离散傅里叶变换和快速傅里叶变换
[理学]离散傅里叶变换及其快速算法
非周期序列的离散时间傅里叶变换 (DTFT) /序列的傅里叶变换
• 定义序列x(n)的离散时间傅里叶变换(DTFT)为:
X (e ) DTFT{x(n)}
j n jn x ( n )e
• 序列x(n)的离散时间傅里叶逆变换(IDTFT)为:
x(n) IDTFT{X (e j )} 1 2
按时间抽取的FFT算法
• 设N=2M,M为正整数,如取N=23=8,即离散时间信号为
x(n) {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}
• 按照规则①将序列x(n)分为奇偶两组,一组序号为偶数, 另一组序号为奇数,即
{x(0), x(2), x(4), x(6) | x(1), x(3), x(5), x(7)}
X (e j )e jn d
傅里叶变换对小结
• 傅里叶级数(FS)(时域:连续周期;频域:非周期离散)
1 Xk T
T 2
T 2
x(t )e jk1t dt
x(t )
k
X k e jk1t
k 0, 1, 2,
• 傅里叶变换(FT)(时域:连续非周期;频域:非周期连续)
第三章离散傅里叶变换及其快速计算方法(DFT、FFT)
X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n
x( n)e jnw
X (z)
n
x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n
x ( n) z n
n
x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T
时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t
时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )
T T
X (e jT )e jnT d
取样定理
n
x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8
离散傅里叶变换和快速傅里叶变换的区别
离散傅里叶变换和快速傅里叶变换的区别离散傅里叶变换(Discrete Fourier Transform,DFT)和快速傅里叶变换(Fast Fourier Transform,FFT)都是数字信号处理中常用的算法,用于将时域信号转换为频域信号。
虽然它们都是傅里叶变换的变种,但它们之间有很大的区别。
DFT是一种直接计算傅里叶变换的方法,它将N个时域采样点转换为N个频域采样点。
DFT的计算复杂度为O(N^2),因此对于大规模的信号处理任务来说,计算时间会非常长。
而FFT是一种基于分治思想的算法,它将DFT的计算复杂度降低到O(NlogN),因此计算速度非常快,特别适合于大规模信号处理任务。
DFT和FFT的计算方式也有所不同。
DFT的计算公式为:X[k] = sum(x[n] * exp(-j*2*pi*k*n/N))其中,x[n]表示时域采样点,X[k]表示频域采样点,N表示采样点数,k和n分别表示频域和时域的索引。
这个公式需要进行N^2次复数乘法和加法运算,因此计算复杂度很高。
FFT的计算方式则是将DFT的计算过程分解为多个子问题,然后递归地求解这些子问题。
具体来说,FFT将N个采样点分为两个子序列,分别进行DFT计算,然后将它们合并起来得到整个序列的DFT结果。
这个过程可以递归地进行下去,直到只剩下一个采样点为止。
由于FFT采用了分治思想,它的计算复杂度为O(NlogN),比DFT快得多。
DFT和FFT的应用场景也有所不同。
由于DFT的计算复杂度较高,因此它适合于小规模的信号处理任务,例如音频信号的处理。
而FFT则适合于大规模的信号处理任务,例如图像处理和视频处理。
此外,FFT还可以用于信号压缩、滤波和频域分析等领域。
离散傅里叶变换和快速傅里叶变换虽然都是傅里叶变换的变种,但它们之间有很大的区别。
DFT是一种直接计算傅里叶变换的方法,计算复杂度较高,适合于小规模的信号处理任务;而FFT是一种基于分治思想的算法,计算速度非常快,适合于大规模的信号处理任务。
数字图像处理中的常用变换
一、离散傅里叶变换1.离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
在实际应用中通常采用快速傅里叶变换以高效计算DFT。
DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。
DFT的应用十分广泛,如:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。
2.离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1.离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。
传统的正交变换多是复变换,运算量大,不易实时处理。
随着数字图像处理技术的发展,出现了以离散余弦变换(DCT)为代表的一大类正弦型实变换,均具有快速算法。
目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。
由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。
