轮系的计算
轮系的传动比计算
构件
原来的转速 转化轮系中的转速
1
n1
n1H=n1-nH
2
n2
n2H=n2-nH
3
n3
n3H=n3-nH
H
nH
nHH=nH-nH=0
转化轮系中,轮1、3间的传动比可以按定轴齿轮系传动比求解:
iH
13
n1H
n
H 3
n1 nH n3 nH
Z2Z3 Z1Z2
Z3 Z1
新能源汽车技术教学资源库
新能源汽车技术教学资源库
定轴轮系:行星架的转速为0。
n2
2
2
2
n3
23
O2
O2
O2
H
H
H
H
nH
O3
O1
OH
O3 O1
OH
O3 O1
OH
1
1
1
1
n1
3
3
3
F=2
差动轮系
F=1
行星轮系
F=1
定轴轮系
2.周转轮系的传动比计算
新能源汽车技术教学资源库
新能源汽车技术教学资源库
用“反转法”,给整个轮系加上一个(-nH),各构件间的相对 运动不变。
(2)空间定轴轮系的传动比计算
新能源汽车技术教学资源库
解:由公式
i16
n1 n6
z2 z3 z4 z5 z6 z1z2 z3 z4 z5
z2 z4 z5 z6 z1z2 z4 z5
因为齿轮1转动方向向下,所以齿轮6的转动方向向左。
三、周转轮系的传动比计算
新能源汽车技术教学资源库
1.周转轮系的组成
(1)对于圆柱齿轮组成的定轴轮系确定传动比正负的方法: a.外啮合的次数; b.画箭头。
轮系的传动比计算
轮系的传动比计算1源自新能源汽车技术教学资源库一、轮系的传动比
轮系中首末两轮的转速之比称为轮系的传动比,用iab表
示。
iab na / nb
轮系的传动比计算,包括计算传动比的大小和确定转向两 个内容。
新能源汽车技术教学资源库
二、定轴轮系的传动比计算
z5 n4 i45 n5 z4
z 2 z3 z 5 n1 3 z 2 z 3 z 4 z5 i15 (1) n5 z1 z2 z3 z4 z1 z 2 z3
新能源汽车技术教学资源库
轮系传动比的一般表达式:
n表示外啮合的次数。
n主 n 各从动轮齿数的乘积 i ( 1 ) n从 各主动轮齿数的乘积
新能源汽车技术教学资源库
例4-7
图示轮系中,已知各轮齿数z1=20,z2=40,z2’=20,z3=30,
解: (1)分解轮系 定轴轮系:轮1,2 周转轮系:轮2’,3 ,H,4 (2)分别计算各轮系传动比 定轴轮系传动比:
z4=80。计算传动比i1H。
i12
(3)联立以上两式,得
n1 z2 2 n2 z1
齿轮4既是从动轮,又是主动轮,其存在不影响传动比,但改
变了外啮合的次数,称为过桥齿轮或惰轮。
(1)对于圆柱齿轮组成的定轴轮系确定传动比正负的方法: a.外啮合的次数; b.画箭头。 (2)当轮系中包含圆锥齿轮、蜗杆蜗轮时,传动比的计算仍用上 式计算,但各轮的转向必须画箭头确定。 a.当首末两轮轴线平行时,仍用正负表示两轮之间的关系。 b.当首末两轮轴线不平行时,不能用正负表示,只能依次画箭
解得
iH1 10000
新能源汽车技术教学资源库
第5章 轮系
例5 如图所示为电动卷扬机的传动装置,已知各轮齿 数,求i15 。
r
5
r
4 2 1 2
3
B
解:这一混合轮系可划分为由齿轮1、2、2’、3和转臂 H组成
的差动轮系,由齿轮5、4、3’组成的定轴轮系。而此定轴轮 系将差动轮系的中心轮3和转臂H(5)联系起来。 齿轮1、2、2’、3和H组成的差动轮系的传动比为
定轴轮系
I
1 2 4
3
2
3 V
5
定轴轮系
周转轮系
如图,齿轮2-2’的轴线 O2是绕齿轮1的固定轴线O1转
3
1
O3
动的。轴线不动的齿轮称为
中心轮,如图中齿轮1和3; 其轴线转动的齿轮称为行星 轮,如图中齿轮2和2';作为 行星轮轴线的构件称为系杆, 如图中的转柄H。通过在整个 轮系上加上一个与系杆旋转 方向相反、大小相同的角速 度,可以把周转轮系转化成 定轴轮系。
已知:z1=100,z2=101,
z2 =100,z3=99。
求传动比
i
H1?
