2020年长春市高三数学(理)高考三模试卷附答案解析

合集下载

吉林省长春市高考数学三模试卷理科Word版含解析

吉林省长春市高考数学三模试卷理科Word版含解析

2017年吉林省长春市高考数学三模试卷(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.已知复数z=1+2i,则=()A.5ﻩB.5+4i C.﹣3D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3} B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}ﻩD.{x|﹣1<x<0或1<x<3}3.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2ﻩB. C.ﻩD.4.某高中体育小组共有男生24人,其50m跑成绩记作ai(i=1,2,…,24),若成绩小于6.8s为达标,则如图所示的程序框图的功能是()A.求24名男生的达标率ﻩB.求24名男生的不达标率C.求24名男生的达标人数ﻩD.求24名男生的不达标人数5.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=( )A.9ﻩB.15C.18ﻩD.306.在平面内的动点(x,y)满足不等式,则z=2x+y的最大值是()A.﹣4 B.4 C.﹣2ﻩD.27.某几何体的三视图如图所示,则其表面积为()A.B.ﻩC. D.8.将一枚硬币连续抛掷n次,若使得至少有一次正面向上的概率不小于,则n的最小值为( )A.4ﻩB.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=( )A.ﻩB.ﻩC.ﻩD.10.设n∈N*,则=()A.ﻩB. C. D.11.已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是()A.ﻩB.C.ﻩD.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是( )A.B.C.D.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是.14.函数f(x)=ex•sinx在点(0,f(0))处的切线方程是.15.直线kx﹣3y+3=0与圆(x﹣1)2+(y﹣3)2=10相交所得弦长的最小值为.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.(12分)已知点,Q(cosx,sinx),O为坐标原点,函数. (1)求函数f(x)的最小值及此时x的值;(2)若A为△ABC的内角,f(A)=4,BC=3,求△ABC的周长的最大值.18.(12分)某手机厂商推出一款6吋大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数2040805010男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数4575906030(1)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.20.(12分)已知F1,F2分别是长轴长为的椭圆C:的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为.(1)求椭圆C的方程;(2)设过点F1且不与坐标轴垂直的直线C(2,2,0)交椭圆于A,B两点,线段AB的垂直平分线与B(2,0,0)轴交于点N,点N横坐标的取值范围是,求线段AB长的取值范围.21.(12分)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f(x2)),中点横坐标为x0,证明:f'(x0)<0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲](共1小题,满分10分)22.(10分)已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l:(为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线P(x0,y0)上点P的极上的动点,求PQ的中点M到直线l距离的最大值.坐标为,Q为曲线C2[选修4-5:不等式选讲](共1小题,满分0分)23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.2017年吉林省长春市高考数学三模试卷(理科)参考答案与试题解析一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.已知复数z=1+2i,则=()A.5 B.5+4iﻩC.﹣3ﻩD.3﹣4i【考点】复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3}ﻩB.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}ﻩD.{x|﹣1<x<0或1<x<3}【考点】集合的表示法.【分析】先化简A,B,再求出其交集即可.【解答】解:由A={x|﹣1<x<3},B={x|x<0,或x>1},故A∩B={x|﹣1<x<0,或1<x<3}.故选D.【点评】本题考查了集合的交集的运算,属于基础题.3.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2ﻩB.ﻩC.ﻩD.【考点】抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.【点评】本题考查抛物线的几何性质,要先将抛物线的方程化为标准方程.4.某高中体育小组共有男生24人,其50m跑成绩记作a i(i=1,2,…,24),若成绩小于6.8s为达标,则如图所示的程序框图的功能是()A.求24名男生的达标率 B.求24名男生的不达标率C.求24名男生的达标人数D.求24名男生的不达标人数【考点】程序框图.【分析】由题意,从成绩中搜索出大于6.8s的成绩,计算24名中不达标率.【解答】解:由题意可知,k记录的是时间超过6.8s的人数,而i记录是的参与测试的人数,因此表示不达标率;故选B.【点评】本题考查程序框图的理解以及算法功能的描述.5.等比数列{a n}中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=()A.9 B.15ﻩC.18 D.30【考点】等比数列的前n项和.【分析】设等比数列{a n}的公比为q>0,由2S3=8a1+3a2,可得2(a1+a2+a3)=8a1+3a2,化为:2q2﹣q﹣6=0,解得q,进而得出.【解答】解:设等比数列{an}的公比为q>0,∵2S3=8a1+3a2,∴2(a1+a2+a3)=8a1+3a2,化为:2a3=6a1+a2,可得=6a1+a1q,化为:2q2﹣q﹣6=0,解得q=2.又a4=16,可得a1×23=16,解得a1=2.则S4==30.故选:D.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.在平面内的动点(x,y)满足不等式,则z=2x+y的最大值是( )A.﹣4ﻩB.4 C.﹣2ﻩD.2【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【解答】解:不等式组所表示的平面区域位于直线x+y﹣3=0的下方区域和直线x﹣y+1=0的上方区域,根据目标函数的几何意义,可知目标函数经过A时,z取得最大值.由可得A(1,2),所以目标函数z的最大值为4.故选B.【点评】本题主要考查线性规划问题.画出可行域判断目标函数的几何意义是解题的关键.7.某几何体的三视图如图所示,则其表面积为()A.ﻩB.C. D.【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体是正四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是正四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,四棱锥的表面积为.故选D.【点评】本题是基础题,考查三视图复原几何体的表面积的求法,考查计算能力,空间想象能力.8.将一枚硬币连续抛掷n次,若使得至少有一次正面向上的概率不小于,()A.4B.5ﻩC.6ﻩD.7【考点】n次独立重复试验中恰好发生k次的概率.【分析】由题意,1﹣≥,即可求出n的最小值.【解答】解:由题意,1﹣≥,∴n≥4,∴n的最小值为4,故选A.【点评】本题考查概率的计算,考查对立事件概率公式的运用,比较基础.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=( )A.B.ﻩC.ﻩD.【考点】正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈[0,],∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.10.设n∈N*,则=(A.ﻩB. C.D.【考点】归纳推理.【分析】利用数列知识,即可求解.--【解答】解: 故选 A. 【点评】本题主要考查推理证明的相关知识,比较基础.=.11.已知向量,,(m>0,n>0),若 m+n∈[1,2],则的取值范围是( )A.B.‫ ﻩ‬C.D.【考点】简单线性规划;简单线性规划的应用;平面向量数量积的运算.【分析】根据题意,由向量的坐标运算公式可得=(3m+n,m﹣3n),再由向量模的计算公式可得=,可以令 t=,将 m+n∈[1,2]的关系在直角坐标系表示出来,分析可得 t=表示区域中任意一点与原点(0,0)的距离,进而可得t的取值范围,又由= t,分析可得答案.【解答】解:根据题意,向量,,=(3m+n,m﹣3n),则==,令t=,则= t,而 m+n∈[1,2],即 1≤m+n≤2,在直角坐标系表示如图,t=表示区域中任意一点与原点(0,0)的距离,分析可得: ≤t≤2,又由= t,故≤≤2 ;故选:D.----【点评】本题考查简单线性规划问题,涉及向量的模的计算,关键是求出的表达式.12.对函数f(x)=,若∀ a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数 m 的取值范围是( )A.B.C.D.【考点】函数的值. 【分析】当 m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2 时,只要即可,当 m<2时,只要即可,由此能求出结果.【解答】解:当 m=2时,f(x)==1,此时 f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立;当 m>2 时,,只要即可,解得2<m<5;当 m<2 时,,只要即可,解得,综上.故选:C. 【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意分类讨论思想 的合理运用.----二、填空题(本大题包括 4 小题,每小题5分,共 20 分,把正确答案填在答题卡中的横线上). 13.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí), 长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细 均匀变化)长 5 尺,截得本端1尺,重4斤,截得末端 1 尺,重 2 斤.问金杖重多少?”则答案是 15 斤. 【考点】等差数列的通项公式. 【分析】由题意可知等差数列的首项和第 5 项,由等差数列的前 n 项和得答案. 【解答】解:由题意可知等差数列中 a1=4,a5=2,则 S5=,∴金杖重 15 斤. 故答案为:15 斤. 【点评】本题考查等差数列的前 n 项和,是基础的计算题.14.函数 f(x)=ex•sinx 在点(0,f(0))处的切线方程是 y=x . 【考点】利用导数研究曲线上某点切线方程. 【分析】先求出 f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在 x=0处 的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:∵f(x)=ex•sinx,f′(x)=ex(sinx+cosx),(2分) f′(0)=1,f(0)=0, ∴函数f(x)的图象在点 A(0,0)处的切线方程为 y﹣0=1×(x﹣0), 即 y=x(4 分). 故答案为:y=x. 【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程 等基础知识,考查运算求解能力.属于基础题.15.直线kx﹣3y+3=0 与圆(x﹣1)2+(y﹣3)2=10 相交所得弦长的最小值为 2 . 【考点】直线与圆的位置关系.----【分析】由条件可求得直线 kx﹣3y+3=0 恒过圆内定点(0,1),则圆心(1,3)到定点的距 离为 ,因此最短弦长为 . 【解答】解:由条件可求得直线 kx﹣3y+3=0 恒过圆内定点(0,1),则圆心(1,3)到定点(0, 1))的距离为 ,当圆心到直线 kx﹣3y+3=0的距离最大时(即等于圆心(1,3)到定点(0,1))的距离)所得弦长的最小,因此最短弦长为 2=.故答案为:2 . 【点评】题考查直线和圆的位置关系,以及最短弦问题,属于中档题16.过双曲线 ﹣ =1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于 A,B两点,若,则双曲线的离心率为.【考点】双曲线的简单性质. 【分析】方法一、运用两渐近线的对称性和条件,可得 A 为 BF 的中点,由垂直平分线的性质和等腰三角形的性质,可得 Rt△OAB 中,∠AOB= ,求得渐近线的斜率,运用离心率公式即可得到;方法二、设过左焦点F作的垂线方程为,联立渐近线方程,求得交点 A,B的纵坐标,由条件可得 A 为 BF 的中点,进而得到 a,b的关系,可得离心率.【解答】解法一:由,可知A为 BF的中点,由条件可得,则Rt△OAB中,∠AOB= ,渐近线 OB 的斜率k= =tan = ,即离心率 e= ==.解法二:设过左焦点 F 作的垂线方程为联立,解得,,----联立,解得,,又,∴yB=﹣2yA∴3b2=a2,所以离心率.故答案为: . 【点评】本题考查双曲线的性质和应用,主要是离心率的求法,解题时要认真审题,仔细解答, 注意向量共线的合理运用.三、解答题(本大题包括 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤).17.(12 分)(2017•长春三模)已知点,Q(cosx,sinx),O 为坐标原点,函数.(1)求函数 f(x)的最小值及此时 x 的值;(2)若 A 为△ABC 的内角,f(A)=4,BC=3,求△ABC的周长的最大值.【考点】平面向量数量积的运算;基本不等式在最值问题中的应用;余弦定理的应用.【分析】(1)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解最值.(2)利用函数的解析式求解 A,然后利用余弦定理求解即可,得到bc 的范围,然后利用基本不等式求解最值.【解答】解:(1)∵,∴,∴当时,f(x)取得最小值 2.(2)∵f(A)=4,∴,又∵BC=3,∴,∴9=(b+c)2﹣bc.,∴,----∴,当且仅当 b=c 取等号,∴三角形周长最大值为.【点评】本题考查向量的数量积以及两角和与差的三角函数,三角函数的最值,基本不等式以及余弦定理的应用,考查计算能力.18.(12 分)(2017•长春三模)某手机厂商推出一款 6 吋大屏手机,现对 500 名该手机用户(200 名女性,300 名男性)进行调查,对手机进行评分,评分的频数分布表如下:女性用户 分值区间 [50,60) [60,70) [70,80) [80,90) [90,100]频数2040805010男性用户 分值区间 [50,60) [60,70) [70,80) [80,90) [90,100]频数4575906030(1)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);(2)根据评分的不同,运用分层抽样从男性用户中抽取 20名用户,在这 20 名用户中,从评 分不低于 80分的用户中任意抽取 3 名用户,求 3 名用户中评分小于 90 分的人数的分布列和 期望. 【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)根据已知可得频率,进而得出矩形的高=,即可得出图形.(II)运用分层抽样从男性用户中抽取 20 名用户,评分不低于 8(0 分)有 6 人,其中评分小于 9(0 分)的人数为 4,从 6 人中任取3人,记评分小于 9(0 分)的人数为 X,则 X 取值为1,2,3, 利用超几何分布列的计算公式即可得出. 【解答】解:(Ⅰ)女性用户和男性用户的频率分布表分别如下左、右图:----由图可得女性用户更稳定.(4 分) (Ⅱ)运用分层抽样从男性用户中抽取20 名用户,评分不低于 8(0 分)有6人,其中评分小于 9(0 分)的人数为4,从 6 人中任取3人,记评分小于 9(0分)的人数为 X,则 X 取值为 1,2,3,;P(X=2)==;.所以 X 的分布列为X123P.(12 分) 【点评】本题考查了频率分布直方图的性质、超几何分布列的概率与数学期望计算公式、分 层抽样,考查了推理能力与计算能力,属于中档题.19.(12分)(2017•长春三模)如图,在四棱锥 P﹣ABCD 中,底面ABCD 为正方形,PA⊥底 面 ABCD,AD=AP,E为棱 PD中点. (1)求证:PD⊥平面 ABE;(2)若F为 AB 中点,,试确定 λ 的值,使二面角 P﹣FM﹣B 的余弦值为.【考点】二面角的平面角及求法;直线与平面平行的判定. 【分析】(I)证明 AB⊥平面 PAD,推出 AB⊥PD,AE⊥PD,AE∩AB=A,即可证明 PD⊥平面A----BE.(II) 以 A 为原点,以为x,y,z 轴正方向,建立空间直角坐标系 A﹣BDP,求出相关点的坐标,平面 PFM 的法向量,平面 BFM 的法向量,利用空间向量的数量积求解即可. 【解答】解:(I)证明:∵PA⊥底面 ABCD,AB⊂ 底面 ABCD,∴PA⊥AB, 又∵底面 ABCD 为矩形,∴AB⊥AD,PA∩AD=A,PA⊂ 平面 PAD,AD⊂ 平面 PAD, ∴AB⊥平面PAD,又PD⊂ 平面PAD,∴AB⊥PD,AD=AP,E 为 PD 中点,∴AE⊥PD, AE∩AB=A,AE⊂ 平面ABE,AB⊂ 平面 ABE,∴PD⊥平面 ABE.(II) 以A为原点,以为x,y,z 轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则 A(0 , 0 , 0),B ( 2,0 , 0 ) ,P(0 , 0 ,2 ) , C(2 , 2 , 0 ) , E(0 , 1 , 1) , F(1,0 ,0),,,,M(2λ,2λ,2﹣2λ)设 平 面 P FM 的 法 向 量,,即,设平面 BFM 的法向量,,即,,解得.【点评】本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想 象能力以及计算能力.----20.(12 分 ) ( 2 0 1 7 • 长 春 三 模 ) 已 知 F 1 , F 2 分 别 是 长 轴 长 为 的 椭 圆 C : 的左右焦点,A1,A2是椭圆 C 的左右顶点,P 为椭圆上异于 A1,A2 的一个动点,O 为坐标原点,点M为线段PA2的中点,且直线 PA2 与 OM 的斜率之积恒为 .(1)求椭圆 C 的方程; (2)设过点 F1且不与坐标轴垂直的直线 C(2,2,0)交椭圆于 A,B两点,线段 AB 的垂直平分线与 B(2,0,0)轴交于点 N,点 N 横坐标的取值范围是,求线段AB 长的取值范围. 【考点】直线与椭圆的位置关系.【 分 析 】 ( 1) 由 已 知 2a=2 , 解 得 a= , 记 点 P(x0,y 0 ) ,kOM =,可得kOM•=•利用斜率计算公式及其点 P(x0,y0)在椭圆上,即可得出.(2)设直线 l:y=k(x+1),联立直线与椭圆方程得(2k2+1)x2+4k2x+2k2﹣2=0,记 A(x1,y1),B(x2,y2).利用根与系数的关系、中点坐标公式、弦长公式即可得出. 【解答】解:(1)由已知 2a=2 ,解得a= ,记点 P(x0,y0),∵kOM=,∴kOM•=•=•=,又点P(x0,y0)在椭圆上,故 + =1,∴kOM•=﹣ =﹣ ,∴,∴b2=1,∴椭圆的方程为.(4分)(2)设直线l:y=k(x+1),联立直线与椭圆方程,得(2k2+1)x2+4k2x+2k2﹣2=0,记 A(x1,y1),B(x2,y2).由韦达定理可得,可得,----故 AB中点,QN 直线方程:,∴,已知条件得:,∴0<2k2<1,∴,∵,∴.(12分)【点评】本题考查了椭圆的定义标准方程及其性质、一元二次方程的根与系数的关系、斜率 计算公式、中点坐标公式、两点之间的距离公式,考查了推理能力与计算能力,属于难题.21.(12 分)(2017•长春三模)已知函数.(1)求 f(x)的极值; (2)当 0<x<e 时,求证:f(e+x)>f(e﹣x); (3)设函数 f(x)图象与直线y=m 的两交点分别为 A(x1,f(x1)、B(x2,f(x2)),中点横 坐标为x0,证明:f'(x0)<0. 【考点】利用导数研究函数的极值;利用导数研究函数的单调性. 【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的极值即可; (2)问题转化为证明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设 F(x)=(e﹣x)ln(e+x)﹣(e +x)ln(e﹣x),根据函数的单调性证明即可.【解答】解:(1)f′(x)=,f(x)的定义域是(0,+∞),x∈(0,e)时,f′(x)>0,f(x)单调递增; x∈(e,+∞)时,f'(x)<0,f(x)单调递减.当 x=e 时,f(x)取极大值为 ,无极小值.(2)要证f(e+x)>f(e﹣x),即证:,只需证明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x). 设 F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),----,∴F(x)>F(0)=0, 故(e﹣x)ln(e+x)>(e+x)ln(e﹣x), 即 f(e+x)>f(e﹣x), (3)证明:不妨设 x1<x2,由(1)知 0<x1<e<x2,∴0<e﹣x1<e, 由(2)得 f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2), 又 2e﹣x1>e,x2>e,且 f(x)在(e,+∞)上单调递减, ∴2e﹣x1<x2,即x1+x2>2e,∴,∴f'(x0)<0.【点评】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的 单调性等,考查学生解决问题的综合能力.请考生在 22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4: 坐标系与参数方程选讲](共1小题,满分 10分) 22.(10分)(2017•长春三模)已知在平面直角坐标系 xOy 中,以 O 为极点,x轴的正半轴为极轴,建立极坐标系.曲线 C1 的极坐标方程为 ρ=4cosθ,直线 l:(为参数). (1)求曲线 C1 的直角坐标方程及直线 l 的普通方程;(2)若曲线 C2 的参数方程为(α 为参数),曲线 P(x0,y0)上点 P 的极坐标为 ,Q为曲线 C2 上的动点,求 PQ的中点 M 到直线 l 距离的最大值. 【考点】参数方程化成普通方程;简单曲线的极坐标方程. 【分析】(1)利用三种方程的转化方法,求曲线 C1的直角坐标方程及直线l的普通方程;(2),直角坐标为(2,2),,利用点到直线l的距离公式能求出点M到直线l的最大距离.【解答】解:(1)由曲线 C1 的极坐标方程为 ρ=4cosθ,得直角坐标方程,----直线 l:,消去参数,可得普通方程 l:x+2y﹣3=0.( 2),直角坐标为(2,2),,M 到l的距离 d==,从而最大值为.(10 分) 【点评】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直 角坐标方程的互化,参数方程的运用.[选修 4-5:不等式选讲](共 1 小题,满分 0 分) 23.(2017•长春三模)已知 a>0,b>0,函数 f(x)=|x+a|+|2x﹣b|的最小值为 1. (1)求证:2a+b=2; (2)若 a+2b≥tab 恒成立,求实数 t 的最大值. 【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)法一:根据绝对值的性质求出 f(x)的最小值,得到 x= 时取等号,证明结论即可;法二:根据 f(x)的分段函数的形式,求出 f(x)的最小值,证明即可;(2)法一,二:问题转化为≥t 恒成立,根据基本不等式的性质求出的最小值,从而求出 t 的范围即可;法三:根据二次函数的性质判断即可.【解答】解:(1)法一:f(x)=|x+a|+|2x﹣b|=|x+a|+|x﹣ |+|x﹣ |,∵|x+a|+|x﹣ |≥|(x+a)﹣(x﹣ )|=a+ 且|x﹣ |≥0,∴f(x)≥a+ ,当 x= 时取等号,即f(x)的最小值为 a+ ,∴a+ =1,2a+b=2;法二:∵﹣a< ,∴f(x)=|x+a|+|2x﹣b|=,----显然 f(x)在(﹣∞, ]上单调递减,f(x)在[ ,+∞)上单调递增,∴f(x)的最小值为f( )=a+ ,∴a+ =1,2a+b=2.(2)方法一:∵a+2b≥tab 恒成立,∴≥t 恒成立,= + =( + )(2a+b )• = (1+4+ + ),当 a=b= 时,取得最小值 ,∴ ≥t,即实数 t 的最大值为 ;方法二:∵a+2b≥tab 恒成立,∴≥t恒成立,t≤= + 恒成立,+=+ ≥=,∴ ≥t,即实数t的最大值为 ; 方法三:∵a+2b≥tab 恒成立, ∴a+2(2﹣a)≥ta(2﹣a)恒成立, ∴2ta2﹣(3+2t)a+4≥0恒成立, ∴(3+2t)2﹣326≤0, ∴ ≤t≤ ,实数 t 的最大值为 . 【点评】本题考查了绝对值不等式问题,考查绝对值的性质以及二次函数的性质,考查转化 思想,是一道中档题.--。