对给定长度为N 的输入序列f(x),它的DCT 变换定义为:⎪⎭⎫ ⎝⎛+⨯=∑-=102)12(cos )()(2)(N x N x x f u C N u F μπ式中:1,,1,0u -=N ,式中的)(u C 的满足:⎪⎩⎪⎨⎧==其它1021)(u u C在数字图像处理中,通常使用二维DCT 变换,正变换为:⎪⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N x N y N v y N u x y x f v C u C N v u F ππ 其逆变换IDCT 为:⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N u N v N v y N u x v u F v C u C N y x f ππ 式中:1,,1,0u -=N ,1,,1,0v -=N 。
离散傅里叶变换及其快速算法
第五章离散傅里叶变换及其快速算法 1离散傅里叶变换(DFT)的推导(1) 时域抽样:目的:解决信号的离散化问题。
效果:连续信号离散化使得信号的频谱被周期延拓。
⑵时域截断: 原因:工程上无法处理时间无限信号。
方法:通过窗函数(一般用矩形窗)对信号进行逐段截取。
结果:时域乘以矩形脉冲信号,频域相当于和抽样函数卷积。
(3)时域周期延拓:目的:要使频率离散,就要使时域变成周期信号。
方法:周期延拓中的搬移通过与 、:(t _nT s )的卷积来实现。
表示:延拓后的波形在数学上可表示为原始波形与冲激串序列的卷积。
结果:周期延拓后的周期函数具有离散谱。
经抽样、截断和延拓后,信号时域和频域都是离散、周期的。
过程见图抽样后0 fJif-用于截断原函数J L<Z 用于抽样i4LJI Ji WWtin1 f=1 ----------> --------------t-------------- ►fVtt截断后有卷积波纹i------------- ►t0 I------------------ rfJL 」L延拓后7角ii t飞7Vtfft \ \ t \ f定义DFT用于延拓「ITf处理后信号的连续时间傅里叶变换:I'U N *|nT sr 0 N图1 DFT 推导过程示意图〜 oo "N 4l ~(f)=£ IS h(nTs)ek =^O「j2 飞n/Nn=0-kf o )(i) l~(f)是离散函数,仅在离散频率点f二kf o k—处存在冲激,强度为a k,其T o NT s余各点为0。
〜N N 1(ii) H(f)是周期函数,周期为Nf o == 工,每个周期内有N个不同的幅值。
T o NT s T s(iii) 时域的离散时间间隔(或周期)与频域的周期(或离散间隔)互为倒数。
2 DFT及IDFT的定义DFT定义:设hnT s是连续函数h(t)的N个抽样值n=0,1,…,N J,这N个点的宽度为N 的DFT 为:DFT N h(nT s)]=^ h(nT s)e」2邢/N =H —— J (k =0,1,…,N _1)7 l NT s 丿IDFT定义:设H 上是连续频率函数H(f)的N个抽样值k =0,1,…,N J,这N个点(NT s 丿的宽度为N的IDFT为:DFT N1 H k丄7 H L e」2「nk/N厶nTs , (k =0,1,…,N —1)|L Ns N k 卫NT se^Rk/N称为N点DFT的变换核函数,e j2 flk/N称为N点IDFT的变换核函数。
离散傅里叶变换的基本性质
x(5 )
A(6 )
W
0 N
x(3 )
A(7 )
x(7 )
W
0 N
A(0 )
A(1 )
A(2 )
W
0 N
A(3 )
W
2 N
A(4 )
A(5 )
A(6 )
W
0 N
A(7 )
W
2 N
A(0 )
A(1 )
A(2 )
A(3 )
A(4 )
W
0 N
A(5 )
W
1 N
A(6 )
W
2 N
A(7 )
W
3 N
N点DIT―FFT运算流图(N=8)
A(5 )
A(6 )
W
0 N
A(7 )
W
2 N
A(0 )
A(1 )
A(2 )
A(3 )
A(4 )
W
0 N
A(5 )
W
1 N
A(6 )
W
2 N
A(7 )
W
3 N
N点DIT―FFT运算流图(N=8)
A(0 ) X(0 ) X(1 ) X(2 ) X(3 ) X(4 ) X(5 ) X(6 )
A(7 ) X(7 )
m N
WN 2
WNm
2. 时域抽取法基2FFT基本原理 FFT算法基本上分为两大类:
时域抽取法FFT(Decimation In Time FFT,简称DITFFT)和频域抽取法FFT(Decimation In Frequency FFT,简 称DIF―FFT)。下面先介绍DIF―FFT算法。
设序列x(n)的长度为N,且满足
N 2M , M 为自然数
离散傅里叶变换及其快速算法
ak 也是以 N周期的周期序列,满足 ak
~ X (k ) Nak
ak 。令 ln
(3.5)
将式(3.4)代入,得
N 1 j kn ~ ~ N X ( k ) x ( n )e n 0 2
k
(3.6)
~ X (k ) 式中, 是以N为周期的周期序列,称为
~ x (n) 的离散傅里叶级数,用DFS表示。
~(k ), N 相位为 幅度为 X
~ arg[ X (k )]
。
基波分量的频率为 2 N ,幅度为
~ 为arg[ X (1)]
~ X (1) N
,相位
。
x ( n ) 以 N 8 为周期 n) 【例3-1】设 x(n) R4 (,将
进行周期延拓,得到周期序列 幅频特性。
~ x ( n)
2016-12-8
解:根据定义求解
14 12 e 8e
j
j
2 k 6
10e
j
j
2 2k 6 j 2 5k 6
2 3k 6
6e
2 4k 6
10e
X (0) 60 X (3) 0
X (1) 9 j 3 3 X (4) 3 j 3
X (2) 3 j 3 X (5) 9 j 3 3
x 3(n )
当k取奇数( k=2m+1 ,m=0,1,…, N/4-1 )时