1 H 1 101 99 i 1 1 i1H 0 H H 100 100
H 13
i1H
101 99 1 1 100 100 10000
H 1 iH1 10000 1 i1H
z 2 z3 z 4 z5 i15 (1) ' ' z1 z 2 z3 z 4
3
I
1 2 4
3
所以
25 132 28 10.5 22 20 20 n1 1450 n5 138.1 rpm i 10.5
2
3 V
5
转向与轮1相同。
机械设计基础第五章轮系
2. 根据周转轮系的组合方式,利用周转轮系传动比计算公式求
03
出周转轮系的传动比。
实例分析与计算
1
3. 将定轴轮系和周转轮系的传动比相乘,得到复 合轮系的传动比。
2
4. 根据输入转速和复合轮系的传动比,求出输出 转速。
3
计算结果:通过实例分析和计算,得到了复合轮 系的输出转速。
05 轮系应用与实例分析
仿真结果输出
将仿真结果以图形、数据等形式输出,以便 进行后续的分析和处理。
实验与仿真结果对比分析
01
数据对比
将实验数据和仿真数据进行对比 ,分析两者之间的差异和一致性 。
结果分析
02
03
优化设计
根据对比结果,分析轮系设计的 合理性和可行性,找出可能存在 的问题和改进方向。
针对分析结果,对轮系设计进行 优化和改进,提高轮系的性能和 稳定性。
04 复合轮系传动比计算
复合轮系构成及特点
构成
由定轴轮系和周转轮系(或几个周转轮系)组合而成,称为复合轮系。
特点
复合轮系的传动比较复杂,其传动比的计算需结合定轴轮系和周转轮系的传动比计算公式进行。
复合轮系传动比计算公式
对于由定轴轮系和周转轮系组成的复合轮系,其传动比计算 公式为:i=n1/nK=(Z2×Z4×…×Zk)/(Z1×Z3×…×Zk-1)×(1)m,其中n1为输入转速,nK为输出转速,Z为各齿轮齿数 ,m为从输入轴到输出轴外啮合齿轮的对数。
火车车轮与轨道
通过轮系保证火车在铁轨 上的平稳运行和导向作用 。
船舶推进器
利用轮系将主机的动力传 递给螺旋桨,推动船舶前 进。
军事装备中轮系应用举例
坦克传动系统
采用轮系实现坦克发动机的动力 输出与行走机构的连接,确保坦 克在各种地形条件下的机动性。
定轴轮系传动比的计算
§5-6 定轴轮系传动比的计算一、轮系的基本概念●轮系:由一系列相互啮合的齿轮组成的传动系统;●轮系的分类:定轴轮系:所有齿轮轴线的位置固定不动;周转轮系:至少有一个齿轮的轴线不固定;●定轴轮系的分类:平面定轴轮系:轴线平行;空间定轴轮系:不一定平行;●轮系的传动比:轮系中首、末两轮的角速度(或转速)之比,包括两轮的角速比的大小和转向关系。
传动比的大小:当首轮用“1”、末轮用“k”表示时,其传动比的大小为: i1k=ω1/ωk=n1/n k传动比的方向:首末两轮的转向关系。
相互啮合的两个齿轮的转向关系:二、平面定轴轮系传动比的计算特点:●轮系由圆柱齿轮组成,轴线互相平行;●传动比有正负之分: 首末两轮转向相同为“+”,相反为“-”。
1、传动比大小设Ⅰ为输入轴,Ⅴ为输出轴;各轮的齿数用Z来表示;角速度用ω表示;首先计算各对齿轮的传动比:所以:结论:定轴轮系的传动比等于各对齿轮传动比的连乘积,其值等于各对齿轮的从动轮齿数的乘积与主动轮齿数的乘积之比;2、传动比方向在计算传动比时,应计入传动比的符号:首末两轮转向相同为“+”,相反为“-”。