2020届吉林省长春市高三质量监测(三)(三模)数学(文)试题解析

2020届吉林省长春市高三质量监测(三)(三模)数学(文)试题解析

绝密★启用前2020届吉林省长春市高三质量监测(三)(三模)数学(文)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{}21A x x =≤,{}lg 1B x x =≤,则A B =I ( ) A .[]0,1 B .(]0,1C .()0,1D .[]1,10-答案:B先分别计算集合A 和B ,再计算A B I 解:{}{}21=-11A x x x x =≤≤≤ {}{}lg 1010B x x x x =≤=<≤ {}01A B x x ⋂=<≤故答案选B 点评:本题考查了集合的运算,属于简单题型.2.已知向量,a b r r 满足a =r (2,1),b =r (1,y ),且a b ⊥r r,则2a b +r r =( )A B .C .5D .4答案:C根据向量垂直的坐标表示列方程,由此求得y ,根据向量模的坐标表示求得正确答案. 解:根据题意,a =r (2,1),b =r (1,y ),且a b ⊥r r ,则有a b ⋅=r r 2+y =0,解可得y =﹣2,即b =r(1,﹣2),则2a b +=r r(4,﹣3),故2a b +=r r =5;故选:C 点评:本小题主要考查向量垂直和模的坐标表示,属于基础题.3.已知复数z 满足(1+i )2•z =1﹣i ,则z 的共轭复数z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B利用复数除法运算求得z,由此求得z,进而求得z对应点的坐标及其所在象限. 解:由(1+i)2•z=1﹣i,得z()()2211111(1)2222i ii iii i i----====--+-,则1122z i=-+,∴复数z在复平面内对应的点的坐标为(12-,12),位于第二象限.故选:B点评:本小题主要考查复数的除法运算,考查共轭复数,考查复数对应点所在象限,属于基础题.4.某中学从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的众数是83,乙班学生成绩的平均数是86,则x y+的值为()A.7 B.8 C.9 D.10答案:B对甲组数据进行分析,得出x的值,利用平均数求出y的值,解答即可.解:由茎叶图可知,茎为8时,甲班学生成绩对应数据只能是83,80+x,85,因为甲班学生成绩众数是83,所以83出现的次数最多,可知x=3.由茎叶图可知乙班学生的总分为76+81+82+80+y+91+91+96=597+y,又乙班学生的平均分是86,总分等于86×7=602.所以597+y=602,解得y=5,可得x+y=8.故选:B.点评:本题主要考查统计中的众数与平均数的概念.解题时分别对甲组数据和乙组数据进行分析,分别得出x ,y 的值,进而得到x +y 的值.5.等比数列{a n }中,a 5、a 7是函数f (x )=x 2﹣4x +3的两个零点,则a 3•a 9等于( ) A .﹣3 B .3C .﹣4D .4答案:B根据根与系数关系关系列方程,结合等比数列的性质求得39a a ⋅的值. 解:∵a 5、a 7是函数f (x )=x 2﹣4x +3的两个零点,∴a 5、a 7是方程x 2﹣4x +3=0的两个根, ∴a 5•a 7=3,由等比数列的性质可得:a 3•a 9=a 5•a 7=3. 故选:B 点评:本小题主要考查等比数列的性质,考查根与系数关系,属于基础题.6.函数3()x xx f x e e-=-的图象大致为( ) A .B .C .D .答案:B根据解析式求得函数奇偶性,以及()1f 即可容易求得结果. 解:因为()f x 的定义域为()(),00,-∞⋃+∞,且()()3x xx f x f x e e--==-,故()f x 为偶函数,排除C ,D ,验算特值11(1)=0f e e-<-,排除A,故选:B 点评:本题考查函数图像的辨识,涉及函数奇偶性的判断和指数运算,属基础题.7.设,a b 是两条直线,,αβ是两个平面,则a b ⊥r r的一个充分条件是( )A .,//,a b αβαβ⊥⊥B .,,//a b αβαβ⊥⊥C .,,//a b αβαβ⊂⊥D .,//,a b αβαβ⊂⊥答案:C根据充分条件的判断,即从选项中找出能推出a b ⊥r r成立的即可,由空间线线、线面、面面的位置关系对选项进行逐一判断,即可得出答案. 解:A. 由,//,a b αβαβ⊥⊥,还可能得到 //b a ,如图(1),所以不正确.B. 由,,//a b αβαβ⊥⊥,还可能得到 //b a ,如图(2),所以不正确.C. 由,//b βαβ⊥,可得b α⊥,又,a α⊂所以有a b ⊥r r,所以正确. D. 由,//,a b αβαβ⊂⊥,如图(3),所以不正确. 故选:C点评:本题考查线面垂直、平行的性质及面面垂直、平行的性质,考查充分条件的判断和空间想象能力,属于基础题.8.已知直线y =﹣2与函数()23f x sin x πω⎛⎫=- ⎪⎝⎭,(其中w >0)的相邻两交点间的距离为π,则函数f (x )的单调递增区间为( ) A .566k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,, B .51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,C .51166k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,, D .511612k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,, 答案:B根据周期求得ω,再根据单调区间的求法,求得()f x 的单调区间. 解:∵y =﹣2与函数()23f x sin x πω⎛⎫=- ⎪⎝⎭,(其中w >0)的相邻两交点间的距离为π, ∴函数的周期T =2,即2πω=2,得ω=2,则f (x )=2sin (2x 3π-),由2k π2π-≤2x 3π-≤2k π2π+,k ∈Z ,得k π12π-≤x ≤k π512π+,k ∈Z ,即函数的单调递增区间为[k π12π-,k π512π+],k∈Z , 故选:B 点评:本小题主要考查三角函数的单调性,考查三角函数的周期性,属于基础题.9.已知函数f (x )是定义在R 上的奇函数,在(0,+∞)上是增函数,且f (﹣4)=0,则使得xf (x )>0成立的x 的取值范围是( ) A .(﹣4,4)B .(﹣4,0)∪(0,4)C .(0,4)∪(4,+∞)D .(﹣∞,﹣4)∪(4,+∞)答案:D根据函数的单调性和奇偶性,求得不等式()x f x ⋅的解集. 解:∵函数f (x )是定义在R 上的奇函数,在(0,+∞)上是增函数,∴函数f (x )是在(﹣∞,0)上是增函数,又f (﹣4)=0,∴f (4)=0,由xf (x )>0,得()00x f x ⎧⎨⎩>>或()00x f x ⎧⎨⎩<<,∴x >4或x <﹣4.∴x 的取值范围是(﹣∞,﹣4)∪(4,+∞). 故选:D 点评:本小题主要考查函数的单调性和奇偶性,属于基础题.10.若函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( )A .(﹣∞,﹣1)∪(0,+∞)B .(﹣∞,﹣1)∪[0,+∞)C .[﹣1,0)D .[0,+∞)答案:B根据()f x 在(],0-∞没有零点列不等式,解不等式求得a 的取值范围. 解:当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∴﹣1≤﹣2x <0,∴﹣1﹣a ≤﹣2x ﹣a <﹣a ,所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1. 故选:B 点评:本小题主要考查分段函数零点,属于基础题.11.已知双曲线2222x y a b -=1(a >0,b >0)与椭圆22182x y +=1有相同焦点F 1,F 2,离心率为43.若双曲线的左支上有一点M 到右焦点F 2的距离为12,N 为线段MF 2的中点,O 为坐标原点,则|NO |等于( )A .4B .3C .2D .23答案:B根据双曲线的定义求得NO 的表达式,根据椭圆方程求得双曲线的c ,结合双曲线的离心率求得a ,由此求得NO 的值. 解:如图,∵N 为线段MF 2的中点,∴|NO |12=|MF 1|12=(|MF 2|﹣2a )=6﹣a ,∵双曲线2222x y a b-=1(a >0,b >0)的离心率为 e 43=,∴43c a =,∵椭圆22182x y +=1与双曲线2222x y a b-=1的焦点相同,∴。

2020届吉林省长春市高三质量监测(三)(三模)数学(理)试题(解析版)

2020届吉林省长春市高三质量监测(三)(三模)数学(理)试题(解析版)
A. B. C. D.
【答案】C
【解析】根据圆心的连线与公共弦所在直线垂直,即可求得圆心;再结合弦长公式,即可容易求得半径.
【详解】
两圆圆心连线与公共弦垂直,不妨设所求圆心的坐标为 ,
又圆 的圆心为 ,半径为1,
故 ,解得 .故所求圆心为 .
直线 截得 所成弦长 ,
圆心 到直线 的距离为 ,
所以直线 截得所求圆的弦长 ,
A. B. C. D.
【答案】D
【解析】利用 之间的关系,即可容易求得 ,则 得解,再用并项求和法即可求得结果.
【详解】
由 得 ,作差可得:
,又 得 ,
则 所以 ,
…,
所以 .
故选:D.
【点睛】
本题考查利用 的关系求数列的通项公式,涉及等差数列前 项和的求解,属综合中档题.
12.设椭圆 的左右焦点为 ,焦距为 ,过点 的直线与椭圆 交于点 ,若 ,且 ,则椭圆 的离心率为()
【详解】
因为 ,又 与向量 共线
故可得 ,解得 .
故选:B.
【点睛】
本题考查向量共线的坐标公式,涉及向量的坐标运算,属基础题.
4.已知函数 的图象为C,为了得到关于原点对称的图象,只要把C上所有的点()
A.向左平移 个单位B.向左平移 个单位
C.向右平移 个单位D.向右平移 个单位
【答案】A
【解析】利用辅助角公式化简 ,再根据三角函数的奇偶性,即可求得结果.
A. B. C. D.
【答案】C
【解析】根据题意,求得 ,结合余弦定理,即可求得 的齐次式,据此即可求得结果.
【详解】
根据题意,作图如下:
由 得 , ,

即 ,
整理得 ,

2020年吉林省示范高中高考数学三模试卷 (含答案解析)

2020年吉林省示范高中高考数学三模试卷 (含答案解析)