N n(2 m 1) X 1(2m 1) x 1(n ) x 1 n 4 W N 2 n 0 N 4 1 N n mn x 1(n ) x 1 n W W N N 4 4 n 0 2
第二章 离散傅里叶变换及其快速算法
表示这个顺序时,它正好是“码位倒置”的顺序 。例如,原来的自然顺序应是 x(1)的地方,现在 放着 x(4),用二进制码表示这一规律时, 则是在
x(0 0 1)处放着 x(1 0 0), x(0 1 1)处放着 x(1 1 0)。
表 码位倒置顺序
自然顺序
二进码表示
FFT算法的基本思想:
考察DFT与IDFT的运算发现,利用以下两个特性可减少运
算量: 1)系数
wNnk
j 2 nk
e N 是一个周期函数,它的周期性和对称
性可用来改进运算,提高计算效率。
例 w N n(N k)w N k(N n)w N nk
又如 wNN/2 1,
因此
w(kN/2) N
wN k
k , , ,N
X (k N 2 ) G k W N k H k ,
k 0 ,1 , N 1 2
依此类推,G(k)和H(k)可以继续分下去,这种按时间抽 取算法是在输入序列分成越来越小的子序列上执行DFT
运算,最后再合成为N点的DFT。
蝶形信号流图
将G(k)和H(k) 合成X(k)运算可归结为:
2、按时间抽取的FFT(N点DFT运算的分解) 先从一个特殊情况开始,假定N是2的整数次方,
N=2M,M:正整数
首先将序列x(n)分解为两组,一组为偶数项,一组为奇 数项,
x(x2(r2 r)1) x1 x(2 r()r)
r0,, 1,N-/12
将DFT运算也相应分为两组:
N1
x(k)DF x(T n) x(n)w N nk
N/21
X(2r) a(n)WNn/r2 n0 N/21
X(2r1) b2(n)WNn/2r n0
第四章 离散傅里叶变换及其快速算法
离散 连续
周期延拓 非周期
4.1 离散傅里叶变换的定义
kn X (k ) DFT [ x(n)] x(n)WN , n 0 N 1 N 1 n 0 2 kn N
= x ( n )e
j
k=0, 1, , N-1
X ( k )WN kn k 0 N 1
1 x(n) IDFT [ X (k )] N 1 N
4 N
x D1X N
W N ( N 1 ) 2 ( N 1 ) WN W N ( N 1 )( N 1 ) 1
1
D
1 N
W N 2 ( N 1 )
1 DN N
dftmtx(N) 函数产生N×N的DFT矩阵DN conj(dftmtx(N))/N 函数产生N×N的IDFT矩阵DN-1
二、 圆周移位性质
1. 序列的圆周移位 x(n)的圆周移位定义为
y(n)=x((n+m))N RN(n) 其过程为: 1)、将x(n)以N为周期进行周期延拓得x((n))N 2)、将x((n))N左移m位,得x((n+m))N 3)、取其主值序列x((n+m))N RN(n) 循环移位过程如图所示
WNN 1
2 WN ( N 1)
WNN 1 2 WN ( N 1) ( WN N 1) ( N 1)
DFT
IDFT矩阵形式为
1 1 1 W 1 N 1 D 1 1 W N 2 N N 1 W N ( N 1 ) 1 W N 2 W
0 n N `1 0 k N `1
DFT 则: x1 (n) x2 (n) X1 ( K ) X 2 ( K )
FFT变换相关公式IFFT变换(FFT逆变换)
FFT变换相关公式IFFT变换(FFT逆变换)离散傅里叶变换(Discrete Fourier Transform, DFT)是信号处理中的一种重要技术,用于将一个离散序列(如时域信号)转换为频域表示。
而逆离散傅里叶变换(Inverse Discrete Fourier Transform, IDFT)则是将频域信号转换回时域表示。
在信号处理中,常用的FFT算法(快速傅里叶变换)是对DFT的一种高效实现,能够大大加快计算速度。
FFT算法利用了信号的周期性和对称性,将DFT的计算量从O(n^2)降低到O(nlogn),其中n是信号的长度。
下面介绍一些与FFT和IFFT相关的公式和性质。
1.DFT公式:离散傅里叶变换的公式如下:X[k] = Σ(x[n] * exp(-i * 2π * k * n / N))其中,X[k]是频域信号的第k个频率分量,x[n]是时域信号的第n个采样点,N是信号的长度。
2.IDFT公式:逆离散傅里叶变换的公式如下:x[n] = (1/N) * Σ(X[k] * exp(i * 2π * k * n / N))其中,x[n]是逆变换后的时域信号,X[k]是频域信号的第k个频率分量,N是信号的长度。
3.FFT算法公式:FFT算法是一种将DFT计算量降低的方法,公式如下:X[k] = Σ(x[n] * W^(-kn))其中,W = exp(-i * 2π / N)是旋转因子,n和k分别表示时域和频域的索引。
4.IFFT算法公式:IFFT算法是FFT的逆变换,可以将频域信号转换为时域信号,公式如下:x[n] = (1/N) * Σ(X[k] * W^(kn))其中,W = exp(i * 2π / N)是旋转因子,n和k分别表示时域和频域的索引。
5.FFT和IFFT的性质:-线性性质:FFT和IFFT都满足线性性质,即对于多个信号的线性组合,其FFT和IFFT等于各自信号的FFT和IFFT的线性组合。
雷达成像中的傅里叶变换
雷达成像中的傅里叶变换
在雷达成像中,通过对回波信号进行快速傅里叶变换(FFT)或离散傅里叶变换(DFT),可以将信号从时域转换到频域。
这有助于识别和提取信号中的有用信息,例如目标的距离、速度和方向等。
傅里叶变换是一种数学方法,用于将信号从时域转换到频域。
它可以将复杂的信号分解为简单的正弦波分量,这些正弦波分量的频率和振幅与原始信号的频率和振幅相关。
