄子有287千克,土豆有93千克。

5.解:文具:800×(1-30%)×
=800×0.7×
=560×
=210(元)
图书:800×(1-30%)-210
=560-210
=350(元)
答:购买文具用了210元,购买图书买了350元.
6.解:侧面积:3.14 × 10 × 4 = 125.6(平方米)
底面积:3.14 ×(10 ÷ 2)2 = 78.5(平方米)
涂水泥的面积:125.6 + 78.5 = 204.1(平方米)
水泥的质量:204.1 ÷ 5 = 40.82(千克)
答:共需40.82千克水泥。

五、图图变换(6分)。

相关文档
最新文档