2020年吉林省示范高中高考数学三模试卷一、选择题(本大题共12小题,共60.0分)1. 若集合A ={x|x =5−2n,n ∈N},B ={x|x >1},则A ∩B =( )A. ⌀B. {3}C. {3,5}D. {1,3,5} 2. 复数z 1=3+i ,z 2=−1−i ,则z 1−z 2等于( )A. 2B. 2+2iC. 4+2iD. 4−2i3. 若双曲线x 2a 2−y 2b 2=1(a >0,b >0)的实轴长为4,离心率为√3,则其虚轴长为( )A. 8√2B. 4√2C. 2√2D. 4√634. 已知函数f(x)={log 2x −1(x >0)f(2−x)(x ≤0),则f(0)=( )A. −1B. 0C. 1D. 35. 由变量x 与y 相对应的一组数据(3,y 1),(5,y 2),(7,y 3),(12,y 4),(13,y 5)得到的线性回归方程为y ̂=12x +20,则∑y i 5i=1=( ) A. 25B. 125C. 120D. 24 6. 4名同学甲、乙、丙、丁按任意次序站成一排,甲或乙站在边上的概率为( )A. 12B. 56C. 23D. 167. 已知函数f(x)=2 1+x 2−11+x 2,则使得f(2x)>f(x −3)成立的x 的取值范围是( )A. (−∞,−3)B. (1,+∞)C. (−3,−1)D. (−∞,−3)∪(1,+∞)8. 函数f(x)=x −√2sinx 在区间[0,π]上的最大、最小值分别为( )A. π,0B. π2−√2 ,0C. π ,π4−1D. 0 , π4−19. 阅读如图所示的程序框图,则输出的S =( )A. 3B. 15C. 21D. 3510. 在ΔABC 中,内角A,B,C 的对边分别为a,b,c ,若sinA:sinB =2:3,则a:b =( )A. 3:2B. 4:9C. 9:4D. 2:311. 已知F 1,F 2是椭圆x 216+y 212=1的左、右焦点,直线l 过点F 2与椭圆交于A 、B 两点,且|AB|=7,则△ABF 1的周长为( )A. 10B. 12C. 16D. 312. 如图,平面四边形ABCD 中,E ,F 是AD ,BD 中点,AB =AD =CD =2,BD =2√2,∠BDC =90°,将△ABD 沿对角线BD 折起至△A′BD ,使平面A′BD ⊥平面BCD ,则四面体A′BCD 中,下列结论不正确的是( )A. EF//平面A′BCB. 异面直线CD 与A′B 所成的角为90°C. 异面直线EF 与A′C 所成的角为60°D. 直线A′C 与平面BCD 所成的角为30°二、填空题(本大题共4小题,共20.0分)13. 已知向量OA ⃗⃗⃗⃗⃗ =(3,−4),OB ⃗⃗⃗⃗⃗⃗ =(6,−3),OC ⃗⃗⃗⃗⃗ =(5−m,−(3+m)),若A 、B 、C 三点共线,则实数m 的值为______ .14. 若α=20∘,β=25∘,则(1+tanα)(1+tanβ)=________.15. 《九章算术》卷五——商功中提出如下问题:“今有委菽依垣,下周三丈,高七尺,问积几何⋅”意思是:“今靠墙壁堆放大豆,大豆下周长为3丈,高7尺,问这堆大豆的体积为多少⋅”己知大豆靠墙时堆放的形状可大致认为是半圆锥形,则基于上述事实,可以求得这堆大豆的体积为______________立方尺.注:1丈=10尺,取π=316. 已知函数f(x)=x(e x −1e x ),则使f(x)>f(2x −1)成立的x 的取值范围为______. 三、解答题(本大题共7小题,共82.0分)17. 某市某年一个月中30天对空气质量指数的监测数据如下:61 76 70 56 81 91 55 91 75 81 88 67 101 103 57 91 77 86 81 83 82 82 64 79 86 85 75 71 49 45 (Ⅰ)完成下面的频率分布表;(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中a 的值;(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间[101,111)内的概率.分组频数频率[41,51)22 30[51,61)33 30[61,71)44 30[71,81)66 30[81,91) [91,101)[101,111)22 3018.已知等差数列{a n}的前n项和为S n,a3=3,S6=21.(1)求{a n}的通项公式;(2)设b n=a n+2n,求数列{b n}的前n项和T n.19.如图,在直三棱柱ABC−A1B1C1中,AC⊥BC,M为线段CC1上的一点,且AC=1,BC=CC1=2.(Ⅰ)求证:AC⊥B1M;(Ⅱ)若N为AB的中点,若CN//平面AB1M,求三棱锥M−ACB1的体积.20.已知抛物线C:x2=2y,过点(−2,4)且斜率为k的直线l与抛物线C相交于M,N两点.(1)若k=2,求|MN|的值;(2)记直线l1:x−y=0与直线l2:x+y−4=0的交点为A,求K AM·K AN的值.21.已知函数f(x)=xe x+x2+ax+b,曲线y=f(x)在点(0,f(0))处的切线方程为4x−2y−3=0.(1)求a,b的值;(2)证明:f(x)>lnx.22.已知圆C:ρ=2cosθ,直线l:ρcosθ−ρsinθ=4,求过点C且与直线l垂直的直线的极坐标方程.23.已知函数f(x)=|x−a|+|x−1|−3(a≠0)的一个零点为2.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)若直线y=kx−2与函数f(x)的图象有公共点,求k的取值范围.-------- 答案与解析 --------1.答案:C解析:【分析】本题考查交集的求法,是基础题.分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|x=5−2n,n∈N},={5,3,1,−1,−3……},B={x|x>1},∴A∩B={3,5}.故选:C.2.答案:C解析:【分析】本题考查复数的减法运算,属于基础题.【解答】解:因为复数z1=3+i,z2=−1−i,则z1−z2=4+2i.故选C.3.答案:B解析:【分析】根据题意,由双曲线的实轴长可得a的值,进而由离心率公式可得c的值,计算可得b的值,由双曲线的虚轴长为2b,即可得答案.本题考查双曲线的几何性质,注意双曲线的实轴长为2a.【解答】解:根据题意,若双曲线x2a2−y2b2=1(a>0,b>0)的实轴长为4,即2a=4,则a=2,又由双曲线的离心率e=√3,则有e =ca =√3,则c =√3a =2√3, 则b =√c 2−a 2=2√2, 则该双曲线的虚轴长2b =4√2; 故选:B .4.答案:B解析: 【分析】本题考查分段函数求值,为基础题. 将自变量代入相应解析式求值,可得结果. 【解答】解:f (0)=f (2−0)=f (2)=log 22−1=0. 故选B .5.答案:C解析: 【分析】利用已知求得x ,将样本中心点(x,y)代入线性回归方程y ̂=12x +20求得y ,再由y =15∑y i 5i=1即可求得∑y i 5i=1的值.本题考查线性回归方程的应用,考查线性回归方程必过样本中心点(x,y),考查计算能力,属于基础题. 【解答】 解:由x =3+5+7+12+135=8,∵线性回归方程必过样本中心点(x,y), ∴y =12x +20,解得y =24,即y =15∑y i 5i=1=24, ∴∑y i 5i=1=120, 故选C .6.答案:B解析:解:甲、乙、丙、丁四人并排站成一排一共有A 44=24种甲和乙站在中间的情况有A 22⋅A 22=4种∴甲或乙站在边上的情况有20种甲或乙站在边上的概率为2024=56,故选:B.先求出甲、乙、丙、丁四人并排站成一排的事件种数,然后求出甲和乙站在中间的情况,从而求出甲或乙站在边上的情况,最后利用古典概型的概率公式进行求解即可.本题求的是概率实际上本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.7.答案:D解析:解:函数f(x)=2 1+x2−11+x,有f(−x)=f(x),f(x)为偶函数,当x>0时,可得y=2 1+x2递增,y=−11+x2递增.则f(x)在(0,+∞)递增,且有f(|x|)=f(x),则f(2x)>f(x−3)即为f(|2x|)>f(|x−3|),即|2x|>|x−3|,则|2x|2>|x−3|2,即为(x+3)(3x−3)>0,解得x>1或x<−3.故选:D.判断函数f(x)为偶函数,讨论x>0时,f(x)为增函数,再由偶函数的性质:f(|x|)=f(x),以及单调性,可得|2x|>|x−3|,解不等式即可得到所求解集.本题考查函数的奇偶性和单调性的运用:解不等式,注意运用复合函数的单调性和偶函数的性质,考查运算能力,属于中档题.8.答案:C解析:解:函数f(x)=x−√2sinx,∴f′(x)=1−√2cosx;令f′(x)=0,解得cosx=√22,又x∈[0,π],∴x=π4;∴x∈[0,π4)时,f′(x)<0,f(x)单调递减;x∈(π4,π]时,f′(x)>0,f(x)单调递增;∴f(x)min=f(π4)=π4−√2sinπ4=π4−1,f(0)=0,f(π)=π;∴函数f(x)在区间[0,π]上的最大、最小值分别为π和π4−1.故选C.对函数f(x)求导数,利用导数判断f(x)的单调性,并求f(x)在区间[0,π]上的最大、最小值.本题考查了利用导数求函数在闭区间上的最值问题,是中档题.9.答案:A解析:解:第一次循环得到的结果为T=1,S=1,i=2,不满足i≥3,执行“否”;第二次循环得到的结果为T=3,S=3,i=3,满足i≥3,执行“是”,输出S=3.故选:A.模拟程序框图的运行过程,判断循环的结果是否满足判断框中的条件,直到满足判断框中的条件执行输出结果即可.本题考查了循环结构,解决程序框图中的循环结构时,常采用写出前几次循环得到结果,从中找规律.10.答案:D解析:【分析】本题考查正弦定理,属于基础题目.直接利用正弦定理得出即可.【解答】解:∵sinA:sinB=2:3,∴由正弦定理可得a:b=sinA:sinB=2:3.故选D.11.答案:C解析:【分析】本题考查椭圆的定义.椭圆的简单性质的应用,考查计算能力,属于基础题.利用椭圆的定义可得:|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,并且|AF2|+|BF2|=|AB|,进而得到答案.【解答】解:椭圆x216+y212=1,可得a=4,根据题意结合椭圆的定义可得:|AF1|+|AF2|=2a=8,并且|BF1|+|BF2|=2a=8,又因为|AF2|+|BF2|=|AB|,所以△ABF1的周长为:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=16.故选:C.12.答案:C解析:【分析】本题考查异面直线所成角的求法,线面角的求法和线面平行的判断,考查转化思想和运算能力,属于中档题.运用线面平行的判定定理可判断A;由面面垂直的性质定理,结合异面直线所成角可判断B;由异面直线所成角和勾股定理的逆定理可判断C;由线面角的求法,可判断D.【解答】解:A:因为E,F分别为A′D和BD两边中点,所以EF//A′B,即EF//平面A′BC,EF⊄平面A′BC,A正确;B:因为平面A′BD⊥平面BCD,交线为BD,且CD⊥BD,所以CD⊥平面A′BD,A′B⊂平面A′BD,即CD⊥A′B,故B正确;C:取CD边中点M,连接EM,FM,则EM//A′C,所以∠FEM为异面直线EF与A′C所成角,又EF=1,EM=12A′C=√2,FM=12BC=√3,即∠FEM=90°,故C错误;D:连接A′F,可得A′F⊥BD,由面面垂直的性质定理可得A′F⊥平面BCD,连接CF,可得∠A′CF为A′C与平面BCD所成角,由sin∠A′CF=A′FA′C =√22√2=12,则直线A′C与平面BCD所成的角为30°,故D正确.故选:C.13.答案:12解析:m =12;解:∵OA ⃗⃗⃗⃗⃗ =(3,−4),OB ⃗⃗⃗⃗⃗⃗ =(6,−3),OC ⃗⃗⃗⃗⃗ =(5−m,−(3+m)),∴AB ⃗⃗⃗⃗⃗ =(3,1),AC⃗⃗⃗⃗⃗ =(2−m,1−m), ∵A 、B 、C 三点共线,∴AB ⃗⃗⃗⃗⃗ //AC⃗⃗⃗⃗⃗ ∴3(1−m)=2−m解得m =12故答案为:12.利用三点共线,通过坐标运算求出m 的值.本题考查三点共线,向量的坐标运算,考查计算能力. 14.答案:2解析:【分析】本题主要考查两角和的正切公式,属于容易题.根据两角和的正切公式即可求解.【解答】解:因为α=20°,β=25°,所以tan (α+β)=tan45°=1,所以(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ=1+tan (α+β)(1−tanαtanβ)+tanαtanβ=1+1−tanαtanβ+tanαtanβ=2.故答案为2.15.答案:350解析:【分析】本题考查圆锥的体积,属于基础题.熟练掌握圆锥的体积公式是解题的关键.【解答】解:由下周长(半圆周长)为30尺,得πR =30,R =30π,∴所求体积立方尺.故答案为350.16.答案:(13,1)解析:解:根据题意,f(x)=x(e x−1e x),则f(−x)=(−x)(e−x−e x)=x(e x−e−x)=f(x),为偶函数;又由f′(x)=(e x−e−x)+x(e x+e−x),当x≥0时,f′(x)>0,则函数f(x)在[0,+∞)上为增函数,则f(x)>f(2x−1)⇔f(|x|)>f(|2x−1|)⇒|x|>|2x−1|,即x2>4x2−4x+1,解可得:13<x<1,即x的取值范围为(13,1);故答案为:(13,1)根据题意,分析可得函数f(x)为偶函数与,利用导数与函数单调性的关系,分析可得函数f(x)在[0,+∞)上为增函数,进而可以将f(x)>f(2x−1)转化为|x|>|2x−1|,即x2>4x2−4x+1,解可得x的取值范围,即可得答案.本题考查函数的奇偶性、单调性的综合应用,涉及函数的导数与单调性的判断方法,属于综合题.17.答案:解:(Ⅰ)如下图所示.…(4分)(Ⅱ)如下图所示.…(6分)由己知,空气质量指数在区间[71,81)的频率为630,所以a=0.02.…(8分)分组频数频率………[81,91)1010 30[91,101)33 30………(Ⅲ)设A表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间[101,111)内”,由己知,质量指数在区间[91,101)内的有3天,记这三天分别为a ,b ,c ,质量指数在区间[101,111)内的有2天,记这两天分别为d ,e ,则选取的所有可能结果为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为10.…(10分)事件“至少有一天空气质量指数在区间[101,111)内”的可能结果为:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为7,…(12分)所以P(A)=710.…(13分)解析:(I)先将数据从小到大排序,然后进行分组,找出频数,求出频率,立出表格即可. (II)先建立直角坐标系,按频率分布表求出频率/组距,得到纵坐标,画出直方图即可;利用空气质量指数在区间[71,81)的频率,即可求出a 值.(III)样本中空气质量质量指数在区间[91,101)内的有3天,记这三天分别为a ,b ,c ,质量指数在区间[101,111)内的有2天,记这两天分别为d ,e ,列举出基本事件及符合条件的事件,根据概率公式求出相应的概率即可.本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的高等于每一组的频率/组距,它们与频数成正比,小矩形的面积等于这一组的频率等等.18.答案:解:(1)设公差为d ,由已知可得:{a 1+2d =36a 1+6×52d =21,解得a 1=1,d =1. ∴a n =1+(n −1)=n .(2)b n =a n +2n =n +2n .∴数列{b n }的前n 项和T n =(1+2+⋯+n)+(2+22+⋯+2n )=n(n +1)2+2(2n −1)2−1=n 2+n 2+2n+1−2.解析:(1)设公差为d ,由已知可得:{a 1+2d =36a 1+6×52d =21,解得a 1,d.即可得出. (2)b n =a n +2n =n +2n .利用等差数列与等比数列的求和公式即可得出.本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.19.答案:(Ⅰ)证明:在直三棱柱ABC−A1B1C1中,∵AC⊥CC1,AC⊥BC,CC1∩BC=C.∴AC⊥平面BB1C1C,∵B1M⊂平面BB1C1C,∴AC⊥B1M;(Ⅱ)解:当M为CC1中点时,CN//平面AB1M.理由如下:∵CM=12CC1,CM//BB1,CM=12BB1,取AB1中点E,连接NE,ME,∵N、E分别为AB、AB1中点,∴NE//BB1,NE=12BB1,∴CM//NE,CM=NE,则四边形CMEN为平行四边形,∴CN//ME,又CN⊄平面AMB1,ME⊂平面AMB1,∴CN//平面AMB1,∵S△B1MC =12CM·BC=1,∴V M−ACB1=V A−CMB1=13S△B1MC·AC=13.解析:本题考查空间中直线与直线的位置关系,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.(Ⅰ)由直三棱柱ABC−A1B1C1,可得AC⊥CC1,AC⊥BC,则AC⊥平面BB1C1C,从而得到AC⊥B1M;(Ⅱ)证明当M为CC1中点时,CN//平面AB1M,然后利用等积法求三棱锥M−ACB1的体积.20.答案:解:(1)依题意,直线l:y=2x+8,联立抛物线C:x2=2y,可得x2−4x−16=0,设M(x1,y1),N(x2,y2),则x1+x2=4,x1x2=−16,故|MN|=√1+k2|x1−x2|=√1+k2⋅√(x1+x2)2−4x1x2=√1+4⋅√16+4×16=20;(2)联立{x −y =0x +y −4=0,解得x =y =2,故A (2,2), 设直线l 的方程为:y −4=k(x +2),联立抛物线C :x 2=2y ,可得x 2−2kx −4k −8=0,设M(x 1,y 1),N(x 2,y 2),可得x 1+x 2=2k ,x 1x 2=−4k −8,则k AM =y 1−2x 1−2=k(x 1+2)+2x 1−2,k AN =y 2−2x 2−2=k(x 2+2)+2x 2−2,k AM ⋅k AN =[k(x 1+2)+2][k(x 2+2)+2](x 1−2)(x 2−2)=k 2[x 1x 2+2(x 1+x 2)+4]+2k(x 1+x 2+4)+4x 1x 2−2(x 1+x 2)+4=k 2(−4k−8+4k+4)+2k(2k+4)+4−4k−8−4k+4=−1.解析:(1)求得直线l 的方程,联立抛物线方程,运用韦达定理和弦长公式,计算可得所求值:(2)求得交点A(2,2),设直线l 的方程为:y −4=k(x +2),联立抛物线C :x 2=2y ,运用韦达定理和斜率公式,化简整理即可得到所求值.本题考查直线和抛物线方程联立,运用韦达定理和弦长公式、直线的斜率公式,考查方程思想和运算能力,属于中档题.21.答案:(1)解:f ′(x)=(x +1)e x +2x +a 依题意有{f ′(0)=1+a =2f(0)=b =−32解得a =1,b =−32.(2)证明:由(Ⅰ)知,f(x)=xe x +x 2+x −32.设, 依题意只需证明ℎ(x)>32 .ℎ′(x)=(x +1)e x +2x +1−1x =(x +1)(e x +2−1x )(x >0) 设g(x)=e x +2−1x ,g ′(x)=e x +1x 2>0,所以g(x)在上单调递增. 又g(14)=e 14+2−4<0,g(13)=e 13+2−3>0,所以 使得g(x 0)=e x 0+2−1x 0=0, 当x ∈(0,x 0) 时g(x)<0,当时g(x)>0,所以当x ∈(0,x 0) 时ℎ′(x)<0,ℎ(x)单调递减;当时ℎ′(x)>0,ℎ(x)单调递增.,且e x 0+2−1x 0=0,所以, 设,φ′(x)=2x −1−1x =(2x+1)(x−1)x ,x ∈(14,13), 当x ∈(14,13)时,φ′(x )<0 ,故φ(x)单调递减,所以所以ℎ(x)>32证毕.解析:本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.(1)求出导数f′(x),根据题意有{f ′(0)=1+a =2f(0)=b =−32,解出即可; (2)证明:由(Ⅰ)知,f(x)=xe x +x 2+x −32.设,依题意只需证明ℎ(x)>32 . 利用导数求证ℎ(x)min >32即可. 22.答案:解:由题意可得圆C 的直角坐标方程是x 2+y 2−2x =0,化为标准方程可得(x −1)2+y 2=1,圆心C(1,0),直线l 的直角坐标方程为x −y −4=0,∴过C 与l 垂直的直线方程为y −0=−(x −1)化简可得x +y −1=0.化为极坐标方程为ρcos θ+ρsin θ−1=0,即ρcos(θ−π4)=√22.解析:本题考查曲线的极坐标方程,属基础题.由题意可得圆和直线的直角坐标方程,可得直线的直角坐标方程,化为极坐标方程即可. 23.答案:解:(Ⅰ)∵函数f(x)=|x −a|+|x −1|−3(a ≠0)的一个零点为2,∴f(2)=|2−a|+1−3=0,由a ≠0,得a =4,∴f(x)=|x −4|+|x −1|−3,由f(x)≤2,得{x ≤12−2x ≤2或{1<x <40≤2或{x ≥42x −8≤2, 解得0≤x ≤5,故不等式f(x)≤2的解集为[0,5].(Ⅱ)f(x)=|x−4|+|x−1|−3={2−2x,x≤1 0,1<x<4 2x−8,x≥4,作出函数f(x)的图象,如图所示,直线y=kx−2过定点C(0,−2),当此直线经过点B(4,0)时,k=12;当此直线与直线AD平行时,k=−2.故由图可知,k∈(−∞,−2)∪[12,+∞).解析:本题考查了解绝对值不等式问题,考查数形结合思想,转化思想,是一道中档题.(Ⅰ)先得出a的值,通过讨论x的范围,得到关于x的不等式组,解出即可;(Ⅱ)求出f(x)的分段函数的性质,结合函数的图象求出k的范围即可.。

2020届吉林省长春市高三质量监测(三)(三模)数学(理)试题(解析版)

2020届吉林省长春市高三质量监测(三)(三模)数学(理)试题(解析版)