(1)公式法式中:m为外啮合圆柱齿轮的对数举例:(2)箭头标注法采用直接在图中标注箭头的方法来确定首末两轮的转向,转向相同为“+”,相反为“-”。
举例:122112zzi==ωω32223332zizωωωω'''===33434443zizωωωω'''===455445zzi==ωω11211)1(--==kkmkk zzzziωω三、空间定轴轮系的传动比特点:●轮系中包含有空间齿轮(如锥齿轮、蜗轮蜗杆、螺旋齿轮等); ●首末两轮的轴线不一定平行。
1 传动比的大小2 传动比的方向注意:只能采用箭头标注法,不能采用(-1)m 法判断。
分两种情况讨论:情况1:首、末两轮轴线平行传动比计算式前应加“+”、“-”号,表示两轮的转向关系。
行星轮系自由度
行星轮系自由度一、行星轮系简介行星轮系是一种常见的传动装置,由行星齿轮和太阳齿轮组成。
其具有许多独特的特点,其中之一就是自由度。
本文将详细探讨行星轮系的自由度问题。
1.1 行星轮系的构造行星轮系由一根轴和多个行星轮组成。
太阳齿轮位于行星轮系的中心,而行星轮则绕太阳齿轮旋转。
行星轮还与一个轮系(通常是外部环)相连,形成一个闭合的系统。
1.2 行星轮系的工作原理在行星轮系中,太阳齿轮是动力输入端,行星齿轮则是输出端。
当太阳齿轮旋转时,通过行星轮的转动,将动力传递到轮系上的外部环。
这种传动方式具有很高的效率和扭矩转动比。
二、行星轮系的自由度2.1 自由度的定义自由度是指系统可变动的自由度量。
在行星轮系中,自由度的定义与节点数和约束条件有关。
行星轮系的自由度可以用以下公式表示:自由度 = 节点数 - 约束条件在行星轮系中,节点数等于齿轮数+1,约束条件等于行星轮个数。
2.2 行星轮系的自由度计算方法行星轮系的自由度计算可以通过以下步骤完成:步骤1:确定齿轮数和行星轮个数。
步骤2:根据步骤1中的数据,计算节点数。
步骤3:根据行星轮个数,计算约束条件。
步骤4:应用自由度计算公式,得出行星轮系的自由度。
2.3 行星轮系的自由度举例例如,一个包含3个齿轮和2个行星轮的行星轮系,其计算过程如下:步骤1:齿轮数 = 3,行星轮个数 = 2步骤2:节点数 = 齿轮数 + 1 = 3 + 1 = 4步骤3:约束条件 = 行星轮个数 = 2步骤4:自由度 = 节点数 - 约束条件 = 4 - 2 = 2因此,该行星轮系的自由度为2。
三、行星轮系的自由度对传动性能的影响行星轮系的自由度对传动性能有着重要的影响。
自由度越大,系统的灵活性和可变性就越高,但也可能导致传动精度的下降。
下面将详细探讨自由度对传动性能的影响。
3.1 自由度与传动精度的关系自由度越大,行星轮系的误差累积越容易。
因为行星轮系的每个行星轮都可以自由运动,其位置误差会随着传动的进行而逐渐累积。
第十章-轮系
z2 z1
17 27
n1=3000rpm nH=920rpm 得n2 = 2383.5rpm
注意:空间轮系的方向只能用箭头画,但 在公式中一定要反映出正负号来!!