通过分析这些分量,可以提取信号的特征,并识别其中包含的目标信息。
在雷达成像中,回波信号通常是一个复数信号,它包含了目标的距离、速度和方向等信息。
通过对回波信号进行快速傅里叶变换或离散傅里叶变换,可以将信号从时域转换到频域。
在频域中,回波信号的能量通常集中在一些特定的频率上,这些频率对应于目标的特征。
通过对这些频率的能量进行分析,可以提取目标的距离、速度和方向等信息。
此外,通过对回波信号进行逆傅里叶变换,可以将信号从频域转换回时域。
这有助于将目标的距离、速度和方向等信息转换为目标的位置和形状信息,从而实现雷达成像。
在雷达成像中,常用的傅里叶变换算法有快速傅里叶变换(FFT)和离散傅里叶变换(DFT)。
FFT 是一种高效的算法,可以在短时间内完成傅里叶变换,适用于处理实时性要求较高的场景。
DFT 是一种更加准确的算法,适用于处理频率分辨率更高的场景。
在实际应用中,需要根据具体的需求选择合适的傅里叶变换算法。
第三章离散傅里叶变换及其快速计算方法
傅里叶系数标号k :0~N
数字频率ω:0~2π 模拟频率 f :0~fs
0
N /2
0
0
fs /2
0
s /2
北京邮电大学信息与通信工程学院
N k (变换系数标号) 2 (弧度,数字频率) fs f (Hz,模拟频率) s (弧度/秒,模拟角频率)
24
DFS 定义:几点说明
频率成份
直流分量:
N 1
北京邮电大学信息与通信工程学院
11
DFS 定义:预备知识
基本关系式 若 r,m 都是整数,则:
N N 1 j 2 k(r m )
eN
k0
0
rm rm
证明: 对于r=m:不论 k 取何值,显然等式成立。
对于r≠m:
1 W N 1 j 2 k(rm) N
e W 1W k0
N 1 k(rm)
离散傅里叶级数包含了 0 到 (N-1)fs/N 的频率,因而 N 个傅里叶级数的系 数位于从 0 直到接近取样频率的频率上。
N 1
当 k=0 时, X (0) x(n)WN 0n x(n) ,此时得到的傅里叶级数的系数
称为信号的直流分量(DnC0 Componenn0t)X,(0)/ N 是信号的平均值;
交流分量:
其它频率(k>0)称为周期信号的谐波,此时的傅里叶级数系数称为 信号的交流分量。
k=1 时的频率为信号的一次谐波,或基频,频率大小为 fs/N,时间为 NTs,等于完成一个周期所需要的时间。其它谐波为基频的整数倍。
8
3.1 问题的提出:傅里叶变换的四种形式 (6)
四种傅里叶变换形式的归纳总结:
形式
时间函数
频率函数
第三章 离散傅里叶变换(DFT)及其快速算法(FFT)2
由8点DIT-FFT运算流图可以发现,第L级共有2L-1个 不同的旋转因子。 N=23=8时的各级旋转因子表示如下: 0 L=1时 WNp WN
L=2时 L=3时
0 2 WNp WN , WNp WN
0 1 2 3 WNp WN ,WNp WN ,WNp WN ,WNp WN
倒 二进制数 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1
序 十进制数 J 0 4 2 6 1 5 3 7
X (0), X (1), X (2), X (7)
12
由8点DIT-FFT运算流图可见,N=2M时,其DIT-FFT运算流图 由M级蝶形构成,每级有N/2个蝶形。因此,每级需要N/2 次复数乘法运算和N次复数加法运算,M级蝶形所需复数乘 法次数CM(2)和复数加法次数CA(2)分别为
CM (2) N N M log2 N 2 2
CA (2) NM N log 2 N
N=2M点的FFT共进行M级运算,每级由N/2个蝶形运算组成。同一级中,每个 蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数 据节点又同在一条水平线上,这就意味着计算完一个蝶形后,所得输出数 据可立即存入原输入数据所占用的存储单元。这样,经过M级运算后,原 来存放输入序列数据的N个存储单元(A(0),A(1),…,A(N-1))中便依次存放 X(k)的N个值。这种利用同一存储单元存储蝶形计算输入、输出数据的方 法称为原位(址)计算。 • 节约内存单元,降低设备成本
0 WN 0 WN 0 WN
2 WN
X (0) X (1) X (2) X (3) X (4) X (5) X (6) X (7)
20
W N0
0 WN 0 WN 0 WN
数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)
周期
2
s、fs N
分辨率
2
N
fs N
返回
回到本节
DFT和DFS之间的关系:
周期延拓
取主值
有限长序列
周期序列
主值区序列
有限长序列 x(n) n 0,1, 2, M 1
周期序列 xN (n) x(n mN ) x((n))N m 0 n0 N 1 n mN n0 ((n))N n0
四种傅立叶变换
离散傅立叶变换(DFT)实现了信号首次在频域 表示的离散化,使得频域也能够用计算机进行处理。 并且这种DFT变换可以有多种实用的快速算法。使信 号处理在时、频域的处理和转换均可离散化和快速 化。因而具有重要的理论意义和应用价值,是本课程 学习的一大重点。
本节主要介绍
3.1.1 DFT定义 3.1.2 DFT与ZT、FT、DFS的关系 3.1.3 DFT的矩阵表示
• X(k)为x(n)的傅立叶变换 X (e j ) 在区间 [0, 2 ]上的N
点等间隔采样。这就是DFT的物理意义。
j ImZ
2பைடு நூலகம்3
4
5 6
1 2
N
k=0 ReZ
7 (N-1)
DFT与z变换
X(ejω)
X(k)
0
o
2
0
N 1 k
DFT与DTFT变换
回到本节
变量
、f k
之间的某种变换关系.