长春市2020届高三质量监测(三)理科数学一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2{|4}A x Z x =∈…,{|42}B x x =-<< ,则A B =I ( )A.{|22}x x -<≤ B. {|42}x x -<≤C.{2,1,0,1,2}--D.{2,1,0,1}--【答案】D 【分析】根据集合的交运算,即可容易求得结果. 【详解】{|22}{2,1,0,1,2}A x Z x =∈-=--≤≤故可得{}2,1,0,1A B ⋂=--故选:D .【点睛】本题考查集合的交运算,属基础题. 2.已知复数()(12) ()z a i i a R =+-∈的实部为3,其中i 为虚数单位,则复数z 的虚部为( )A.1-B.-iC. 1D. i【答案】A 【分析】根据复数的乘法运算化简复数z ,由其实部即可求得参数a . 【详解】()(12)2(12)za i i a a i =+-=++-,231a a +=∴=∴121a -=-. 故选:A .【点睛】本题考查复数的乘法运算,实部和虚部的辨识,属基础题.3.已知向量(1,2)=-r a ,(3,3)b =-r ,(1,)c t r =,若向量a r 与向量b c +r r共线,则实数t =( )A.5B. 5-C. 1D.1-【答案】B 【分析】根据向量的加法运算,求得b c +r r的坐标,由向量共线的坐标公式,即可容易求得结果.【详解】因为b c +r r ()4,3t =-,又a r 与向量b c +r r共线故可得38t -=-,解得5t =-.故选:B .【点睛】本题考查向量共线的坐标公式,涉及向量的坐标运算,属基础题. 4.已知函数()cos 3sin 22x xf x =-的图象为C ,为了得到关于原点对称的图象,只要把C 上所有的点( )A. 向左平移3π个单位B. 向左平移23π个单位C. 向右平移3π个单位D. 向右平移23π个单位【答案】A 【分析】利用辅助角公式化简()f x ,再根据三角函数的奇偶性,即可求得结果.【详解】由()cos 3sin 2cos()()2cos()2223223x x x x f x f x πϕπϕ=-=+⇒+=++为奇函数,得+=+=+22323k k Z k ϕππππϕπ∈∴,当0k =时,3πϕ=.故为得到关于原点对称的图像,只要把C 向左平移3π个单位即可. 故选:A【点睛】本题考查辅助角公式,函数图像的平移,以及余弦型函数的奇偶性,属综合中档题.5.函数3()x xx f x e e-=-的图象大致为( ) A. B.C. D.【答案】B 【分析】根据解析式求得函数奇偶性,以及()1f 即可容易求得结果.【详解】因为()f x 的定义域为()(),00,-∞⋃+∞,且()()3x xx f x f x e e--==-,故()f x 为偶函数, 排除C ,D ,验算特值11(1)=0f e e-<-,排除A, 故选:B【点睛】本题考查函数图像的辨识,涉及函数奇偶性的判断和指数运算,属基础题. 6.在521()x x+的展开式中,一定含有( ) A. 常数项 B. x 项C. 1x -项D. 3x 项【答案】C 【分析】利用二项式的通项公式,即可容易求得结果. 【详解】由通项公式5521()r rr C xx-535r rC x -=代入0,1,2,3r =验证, 当0r =时,可得其含有5x 项;当1r =,可得其含有2x 项;当2r =时,可得其含有1x -项; 故选:C . 【点睛】本题考查二项式的通项公式,属基础题.7.已知直线,m n 和平面,,αβγ,有如下四个命题:①若,//m m αβ⊥,则αβ⊥;②若,//,m m n n αβ⊥⊂,则αβ⊥;③若,,n n m αβα⊥⊥⊥,则m β⊥;④若,m m n α⊥⊥,则//n α.其中真命题的个数是( )A. 1B.2C.3D.4【答案】C 【分析】根据面面垂直,线面垂直以及线面平行的判定,即可容易判断. 【详解】①若,//m m αβ⊥,则一定有αβ⊥,故①正确;②若,//,m m n n αβ⊥⊂,则n α⊥,又因为n β⊂,故可得αβ⊥,故②正确; ③若,n n αβ⊥⊥,故可得α//β,又因为m α⊥,故可得m β⊥,故③正确; ④若,m m n α⊥⊥,则//n α或n α⊂,故④错误; 综上所述,正确的有①②③. 故选:C【点睛】本题考查线面垂直,面面垂直的判定以及线面平行的判定,属综合基础题.8.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.下图是风雨桥中塔的俯视图.该塔共5层,若011223340.5m B B B B B B B B ====,008m A B =,则五层正六边形的周长和为( )A. 35mB.45mC.210m D. 270m【答案】C 【分析】根据题意,构造等差数列,即可由等差数列的前n 项和进行求解. 【详解】根据题意,设正六边形的中心为O ,容易知4433221100,,,,OA B OA B OA B OA B OA B n n n n n 均为等边三角形, 故4433221100,,,,A B A B A B A B A B 长度构成依次为6,6.5,7,7.5,8的等差数列 ∴周长总和为(68)562102+⋅⋅=, 故选:C【点睛】本题考查等差数列的前n 项和的求解,属基础题.9.已知圆E 的圆心在y 轴上,且与圆2220x y x +-=的公共弦所在直线的方程为30x -=,则圆E 的方程为( )A .22(3)2x y+-= B. 22(3)2x y ++= C. 22(3)3x y +-= D. 22(3)3x y ++=【答案】C 【分析】根据圆心的连线与公共弦所在直线垂直,即可求得圆心;再结合弦长公式,即可容易求得半径. 【详解】两圆圆心连线与公共弦垂直,不妨设所求圆心的坐标为()0,a ,又圆2220x y x +-=的圆心为()1,0,半径为1,故113a ⨯=--,解得3a =.故所求圆心为()0,3. 直线30x y -=截得2220x y x +-=所成弦长212134-=, 圆心()0,3到直线30x y -=的距离为32, 所以直线30x y -=截得所求圆的弦长223232r ⎛⎫-= ⎪⎝⎭, 解得3r =.故圆心坐标为(0,3),半径为3, 故选:C .【点睛】本题考查圆方程的求解,涉及两圆位置关系,属综合基础题.10.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是( )A. 除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图象几何” 在第三学段增加较多,约是第二学段的3.5倍.B. 所有主题中,三个学段的总和“图形几何”条目数最多,占50%,综合实践最少,约占4% .C. 第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多.D. “数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何”条目数,百分比都随学段的增长而增长. 【答案】D 【分析】根据统计图表,结合每个选项即可容易求得结果. 【详解】结合统计图表可知,除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加, 尤其“图象几何” 在第三学段增加较多,约是第二学段的3.5倍,故A 正确; 所有主题中,三个学段的总和“图形几何”条目数最多,占50%, 综合实践最少,约占4% ,故B 正确;第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多,故C 正确; 对D 中,显然“数与代数”条目数虽然随着学段的增长而增长, 而其百分比却一直在减少;而“图形几何”条目数, 百分比随着学段数先减后增,故D 错误; 故选:D【点睛】本题考查统计图表的辨识和应用,属基础题.11.已知数列{}n a 的各项均为正数,其前n 项和n S 满足2*42 ()n n n S a a n N =+∈,设1(1)nn n n b a a +=-⋅,n T 为数列{}n b 的前n 项和,则20T =( )A. 110B. 220C.440 D. 880【答案】D 【分析】利用,n n a S 之间的关系,即可容易求得n a ,则n b 得解,再用并项求和法即可求得结果.【详解】由242 n n n S a a =+得211142 (2)n n n S a a n ---=+…,作差可得: 1 2n n a a --=,又1=2 a 得2n a n =,则(1)22(1)4(1)(1)nnn b n n n n =-⋅⋅+=-⋅+所以12+b b =4[(1)1223]82-⋅⋅+⋅=⋅,34+4[(1)3445]84,b b =-⋅⋅+⋅=⋅56+4[(1)5667]86,b b =-⋅⋅+⋅=⋅…,1920+4[(1)19202021]820,b b =-⋅⋅+⋅=⋅所以20(220)1088802T +⋅=⋅=.故选:D .【点睛】本题考查利用,n n a S 的关系求数列的通项公式,涉及等差数列前n 项和的求解,属综合中档题. 12.设椭圆C 的左右焦点为12,F F ,焦距为2c ,过点1F 的直线与椭圆C 交于点,P Q ,若2||2PF c =,且114||||3PF QF =,则椭圆C 的离心率为( ) A.12B.34C.57D.23【答案】C 【分析】根据题意,求得112,,PF F Q F Q ,结合余弦定理,即可求得,a c 的齐次式,据此即可求得结果. 【详解】根据题意,作图如下:由2||2PF c =得1||22PF a c =-,13377||,||=22a c a c QF PQ --=,23||2a cQF +=由221cos cos F PQ F PF ∠=∠即22222222211222122PF PQ F QPF PF F F PF PQPF PF +-+-=,整理得2271250c ac a -+=, 则()()570a c a c --=,得57e =故选:C .【点睛】本题考查椭圆离心率的求解,涉及椭圆的定义,属中档题.二、填空题:本题共4小题,每小题5分.13.一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________ 【答案】0.88 【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可. 【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护", 所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=, 故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 14.等差数列{}n a 中,11a =,公差2[]1,d ∈,且391515a a a λ++=,则实数λ的最大值为_________.【答案】13- 【分析】根据等差数列的基本量,用d 表示出λ,分离参数求得函数的值域,即可容易求得结果. 【详解】由391515a a a λ++=得()()121811415d d d λ+++++=,整理得()181316d d λ+=-,又2[]1,d ∈,故1316151912[,]1818173d d d λ-==-+∈--++.故实数λ的最大值为13-.故答案为:13-.【点睛】本题考查等差数列基本量的求解,涉及分式函数值域的求解,属综合中档题. 15.若12,x x 是函数2()74ln f x x x x =-+的两个极值点,则12x x =____,12()()f x f x +=____.【答案】 (1). 2 (2). 654ln 24-【分析】根据极值点的定义,即可由方程的根与系数之间的关系,即可求得12x x 以及12x x +,再结合对数运算即可容易求得结果. 【详解】2121247()2702740,22f x x x x x x x x x '=-+=⇒-+=⇒+==,2212111222()()74ln 74ln f x f x x x x x x x +=-++-+21212121265()27()4ln()4ln 24x x x x x x x x =+--++=-. 故答案为:2;654ln 24-. 【点睛】本题考查利用导数求函数的极值点,涉及对数运算,属综合基础题.16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD 为等边三角形,线段BC 的中点为E ,若1PE =.则所需球体原材料的最小体积为___________. 【答案】82π 【分析】根据题意,讨论球体体积最小时的状态,求得此时的球半径,则问题得解.【详解】根据题意,取AD 中点为F ,连接EF ,取EF 中点为O ,连接PO ,如下所示:因为PAD n为边长为2的等边三角形,故可得3PF =又因为1,2PE EF ==,满足勾股定理, 故可得PE PF ⊥,则EPF n 为直角三角形,则111222PO EF BD ==<=若要满足题意,只需满足ABCD 在球大圆上时,点P 在球内部即可, 此时球半径最小为282π故答案为:823π. 【点睛】本题考查棱锥外接球问题,涉及棱锥体积的求解,属综合中档题.三、解答题:共70 分,解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第22~23 题为选考题,考生根据要求作答.(一)必考题:共60分.17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值X给宣纸确定质量等级,如下表所示:公式在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公式生产宣纸的年利润(单位:万元);(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值X的频率,如下表所示:其中X为改进工艺前质量标准值X的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.【答案】(1)400万元;(2)应该购买,理由见解析【分析】(1)由频率分布直方图求得100张宣纸中各类宣纸的数量,结合每种宣纸的盈亏即可容易求得结果;(2)由频率分布直方图求得X,即可求得各区间的频率分布,据此即可求得结果.【详解】(1)由频率分布直方图可知,一刀(100张)宣纸中有正牌宣纸100×0.1×4=40张,有副牌宣纸100×0.05×4×2=40张,有废品100×0.025×4×2=20张,所以该公司一刀宣纸的年利润为40×10+40×5+20×(-10)=400元,所以估计该公式生产宣纸的年利润为400万元;(2) 由频率分布直方图可得4(420.025460.05500.1540.05580.025)50X =⨯⨯+⨯+⨯+⨯+⨯=这种机器生产的宣纸质量指标X 的频率如下表所示:(48,52](44,56]0.68260.9544X频率则一刀宣纸中正牌的张数为100×0.6826=68.26张, 副牌的张数约为100×(0.9544-0.6826)=27.18张,废品的张数约为100×(1-0.9544)=4.56张,估计一刀宣纸的利润为:68.26×(10-2)+27.18×(5-2)+4.56×9(-10)=582.02, 因此改进工艺后生产宣纸的利润为582.02-100=482.02元,因为482.02>400,所以该公式应该购买这种设备.【点睛】本题考查由频率分布直方图计算概率以及平均数,涉及由样本估计总体,属综合基础题.18.在△ABC 中, 角,,A B C 所对的边分别为,,a b c ,且4cos a c B = .(1)求证:sin cos 3sin cos B C C B =;(2)求B C -的最大值.【答案】(1)证明见解析;(2)6π 【分析】(1)利用正弦定理将边化角,结合()sin sinA B C =+,即可容易求得;(2)根据(1)中所求得到,tanB tanC 之间的关系,再将()tanB C -转化为关于tanC 的函数,利用均值不等式求得函数的最值,则B C -的最值得解.【详解】(1)在ABC ∆中,由4cos a c B =及正弦定理,得sin 4sin cos sin()4sin cos A C B B C C B =⇒+=则4sinBcosC cosBsinC sinCcosB +=,sin cos 3sin cos B C C B ⇒=.(2)由(1)知sin cos 3sin cos tan 3tan B C C B B C =⇒=,2tan tan 2tan 2tan()=11+tan tan 1+3tan+3tan tan B C C B C B C C C C--== 又因为3tanB tanC =,故可得0tanC >,由均值不等式可得2313+3tan tan C C ≤,当且仅当3tan =3C 时等号成立 因此23tan()=123+3tan tan B C C C-=… , 即B C -的最大值为6π . 【点睛】本题考查利用正弦定理解三角形,涉及均值不等式求和的最小值,以及正切的差角公式,属综合中档题. 19.四棱锥-P ABCD 中,底面ABCD 为直角梯形,//BC AD ,AD DC ⊥,1BC CD ==,2AD =,PA PD =,E 为PC 的中点,平面PAD ⊥平面ABCD ,F 为AD 上一点,//PA 平面BEF .(1)求证:平面BEF ⊥平面PAD ;(2)若PC 与底面ABCD 所成的角为60︒,求二面角E BF A --的余弦值.【答案】(1)证明见解析;(2)77-【分析】(1)通过线面平行,推证出点F 的位置,再结合面面垂直,推证出BF⊥平面PAD ,即可由线面垂直推证面面垂直;(2)以F 点为坐标原点建立空间直角坐标系,由线面角求得PF 长度,进而再由向量法求得二面角的大小即可.【详解】(1)连AC 交BF 于G ,连EG ,如下图所示:因为//PA 平面BEF ,PA ⊂平面PAC ,平面PAC I 平面BEFEG =, 所以//PA EG ,又E 为PC 中点,所以G 为AC 中点,由AFG ∆≌BCG ∆, ∴112AF BC AD === ∴F 为AD 中点,∵//BC FD ,且BC FD =,则DCBF 为平行四边形,∵AD DC ⊥∴BF AD ⊥,又BF ⊂平面ABCD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD AD =, 故BF ⊥平面PAD ,又BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .即证.(2)连接PF ,∵PA PD =,F 为AD 的中点,∴PFAD ⊥, 又PF⊂平面PAD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD AD =, ∴PF ⊥底面ABCD ,又PF AD ⊥,以,,FA FB FC 分别为,,x y z 轴建立空间直角坐标系.设(0,0,),(1,1,0)P t C -,取平面ABCD 的法向量()10,0,1n =u r ,又(1,1,)PC t =--u u u r,(0,1,0)B ∴1213sin ||632||||2n PC t n PC t π⋅=⇒=⇒=⋅+u r uu u r u r uu u r ∴6)P ,116(,22E - 设平面EBF 的法向量2(,,)n x y z =u u r 所以2200n FE n FB ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r 即可得11602220x y z y ⎧-++=⎪⎨⎪=⎩令21,6,(6,0,1)z x n =∴==u u r设二面角--E BF A 的平面角为θ ∴1212||||7|cos |7||||n n n n θ⋅==⋅u r u u r u r u u r ,又θ为钝角 ∴7cos 7θ=- , 所以二面角E BF A --的余弦值为7. 【点睛】本题考查由线面垂直推证面面垂直,由线面角求线段长,以及用向量法求二面角的大小,属综合中档题. 20.已知点(0,1)A ,点B 在y 轴负半轴上,以AB 为边做菱形ABCD ,且菱形ABCD 对角线的交点在x 轴上,设点D 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点(,0)M m ,其中14m <<,作曲线E 的切线,设切点为N ,求AMN V 面积的取值范围.【答案】(1)24(0)xy x =≠;(2)(1,34) 【分析】(1)根据题意,求得菱形中心的坐标,进而由中心为,B D 中点,求得D 点坐标的参数形式,即可消参求得点D 的轨迹方程;(2)利用导数几何意义求得N 点处的切线方程,从而求得M 点坐标,据此求得,m a 之间的关系,再结合1MN AM k k ⋅=-,即可表示出面积,将其转化为关于a 的函数,利用函数单调性求函数值域即可.【详解】(1)设(0,)B t -,菱形ABCD 的中心设为Q 点,且x 在轴上,由题意可得2||||||OQ OA OB =则Q 又Q 为,B D 的中点,因此点)D t ,即点D 的轨迹为x y t⎧=⎪⎨=⎪⎩t 为参数且0t ≠) 化为标准方程为24(0)x y x =≠.(2)设点2(,)4a N a ,则点N 的切线方程为2()422a a a y x -=-. 可得(,0)2a M 因此2a m =由14m <<,可得28a << 又2,2MN AM a k k a ==-则1MN AM k k ⋅=- 即MN AM ⊥因此21(4)|||216a a S MN AM +=⋅= 令34y a a =+,则2340y a '=+>,故34y a a =+为单调增函数,故可知当(2,8)a ∈时,S 为关于a 的增函数,又当2a =时,1S =;当8a =时,34S =.因此S 的取值范围是(1,34).【点睛】本题考查抛物线轨迹方程的求解,以及抛物线中三角形面积的范围问题,涉及导数的几何意义,以及利用导数判断函数的单调性,属综合中档题.21.已知函数1()ln , () (0)x f x m x g x x x-==>. (1)讨论函数()()()F x f x g x =-在(0,+)∞上的单调性;(2)是否存在正实数m ,使()y f x =与g()y x =的图象有唯一一条公切线,若存在,求出m 的值,若不存在,请说明理由.【答案】(1)当0m ≤时,()F x 区间()0,+∞上单调递减;当0m >时,()F x 在10,m ⎛⎫ ⎪⎝⎭上单调递减;在1,m ⎛⎫+∞ ⎪⎝⎭上单调递增;(2)存在,1m = 【分析】(1)对函数进行求导,对参数进行分类讨论,即可容易求得函数的单调性;(2)利用导数的几何意义求得()(),f x g x 在任意一点处的切线方程,求得方程组,根据方程有唯一解,利用导数根据函数单调性,即可求得.【详解】(1)22111()()()ln ,()x m mx F x f x g x m x F x x x x x --'=-=-=-=, 当0m …时,()0F x '<,所以,函数()F x 在(0,)+∞上单调递减;当0m >时,由()0F x '<得10x m <<,由()0F x '>得1x m >, 所以,函数()F x 在1(0,)m 上单调递减;函数()F x 在1(,)m +∞上单调递增.(2)函数()=ln f x m x 在点(,ln )a m a 处的切线方程为ln ()m y m a x a a -=-,即ln m y x m a m a=+-; 函数1()x g x x -=在点1(,1)b b-处的切线方程为 211(1)()y x b b b --=-,即2121y x b b =-+ 由()y f x =与()y g x =的图象有唯一一条公切线,∴21 2ln 1?m a b m a m b ⎧=⎪⎪⎨⎪-=-⎪⎩①②,由①得2a m b =代入②消去m , 整理得22ln 0b b a a a --+= ③则此关于(0)b b >的方程③有唯一解,令22()2ln (1)ln 1g b b b a a a b a a a =--+=--+-,令()ln 1h a a a a =-+-,()ln h a a '=-由()0'>h a 得01a <<;由()0h a '<得1a >所以,函数()h a 在(0,1)上单调递增,在(1,)+∞上单调递减, 则()(1)0h a h =≤,(i )当()0h a <时,二次函数2()(1)ln 1g b b a a a =--+-在(1,)b ∈+∞上显然有一个零点,(0,1)b ∈时,由方程2ln 1m a m b-=-可得 2(ln 1)0b m a b--=< 而0m >所以ln 10a -<则(0)ln (ln 1)0g a a a a a =-+=-->所以二次函数2()(1)ln 1g b b a a a =--+-在(0,1)b ∈上也有一个零点,不合题意.综上,1m =.所以存在正实数1m =,使()y f x =与()y g x =的图象有唯一一条公切线.【点睛】本题考查利用导数对含参函数单调性进行讨论,利用导数由方程根个数求参数范围,涉及导数的几何意义,属压轴题.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22120,3sin 2πρθθ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭,直线l的参数方程为23x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数). (1)求曲线C 的参数方程与直线l 的普通方程;(2)设点过P 为曲线C 上的动点,点M 和点N 为直线l 上的点,且满足PMN V 为等边三角形,求PMN V 边长的取值范围.【答案】(1)C:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数,02πα≤≤),l :280x y +-=;(2)1515⎡⎢⎣⎦ 【分析】(1)利用公式即可容易化简曲线C 的方程为直角坐标方程,再写出其参数方程即可;利用消参即可容易求得直线的普通方程;(2)设出P 的坐标的参数形式,将问题转化为求点P 到直线距离的范围问题,利用三角函数的值域求解即可容易求得结果.【详解】(1)曲线C 的极坐标方程为22120,3sin 2πρθθ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭, 故可得2223sin 12ρρθ+=,则()222312x y y ++=,整理得223412x y +=,也即22143x y +=, 由0,2πθ⎡⎤∈⎢⎥⎣⎦,则可得0,0x y ≥≥,故其参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数,02πα≤≤);又直线的参数方程为235x y t ⎧=⎪⎪⎨⎪=+⎪⎩,故可得其普通方程为280x y +-=.(2)不妨设点P的坐标为()2cos αα, 则点P 到直线280x y +-=的距离d ==0,2πα⎡⎤∈⎢⎥⎣⎦, 容易知4sin 86y πα⎛⎫=+- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦的值域为[]6,4--,故可得55d ⎡∈⎢⎣⎦.则三角形PMN 的边长为3d ,故其范围为⎣⎦. 【点睛】本题考查极坐标方程、参数方程和直角坐标方程之间的相互转化,涉及利用参数求点到直线的距离的范围,属综合中档题.23.已知函数()2f x m x =--,m ∈R ,() 3g x x =+.(Ⅰ)当x ∈R 时,有()()f x g x ≤,求实数m 的取值范围. (Ⅱ)若不等式()0f x ≥的解集为[]1,3,正数a ,b 满足231ab a b m --=-,求+a b 的最小值. 【答案】(Ⅰ)(],5m ∈-∞(Ⅱ)()min 7a b +=【分析】 (I)根据不等式恒成立的等价不等式,可转化为求含两个绝对值的最值,利用绝对值的三角不等式求最值即可; (II)由不等式()0f x ≥的解集为[]1,3可求出m 的值,代入231ab a b m --=-并用a 表示b ,再把b 代入a b +利用基本不等式求出最小值.【详解】解:(Ⅰ)由题意得:()()f x g x ≤Q 在x R ∈上恒成立,23m x x ∴--≤+在x R ∈上恒成立.()min 32m x x ∴≤++-, 又()()32235x x x x ++-≥--+=Q ,当且仅当()()230x x -+≤,即[]3,2x ∈-时等号成立.5m ∴≤,即(],5m ∈-∞.(Ⅱ)令()0f x ≥,2x m ∴-≤,若0m ≤时,∴解集为∅,不合题意;若0m >时,2m x m ∴-≤-≤,[]2,2x m m ∴∈-+,又[]1,3x ∈Q ,1m ∴=,∴综上所述:1m =,22ab a b ∴--=,221a b a +∴=-00a b >⎧⎨>⎩Q ,∴解得1a >,2241311a a b a a a a +∴+=+=-++--,37a b ∴+≥=,当且仅当411a a -=-,即3a =时等号成立, 此时2241a b a +==-.∴当3a =,4b =时,()min 7a b +=. 【点睛】本题考查了绝对值的三角不等式,以及利用基本不等式求最值,属于一般题.。

2020年吉林省长春市高考数学三模试卷(理科)(附答案详解)

2020年吉林省长春市高考数学三模试卷(理科)(附答案详解)