例题2
i13H
n1H n3H
n1 nH n3 nH
z2z3 z1z2'
3080 2.4 20 50
若 n1=50rpm
利用公式计算时应注意:
(1)公式只适用于齿轮1、齿轮k和 系杆H三构件的轴线平行或重合的情况, 齿数比前的“+”、“”号由转化轮系按定 轴轮系方法确定。
i1H3
1 H 3 H
z3 z1
i1H2
1 2
H H
(2) ω1、ωk、ωH均为代数值,代入公式计算时要带上相应 的“+”、“”号,当规定某一构件转向为“+”时,则转向与
最后 i14 = n1/n4= i13 X i34 =-10.13X( -1.67)=16.9
也可: i1H = i15 =n1/n5 = 43.9 i54 =n5/n4 =z4/z5 = 30/78=0.385
最后 i14 = n1/n4= i15 X i54 =43.9X 0.385=16.9
例题:在图示双螺旋桨飞机的减速器中,已知
1、轮系中各轮几何轴线均互相平行
i1N
1 N
n1 nN
(1)k
所有从动轮齿数乘积 所有主动轮齿数乘积
k 为外啮合次数! 若计算结果为“+”,表明首、末 两轮的转向相同;反之,则转向相反。
规定:
外啮合:二轮转向相反,用负号“-”表示;
内啮合:二轮转向相同,用正号“+”表示。
2、轮系中所有各齿轮的几何轴线不都平行,但首、末 两轮的轴线互相平行
定轴轮系传动比的计算
4)iGKH ≠iGK iGKH —为转化轮系中G、K两轮的转速之比,其大小及正负号按定轴轮系传动比
的计算方法确定;
iGK —为行星轮系中由G、 K两轮的转速之比,其大小及正负号须按上式计算后
方能确定。
4.确定转化轮系的传动比符号 1)转化轮系中,所有齿轮的轴线均平行,直接按(-1)m表示转化
一.定轴轮系传动比计算
1.轮系传动比概念
在轮系中,输入轴与输出轴的角速度(或转 速)之比,称为轮系的传动比。
iab=ωa/ωb = na/nb 式中iab ——定轴轮系传动比
ωa 、 ωb ——输入、输出轴的角速度(rad/s) na 、nb——输入、输出轴的转度(r/min)
1 3 2ˊ
2
3ˊ 4 5
轮系传动比符号,m—表示转化轮系中外啮合齿对数。
2)对于锥齿轮行星轮系,首末两轮轴线平行,应对各对齿逐对标出转向, 若首、末两轮转向相同,转化轮系传动比为正,反之为负。
行星轮系
锥齿轮行星轮 系
例14-3 如图所示的行星轮系中,各齿轮的齿数为Z1=27、Z2=17 、 Z3=61,转速n1=6000r/min,转向见图。求传动比i1H及nH
2 H
n1 1 3
例14-4 如图所示的锥齿轮行星轮系中,各齿轮的齿数为Z1=20、 Z2=30、Z2ˊ=50 、Z3=80,已知转速n1=100r/min。试求行星架的转速nH
2' 2
3 H
1
例14-5 如图所示大传动比行星轮系中,各齿轮的齿数为Z1=100、 Z2=101、Z3=100 、Z4=99。试求iH1
1
3
4ˊ
2ˊ 4
5
8
2
【机械设计基础】第五章 轮系
轮
系
三个运动件中,有两个构件为主动件 一个为从动 三个运动件中 有两个构件为主动件,一个为从动, 运动复合的差动轮系 有两个构件为主动件 一个为从动, 三个运动件中,有一件主动,两件从动, 三个运动件中,有一件主动,两件从动,运动分解的差动轮系 三个运动件中,两个中心轮之一固定, 三个运动件中,两个中心轮之一固定, 行星轮系 系杆H固定 演变为定轴轮系。 固定, 系杆 固定,演变为定轴轮系。
第五章
轮
系
重点学习内容
1.定轴轮系和周转轮系的传动比计算 2.轮系中从动轮转动方向的判定
机 械 设 计 基 础
第五章
轮
系
第一节 定轴轮系及其传动比计算 第二节 周转轮系及其传动比计算 第三节 轮系的功用
机 械 设 计 基 础
第五章
轮
系
现代机械中, 现代机械中,为了满足不同的工作要求只用一对齿轮传 动往往是不够的,通常用一系列齿轮共同传动。 动往往是不够的,通常用一系列齿轮共同传动。这种由一系列 齿轮(包括蜗杆蜗轮)组成的传动系统称为齿轮系(简称轮系)。 齿轮(包括蜗杆蜗轮)组成的传动系统称为齿轮系(简称轮系)。 齿轮系
机 械 设 计 基 础
周转轮系的分类: 周转轮系的分类:
第五章
轮
系
1、行星轮系:自由度为1的周转轮系,需要两个原动 、行星轮系:自由度为 的周转轮系 的周转轮系, 件才能有确定的运动。 件才能有确定的运动。 2、差动轮系:自由度为2的周转轮系,需要一个原动 、差动轮系:自由度为 的周转轮系 的周转轮系, 件才能有确定的运动。 件才能有确定的运动。
第五章
转化后的定轴轮系 的传动比为: 的传动比为:
H 13
n1 n1 − nH i = H = n3 n3 − nH
轮系的传动比计算
Z3 Z1
新能源汽车技术教学资源库
例4-5 图示行星轮系中,已知z1 = 50、z2 = 30、z3 = 100,求传动 比i1H。
解:根据转化轮系法,齿轮1、3和行星架轴线相重合
由
i1H3 =
n1 n3
nH nH
=
z2 z3 z1 z2
=
z3 z1
即
i1H3
=
n1 nH 0 nH
=
100 50
=
2
解得 i1H = n1 / nH = 3
新能源汽车技术教学资源库
例4-6 图示的差动轮系中,已知z1 = 20、z2 = 30、z3 = 80,齿轮 1和齿轮3的转速大小为10r/min,方向相反。求行星架H的转速及传 动比iH1。
解:设齿轮1转向为正,则
n1 10r / min,n3 10r / min
4
1.周转轮系的组成
太阳轮与行星架几何轴线必须重合!