• 所以“时间”或“频率”取连续还是离 散值,就形成各种不同形式的傅里叶变换 对。
3.1 离散傅里叶变换的定义及物理意义
时间域
t:连续
模拟域
功率谱 频谱计算
功率谱频谱计算摘要:一、引言二、功率谱和频谱的概念1.功率谱2.频谱三、功率谱和频谱的计算方法1.离散傅里叶变换(DFT)2.快速傅里叶变换(FFT)四、功率谱和频谱在实际应用中的意义1.在信号处理中的应用2.在通信系统中的应用五、总结正文:一、引言在信号处理和通信系统中,功率谱和频谱的计算是非常重要的。
它们可以帮助我们更好地分析和理解信号的特性。
本文将详细介绍功率谱和频谱的概念,以及它们的计算方法。
二、功率谱和频谱的概念1.功率谱功率谱是一种描述信号能量分布的函数,它反映了信号在不同频率下的能量大小。
功率谱通常用一个矩形图表示,横轴是频率,纵轴是信号的功率。
2.频谱频谱是信号在频域中的表示形式,它显示了信号在不同频率下的振幅和相位信息。
频谱通常用一个波形图表示,横轴是频率,纵轴是信号的振幅或相位。
三、功率谱和频谱的计算方法1.离散傅里叶变换(DFT)离散傅里叶变换是一种将时域信号转换为频域信号的算法。
它通过将信号分解成一组正弦和余弦函数的叠加,从而得到信号的频谱。
2.快速傅里叶变换(FFT)快速傅里叶变换是离散傅里叶变换的快速算法。
它利用信号的对称性和周期性,将DFT 的计算复杂度从O(N^2) 降低到O(NlogN)。
四、功率谱和频谱在实际应用中的意义1.在信号处理中的应用功率谱和频谱在信号处理中被广泛应用,如滤波、信号识别、噪声抑制等。
通过分析信号的频谱,我们可以了解信号的频率成分,从而对信号进行适当的处理。
2.在通信系统中的应用在通信系统中,功率谱和频谱的计算对于信号调制和解调、信道估计、误码纠正等环节至关重要。
准确的功率谱和频谱分析可以提高通信系统的性能和可靠性。
五、总结本文介绍了功率谱和频谱的概念,以及它们的计算方法。
通过这些方法,我们可以更好地分析和理解信号的特性。
信号处理中常用的数学变换
局部性
HHT能够揭示信号的局部特征,对信号的细节变 化敏感。
物理意义明确
IMF分量与物理现象有明确的对应关系,有助于 理解信号的内在机制。
希尔伯特-黄变换的应用
机械故障诊断
在机械故障诊断中,HHT可以用于提取故障信号的特征,如齿 轮箱的故障检测。
地震信号处理
在地震学中,HHT用于分析地震信号,提取地震事件的参数, 如地震位置和震级。
灵活性
可以选择不同的小波基函数, 以满足不同信号处理的需求。
时频局部化
能够在时间和频率上聚焦到信 号的任意细节。
小波变换的应用
信号降噪
通过小波变换去除信号中的噪 声成分。
特征提取
利用小波变换提取信号中的特 定特征,如边缘、突变点等。
图像压缩
通过小波变换对图像进行压缩 ,减少存储和传输的数据量。
故障诊断
04
HHT得到的IMF分量具有明确的物理意义,而傅里叶变换和小波变换 得到的结果可能与实际物理现象不太直接相关。
THANK YOU
感谢聆听
信号处理中常用的数学变换
目
CONT • Z变换 • 小波变换 • 希尔伯特-黄变换(HHT)
01
傅里叶变换
定义与性质
傅里叶变换是一种将时间域信号转换为频域信号的方法,通过将 信号表示为不同频率的正弦波的线性组合,可以揭示信号的频率 成分。
傅里叶变换具有线性性、时移性、频移性、对称性和周期性等性 质,这些性质在信号处理中具有广泛的应用。
拉普拉斯变换适用于分析具有收敛性的函 数,而傅里叶变换适用于分析周期性的函 数;拉普拉斯变换的收敛条件比傅里叶变 换更宽松,能够处理更广泛的一类函数。
03
Z变换
定义与性质
离散傅里叶变换及快速算法
序列分解为N个谐波相关的复指数之和。将
j 2N nk
X (k ) x(n)e
, k 0,1,2,
(5-3)
称之为离散傅里叶级数DFS的k次谐波系数。是一个基波周 期为N的周期序列。
X (k ) X ( k N )
§5.离散傅里叶变换及快速算法
在DFS变换中引入复数
k
X ( jk0 )e jk0t
*时域周期为Tp, 频域谱线间隔为2π/Tp
时域信号 连续的 周期的
频域信号
非周期的
离散的
3.离散时间、连续频率的傅立叶变换 – DTFT(离散时间傅立叶 变换) X e 或 X (e ) x(nT) T
j jT
---T 0 T 2T
正 : X (e
WN e
j 2N
将DFS正反变换描述为
nk 正 : X (k ) DFSx (n) X (k ) x (n)WN n 0
N 1
1 N 1 反 : x (n) IDFS X (k ) x (n) X (k )WN nk N k 0
(5-5)
WN
的性质: 1 N 1 ( nm) k 1 n m lN 正交性: WN 0 n m lN N k 0
周期性:
W
k mN N
W
k N
l , m, N / 2, k / 2均为整数
共轭对称性(偶序列): 可约性:
k N (WN )* WN k
k mk k 2 WN WmN WN // 2
§5.离散傅里叶变换及快速算法
2.离散傅里叶变换(DFT)
但对于数字系统,无论是Z 变换还是序列傅立叶变换的适用方面都存 在一些问题,重要是因为频率变量的连续性性质(DTFT变换出连续频 谱),不便于数字运算和储存。 参考DFS,可以采用类似DFS的分析方法解决以上问题。可以把有限 长非周期序列假设为一无限长周期序列的一个主值周期,即对有限长非 周期序列进行周期延拓,延拓后的序列完全可以采用DFS进行处理,即 采用复指数基频序列和此有限长时间序列取相关,得出每个主值在各频 率上的频谱分量以表示出这个“主值周期”的频谱信息。 由于DFT借用了DFS,这样就假设了序列的周期无限性,但在处理时 又对区间作出限定(主值区间),以符合有限长的特点,这就使DFT带 有了周期性。另外,DFT只是对一周期内的有限个离散频率的表示,所 以它在频率上是离散的,就相当于DTFT变换成连续频谱后再对其采样, 此时采样频率等于序列延拓后的 周期N,即主值序列的个数。