2020年吉林省长春市高考数学三模试卷(理科)1.已知集合A={x∈Z|x2≤4},B={x|−4<x<2},则A∩B=()A. B={x|−2≤x<2}B. B={x|−4<x≤2}C. {−2,−1,0,1,2}D. {−2,−1,0,1}2.已知复数z=(a+i)(1−2i)(a∈R)的实部为3,其中i为虚数单位,则复数z的虚部为()A. −1B. −iC. 1D. i3.已知向量a⃗=(1,−2),b⃗ =(3,−3),c⃗=(1,t),若向量a⃗与向量b⃗ +c⃗共线,则实数t=()A. 5B. −5C. 1D. −14.已知函数f(x)=cos x2−√3sin x2的图象为C,为了得到关于原点对称的图象,只要把C上所有的点()A. 向左平移π3个单位 B. 向左平移2π3个单位C. 向右平移π3个单位 D. 向右平移2π3个单位5.函数f(x)=x3e−x−e x的图象大致为()A. B.C. D.6.在(x+1x2)5的展开式中,一定含有()A. 常数项B. x项C. x−1项D. x3项7.已知直线m,n和平面α,β,γ,有如下四个命题:①若m⊥α,m//β,则α⊥β;②若m⊥α,m//n,n⊂β,则α⊥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若m⊥α,m⊥n,则n//α.其中真命题的个数是()A. 1B. 2C. 3D. 48.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.右下图是风雨桥中塔的俯视图.该塔共5层,若B0B1=B1B2=B2B3=B3B4=0.5m,A0B0=8m.这五层正六边形的周长总和为()A. 35mB. 45mC. 210mD. 270m9.已知圆E的圆心在y轴上,且与圆C:x2+y2−2x=0的公共弦所在直线的方程为x−√3y=0,则圆E的方程为()A. x2+(y−√3)2=2B. x2+(y+√3)2=2C. x2+(y−√3)2=3D. x2+(y+√3)2=310.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如表),如图是将统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是()学段主题第一学段(1−3年级)第二阶段(4−6年级)第三学段(7−9年级)合计数与代数21284998图形几何182587130统计概率381122综合实践34310合计4565150260A. 除了“综合与实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段增加较多,约是第二学段的3.5倍B. 所有主题中,三个学段的总和“图形与几何”条目数最多,占50%,综合与实践最少,约占4%C. 第一、二学段“数与代数”条目数最多,第三学段“图形与几何”条目数最多D. “数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少,“图形与几何”条目数,百分比都随学段的增长而增长.11.已知数列{a n}的各项均为正数,其前n项和S n满足4S n=a n2+2a n,(n∈N∗),设b n=(−1)n⋅a n a n+1,T n为数列{b n}的前n项和,则T20=()A. 110B. 220C. 440D. 88012.设椭圆的左右焦点为F1,F2,焦距为2c,过点F1的直线与椭圆C交于点P,Q,若|PF2|=2c,且|PF1|=43|QF1|,则椭圆C的离心率为()A. 12B. 34C. 57D. 2313.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为______14.等差数列{a n}中,a1=1,公差d∈[1,2],且a3+λa9+a15=15,则实数λ的最大值为______.15.若x1,x2是函数f(x)=x2−7x+4lnx的两个极值点,则x1x2=;f(x1)+f(x2)=.16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD为正方形,AB=2,侧面△PAD为等边三角形,线段BC的中点为E,若PE=1.则所需球体原材料的最小体积为______.17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值x给宣纸确定质量等级,如表所示:x(48,52](44,48]∪(52,56](0,44]∪(56,100]质量等级正牌副牌废品公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(Ⅰ)估计该公司生产宣纸的年利润(单位:万元);(Ⅱ)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值x的频率,如表所示:X(x−−2,x−+2](x−−6,x−+6]频率0.68260.9544其中x−为改进工艺前质量标准值x的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=4ccosB.(Ⅰ)求证:sinBcosC=3sinCcosB;(Ⅱ)求B−C的最大值.19.四棱锥P−ABCD中,ABCD为直角梯形,BC//AD,AD⊥DC,BC=CD=1,AD=2,PA=PD,E为PC中点,平面PAD⊥平面ABCD,F为AD上一点,PA//平面BEF.(Ⅰ)求证:平面BEF⊥平面PAD;(Ⅱ)若PC与底面ABCD所成的角为60°.求二面角E−BF−A的余弦值.20.已知点A(0,1),点B在y轴负半轴上,以AB为边做菱形ABCD,且菱形ABCD对角线的交点在x轴上,设点D的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)过点M(m,0),其中1<m<4,作曲线E的切线,设切点为N,求△AMN面积的取值范围.21.已知函数f(x)=mlnx,g(x)=x−1x(x>0).(Ⅰ)讨论函数F(x)=f(x)−g(x)在(0,+∞)上的单调性;(Ⅱ)是否存在正实数m,使y=f(x)与y=g(x)的图象有唯一一条公切线,若存在,求出m的值,若不存在,请说明理由.22.以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=123+sin2θ(θ∈[0,π2]),直线1的参数方程为{x=2−2√55ty=3+√55t(t为参数).(Ⅰ)求曲线C的参数方程与直线l的普通方程;(Ⅱ)设点P为曲线C上的动点,点M和点N为直线l上的点,且满足△PMN为等边三角形,求△PMN边长的取值范围.23.已知函数f(x)=m−|x−2|,m∈R,g(x)=|x+3|.(Ⅰ)当x∈R时,有f(x)≤g(x),求实数m的取值范围.(Ⅱ)若不等式f(x)≥0的解集为[1,3],正数a,b满足ab−2a−b=3m−1,求a+b 的最小值.答案和解析1.【答案】D【解析】解:集合A={x∈Z|x2≤4}={−2,−1,0,1,2},∴A∩B={−2,−1,0,1},故选:D.先求出集合A,再利用集合交集的运算即可算出结果.本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2.【答案】A【解析】解:因为复数z=(a+i)(1−2i)=(a+2)+(1−2a)i;∴a+2=3⇒a=1;∴z的虚部为:1−2a=−1.故选:A.利用复数的运算法则、实部与虚部的定义即可得出.本题考查了复数的运算法则、实部与虚部的定义,考查了推理能力与计算能力,属于基础题.3.【答案】B【解析】【分析】因为向量a⃗与向量b⃗ +c⃗共线,即两向量平行,根据两向量平行的坐标表示求解即可.本题主要考查平面向量共线的坐标表示,属于基础题.【解答】解:由题,a⃗=(1,−2),b⃗ =(3,−3),c⃗=(1,t),∴b⃗ +c⃗=(4,t−3),∵向量a⃗与向量b⃗ +c⃗共线,即a⃗//(b⃗ +c⃗ ),则1×(t−3)=−2×4,解得t=−5.故选:B.4.【答案】A【解析】解:函数f(x)=cos x2−√3sin x2=2cos(x2+π3)的图象为C,为了得到关于原点对称的图象,只要把C上所有的点向左平移π3个单位,可得y=2cos(x2+π6+π3)=sin x2的图象,显然,y=sin x2的图象关于原点对称,故选:A.由题意利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,属于基础题.5.【答案】B【解析】解:函数的定义域为{x|x≠0},f(−x)=(−x)3e x−e−x =x3e−x−e x=f(x),即函数f(x)为偶函数,其图象关于y轴对称,可排除CD;又f(1)=1e−1−e<0,可排除A;故选:B.先判断函数f(x)的奇偶性,可排除选项CD,再由f(1)<0,可排除选项A,进而得出正确选项.本题考查利用函数性质确定函数图象,考查数形结合思想,属于基础题.6.【答案】C【解析】解:在(x+1x2)5的展开式中,通项公式为T r+1=C5r⋅x5−3r,r=0,1,2,3,4,5,故5−3r不会等于0,不会等于1,不会等于3,故排除A、B、D,令5−3r=−1,可得r=2,故它的展开式中一定含有x−1项,故选:C.)5的通项公式,得出结论.由题意根据(x+1x2本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.7.【答案】C【解析】【分析】本题考查的知识要点:线面垂直的判定和性质的应用,线面平行的判定和性质的应用,主要考查学生的运算能力和转换能力及空间思维能力,属于基础题型.直接利用线面垂直的判定和性质的应用,线面平行的判定和性质的应用求出正确的结果.【解答】解:已知直线m,n和平面α,β,γ,有如下四个命题:①若m⊥α,m//β,则在β内,作n//m,所以n⊥α,由于n⊂α,则α⊥β,故正确;②若m⊥α,m//n,所以n⊥α,由于n⊂β,则α⊥β;故正确.③若n⊥α,n⊥β,所以α//β,由于m⊥α,则m⊥β;故正确.④若m⊥α,m⊥n,则n//α也可能n⊂α内,故错误.故选:C.8.【答案】C【解析】解:B0B1=B1B2=B2B3=B3B4=0.5m,A0B0=8m.利用等边三角形的性质可得:B1A1=7.5,B2A2=7,B3A3=6.5,B4A4=6.这五层正六边形的周长总和=6×(8+7.5+7+6.5+6)=210m.故选:C.利用正六边形与等边三角形的性质即可得出.本题考查了正六边形与等边三角形的性质、等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.9.【答案】C【解析】解:∵圆E的圆心在y轴上,∴设圆心E的坐标为(0,b),设半径为r,则圆E的方程为:x2+(y−b)2=r2,即x2+y2−2by+b2−r2=0,又∵圆C的方程为:x2+y2−2x=0,两圆方程相加得公共弦所在直线的方程为:x−by+b2−r22=0,又∵公共弦所在直线的方程为x−√3y=0,∴{b=√3b2−r22=0,解得{b=√3r=√3,∴圆E的方程为:x2+(y−√3)2=3,故选:C.设圆心E的坐标为(0,b),设半径为r,则圆E的方程为:x2+(y−b)2=r2,两圆方程相加得公共弦所在直线的方程为:x−by+b2−r22=0,又公共弦所在直线的方程为x−√3y=0,从而求出b,r的值,得到圆E的方程.本题主要考查了圆的方程,以及两圆的公共弦所在直线的方程,是中档题.10.【答案】D【解析】解:由图可知图形与几何第一、二学段百分比依次为40%,38.5%,可知降低了,则D错,故选:D.根据表格和条形图分别判断选项,可判断.本题考查对表格,条形图的数据提取能力,属于基础题.11.【答案】D【解析】解:由题意,当n=1时,4a1=4S1=a12+2a1,整理,得a12−2a1=0,解得a1=0,或a1=2,∵a n>0,n∈N∗,∴a1=2,当n≥2时,由4S n=a n2+2a n,可得:4S n−1=a n−12+2a n−1,两式相减,可得4a n=a n2+2a n−a n−12−2a n−1,整理,得(a n+a n−1)(a n−a n−1−2)=0,∵a n +a n−1>0,∴a n −a n−1−2=0,即a n −a n−1=2, ∴数列{a n }是以2为首项,2为公差的等差数列, ∴a n =2+2(n −1)=2n ,n ∈N ∗, ∴b n =(−1)n ⋅a n a n+1=(−1)n ⋅4n(n +1), 则T 20=b 1+b 2+b 3+b 4+⋯+b 19+b 20=−4×1×2+4×2×3−4×3×4+4×4×5−⋯−4×19×20+4×20×21 =(−4×1×2+4×2×3)+(−4×3×4+4×4×5)+⋯+(−4×19×20+4×20×21)=4×2×(3−1)+4×4×(5−3)+⋯+4×20×(21−19) =4×2×2+4×4×2+⋯+4×20×2 =16×(1+2+⋯+10) =16×55 =880. 故选:D .本题先根据公式a n ={S 1,n =1S n −S n−1,n ≥2并结合题干进行计算可判别出数列{a n }是以2为首项,2为公差的等差数列,即可计算出数列{a n }的通项公式,进一步计算出数列{b n }的通项公式,然后运用分组求和可计算出T 20的值.本题主要考查数列求通项公式,以及运用分组求和求前n 项和问题.考查了转化与化归思想,分类讨论法,逻辑推理能力和数学运算能力.本题属中档题.12.【答案】C【解析】解:不妨设椭圆的焦点在x 轴上,如图所示, ∵|PF 2|=2c ,则|PF 1|=2a −2c . ∵|PF 1|=43|QF 1|,∴|QF 1|=34(2a −2c)=32(a −c), 则|QF 2|=2a −32(a −c)⋅a 2+32, 在等腰△PF 1F 2中,可得cos∠PF 1F 2=12|PF 1||F 1F 2|a−c2c.在△QF 1F 2中,由余弦定理可得cos∠QF 1F 2=94(a−c)2+4c 2−14(a+3c)22×2c×32(a−c),由cos∠PF1F2+cos∠QF1F2=0,得a−c2c +94(a−c)2+4c2−14(a+3c)22×2c×32(a−c)=0,整理得:5a−7c6c=0,∴5a=7c,∴e=ca =57.故选:C.由题意画出图形,由|PF2|=2c,|PF1|=43|QF1|,利用椭圆的定义可得:|PF1|=2a−2c,进一步求出|QF1|,|QF2|,在等腰△PF1F2中,求得得cos∠PF1F2.在△QF1F2中,由余弦定理可得cos∠QF1F2,利用cos∠PF1F2+cos∠QF1F2=0,化简求得5a=7c,则答案可求.本题考查椭圆的简单性质,考查三角形中余弦定理的应用,考查了推理能力与计算能力,属于中档题.13.【答案】0.88【解析】解:一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,至少有一个公司不需要维护的概率为:P=1−0.4×0.3=0.88.故答案为:0.88.利用相互独立事件概率计算公式和对立事件概率计算公式直接求解.本题考查概率的求法,考查相互独立事件概率计算公式和对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.14.【答案】−13【解析】解:∵a3+λa9+a15=15=(2+λ)a9=(2+λ)(1+8d),∴λ=151+8d−2,又∵公差d∈[1,2],∴λmax=151+8−2=−13.故填:−13.由a 3+λa 9+a 15=15得出λ与d 之间的关系式,然后求λ的最大值.本题主要考查等差数列的性质和通项公式及衍生出的最值问题,属于基础题.15.【答案】24ln2−654【解析】 【分析】本题主要考查了利用导数研究函数的极值,是中档题.先求出导函数f′(x),由题意可得x 1,x 2是方程2x 2−7x +4=0 的两个根,可得x 1+x 2=72,x 1x 2=2,代入f(x 1)+f(x 2)即可求得结果.【解答】解:∵函数f(x)=x 2−7x +4lnx ,x ∈(0,+∞), ∴f′(x)=2x −7+4x =2x 2−7x+4x,令f′(x)=0得:2x 2−7x +4=0, ∴x 1,x 2是方程2x 2−7x +4=0 的两个根, ∴x 1+x 2=72,x 1x 2=2,∴f(x 1)+f(x 2)=x 12−7x 1+4lnx 1+x 22−7x 2+4lnx 2=(x 1+x 2)2−2x 1x 2−7(x 1+x 2)+4ln(x 1 x 2) =(72)2−2×2−7×72+4ln2=4ln2−654,故答案为:2,4ln2−654.16.【答案】28√2127π【解析】解:所需原材料体积最小的球体即为四棱锥P −ABCD 的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,∵△PAD为边长为2的等边三角形,∴PF=√3,又PE=1,EF=2,∴∠PEF=60°∵PE=EB=EC=1,∴E是△PBC的外心,过E作面PBC的垂线与过G与面ABCD的垂线交于O,则O为四棱锥P−ABCD外接球的球心.∵∠OEG=∠OEP−∠FEP=90°−60°=30°,又GE=2,∴在直角三角形OGE中求出OG=√33,又直角△OAG中,AG=√2,∴OA=√213,即球半径R=√213,∴V球=43πR3=28√2127π.故答案为:28√2127π首先判断原材料体积最小的球体即为四棱锥P−ABCD的外接球,∵E是直角△PBC的外心,∴过E作面PBC的垂线与过正方形ABCD的中心G与面ABCD的垂线交于O,则O为四棱锥P−ABCD外接球的球心.再利用题中所给长度大小关系,可求球半径,求球体积.本题考查四棱锥的外接球问题,通过找球心,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(Ⅰ)由频率分布直方图得:一刀(100张)宣纸中有正牌宣纸100×0.1×4=40张,有副牌宣纸100×0.05×4×2=40张,有废品100×0.025×4×2=20张,∴该公司一刀宣纸的利润为:40×10+40×5+20×(−10)=400元,∴估计该公司生产宣纸的年利润为:400万元.(Ⅱ)由频率分布直方图得:x−=4×(42×0.025+46×0.05+50×0.1+54×0.05+58×0.025)=50,这种机器生产的宣纸质量指标x的频率如下表所示:则一刀(100张)宣纸中正牌的张数约为100×0.6826=68.26张,副牌的张数约为100×(0.9544−0.6826)=27.18张,废品的张数约为100×(1−0.9544)=4.56张,估计一刀宣纸(100张)的利润为:68.26×(10−2)+27.18×(5−2)+4.56×(−10)=582.02元.∴改进工艺后生产宣纸的利润为582.02−100=482.02元,∴482.2>400,∴该公司应生产这种设备.【解析】(Ⅰ)由频率分布直方图求出一刀(100张)宣纸中有正牌宣纸40张,有副牌宣纸40张,有废品20张,由此能求出该公司一刀宣纸的利润为400元,由此能求出估计该公司生产宣纸的年利润.(Ⅱ)由频率分布直方图得x−=4×(42×0.025+46×0.05+50×0.1+54×0.05+58×0.025)=50,求出这种机器生产的宣纸质量指标x的频率,则一刀(100张)宣纸中正牌的张数约为100×0.6826=68.26张,副牌的张数约为100×(0.9544−0.6826)= 27.18张,废品的张数约为100×(1−0.9544)=4.56张,估计一刀宣纸(100张)的利润为582.02元.从而改进工艺后生产宣纸的利润为582.02−100=482.02元,由此该公司应生产这种设备.本题考查利润的求法及应用,考查平均数、频率分布直方图的性质等基础知识,考查数据分析能力、运算求解能力,是基础题.18.【答案】证明:(Ⅰ)a=4ccosB,∴sinA=4sinCcosB,∴sin(B+C)=4sinCcosB,∴sinBcosC+sinCcosB=4sinCcosB,∴sinBcosC=3sinCcosB;解:(Ⅱ)由(Ⅰ)可知sinBcosC=3sinCcosB,则tanB=3tanC,∴tan(B−C)=tanB−tanC1+tanBtanC =3tanC−tanC1+3tan2C=2tanC1+3tan2C=21tanC+3tanC≤2√1tanC⋅3tanC=√33,当且仅当1tanC =3tanC,即tanC=√33时取等号,∴B−C≤π6,即B−C的最大值为π6.【解析】(Ⅰ利用正弦定理将边化为角即可证明,(Ⅱ)由(Ⅰ)化简得出tanB和tanC的关系,再代入两角差的正切公式,利用基本不等式求出最大值.本题考查了三角函数的恒等变换和正弦定理的应用问题,属于中档题.19.【答案】(Ⅰ)证明:连接AC 交BE 与G ,连接EG ,∵PA//平面BEF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =EG ,∴PA//EG ,又E 为PC 的中点,∴G 为AC 的中点,则△AFG≌△BCG , 得AF =BC =12AD =1. ∴F 为AD 的中点,∵BC//FD ,且BC =FD ,∴四边形DCBF 为平行四边形,∵AD ⊥DC ,∴BF ⊥AD ,又BF ⊂平面ABCD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , ∴BF ⊥平面PAD ,又BF ⊂平面BEF , ∴平面BEF ⊥平面PAD ;(Ⅱ)解:连接PF ,∵PA =PD ,F 为AD 的中点,∴PF ⊥AD ,又PF ⊂平面PAD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , ∴PF ⊥底面ABCD ,又BF ⊥AD ,以F 为坐标原点,分别以FA ,FB ,FP 所在直线为x ,y ,z 轴建立空间直角坐标系, 设P(0,0,t),C(−1,1,0),取平面ABCD 的法向量n 1⃗⃗⃗⃗ =(0,0,1),PC ⃗⃗⃗⃗⃗ =(−1,1,−t),B(0,1,0), ∴sin60°=|n 1⃗⃗⃗⃗⃗ ⋅PC⃗⃗⃗⃗⃗ |n1⃗⃗⃗⃗⃗ |⋅|PC⃗⃗⃗⃗⃗ |,即t√t 2+2=√32,解得t =√6.设平面EBF 的法向量为n 2⃗⃗⃗⃗ =(x,y,z), 由{n 2⃗⃗⃗⃗ ⋅FE ⃗⃗⃗⃗⃗ =−12x +12y +√62z =0n 2⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ =y =0,令z =1,得n 2⃗⃗⃗⃗ =(√6,0,1).设二面角E −BF −A 的平面角为θ,则|cosθ|=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ||n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√77, 又θ为钝角,∴cosθ=−√77.即二面角E −BF −A 的余弦值为−√77.【解析】(Ⅰ)连接AC 交BE 与G ,连接EG ,由已知结合线面平行的性质可得PA//EG ,再由E 为PC 的中点,得G 为AC 的中点,则△AFG≌△BCG ,得到AF =BC =12AD =1,即F 为AD 的中点,可得四边形DCBF 为平行四边形,再由AD ⊥DC ,得BF ⊥AD ,可得BF ⊥平面PAD ,进一步得到平面BEF ⊥平面PAD ;(Ⅱ)连接PF ,证明PF ⊥底面ABCD ,又BF ⊥AD ,以F 为坐标原点,分别以FA ,FB ,FP 所在直线为x ,y ,z 轴建立空间直角坐标系,设P(0,0,t),由PC 与底面ABCD 所成的角为60°求解t ,然后分别求出平面ABF 与EBF 的一个法向量,由两法向量所成角的余弦值可得二面角E −BF −A 的余弦值.本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.20.【答案】解:(Ⅰ)设B(0,−t)(t >0),菱形ABCD 的中心在x 轴上,设为Q 点.由题意可知,∣OQ ∣2=∣OA ∣∣OB ∣,则Q(√t,0),又Q 为BD 的中点,因此点D(2√t,t) 即点D 的轨迹为{x =2√ty =t (t 为参数且t ≠0), 化为标准方程x 2=4y(x ≠0).(Ⅱ)设点N(a,a 24),过点N 的切线方程为:y −a 24=a2(x −a),点M(m,0)在该切线方程上,∴M(a2,0), 即m =a2,由1<m <4,可得2<a <8,又k MN =a2,k AM =−2a ,则k MN k AM =−1,即NM ⊥AM , ∴S =12∣MN ∣∣AM ∣=12√(a2)2+(a 24)2⋅√1+(a2)2=a(4+a 2)16,可知当2<a <8时,S 为关于a 的增函数,因此S 的取值范围是(1,34).【解析】(Ⅰ)设B(0,−t)(t >0),因为菱形ABCD 对角线的交点Q 在x 轴上,根据射影定理,得∣OQ ∣2=∣OA ∣∣OB ∣,求得Q 点坐标,进而求得D 点坐标,去掉参数,求得D 的轨迹曲线E ;(Ⅱ)设点N(a,a 24),可列出该点处的切线方程,将M 点代入,由1<m <4,求得a 的取值范围,易推得NM ⊥AM ,则S =12∣MN ∣∣AM ∣用a 表示出△AMN 面积,根据a 的取值范围进而求得△AMN 面积的取值范围.本题考查了曲线与方程,考查了利用导数求曲线上某点的切线方程,考查了两直线垂直斜率乘积为−1,属于中档题.21.【答案】解:(Ⅰ)F(x)=f(x)−g(x)=mlnx −x−1x,F′(x)=m x−1x 2=mx−1x 2,当m ≤0时,F′(x)<0,则F(x)在(0,+∞)上单调递减;当m >0时,由F′(x)<0得0<x <1m ,由F′(x)>0得x >1m , ∴函数F(x)在(0,1m )上单调递减,在(1m ,+∞)上单调递增; (Ⅱ)函数f(x)=mlnx 在点(a,mlna)处的切线方程为y −mlna =m a(x −a),即y =m ax +mlna −m , 函数g(x)=x−1x在点(b,1−1b )处的切线方程为y −(1−1b )=1b 2(x −b),即y =1b 2x −2b +1,又y =f(x)与y =g(x)的图象有唯一一条公切线,故{ma =1b 2①mlna −m =1−2b ②, 由①得,m =ab 2代入②消去m ,整理得b 2−2b −alna +a =0③,则此关于b(b >0)的方程③有唯一解,令g(b)=b 2−2b −alna +a =(b −1)2−alna +a −1,令ℎ(a)=−alna +a −1,ℎ′(a)=−lna ,由ℎ′(a)>0得0<a <1,由ℎ′(a)<0得a >1,∴函数ℎ(a)在(0,1)上单调递增,在(1,+∞)上单调递减,则ℎ(a)≤ℎ(1)=0, (i)当ℎ(a)=0时,方程③有唯一解b =1,由ℎ(a)=−alna +a −1=0得a =1,此时m =a b 2=1;(ii)当ℎ(a)<0时,二次函数g(b)=(b −1)2−alna +a −1在b ∈(1,+∞)上显然有一个零点,b ∈(0,1)时,由方程②mlna −m =1−2b ,可得m(lna −1)=b−2b<0,而m >0,则lna −1<0,则g(0)=−alna +a =−a(lna −1)>0,∴二次函数g(b)=(b −1)2−alna +a −1在b ∈(0,1)上也有一个零点,不合题意; 综上,m =1.【解析】(Ⅰ)求得F(x),并求导,然后分m ≤0及m >0讨论即可得出单调性情况;(Ⅱ)根据题意,由导数的几何意义可得{ma =1b 2①mlna −m =1−2b ②,进而得到b 2−2b −alna +a =0③,则此关于b(b >0)的方程③有唯一解,令g(b)=b 2−2b −alna +a =(b −1)2−alna +a −1,ℎ(a)=−alna +a −1,ℎ′(a)=−lna ,则易知ℎ(a)≤ℎ(1)=0,然后分ℎ(a)=1及ℎ(a)<0讨论即可得出结论.本题考查函数与导数的综合运用,考查导数的几何意义以及利用导数研究函数的单调性,二次函数的零点等知识点,考查分类讨论思想,运算求解能力,属于较难题目.22.【答案】解:(Ⅰ)曲线C 的极坐标方程为ρ2=123+sin 2θ(θ∈[0,π2]),转换为直角坐标方程为x 24+y 23=1(0≤x ≤2,0≤y ≤√3),转换为参数方程为{x =2cosθy =√3sinθ(θ为参数,θ∈[0,π2]).直线1的参数方程为{x =2−2√55ty =3+√55t(t 为参数).转换为直角坐标方程为x +2y −8=0. (Ⅱ)设P(2cosθ,√3sinθ),θ∈[0,π2], 所以点P 到直线l 的距离d =√3sinθ−8|√5=4√55|sin(θ+π6)−2|,由于θ∈[0,π2],所以12≤sin(θ+π6)≤1, 所以4√55≤d ≤6√55, 故等边三角形的边长的取值范围:8√1515≤x ≤12√1515.【解析】(Ⅰ)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.【答案】解:(1)由题意得:∵f(x)≤g(x)在x ∈R 上恒成立,∴m ≤|x +3|+|x −2|恒成立, 即m ≤(|x +3|+|x −2|)min又∵|x +3|+|x −2|≥|(x +3)−(x −2)|=5 ∴m ≤5,即m ∈(−∞,5] (2)令f(x)≥0,∴m ≥|x −2| 若m ≤0,则解集为⌀,不合题意;若m>0,则有−m≤x−2≤m,即x∈[2−m,2+m]又∵解集为x∈[1,3],∴m=1∴ab−2a−b=2∴b=2a+2 a−1∵{a>0b>0,解得a>1∴a+b=a+2a+2a−1=a−1+4a−1+3∴a+b≥2√(a−1)(4a−1)+3=7当且仅当a−1=4a−1,即a=3时,等号成立,此时b=4∴a=3,b=4时a+b的最小值为7【解析】(1)利用绝对值三角不等式性质(2)利用绝对值不等式解法求出m,带入得到a,b等式,转化为只含有a的式子后利用基本不等式可以求解.本题考查绝对值三角不等式,以及基本不等式的应用,考查转化思想以及计算能力,是中档题第21页,共21页。