太阳轮
周 转
行星轮
轮 行星架
系 机架
轴线位置固定 既自转又公转 又称系杆
一个基本周转轮系中, 行星轮可有多个,太阳轮的 数量不多于两个,行星架只 能有一个。
太阳轮 行星轮 太阳轮
行星架 机架
ω3
H2
ωH
1
O
ω1
3
周转轮系的分类 差动轮系:太阳轮都能转动的周转轮系; 行星轮系:有一个太阳轮固定不动的周转轮系。
四、混合轮系的传动比计算
1.混合轮系 混合轮系:由定轴轮系 + 周转轮系、或由几个单一的周转
轮系组合而成的轮系。
2.计算混合轮系传动比的方法和步骤:
(1)划分出基本类型的轮系。 (2)分别列出周转轮系和定轴轮系的传动比计算公式。 (3)联立求解,求得所需的参数。
轮系及其传动比的计算详解
轮系及其传动比的计算详解轮系是由一组相互连接的轮齿组成的机械系统,用于传递动力和改变转速。
根据轮齿的不同数量和排列方式,轮系可以实现不同的传动比例,从而改变输入轮的转速和输出轮的转速。
在本文中,我们将详细介绍轮系的计算方法和传动比的计算方法。
首先,我们介绍一些与轮系计算相关的基本参数和概念。
1.轮齿数(Z):每个轮齿的数量,通常用于计算轮齿的大小和分布。
2.模数(m):轮齿的大小与分布的参数,表示每个轮齿的宽度与轮齿间距的比例。
3.齿轮比(i):两个相邻轮齿的齿轮比为输出轮的齿数除以输入轮的齿数,用于表示输入轮与输出轮之间的转速比。
在轮系计算中,我们通常关注的是传动比(或齿轮比),它表示两个相邻轮齿之间的转速比。
传动比的计算方法取决于轮系的类型和轮齿的排列方式。
下面将介绍常见的轮系类型和它们的传动比计算方法。
1.平行轴齿轮传动:平行轴齿轮传动是最常见的轮系类型,用于将动力从一个轴传递到另一个轴上。
传动比的计算方法如下:- 整体齿轮比(i)=输出轮齿数(Z_out)/输入轮齿数(Z_in)- 输入轮输出转速(n_out)=输入轮输入转速(n_in)/整体齿轮比(i)2.平行轴齿轮传动(多级):平行轴齿轮传动可以通过多级配置来实现更大的传动比。
在多级传动中,每个级别的传动比相乘,以得到整体的传动比。
3.内齿轮传动:内齿轮传动是一种特殊的齿轮传动,其中至少有一个轮齿是内部轮齿。
传动比的计算方法稍有不同:- 整体齿轮比(i)=输出轮齿数(Z_out)/(输入轮齿数(Z_in)+输出轮齿数(Z_out))- 输出轮输入转速(n_in)=输入轮输出转速(n_out)×整体齿轮比(i)4.锥齿轮传动:锥齿轮传动用于连接两个轴的交叉传动,其中两个轮齿是锥形的。
传动比的计算方法如下:- 整体齿轮比(i)=输出轮齿数(Z_out)/输入轮齿数(Z_in)- 输入轮输出转速(n_out)=输入轮输入转速(n_in)/整体齿轮比(i)最后,对于复杂的传动系统,传动比的计算可以通过将每个传动单元的传动比相乘来实现,从而得到整体的传动比。
关于定轴轮系的相关计算
针对你的问题有公式可参照分析:电机功率:P=1.732×U×I×cosφ电机转矩:T=9549×P/n ;电机功率转矩=9550*输出功率/输出转速转矩=9550*输出功率/输出转速P = T*n/9550公式推导电机功率,转矩,转速的关系功率=力*速度P=F*V---公式1转矩(T)=扭力(F)*作用半径(R) 推出F=T/R ---公式2线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n分)/60 =πR*n分/30---公式3将公式2、3代入公式1得:P=F*V=T/R*πR*n分/30 =π/30*T*n分-----P=功率单位W,T=转矩单位Nm,n分=每分钟转速单位转/分钟如果将P的单位换成KW,那么就是如下公式:P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n速比=电机输出转数÷减速机输出转数("速比"也称"传动比")1.知道电机功率和速比及使用系数,求减速机扭矩如下公式:减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数电动机扭距计算电机的“扭矩”,单位是N•m(牛米)计算公式是T=9549 * P / n 。