离散信号与系统的频谱分析实验报告
实验二 离散信号与系统的频谱分析一、实验目的1.掌握离散傅里叶变换(DFT )及快速傅里叶变换(FFT )的计算机实现方法。
2.检验序列DFT 的性质。
3.掌握利用DFT (FFT )计算序列线性卷积的方法。
4.学习用DFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT 。
5.了解采样频率对谱分析的影响。
6.了解利用FFT 进行语音信号分析的方法。
二、实验设备1.计算机2.Matlab 软件7.0以上版本。
三、实验内容1.对不同序列进行离散傅里叶变换并进行分析;DFT 共轭对称性质的应用(通过1次N 点FFT 计算2个N 点实序列的DFT )。
2.线性卷积及循环卷积的关系,以及利用DFT (FFT )进行线性卷积的方法。
3.比较计算序列的DFT 和FFT 的运算时间。
4.利用FFT 实现带噪信号检测。
5.利用FFT 计算信号频谱及功率谱。
6.扩展部分主要是关于离散系统采样频率、时域持续时间、谱分辨率等参数之间的关系,频谱的内插恢复,对语音信号进行简单分析。
四、实验原理1.序列的离散傅里叶变换及性质离散傅里叶变换的定义:10, )()]([)(102-≤≤==∑-=-N k en x n x DFT k X N n nk Nj π离散傅里叶变换的性质:(1)DFT 的共轭对称性。
若)()()(n x n x n x op ep +=,[])()(n x DFT k X =,则:)()]([k X n x DFT R ep =, )()]([k jX n x DFT I op =。
(2)实序列DFT 的性质。
若)(n x 为实序列,则其离散傅里叶变换)(k X 为共轭对称,即10),()(*-≤≤-=N k k N X k X 。
(3)实偶序列DFT 的性质。
若)(n x 为实偶序列,则其离散傅里叶变换)(k X 为实偶对称,即10),()(-≤≤-=N k k N X k X 。
离散傅里叶变换和快速傅里叶变换
戶幵,戈丿、弟实验报告课程名称:彳_____________ 指导老师 _____________ 成绩: ____________________实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: _________________ 同组学生姓名:一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1. 掌握DFT 的原理和实现2.掌握FFT 的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。
二、实验内容和原理2.1 DTFT 和 DFTN 1如果x(n)为因果有限长序列,n=0,1,...,N-1,则x(n)的DTFT 表示为:X(e j ) x(n)en 0序列的N 点DFT 是DTFT 在[0,2 n 上的N 点等间隔采样,采样间隔为2 d N 。
通过DFT , 可以完成由一组有限个信号采样值x(n)直接计算得到一组有限个频谱采样值X(k)。
X(k)的幅度谱为X(k) v 'x R (k ) X |2(k ) , X R (k)和X i (k)分别为X(k)的实部和虚部。
X(k)的相位谱 为(k)列吩序列x(n)的离散事件傅里叶变换(DTFT )表示为:X(e j )x( n)ex(n)的离散傅里叶变换(DFT )表达式为:X(k)x(n)en 0j^nk N(k 0,1,…,N 1)IDFT )定义为 x(n)丄 N \(k)e j_Nnk (n 0,1,…,N 1)N n 02.2 FFT快速傅里叶变换(FFT )是DFT 的快速算法,它减少了 DFT 的运算量,使数字信号的处理速度大大提高。
三、主要仪器设备PC 一台,matlab 软件四、实验内容4.1第一题x(n)的离散时间 傅里叶变换(DTFT ) X(e j Q)并绘图。
时域与频谱转化的关系
时域与频谱转化的关系
时域与频谱转化是数字信号处理领域中非常重要的概念。
时域指的是信号在时间上的变化,而频域则是信号在频率上的变化。
这两个概念之间存在着密切的关系。
在数字信号处理中,通常会用到离散傅里叶变换(DFT)和快速傅里叶变换(FFT)来实现时域到频域的转化。
通过这种方式,我们可以将时域信号转换为频域信号,进而分析信号的频率成分。
同时,我们也可以通过傅里叶逆变换(IDFT)将频域信号转换为时域信号,这样我们就可以还原出原始的信号波形。
时域与频谱转化的关系还可以通过滤波器来理解。
在时域中,我们可以设计一个滤波器来对信号进行滤波,而在频域中,滤波器的作用是对信号的频率成分进行过滤。
因此,我们可以通过时域和频域之间的转化来设计出合适的滤波器,从而实现对信号的处理和分析。
总的来说,时域与频谱转化是数字信号处理中非常重要的概念,它们之间存在着密切的关系,可以帮助我们对信号进行分析和处理。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告课程名称: 信号分析与处理 指导老师: 成绩:__________________实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 基础实验 同组学生姓名:第二次实验 离散傅里叶变换和快速傅里叶变换一、实验目的1.1掌握离散傅里叶变换(DFT )的原理和实现;1.2掌握快速傅里叶变换(FFT )的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。