2020年吉林省长春市高考数学三模试卷(文科)(含答案解析)

2020年吉林省长春市高考数学三模试卷(文科)(含答案解析)

2020年吉林省长春市高考数学三模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. C. D.2.已知向量,满足,,且,则A. B. C. 5 D. 43.已知复数z满足,则z的共轭复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.某中学从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩满分100分的茎叶图如图所示,其中甲班学生成绩的众数是83,乙班学生成绩的平均数是86,则的值为A. 7B. 8C. 9D. 105.等比数列中,、是函数的两个零点,则等于A. B. 3 C. D. 46.函数的图象大致为A. B.C. D.7.设a,b是两条直线,,是两个平面,则的一个充分条件是A. ,,B. ,,C. ,,D. ,,8.已知直线与函数,其中的相邻两交点间的距离为,则函数的单调递增区间为A. B.C. D.9.已知函数是定义在R上的奇函数,在上是增函数,且,则使得成立的x的取值范围是A. B.C. D.10.若函数有且只有一个零点,则a的取值范围是A. B. ,C. D.11.已知双曲线与椭圆有相同焦点,,离心率为若双曲线的左支上有一点M到右焦点的距离为12,N为线段的中点,O为坐标原点,则等于A. 4B. 3C. 2D.12.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”如图是放在平面直角坐标系中的“太极图”整个图形是一个圆形.其中黑色阴影区域在y轴右侧部分的边界为一个半圆,给出以下命题:在太极图中随机取一点,此点取自黑色阴影部分的概率是当时,直线与白色部分有公共点;黑色阴影部分包括黑白交界处中一点,则的最大值为2;设点,点Q在此太极图上,使得,b的范围是.其中所有正确结论的序号是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知,,则______ .14.已知长方形ABCD中,,,现将长方形ABCD沿着对角线BD折起,使平面平面BCD,则折后几何图形的外接球表面积为______.15.若,是函数的两个极值点,则______;______.16.已知数列的各项均为正数,其前n项和为,满足,设,为数列的前n项和,则______.三、解答题(本大题共7小题,共82.0分)17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌优等品和合格品,某公司年产宣纸10000刀,公司按照某种质量标准值x给宣纸确定质量等级,如表所示:x,,质量等级正牌副牌废品公司在所生产的宣纸中随机抽取了一刀张进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.Ⅰ按正牌、副牌、废品进行分层抽样,从这一刀张纸中抽出一个容量为5的样本,再从这个样本中随机抽出两张,求其中无废品的概率;Ⅱ试估计该公司生产宣纸的年利润单位:万元.18.的内角A,B,C的对边分别为a,b,c,已知.Ⅰ求tan B;Ⅱ若,的面积为6,求BC.19.四棱锥中,,,,,平面ABCD,E在棱PB上.Ⅰ求证:;Ⅱ若,求证:平面AEC.20.已知O为坐标原点,抛物线E的方程为,其焦点为F,过点的直线1与抛物线相交于P、Q两点且为以O为直角顶点的直角三角形.Ⅰ求E的方程;Ⅱ设点N为曲线E上的任意一点,证明:以FN为直径的圆与x轴相切.21.已知函数,,若曲线与曲线都过点且在点P处有相同的切线l.Ⅰ求切线l的方程;Ⅱ若关于x的不等式对任意恒成立,求实数k的取值范围.22.以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线1的参数方程为为参数.Ⅰ求曲线C的参数方程与直线l的普通方程;Ⅱ设点P为曲线C上的动点,点M和点N为直线l上的点,且满足为等边三角形,求边长的取值范围.23.已知函数,,.Ⅰ当时,有,求实数m的取值范围.Ⅱ若不等式的解集为,正数a,b满足,求的最小值.-------- 答案与解析 --------1.答案:B解析:解:,,.故选:B.可以求出集合A,B,然后进行交集的运算即可.本题考查了描述法、区间的定义,对数函数的单调性,交集的定义及运算,考查了计算能力,属于基础题.2.答案:C解析:解:根据题意,,,且,则有,解可得,即,则,故;故选:C.根据题意,由向量垂直与数量积的关系可得,解可得y的值,即可得的坐标,进而计算可得向量的坐标,由向量模的计算公式计算可得答案.本题考查向量数量积的坐标计算,涉及向量模的计算和向量垂直与数量积的关系,属于基础题.3.答案:B解析:解:由,得,则,复数在复平面内对应的点的坐标为,位于第二象限.故选:B.把已知等式变形,再由复数代数形式的乘除运算化简,求出的坐标得答案.本题考查复数代数形式的乘除运算化简,考查复数的代数表示法及其几何意义,是基础题.4.答案:B解析:解:由茎叶图可知,茎为8时,甲班学生成绩对应数据只能是83,,85,因为甲班学生成绩众数是83,所以83出现的次数最多,可知.由茎叶图可知乙班学生的总分为,又乙班学生的平均分是86,总分又等于所以,解得,可得.故选:B.对甲组数据进行分析,得出x的值,利用平均数求出y的值,解答即可.本题主要考查统计中的众数与平均数的概念.解题时分别对甲组数据和乙组数据进行分析,分别得出x,y的值,进而得到的值.5.答案:B解析:解:、是函数的两个零点,、是方程的两个根,,由等比数列的性质可得:.故选:B.利用根与系数的关系求得,再由等比数列的性质得答案.本题考查等比数列的通项公式,考查了等比数列的性质,是基础的计算题.6.答案:B解析:解:函数的定义域为,,即函数为偶函数,其图象关于y轴对称,可排除CD;又,可排除A;故选:B.先判断函数的奇偶性,可排除选项CD,再由,可排除选项A,进而得出正确选项.本题考查利用函数性质确定函数图象,考查数形结合思想,属于基础题.7.答案:C解析:解:A、B、D的反例如图.故选:C.根据题意分别画出错误选项的反例图形即可.本题考查线面间的位置关系,同时考查充分条件的含义及空间想象能力.属于基础题.8.答案:B解析:解:与函数,其中的相邻两交点间的距离为,函数的周期,即,得,则,由,,得,,即函数的单调递增区间为,,故选:B.根据最值点之间的关系求出周期和,结合三角函数的单调性进行求解即可.本题主要考查三角函数单调性的应用,根据最值性求出函数的周期和,以及利用三角函数的单调性是解决本题的关键.难度不大.9.答案:D解析:解:函数是定义在R上的奇函数,在上是增函数,函数是在上是增函数,又,,由,得或,或.的取值范围是.故选:D.由奇函数的图象关于原点对称及在为增函数,可得函数是在上是增函数,结合,转化为不等式组求解.本题考查函数的单调性与奇偶性的应用,考查数学转化思想方法,是中档题.10.答案:B解析:解:当时,因为,所以有一个零点,所以要使函数有且只有一个零点,则当时,函数没有零点即可,当时,,,,所以或,即或,故选:B.当时,因为,所以有一个零点,所以要使函数有且只有一个零点,则当时,函数没有零点即可,即恒为负或恒为正,进而求出a的取值范围即可.本题主要考查了函数的零点与方程的根的关系,是中档题.11.答案:B解析:解:如图,为线段的中点,,双曲线的离心率为,,椭圆与双曲线的焦点相同,,则,即,.故选:B.由题意画出图形,利用三角形的中位线定理可得,再由已知椭圆方程及双曲线的离心率求解a,则答案可求.本题考查椭圆与双曲线的简单性质,考查数形结合的解题思想方法,是中档题.12.答案:A解析:解:对于,将y轴右侧黑色阴影部分补到左侧,即可知黑色阴影区域占圆的面积的一半,根据几何概型的计算公式,所以在太极图中随机取一点,此点取自黑色阴影部分的概率是,正确;对于,直线,圆的方程为,联立可得,,,但是两根之和为负,两根之积为正,所以两根都为负,即说明直线与白色部分没有公共点,错误;对于,设l:,由线性规划知识可知,当直线l与圆相切时,z最大,由解得舍去,错误;对于,要使得,即需要过点P的切线所成角大于等于90度,所以,即,于是,解得.故选:A.根据“太极图”和各选项对应知识,即可判断真假.本题主要考查图象的应用,考查学生识图用图以及运用相关知识的能力,涉及几何概型的计算公式,直线与圆的位置关系,以及线性规划知识的应用,属于较难题.13.答案:解析:解:,,,,则,故答案为:由的值及的范围,利用同角三角函数间的基本关系求出与的值,代入原式计算即可.此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.答案:解析:解:长方形ABCD中,,,可得,,作于E,可得,所以,,因为平面平面BCD,面ABD,平面平面,所以面BCD,由直角三角形BCD可得其外接圆的圆心为斜边BD的中点,且外接圆的半径,过作垂直于底面BCD,所以,所以,取三棱锥外接球的球心O,设外接球的半径为R,作于F,则四边形为矩形,,,则,在中,即;在中:,即;由可得,,即外接球的球心为,所以外接球的表面积,故答案为:.由长方形中,,可得BD,BC,及A到BD的距离AE,由面平面BCD 可得面BCD,求出底面外接圆的圆心及外接圆的半径,再由椭圆求出外接球的半径,进而求出外接球的表面积.本题考查三棱锥的棱长与外接球的半径之间的关系,及球的表面积公式,属于中档题.15.答案:2解析:解:函数,,,令得:,,是方程的两个根,,,,故答案为:2,.先求出导函数,由题意可得,是方程的两个根,利用韦达定理可得,,代入即可求出.本题主要考查了利用导数研究函数的极值,以及韦达定理的应用,是中档题.16.答案:880解析:解:,当时,,解得或舍去,当时,,,得:,整理得:,数列的各项均为正数,,即,数列是首项为2,公差为2的等差数列,,,,故答案为:880.利用公式可得数列是首项为2,公差为2的等差数列,所以,所以,进而,再利用并项求和法即可算出结果.本题主要考查了数列的递推式,以及并项求和法求数列的前n项和,是中档题.17.答案:解:Ⅰ按正牌、副牌、废品进行分层抽样,从这一刀张约中抽出一个容量为5的样本,设抽出的2张正牌为A,B,2张副牌为a,b,1张废品为t,从中任取两张,基本事件有:AB,Aa,Ab,At,Ba,Bb,Bt,ab,at,bt,共10种,其中无废品包含的基本事件有:AB,Aa,Ab,Ba,Bb,ab,共6种,其中无废品的概率.Ⅱ由频率分布直方图得:一刀张宣纸有正牌宣纸张,有副牌宣纸张,有废品张,该公司一刀宣纸的利润为元,估计该公司生产宣纸的年利润为:400万元.解析:Ⅰ按正牌、副牌、废品进行分层抽样,从这一刀张约中抽出一个容量为5的样本,设抽出的2张正牌为A,B,2张副牌为a,b,1张废品为t,从中任取两张,基利用列举法能求出其中无废品的概率.Ⅱ由频率分布直方图得一刀张宣纸有正牌宣纸40张,有副牌宣纸40张,有废品20张,由此能估计该公司生产宣纸的年利润.本题考查概率、利润的求法,考查考查频率分布直方图、古典概型、列举法等基础知识,考查运算求解能力,是中档题.18.答案:解:,利用正弦定理可得:,又,化为:,.,,可得,..,可得:.又,可得.,解得.解析:由,利用正弦定理可得:,又,化简即可得出.由,,可得,,由正弦定理:,可得:又,可得即可得出a.本题考查了正弦定理、和差公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.19.答案:证明:Ⅰ过A作于F,,,,四边形ABCF为正方形,则,,得,又底面ABCD,平面ABCD,,又PA,平面PAD,,平面PAD,又平面PAD,;Ⅱ设E到平面ABCD的距离为h,则,得.又,则PB:::1.,,,连接DB交AC于O,连接OE,∽,::1,得DB::1,::OB,则.又平面AEC,平面AEC,平面AEC.解析:Ⅰ过A作于F,推导出,,从而平面PAD,由此能求出;Ⅱ设E到平面ABCD的距离为h,由已知体积列式求得h,可得PB:::1,连接DB交AC于O,连接OE,再由三角形相似证得DB::1,可得PB::OB,得到,再由直线与平面平行的判定可得平面AEC.本题考查直线与平面平行、垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.20.答案:解:Ⅰ由题意可得直线l的斜率存在,设直线l的方程为:,设,,联立直线l与抛物线的方程,整理可得:,所以,所以,因为是以O为直角顶点的直角三角形,所以,即,所以,解得,所以抛物线的方程为:;Ⅱ证明:由Ⅰ得,准线方程为:,设,则NF的中点M的纵坐标,即以NF为直径的圆的圆心M到x轴的距离为,而由抛物线的性质可得,即以NF为直径的圆的半径为,所以可得圆心M到x轴的距离恰好等于圆的半径,所以可证得以FN为直径的圆与x轴相切.解析:Ⅰ由题意设直线l的方程,与抛物线联立求出两根之积,由是以O为直角顶点的直角三角形,所以,可得p的值,进而求出抛物线的方程;Ⅱ由Ⅰ可得F的坐标和准线方程,设N的坐标,可得NF的中点M,即圆心的坐标,求出M 的纵坐标到x轴的距离,再求NF的半径,可得M的纵坐标恰好等于半径,可证得结论.本题考查直角三角形与向量的关系,及直线与抛物线的综合,属于中档题.21.答案:解:Ⅰ,,由已知可得,即,解得,,,切线的斜率,切线l的方程为,即,Ⅱ由Ⅰ可得,,设,即,对任意恒成立,从而,,当时,,在上单调递减,又,显然不恒成立,当时,,解得,,当时,即时,,单调递增,又,显然不恒成立,当时,即时,,单调递增,,即恒成立,当时,即时,当时,,单调递减,当时,,单调递增,,解得,,综上所述得.解析:Ⅰ根据导数的几何意义即可求出切线方程;Ⅱ构造函数,利用导数求出函数的最小值,使得最小值大于等于0,需要分类讨论.此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.综合性较强,运算量较大.22.答案:解:Ⅰ曲线C的极坐标方程为,转换为直角坐标方程为,转换为参数方程为为参数,.直线1的参数方程为为参数转换为直角坐标方程为.Ⅱ设,,所以点P到直线l的距离,由于,所以,所以,故等边三角形的边长的取值范围:.解析:Ⅰ直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.Ⅱ利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.答案:解:由题意得:在上恒成立,恒成立,即又,即令,若,则解集为,不合题意;若,则有,即又解集为,,解得当且仅当,即时,等号成立,此时,时的最小值为7解析:利用绝对值三角不等式性质利用绝对值不等式解法求出m,带入得到a,b等式,转化为只含有a的式子后利用基本不等式可以求解.本题考查绝对值三角不等式,以及基本不等式的应用,考查转化思想以及计算能力,是中档题。