P是电机的额定(输出)功率单位是千瓦(KW)分母是额定转速n 单位是转每分(r/min)P和n可从电机铭牌中直接查到。
设:电机额定功率为P (kw),转速为n1 (r/min),减速器总传动比i,传动效率u。
则:输出转矩=9550*P*u*i/n1 (N.m)n=60f/p,p为极对数根据电机的同步转速n=60f/p计算同步转速:50HZ时:2极电机3000转/分;4极电机1500转/分;6极电机1000转/分60HZ时:2极电机3600转/分;4极电机1800转/分;6极电机1200转/分频率只差10HZ,极数少转速相差多,不知道你电机是几极的,除这个以外,因为上面的计算是同步转速,罩极电机也是异步电机,所以设法在电机设计中设法调整电机的转差率的大小也可以对转速进行控制依输出机构不同有不同算法以常见的机构,内齿圈固定,入力於中心的太阳齿,行星齿托架输出则为(内齿圈齿数/太阳齿齿数)+1,以一般伺服电机常用减速机为减速比1/10为例内齿圈齿数通常为108齿则太阳齿数为108/(10-1) = 12(齿)可得知减速比1/5 太阳齿为108/(5-1) = 27(齿)也就可以知道为甚麼这类机构减速比1/10 反而得不到最佳输出转矩原因就在此我查了一下,关于减速比是这样定义的。
机械原理第九章 轮系
1 10000
iH1 1/ i1H 10000
1H 3H
当系杆转10000转时,轮1才转1转, 二者转向相同。此例说明周转轮系可 获得很大的传动比。
周转轮系的传动比计算
例题2:z1=z2=48,z2’=18, z3=24,n1=250 r/min,
n3= 100 r/min,方向如图所示。求: nH 的大小和方向
§9.3 周转轮系的传动比计算
定轴轮系传动比计算公式
周转轮系传动比计算
?
反转法原理,将周转 轮系转化为定轴轮系
周转轮系的传动比计算
一、周转轮系传动比计算的基本思路
- H
系杆机架 周转轮系定轴轮系
周转轮系的 转化机构
可直接用定轴轮系传动比的计算公式。
周转轮系的传动比计算
将轮系按-ωH反转后,各构件的角速度的变化如下:
三环传动没有专门的输出 机构,因而具有结构简单、 紧凑的优点。
其他行星传动简介
二、摆线针轮传动
组成:1为针轮,2为摆线行星轮,H为系杆,3为输出机 构。
行星轮的齿廓曲线不是渐开线,而是外摆线;中心内齿 轮采用了针齿。
iHV
iH 2
nH n2
z2 z1 z2
z2
三、谐波传动
其他行星传动简介
组成:具有内齿的刚轮、具有外齿的柔轮和波发生器H。 通常将波发生器作为主动件,而刚轮和柔轮之一为从动件, 另一个为固定件。
广泛用于机床、计算装置、补偿调整装置中
运动分解
轮系的功用
汽车后桥减速器示意图
i143
n1 n3
n4 n4
z3 z1
1
2n4
1 2
(n1
n3 )
轮系的功用
轮系的传动比计算
4
Z3 Z1
新能源汽车技术教学资源库
例4-5 图示行星轮系中,已知z1 = 50、z2 = 30、z3 = 100,求传动 比i1H。
解:根据转化轮系法,齿轮1、3和行星架轴线相重合
由
i1H3 =
n1 n3
nH nH
=
z2 z3 z1 z2
=
z3 z1
即
i1H3