1.3 会用Matlab 软件进行以上练习。
二、实验原理2.1关于DFT 的相关知识序列x (n )的离散事件傅里叶变换(DTFT )表示为nj n j en x e X Ω-∞-∞=Ω∑=)()(,如果x (n )为因果有限长序列,n =0,1,...,N-1,则x (n )的DTFT 表示为n j N n j e n x e X Ω--=Ω∑=1)()(,x (n )的离散傅里叶变换(DFT )表达式为)1,...,1,0()()(21-==--=∑N k en x k X nk NjN n π,序列的N 点DFT 是序列DTFT 在频率区间[0,2π]上的N 点灯间隔采样,采样间隔为2π/N 。
通过DFT ,可以完成由一组有限个信号采样值x (n )直接计算得到一组有限个频谱采样值X (k )。
X (k )的幅度谱为)()()(22k X k X k X I R +=,其中下标R 和I 分别表示取实部、虚部的运算。
X (k )的相位谱为)()(arctan)(k X k X k R I =ϕ。
离散傅里叶反变换(IDFT )定义为)1,...,1,0()(1)(21-==∑-=N n e k X N n x nk Nj N n π。
2.2关于FFT 的相关知识快速傅里叶变换(FFT )是DFT 的快速算法,并不是一个新的映射。
FFT 利用了n Nj eπ2-函数的周期性和对称性以及一些特殊值来减少DFT 的运算量,可使DFT 的运算量下降几个数量级,从而使数字信号处装订线理的速度大大提高。
若信号是连续信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可以用FFT 来对连续信号进行谱分析。
为了满足采样定理,一般在采样之前要设置一个抗混叠低通滤波器,且抗混叠滤波器的截止频率不得高于与采样频率的一半。
比较DFT 和IDFT 的定义,两者的区别仅在于指数因子的指数部分的符号差异和幅度尺度变换,因此可用FFT 算法来计算IDFT 。
三、实验内容与相关分析(共6道)说明:为了便于老师查看,现将各题的内容写在这里——题目按照3.1、3.2、...、3.6排列。
每道题包含如下内容:题干、解答(思路、M 文件源代码、命令窗口中的运行及其结果)、分析。
其中“命令窗口中的运行及其结果”按照小题顺序排列,各小题包含命令与结果(图形或者序列)。
3.1 求有限长离散时间信号x (n )的离散时间..傅里叶变换(DTFT )X (e j Ω)并绘图。
(1)已知⎩⎨⎧≤≤-=其他0221)(n n x ;(2)已知1002)(≤≤=n n x n。
【解答】思路:这是DTFT 的变换,按照定义编写DTFT 的M 文件即可。
考虑到自变量Ω是连续的,为了方便计算机计算,计算时只取三个周期[-2π,4π]中均匀的1000个点用于绘图。
理论计算的各序列DTFT 表达式,请见本题的分析。
M 文件源代码(我的Matlab 源文件不支持中文注释,抱歉): function DTFT(n1,n2,x)%This is a DTFT function for my experiment of Signal Processing & Analysis. w=0:2*pi/1000:2*pi;%Define the bracket of omega for plotting. X=zeros(size(w));%Define the initial values of X. for i=n1:n2X=X+x(i-n1+1)*exp((-1)*j*w*i);%It is the definition of DTFT. endAmp=abs(X);%Acquire the amplification.Phs=angle(X);%Acquire the phase angle (radian). subplot(1,2,1);plot(w,Amp,'r'); xlabel('\Omega');ylabel('Amplification');hold on ; %Plot amplification on the left. subplot(1,2,2);plot(w,Phs,'b');xlabel('\Omega');ylabel('Phase Angle (radian)');hold off ; %Plot phase angle on the right. end命令窗口中的运行及其结果(理论计算的各序列DTFT 表达式,请见本题的分析): 第(1)小题>> n=(-2:2); >> x=1.^n;>> DTFT(-2,2,x);-5051000.511.522.533.544.55ΩA m p l i f i c a t i on-50510-4-3-2-101234ΩP h a s e A n g l e (r a d i a n )第(2)小题>> n=(0:10); >> x=2.^n;>> DTFT(0,10,x);-55106008001000120014001600180020002200ΩA m p l i f i c a t i on-50510-4-3-2-101234ΩP h a s e A n g l e (r a d i a n )【分析】对于第(1)小题,由于序列x(n)只在有限区间(-2,-1,-,1,2)上为1,所以是离散非周期的信号。
它的幅度频谱相应地应该是周期连续信号。