【三模】数学高考试卷(附答案解析)

【三模】数学高考试卷(附答案解析)
A. B.
C. D.
6.宋元时期数学名著《算学启蒙》中有关于”松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的 , 分别为5,2,则输出的 等于()
A 2B. 3C. 4D. 5
7.已知抛物线 的焦点为 ,过点 且倾斜角为 的直线与抛物线 的准线交于点 ,则线段 的长为
C.点 是函数 图象的一个对称中心
D.函数 在区间 上为增函数
10.已知圆 : 与中心在原点、焦点在坐标轴上的双曲线 的一条渐近线相切,则双曲线 的离心率为()
A. 或4B. 或2C. D.2
11.已知某正三棱锥的侧棱长大于底边长,其外接球体积为 ,三视图如图所示,则其侧视图的面积为
A. B.2C.4D.6
由题意得 ,即 ,
所以 ,
所以 ,
当双曲线的焦点在y轴上时, ,
则 ,
故选:B
11.已知某正三棱锥的侧棱长大于底边长,其外接球体积为 ,三视图如图所示,则其侧视图的面积为
A. B.2C.4D.6
【答案】D
【解析】
【详解】分析:根据正三棱锥的性质可得球心在正三棱锥的高上,由正棱锥的性质可得顶点在底面的射影是正三角形的中心,列方程可解得棱锥的高,从而可得结果.
14.若实数 、 满足约束条件 ,则 的最小值是_______.
15.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.问几何日相逢?其大意是:现有良马和劣马同时从长安出发去齐地,已知齐地离长安有3000里远,良马第一天可行193里,之后每天比前一天多行13里;劣马第一天可行97里,以后每天比前一天少行半里路.良马先到达齐地后,马上返回去迎接劣马,问:________天后两马可以相遇?(结果填写整数值)

长春市三模理科数学答案

长春市三模理科数学答案

平面 PAD ∩ 平面 ABCD = AD ,故 BF ⊥ 平面 PAD ,又 BF ⊂ 平面 BEF ,
所以平面 BEF ⊥ 平面 PAD . (6 分) (Ⅱ)(法一) 连 PF ∵ PA = PD , F 为 AD 中点,∴ PF ⊥ AD 又 PF ⊂ 平面 PAD ,
平面 PAD ⊥ 平面 ABCD ,平面 PAD ∩ 平面 ABCD = AD ,
【题号】21
【参考答案与评分细则】(Ⅰ) F(x) = f (x) − g(x) = m ln x − x −1 , x
F′(x) = m − 1 = mx −1 ,
x x2
x2
当 m ≤ 0 时, F′(x) < 0 ,所以,函数 F(x) 在 (0, +∞) 上单调递减;
当 m > 0 时,由 F′(x) < 0 得: 0<x < 1 ;由 F′(x) > 0 得: x > 1
m
m
所以,函数 F(x) 在 (0, 1 ) 上单调递减,函数 F(x) 在 ( 1 , +∞) 上单调递增. (4 分)
m
m
(Ⅱ)函数 f (x) = mln x 在点 (a, m ln a) 处的切线方程为 y − m ln a = m (x − a) , a
即 y = m x + m ln a − m , a
函数 g(x) = x −1 在点 (b,1− 1) 处的切线方程为 y − (1− 1) = 1 (x − b) ,
x
b
b b2

y
=
1 b2
x−
2 b
+1.
y = f (x) 与 y = g(x) 的图象有唯一一条公切线.

吉林省长春市名校调研系列卷(市命题)2024届中考三模数学试题含解析

吉林省长春市名校调研系列卷(市命题)2024届中考三模数学试题含解析

吉林省长春市名校调研系列卷(市命题)2024届中考三模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山3.下列运算不正确的是A.B.C.D.4.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A .B .C .D .6.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D 的坐标为( )A .(2,2)B .(2,﹣2)C .(2,5)D .(﹣2,5)7.下列运算中,正确的是 ( )A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =8.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3π C .3π或π D .4π或3πA .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+ 10.实数﹣5.22的绝对值是( )A .5.22B .﹣5.22C .±5.22D . 5.22 11.如下图所示,该几何体的俯视图是 ( )A .B .C .D .12.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,数轴上不同三点、、A B C 对应的数分别为a b c 、、,其中4, 3,||||a =AB =b =c -,则点C 表示的数是__________.14.二次函数y =ax 2+bx+c 的图象如图所示,以下结论:①abc >0;②4ac <b 2;③2a+b >0;④其顶点坐标为(12,﹣2);⑤当x <12时,y 随x 的增大而减小;⑥a+b+c >0中,正确的有______.(只填序号)15.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1=_____.16.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.位,得到点A 2 ,则点A 2 的坐标是_________.18.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示是一幢住房的主视图,已知:120BAC ∠=︒,房子前后坡度相等,4AB =米,6AC =米,设后房檐B 到地面的高度为a 米,前房檐C 到地面的高度b 米,求-a b 的值.20.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.21.(6分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.22.(8分)如图,在等腰直角△ABC 中,∠C 是直角,点A 在直线MN 上,过点C 作CE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F .(1)如图1,当C ,B 两点均在直线MN 的上方时,①直接写出线段AE ,BF 与CE 的数量关系.②猜测线段AF ,BF 与CE 的数量关系,不必写出证明过程.(2)将等腰直角△ABC 绕着点A 顺时针旋转至图2位置时,线段AF ,BF 与CE 又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC 绕着点A 继续旋转至图3位置时,BF 与AC 交于点G ,若AF=3,BF=7,直接写出FG 的长度.23.(8分)计算﹣14﹣23116()|3|2÷-+-24.(10分)已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:25.(10分)解不等式组11232x x --≤,并将它的解集在数轴上表示出来.26.(12分)如图,在ABC △中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE BC ⊥于点E ,且BDE A ∠=∠.(1)判断DE 与⊙O 的位置关系并说明理由;(2)若16AC =,3tan 4A =,求⊙O 的半径.27.(12分)已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A【解题分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【题目详解】该几何体的俯视图是:.故选A.【题目点拨】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.2、D【解题分析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.3、B【解题分析】,B是错的,A、C、D运算是正确的,故选B4、B【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解题分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短,就用到两点间线段最短定理.【题目详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A 和B 错误,又因为蜗牛从p 点出发,绕圆锥侧面爬行后,又回到起始点P 处,那么如果将选项C 、D 的圆锥侧面展开图还原成圆锥后,位于母线OM 上的点P 应该能够与母线OM′上的点(P′)重合,而选项C 还原后两个点不能够重合. 故选D .点评:本题考核立意相对较新,考核了学生的空间想象能力.6、A【解题分析】分析:依据四边形ABCD 是平行四边形,即可得到BD 经过点O ,依据B 的坐标为(﹣2,﹣2),即可得出D 的坐标为(2,2).详解:∵点A ,C 的坐标分别为(﹣5,2),(5,﹣2),∴点O 是AC 的中点,∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形,∴BD 经过点O ,∵B 的坐标为(﹣2,﹣2),∴D 的坐标为(2,2),故选A .点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.7、C【解题分析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x 2+5x 2=2466x x ≠ ,本项错误;B.3256x x x x ⋅=≠ ,本项错误;C.236()x x = ,正确;D.3333()xy x y xy =≠,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则. 8、A【解题分析】根据平行线的性质及圆周角定理的推论得出点M 的轨迹是以EF 为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.【题目详解】当点D 与B 重合时,M 与F 重合,当点D 与A 重合时,M 与E 重合,连接BD ,FM ,AD ,EM , ∵2,33CF CM CE EF AB BC CD CA AB ===== ∴//,//,2FM BD EM AD EF =,FMC BDC CME CDA ∴∠=∠∠=∠∵AB 是直径90BDA ∴∠=︒即90BDC CDA ∠+∠=︒∴90FMC CME ∠+∠=︒∴点M 的轨迹是以EF 为直径的半圆,∵2EF =∴以EF 为直径的圆的半径为1∴点M 运动的路径长为1801=180ππ 当1'3CM CD = 时,同理可得点M 运动的路径长为12π 故选:A .【题目点拨】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.9、C【解题分析】【题目详解】∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2-1,即y=x2+1.故选C.10、A【解题分析】根据绝对值的性质进行解答即可.【题目详解】实数﹣5.1的绝对值是5.1.故选A.【题目点拨】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.11、B【解题分析】根据俯视图是从上面看到的图形解答即可.【题目详解】从上面看是三个长方形,故B是该几何体的俯视图.故选B.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.12、A【解题分析】把x=﹣1代入方程计算即可求出k的值.【题目详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【题目点拨】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.【题目详解】∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案为1.【题目点拨】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.14、①②③⑤【解题分析】根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥【题目详解】由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=1 , 2∴abc>0,4ac<b2,当12x<时,y随x的增大而减小.故①②⑤正确,∵11,22bxa=-=<∴2a+b>0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c<0,故⑥错误故答案为:①②③⑤【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.15、50°【解题分析】利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.∵AB ∥CD ,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【题目点拨】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.16、-9.【解题分析】根据题中给出的运算法则按照顺序求解即可.【题目详解】解:根据题意,得:2131x,2(1)79y .故答案为:-9.【题目点拨】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.17、(-1, -6)【解题分析】直接利用关于x 轴对称点的性质得出点A 1坐标,再利用平移的性质得出答案.【题目详解】∵点A 的坐标是(-1,2),作点A 关于x 轴的对称点,得到点A 1,∴A 1(-1,-2),∵将点A 1向下平移4个单位,得到点A 2,∴点A 2的坐标是:(-1,-6).故答案为:(-1, -6).【题目点拨】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、40°【解题分析】由∠A =30°,∠APD =70°,利用三角形外角的性质,即可求得∠C 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B 的度数.解:∵∠A =30°,∠APD =70°,∴∠C =∠APD ﹣∠A =40°,∵∠B 与∠C 是AD 对的圆周角,∴∠B =∠C =40°.故答案为40°.【题目点拨】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1a b -=【解题分析】过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,由后坡度AB 与前坡度AC 相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.【题目详解】解:过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,∵房子后坡度AB 与前坡度AC 相等,∴∠BAD=∠CAE ,∵∠BAC=120°,∴∠BAD=∠CAE=30°,在直角△ABD 中,AB=4米,∴BD=2米,在直角△ACE 中,AC=6米,∴CE=3米,∴a-b=1米.【题目点拨】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.20、(1)24.2米(2) 超速,理由见解析【解题分析】(1)分别在Rt △ADC 与Rt △BDC 中,利用正切函数,即可求得AD 与BD 的长,从而求得AB 的长.(2)由从A 到B 用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【题目详解】解:(1)由題意得,在Rt △ADC 中,CD AD tan30︒==, 在Rt △BDC中,CD BD tan60===︒, ∴AB=AD -BD=14 1.73=24.2224.2-≈⨯≈(米). (2)∵汽车从A 到B 用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB 路段超速.21、(1)ab ﹣4x 1(1【解题分析】(1)边长为x 的正方形面积为x 1,矩形面积减去4个小正方形的面积即可.(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x 的值即可.【题目详解】解:(1)ab ﹣4x 1.(1)依题意有:22ab 4x 4x -=,将a=6,b=4,代入上式,得x 1=2.解得x 1,x 1=.22、(1)①AE+BF =EC ;②AF+BF=2CE ;(2)AF ﹣BF=2CE ,证明见解析;(3)FG=65.【解题分析】(1)①只要证明△ACE ≌△BCD (AAS ),推出AE=BD ,CE=CD ,推出四边形CEFD 为正方形,即可解决问题; ②利用①中结论即可解决问题;(2)首先证明BF-AF=2CE .由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG ∥EC ,可知FG AF EC AE=,由此即可解决问题;【题目详解】解:(1)证明:①如图1,过点C 做CD ⊥BF ,交FB 的延长线于点D ,∵CE ⊥MN ,CD ⊥BF ,∴∠CEA=∠D=90°,∵CE ⊥MN ,CD ⊥BF ,BF ⊥MN ,∴四边形CEFD 为矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB ,即∠ACE=∠BCD ,又∵△ABC 为等腰直角三角形,∴AC=BC ,在△ACE 和△BCD 中,90ACE BCD AEC BDC AC BC ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACE ≌△BCD (AAS ),∴AE=BD ,CE=CD ,又∵四边形CEFD 为矩形,∴四边形CEFD 为正方形,∴CE=EF=DF=CD ,∴AE+BF=DB+BF=DF=EC .②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE ,(2)AF-BF=2CE图2中,过点C 作CG ⊥BF ,交BF 延长线于点G ,∵AC=BC可得∠AEC=∠CGB ,∠ACE=∠BCG ,在△CBG 和△CAE 中,AEC CGB ACE BCG AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBG ≌△CAE (AAS ),∴AE=BG ,∵AF=AE+EF ,∴AF=BG+CE=BF+FG+CE=2CE+BF ,∴AF-BF=2CE ;(3)如图3,过点C 做CD ⊥BF ,交FB 的于点D ,∵AC=BC可得∠AEC=∠CDB ,∠ACE=∠BCD ,在△CBD 和△CAE 中,AEC CDB ACE BCD AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBD ≌△CAE (AAS ),∴AE=BD ,∵AF=AE-EF ,∴AF=BD-CE=BF-FD-CE=BF-2CE ,∴BF-AF=2CE .∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG ∥EC , ∴FG AF EC AE=, ∴325FG =, ∴FG=65. 【题目点拨】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、1【解题分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【题目详解】原式=﹣1﹣4÷14+27=﹣1﹣16+27=1.【题目点拨】本题考查了实数的运算,解题的关键是熟练掌握运算顺序.24、(1)1502AOD α∠=︒-;(2)AD =;(3)1122or 【解题分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.【题目详解】(1)如图1:连接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等边三角形∴∠BOC=60°∵点D是BC的中点∴∠BOD=130 2BOC∠=︒∵OA=OC∴OAC OCA∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD +=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1 ∴31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即)2222331x x -=-- 解得:331x +=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1 ∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=- 即()2222331x x -=- 解得:331x 4= ∴AE=3312AF -=【题目点拨】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.25、x≤1,解集表示在数轴上见解析【解题分析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集.【题目详解】去分母,得:3x﹣2(x﹣1)≤3,去括号,得:3x﹣2x+2≤3,移项,得:3x﹣2x≤3﹣2,合并同类项,得:x≤1,将解集表示在数轴上如下:【题目点拨】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.26、(1)DE与⊙O相切,详见解析;(2)5【解题分析】(1) 根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE=90°,说明相切的位置关系。

2020年高考数学三模试题 理(含解析)

2020年高考数学三模试题 理(含解析)