=
n1 nH 0 nH
(1)对于圆柱齿轮组成的定轴轮系确定传动比正负的方法: a.外啮合的次数; b.画箭头。
(2)当轮系中包含圆锥齿轮、蜗杆蜗轮时,传动比的计算仍用上 式计算,但各轮的转向必须画箭头确定。
a.当首末两轮轴线平行时,仍用正负表示两轮之间的关系。 b.当首末两轮轴线不平行时,不能用正负表示,只能依次画箭 头。
新 能 源 汽新车能技源术汽教车学技资术源教库学 资 源 库
轮系的传动比计算
1
新能源汽车技术教学资源库
一、轮系的传动比
轮系中首末两轮的转速之比称为轮系的传动比,用iab表 示。
iab na / nb
轮系的传动比计算,包括计算传动比的大小和确定转向两 个内容。
二、定轴轮系的传动比计算
1.定轴轮系中齿轮传动方向的确定
i15
n1 n5
(1)3
z2 z3 z4 z5 z1z2 z3 z4
z2 z3z5 z1z2 z3
新能源汽车技术教学资源库
轮系传动比的一般表达式: n表示外啮合的次数。
i
n主 n从
(
1)n
各从动轮齿数的乘积 各主动轮齿数的乘积
齿轮4既是从动轮,又是主动轮,其存在不影响传动比,但改 变了外啮合的次数,称为过桥齿轮或惰轮。
轮系课件ppt
算需要考虑齿轮的材料、热处理方式、使用环境以及设计强度等因素。
02
齿数计算
齿数是齿轮的基本参数之一,它决定了齿轮的传动比和结构尺寸。齿数
的计算需要根据传动比需求、齿轮转速、齿轮箱空间等因素来确定。
03
压力角计算
压力角是决定齿轮传动性能的重要参数。压力角的计算需要考虑齿轮的
强度、传动效率以及噪音等因素。常用的压力角有14.5°和20°两种。
04 轮系的维护与故障排除
齿轮的维护与保养
01
02
03
齿轮的润滑
定期检查齿轮的润滑情况 ,保持适当的润滑以减少 磨损和防止锈蚀。
齿面检查
定期检查齿轮的齿面,确 保没有剥落、裂纹或严重 磨损等现象。
紧固件
确保齿轮的紧固件(如螺 栓、螺母)紧固,防止松 动造成齿轮移位或振动。
轴系的维护与保养
轴的清洁
可能是由于齿面磨损、润滑不良或异物进入等原因造成。应检查 齿轮的齿面和润滑情况,清理异物。
轴承发热
可能是由于润滑不良、轴承损坏或轴向间隙过小等原因造成。应检 查轴承的润滑和磨损情况,调整轴向间隙。
轴系振动
可能是由于轴承损坏、轴弯曲或不平衡等原因造成。应检查轴和轴 承的工作状态,进行平衡检测和调整。
05 轮系的发展趋势与展望
定期清洁轴系,去除油污 和杂质,以减少磨损和防 止锈蚀。
轴承的检查与更换
定期检查轴承的工作状态 ,如有损坏或磨损严重应 及时更换。
紧固件
确保轴系紧固件的紧固, 如发现松动应及时紧固或 更换。
轴承的维护与保养
润滑
定期为轴承添加润滑脂或润滑油 ,以减少摩擦和磨损。
清洁
定期清洁轴承,去除灰尘和杂质, 保持轴承的清洁度。
《机械设计基础》试题库
《机械设计基础》试题库一、计算图示机构的自由度,并判断机构是否具有确定的运动。
(如有复合铰链、虚约束、局部自由度须指出)DEDCDDE二、轮系的计算1.在图示轮系中,已知各轮齿数为Z1=Z3=30,Z2=90,Z2’=40,Z3’=40,Z4=30,试求传动比i1H,并说明I、H轴的转向是否相同?2.在图示轮系中,已知各轮齿数为Z1 =15,Z2=20, Z2’ = Z3’= Z4=30, Z3=40,Z 5= 90,试求传动比IⅠⅡ,并说明I、Ⅱ轴的转向是否相同?3.在图示轮系中,已知各轮齿数为Z1=1(右旋蜗杆), Z2=40 ,Z2’= 24,Z3=72,Z,3=18,Z4= 114.1、该轮系属于何种轮系2、求轮系的传动比i1H,并在图中标出系杆H的转向。