事实上,我们可计算出它的表达式:()Ω-Ω-Ω-Ω-Ω-=Ω-∞+-∞=Ω---=Ω⇒--===Ω∑∑j j j j j n nj n n j X n x X e1e 1)(e 1e 1e e e )()(55222,可见幅度频谱拥有主极大图3.1.1在[-2π,4π]范围内3个周期的幅度谱和相位谱(弧度制)图3.1.2在[-2π,4π]范围内3个周期的幅度谱和相位谱(弧度制)和次极大,两个主极大间有|5-1|=4个极小,即有3个次级大。
而对于它的相位频谱,则是周期性地在-π、0、π之间震荡。
对于第(2)小题,由于是离散非周期的信号。
它的幅度频谱相应地应该是周期连续信号。
而它的表达式:()Ω-Ω-Ω-=Ω-+∞-∞=Ω--≈Ω⇒--===Ω∑∑j j j n nj n nj X n x X e212)(e 21e 212ee)()(11111110,因此主极大之间只有|0-1|=1个极小,不存在次级大。
而对于它的相位频谱,则是在一个长为2π的周期内有|11-1|=10次振荡。
而由DTFT 的定义可知,频谱都是以2π为周期向两边无限延伸的。
由于DTFT 是连续谱,对于计算机处理来说特别困难,因此我们才需要离散信号的频谱也离散,由此构造出DFT (以及为加速计算DFT 的FFT )。
3.2已知有限长序列x (n )={8,7,9,5,1,7,9,5},试分别采用DFT 和FFT 求其离散傅里叶变换X (k )的幅度、相位图。
【解答】思路:按照定义编写M 文件即可。
M 文件源代码: i) DFT 函数:function DFT(N,x)%This is a DFT function for my experiment of Signal Processing & Analysis. k=(0:N-1);%Define variable k for DFT.X=zeros(size(k));%Define the initial valves of X. for i=0:N-1X=X+x(i+1)*exp((-1)*j*2*k*pi/N*i);%It is the definition of DFT. endAmp=abs(X);%Acquire the amplification.Phs=angle(X);%Acquire the phase angle (radian). subplot(1,2,1);stem(k,Amp,'.',’MarkerSize ’,18); xlabel('k');ylabel('Amplification');hold on ; %Plot amplification on the left. subplot(1,2,2);stem(k,Phs,'*');xlabel('k');ylabel('Phase Angle (radian)');hold off ; %Plot phase angle on the right. endii) 基2-FFT 函数function myFFT(N,x)%This is a base-2 FFT function. lov=(0:N-1); j1=0;for i=1:N %indexed addressing if i<j1+1temp=x(j1+1); x(j1+1)=x(i); x(i)=temp; endk=N/2;while k<=j1j1=j1-k;k=k/2;endj1=j1+k;enddigit=0;k=N;while k>1digit=digit+1;k=k/2;endn=N/2;% Now we start the "butterfly-shaped" process.for mu=1:digitdif=2^(mu-1);%Differnce between the indexes of the target variables.idx=1;for i=1:nidx1=idx;idx2=1;for j1=1:N/(2*n)r=(idx2-1)*2^(digit-mu);wn=exp(j*(-2)*pi*r/N);%It is the "circulating coefficients".temp=x(idx);x(idx)=temp+x(idx+dif)*wn;x(idx+dif)=temp-x(idx+dif)*wn;idx=idx+1;idx2=idx2+1;endidx=idx1+2*dif;endn=n/2;endAmp=abs(x);%Acquire the amplification.Phs=angle(x);%Acquire the phase angle (radian).subplot(1,2,1);stem(lov,Amp,'.',’MarkerSize’,18);xlabel('FFT k');ylabel('FFT Amplification');hold on;%Plot the amplification.subplot(1,2,2);stem(lov,Phs,'*');xlabel('FFT k');ylabel('FFT Phase Angle (radian)');hold off; end命令窗口中的运行及其结果:DFT :>> x=[8,7,9,5,1,7,9,5]; >> DFT(8,x);24680102030405060kA m p l i f i c a t i o n02468-3-2-1123kP h a s e A n g l e (r a d i a n )FFT : >> x=[8,7,9,5,1,7,9,5]; >> myFFT(8,x);24680102030405060FFT kF F T A m p l i f i c a t i o n02468-3-2-1123FFT kF F T P h a s e A n g l e (r a d i a n )【分析】DFT 是离散信号、离散频谱之间的映射。