4.在图示轮系中,已知各轮齿数为Z1= 20,Z2=30,Z 2’= 50, Z3=80, n1=50r/min,方向如图所示,试求nH的大小和方向。
5.在图示轮系中,已知各轮齿数为Z1= Z4=20,Z 2= Z5=30,Z3= Z6=100,试求传动比i1H。
ⅠⅠⅡ6.在图示轮系中,已知各轮齿数为Z 1=100, Z 2=40,Z 2’=30, Z 3=90, Z ,3=50, Z 4=2(右旋), n 1=200r/min ,n 4=1250r/min ,转向如图所示,试求n H的大小及方向。
7.在图示轮系中,已知各轮齿数为Z 1=15, Z 2=25,Z 2’=20, Z 3=20, Z 4=60,Z 4’= 55, n 1=110r/min ,转向如图所示,试求n h 的大小及转向。
8.某起重装置,其运动简图所图所示,已知各轮齿数为Z 1=Z 2=20,Z 3=60,Z 4=2(蜗杆), Z 5=40,n 1的转向如图所示,试求 1、该轮系属于何种轮系? 2、i 15的大小;3、此时重物W是上升还是下落?三、作图题(按作图规则作图,图线清晰) 1.凸轮为一偏心圆盘。
第7章轮系
n1 n10
100
得
n10
n1 i110
200 100
2r / min
右手螺旋法则判定: 蜗轮转向为顺时针方向。
练习 图示轮系。已知:z1=16,z2=32,z3=20,z4=40,
蜗杆z5 = 2,蜗轮z6 = 40,n1=800r/min。试分析该传动
机构的传动路线;计算蜗轮的转速 n6 并确定各轮的回
周转轮系的组成
行星轮
系杆 太阳轮(中心轮)
3.混合轮系
既有定轴轮系又有周转轮系的轮系,或由几部 分周转轮系组成的复杂轮系
齿轮在轴上的固定
齿轮与轴的位置关系
固定 齿轮与轴固为一体。齿轮与轴 一同转动,但不能沿轴向移动
空套 齿轮与轴空套。齿轮与轴各自 转动,互不影响
滑移 齿轮与轴周向固定。齿轮与轴 一同转动,还可沿轴向滑动
周转轮系的复杂轮系。
在计算混合轮系传动比时,既不能将整个轮系作为定轴 轮系来处理,也不能对整个机构采用转化机构的办法。
混合轮系传动比计算的一般步骤: 正确划分轮系中的定轴轮系部分和周转轮系; 分别计算各轮系的传动比; 找出各轮系之间的运动关系,联立求解。
复合齿轮系传动比的计算方法
1.分清轮系
2.分列方程
转动的正方向,则与其同向的按正号带入,与其反向的按 负号带入。 4.公式齿数项的正负号应按转化机构处理:
① 由圆柱齿轮组成的周转轮系可用(-1)m或画箭头确定; ② 含有锥齿轮的周转轮系,只能用画箭头的方法确定。 5.公式主要以方程形式来求解,n1、nk、nH三个量中,需给 定任意两个,才能求出第三个量。
2
i12i23i3'4i4'5
1
z2 z3 z4 z5 z2z3z4z5 z1 z2 z3' z4' z1z2 z3'z4'
轮系自由度计算
轮系自由度计算
轮系自由度是机器人运动学的基础,它表示机器人系统的空间运动自由度。
一般来讲,机器人的自由度是指机器人的运动轨迹受到的空间限制,以及机器人外形受到的关节约束所受到的限制。
常见的轮系自由度包括:
1. 直线移动的自由度:也称为X-Y自由度,指机器人可以在水平面内任意沿着X和Y方向进行移动的能力;
2. 转动自由度:也称为旋转自由度,指机器人可以在水平面内以指定的中心点为枢纽,任意沿着某个方向进行旋转的能力;
3. 高度调整自由度:也称为Z-轴自由度,指机器人可以在竖直面内任意沿着Z方向进行移动的能力;
4. 首部自由度:指机器人可以在指定的三维空间内任意沿着任意方向旋转的能力。
计算机器人的轮系自由度的方法是将机器人的每个关节的实际运动范围作为该关节的自由度,将它们加和起来,即为机器人的总自由度。
- 1 -。