2019高考数学三模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣2 B.﹣6 C.4 D.62.设[x]表示不大于x(x∈R)的最大整数,集合A={x|[x]=1},B={1,2},则A∪B=()A.{1} B.{1,2} C.[1,2)D.[1,2]3.某学生一个学期的数学测试成绩一共记录了6个数据:x1=52,x2=70,x3=68,x4=55,x5=85,x6=90,执行如图所示的程序框图,那么输出的S是()A.1 B.2 C.3 D.44.若函数的图象上某一点处的切线过点(2,1),则切线的斜率为()A.0 B.0或C.D.5.已知x,y满足,若存在x,y使得2x+y≤a成立,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.[4,+∞)D.[10,+∞)6.某几何体的三视图如图所示,则该几何体的体积为()A.4 B.2 C.6 D.7.数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),若a1=2,a2=1,则a20=()A. B.C.D.8.长为的线段AB在双曲线x2﹣y2=1的一条渐近线上移动,C为抛物线y=﹣x2﹣2上的点,则△ABC面积的最小值是()A.B.C.D.79.在区间[0,4]上随机取两个数x,y,则xy∈[0,4]的概率是()A.B.C.D.10.将函数的图象向右平移θ(θ>0)个单位长度后关于y轴对称,则θ的最小值是()A.B.C.D.11.已知三棱锥S﹣ABC的底面△ABC为正三角形,顶点在底面上的射影为底面的中心,M,N分别是棱SC,BC的中点,且MN⊥AM,若侧棱,则三棱锥S﹣ABC的外接球的表面积是()A.12π B.32π C.36π D.48π12.已知函数f(x),g(x)满足关系式f(x)=g(|x﹣1|)(x∈R).若方程f(x)﹣cosπx=0恰有7个根,则7个根之和为()A.3 B.5 C.7 D.9二、填空题:本大题共4小题,每小题5分,共20分.13.已知,若存在向量使,则= .14.若展开式中存在常数项,则n的最小值为.15.非零实数a,b满足tanx=x,且a2≠b2,则(a﹣b)sin(a+b)﹣(a+b)sin(a﹣b)= .16.已知椭圆的左、右焦点分别为F1,F2,左右顶点分别为A1,A2,P为椭圆上任意一点(不包括椭圆的顶点),则以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的位置关系为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知三角形ABC中,角A,B,C成等差数列,且为角A的内角平分线,.(1)求三角形内角C的大小;(2)求△ABC面积的S.18.如图,ABC﹣A'B'C'为三棱柱,M为CC的中点,N为AB的中点,AA'=2,AB=2,BC=1,∠ABC=60°.(1)求证:CN∥平面AB'M;(2)求平面AB'M与平面BB'C所成的锐二面角的余弦值.19.为推行“新课改”教学法,某数学老师分别用传统教学和“新课改”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中个随机抽取20名学生的成绩进行统计,结果如表:记成绩不低于105分者为“成绩优良”.分数[0,90)[90,105)[105,1200)[120,135)[135,150)甲班频数 5 6 4 4 1乙班频数 1 3 6 5(1)由以上统计数据填写下面的2×2列联表,并判断能否有97.5%的把握认为“成绩优良”与教学方式有关?(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列和数学期望.甲班乙班总计成绩优良成绩不优良总计附:K2=,(n=a+b+c+d)临界值表:P(K2≥k0) 0.10 0.050 0.025 0.010k0 2.706 3.841 5.024 6.63520.一张坐标纸上涂着圆E:(x+1)2+y2=8及点P(1,0),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与EP'的交点为M.(1)求M的轨迹C的方程;(2)直线l:y=kx+m与C的两个不同交点为A,B,且l与以EP为直径的圆相切,若,求△ABO的面积的取值范围.21.已知f(x)=且a≠1),f(x)是增函数,导函数f'(x)存在零点.(1)求a的值;(2)设A(x1,y1),B(x2,y2)(x1<x2)是函数f(x)图象上的两点,x0是AB中点的横坐标,是否存在x0,使得f'(x0)=成立?若存在,请证明;若不存在,请说明理由.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xoy中,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为,且曲线C在极坐标系中过点(2,π).(1)求曲线C的直角坐标方程;(2)设直线(t为参数)与曲线C相交于A,B两点,直线m过线段AB的中点,且倾斜角是直线l的倾斜角的2倍,求m的极坐标方程.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣a|(a>0),其最小值为3.(1)求实数a的值;(2)若关于x的不等式f(x)+|x|>m2﹣2m对于任意的x∈R恒成立,求实数m的取值范围.2017年河南省八市中评高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣2 B.﹣6 C.4 D.6【考点】A5:复数代数形式的乘除运算.【分析】复数==+i是纯虚数,可得=0,≠0,解出即可得出.【解答】解:复数==+i是纯虚数,则=0,≠0,解得a=﹣2.故选:A.2.设[x]表示不大于x(x∈R)的最大整数,集合A={x|[x]=1},B={1,2},则A∪B=()A.{1} B.{1,2} C.[1,2)D.[1,2]【考点】1D:并集及其运算.【分析】根据[x]的定义用区间表示集合A,再根据并集的定义写出A∪B.【解答】解:根据题意,集合A={x|[x]=1}={x|1≤x<2}=[1,2),集合B={1,2},所以A∪B=[1,2].故选:D.3.某学生一个学期的数学测试成绩一共记录了6个数据:x1=52,x2=70,x3=68,x4=55,x5=85,x6=90,执行如图所示的程序框图,那么输出的S是()A.1 B.2 C.3 D.4【考点】EF:程序框图.【分析】由模拟程序框图的运行过程,得出输出的S是记录六次数学测试成绩中得分60以上的次数,由数据得出S的值.【解答】解:模拟程序框图的运行过程,知输出的S是记录六次数学测试成绩中得分60以上的次数;∴比较数据:x1=52,x2=70,x3=68,x4=55,x5=85,x6=90,得出S=4;故选:D.4.若函数的图象上某一点处的切线过点(2,1),则切线的斜率为()A.0 B.0或C.D.【考点】6H:利用导数研究曲线上某点切线方程.【分析】设切点为(m,n),(﹣1≤m≤1,n≥0),由于f(x)的图象为单位圆的上半圆,求得切线的斜率和方程,代入(2,1),解方程可得m,n,进而得到所求切线的斜率.【解答】解:设切点为(m,n),(﹣1≤m≤1,n≥0),由于函数的图象为单位圆的上半圆,可得切线的斜率为﹣,即有切线的方程为y﹣n=﹣(x﹣m),代入m2+n2=1,可得mx+ny=1,代入(2,1),可得2m+n=1,解得m=,n=﹣,(舍去)或m=0,n=1,即为切线的斜率为﹣=0.故选:A.5.已知x,y满足,若存在x,y使得2x+y≤a成立,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.[4,+∞)D.[10,+∞)【考点】7C:简单线性规划.【分析】画出x,y满足的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到a的取值范围.【解答】解:令z=2x+y,画出x,y满足,的可行域,由可行域知:目标函数过点A时取最大值,由,可得x=3,y=4,可得A(3,4)时,z的最大值为:10.所以要使2x+y≤a恒成立,只需使目标函数的最大值小于等于a 即可,所以a的取值范围为a≥10.故答案为:a≥10.故选:D.6.某几何体的三视图如图所示,则该几何体的体积为()A.4 B.2 C.6 D.【考点】L!:由三视图求面积、体积.【分析】由三视图还原原几何体,该几何体为四棱锥,底面ABCD为直角梯形,AB∥CD,AB⊥BC,PC⊥平面ABCD.然后由棱锥体积公式得答案.【解答】解:由三视图还原原几何体如图:该几何体为四棱锥,底面ABCD为直角梯形,AB∥CD,AB⊥BC,PC⊥平面ABCD.∴该几何体的体积V=.故选:B.7.数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),若a1=2,a2=1,则a20=()A. B.C.D.【考点】8H:数列递推式.【分析】数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),展开化为: +=.利用等差数列的通项公式得出.【解答】解:数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),展开化为: +=.∴数列是等差数列,公差为=,首项为1.∴=1+=,解得a20=.故选:C.8.长为的线段AB在双曲线x2﹣y2=1的一条渐近线上移动,C为抛物线y=﹣x2﹣2上的点,则△ABC面积的最小值是()A.B.C.D.7【考点】KC:双曲线的简单性质.【分析】求出双曲线的渐近线方程,设C(m,﹣m2﹣2),运用点到直线的距离公式,以及二次函数的最值的求法,再由三角形的面积公式,即可得到三角形的面积的最小值.【解答】解:双曲线x2﹣y2=1的一条渐近线方程为y=x,C为抛物线y=﹣x2﹣2上的点,设C(m,﹣m2﹣2),C到直线y=x的距离为d==≥,当m=﹣时,d的最小值为,可得△ABC的面积的最小值为S=×4×=.故选:A.9.在区间[0,4]上随机取两个数x,y,则xy∈[0,4]的概率是()A.B.C.D.【考点】CF:几何概型.【分析】由题意把两个数为x,y看作点P(x,y),作出Ω={(x,y)|}表示的平面区域,把xy∈[0,4]转化为0≤y≤,求出满足0≤y≤的区域面积,计算所求的概率值.【解答】解:由题意把两个数为x,y看作点P(x,y),则Ω={(x,y)|},它所表示的平面区域是边长为4的正方形,面积为42=16;xy∈[0,4]转化为0≤y≤,如图所示;且满足0≤y≤的区域面积是:16﹣(4﹣)dx=16﹣(4x﹣4lnx)=4+4ln4,则xy∈[0,4]的概率为:P==.故选:C.10.将函数的图象向右平移θ(θ>0)个单位长度后关于y轴对称,则θ的最小值是()A.B.C.D.【考点】GL:三角函数中的恒等变换应用;HJ:函数y=Asin(ωx+φ)的图象变换.【分析】将函数f(x)化简,根据三角函数的平移变换规律即可求解.【解答】解:函数=sin(x+),图象向右平移θ(θ>0)个单位长度后,可得sin(x ﹣θ+),关于y轴对称,∴,k∈Z.即θ=﹣∵θ>0,当k=﹣1时,可得θ的最小值为,故选:D.11.已知三棱锥S﹣ABC的底面△ABC为正三角形,顶点在底面上的射影为底面的中心,M,N分别是棱SC,BC的中点,且MN⊥AM,若侧棱,则三棱锥S﹣ABC的外接球的表面积是()A.12π B.32π C.36π D.48π【考点】LG:球的体积和表面积.【分析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积积.【解答】解:∵M,N分别为棱SC,BC的中点,∴MN∥SB∵三棱锥S﹣ABC为正棱锥,∴SB⊥AC(对棱互相垂直),∴MN⊥AC又∵MN⊥AM,而AM∩AC=A,∴MN⊥平面SAC,∴SB⊥平面SAC∴∠ASB=∠BSC=∠ASC=90°以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径.∴2R=SA=6,∴R=3,∴S=4πR2=36π.故选:C12.已知函数f(x),g(x)满足关系式f(x)=g(|x﹣1|)(x∈R).若方程f(x)﹣cosπx=0恰有7个根,则7个根之和为()A.3 B.5 C.7 D.9【考点】54:根的存在性及根的个数判断.【分析】函数y=g(|x|)是偶函数,y=g(|x﹣1|)是把y=g(|x|)向右平移1个单位得到的,可得y=f(x)的图象关于直线x=1对称.再由x=1是f(x)=cosπx的一条对称轴,可得y=f(x)的图象与y=cosπx的图象有3对交点关于直线x=1对称,有1个交点为(1,1).结合中点坐标公式得答案.【解答】解:函数y=g(|x|)是偶函数,其图象关于直线x=0对称,而y=g(|x﹣1|)是把y=g(|x|)向右平移1个单位得到的,∴y=g(|x﹣1|)的图象关于直线x=1对称.即y=f(x)的图象关于直线x=1对称.方程f(x)﹣cosπx=0恰有7个根,即方程f(x)=cosπx恰有7个根,也就是y=f(x)的图象与y=cosπx的图象有7个交点,而x=1是f(x)=cosπx的一条对称轴,∴y=f(x)的图象与y=cosπx的图象有3对交点关于直线x=1对称,有1个交点为(1,1).由中点坐标公式可得:y=f(x)的图象与y=cosπx的图象交点的横坐标和为3×2+1=7.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.已知,若存在向量使,则= .【考点】9J:平面向量的坐标运算.【分析】设=(x,y),由,可得,解出x,y.即可得出.【解答】解:设=(x,y),∵,∴,解得x=3,y=﹣2.则==.故答案为:14.若展开式中存在常数项,则n的最小值为 5 .【考点】DB:二项式系数的性质.【分析】根据二项式展开式的通项公式,令x的指数等于0,求出n、r的关系,即可求出n的最小值.【解答】解:展开式中通项公式为T r+1=••=•(﹣1)r•,令=0,解得n=,其中r=0,1,2,…,n;当r=3时,n=5;所以n的最小值为5.故答案为:5.15.非零实数a,b满足tanx=x,且a2≠b2,则(a﹣b)sin(a+b)﹣(a+b)sin(a﹣b)= 0 .【考点】HP:正弦定理;HR:余弦定理.【分析】由已知可得b=tanb,a=tana,利用两角和与差的正弦函数公式化简所求可得2acosasinb﹣2bsinacosb,利用同角三角函数基本关系式化简即可得解.【解答】解:∵非零实数a,b满足tanx=x,且a2≠b2,∴可得:b=tanb,a=tana,∴原式=(a﹣b)(sinacosb+cosasinb)﹣(a+b)(sinacosb﹣cosasinb)=2acosasinb﹣2bsinacosb=2tanacosasinb﹣2tanbsinacosb=2sinasinb﹣2sinasinb=0.故答案为:0.16.已知椭圆的左、右焦点分别为F1,F2,左右顶点分别为A1,A2,P为椭圆上任意一点(不包括椭圆的顶点),则以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的位置关系为内切.【考点】K4:椭圆的简单性质.【分析】设PF1的中点为M,可得以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的圆心距为OM,根据中位线的性质得OM==a﹣,即可【解答】解:如图,设PF1的中点为M,可得以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的圆心距为OM,根据中位线的性质得OM==a﹣,a﹣就是两圆的半径之差,故两圆内切.故答案为:内切.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知三角形ABC中,角A,B,C成等差数列,且为角A的内角平分线,.(1)求三角形内角C的大小;(2)求△ABC面积的S.【考点】HT:三角形中的几何计算.【分析】(1)根据角A,B,C成等差数列,可得2B=A+C,利用三角形内角和定理带入化简可得C的大小;(2)根据C的大小和2B=A+C,可得A,B的大小.利用正弦定理即可求解.【解答】解:(1)∵角A,B,C成等差数列,∴2B=A+C,∴B=,∵=2sin(A+C),∴2sinCcosA+sinA=2sinAcosC+2cosAsinC,∴sinA=2sinAcosC,∵A∈(0,π),sinA≠0,∴cosC=,∵C∈(0,π),∴.(2).由(1)值A=,C=,由正弦定理得,得AB=,同理得AC=,∴△ABC面积的S=.18.如图,ABC﹣A'B'C'为三棱柱,M为CC的中点,N为AB的中点,AA'=2,AB=2,BC=1,∠ABC=60°.(1)求证:CN∥平面AB'M;(2)求平面AB'M与平面BB'C所成的锐二面角的余弦值.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(1)取A′B′的中点E,连接EC′,EN,由已知可得AB′,EN共面,设AB′∩EN=F,连接FM,可得NF∥CM,NF=CM,从而得到CN∥FM,然后利用线面平行的判定可得CN∥平面AB'M;(2)在三角形ABC中,由余弦定理可得AC2,由AC2+BC2=AB2,得AC⊥CB,建立如图所示空间直角坐标系,求出所用点的坐标,得到平面AB′M与平面BCC′B′的一个法向量,利用两法向量所成角的余弦值可得平面AB'M与平面BB'C所成的锐二面角的余弦值.【解答】(1)证明:如图,取A′B′的中点E,连接EC′,EN,∵ABC﹣A′B′C′为直三棱柱,∴ABB′A′为矩形,则AB′,EN共面,设AB′∩EN=F,连接FM,则EN∥BB′∥CC′,且F为AB′的中点.又∵M为CC′的中点,∴NF∥CM,NF=CM,则CN∥FM,而MF⊂平面AB'M,CN⊄平面AB'M,∴CN∥平面AB'M;(2)解:在三角形ABC中,由余弦定理可得:AC2=AB2+BC2﹣2AB×BC×cosB=22+12﹣2×2×1×cos60°=3.∴AC2+BC2=AB2,则AC⊥CB.建立如图所示空间直角坐标系,则C(0,0,0),A(),B′(0,1,2),M(0,0,1),∴,,设平面AB′M的一个法向量为.由,取x=1,得.∵AC⊥平面BCC′B′,∴可取平面BCC′B′的一个法向量.∴cos<>=∴平面AB'M与平面BB'C所成的锐二面角的余弦值为.19.为推行“新课改”教学法,某数学老师分别用传统教学和“新课改”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中个随机抽取20名学生的成绩进行统计,结果如表:记成绩不低于105分者为“成绩优良”.分数[0,90)[90,105)[105,1200)[120,135)[135,150)甲班频数 5 6 4 4 1乙班频数 1 3 6 5(1)由以上统计数据填写下面的2×2列联表,并判断能否有97.5%的把握认为“成绩优良”与教学方式有关?(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列和数学期望.甲班乙班总计成绩优良成绩不优良总计附:K2=,(n=a+b+c+d)临界值表:P(K2≥k0) 0.10 0.050 0.025 0.010k0 2.706 3.841 5.024 6.635【考点】CG:离散型随机变量及其分布列;BO:独立性检验的应用;CH:离散型随机变量的期望与方差.【分析】(1)根据以上统计数据填写2×2列联表,根据列联表计算K2,对照临界值得出结论;(2)由题意知X的可能取值,计算对应的概率值,写出X的分布列,计算数学期望值.【解答】解:(1)根据以上统计数据填写2×2列联表,如下;甲班乙班总计成绩优良 9 16 25成绩不优良 11 4 15总计 20 20 40根据列联表,计算K2==≈5.227>5.024,对照临界值知,有97.5%的把握认为“成绩优良”与教学方式有关;(2)由表可知,8人中成绩不优良的人数为3,则X的可能取值为0、1、2、3,则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==;所以X的分布列为:X 0 1 2 3P数学期望为E(X)=0×+1×+2×+3×==.20.一张坐标纸上涂着圆E:(x+1)2+y2=8及点P(1,0),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与EP'的交点为M.(1)求M的轨迹C的方程;(2)直线l:y=kx+m与C的两个不同交点为A,B,且l与以EP为直径的圆相切,若,求△ABO的面积的取值范围.【考点】J9:直线与圆的位置关系.【分析】(1)折痕为PP′的垂直平分线,则|MP|=|MP′|,推导出E的轨迹是以E、P为焦点的椭圆,且a=,c=1,由此能求出M的轨迹C的方程.(2)l与以EP为直径的圆x2+y2=1相切,从而m2=k2+1,由,得(1+2k2)x2+4kmx+2m2﹣2=0,由此利用根的判别式、韦达定理、向量的数量积、弦长公式、三角形面积公式,能求出△AOB的面积的取值范围.【解答】解:(1)折痕为PP′的垂直平分线,则|MP|=|MP′|,由题意知圆E的半径为2,∴|ME|+|MP|=|ME|+|MP′|=2>|EP|,∴E的轨迹是以E、P为焦点的椭圆,且a=,c=1,∴b2=a2﹣c2=1,∴M的轨迹C的方程为=1.(2)l与以EP为直径的圆x2+y2=1相切,则O到l即直线AB的距离:=1,即m2=k2+1,由,消去y,得(1+2k2)x2+4kmx+2m2﹣2=0,∵直线l与椭圆交于两个不同点,∴△=16k2m2﹣8(1+2k2)(m2﹣1)=8k2>0,k2>0,设A(x1,y1),B(x2,y2),则,,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=,又=x1x2+y1y2=,∴,∴,==,设μ=k4+k2,则,∴=,,∵S△AOB关于μ在[,2]单调递增,∴,∴△AOB的面积的取值范围是[,].21.已知f(x)=且a≠1),f(x)是增函数,导函数f'(x)存在零点.(1)求a的值;(2)设A(x1,y1),B(x2,y2)(x1<x2)是函数f(x)图象上的两点,x0是AB中点的横坐标,是否存在x0,使得f'(x0)=成立?若存在,请证明;若不存在,请说明理由.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出函数的导数,从而可得△=4ln2a﹣4lna=0,从而解得;(2)求导,得到(x2+x1)﹣2+=(x2+x1)﹣2+,化简得ln﹣=0,即ln﹣=0,令t=>1,g(t)=lnt﹣,根据函数的单调性判断即可.【解答】解:(1)∵f(x)=x2﹣2x+log a x,∴f′(x)=x﹣2+=,∵f(x)在(0,+∞)上是增函数,且f′(x)存在零点,∴△=4ln2a﹣4lna=0,解得,lna=1或lna=0;故a=e或a=1(舍去);故a=e;(2)假设存在x0,使得f′(x0)=成立,由(1)得:f(x)=x2﹣2x+lnx,(x>0),f′(x)=x﹣2+,f′(x0)=x0﹣2+=(x2+x1)﹣2+,又==(x2+x1)﹣2+,故(x2+x1)﹣2+=(x2+x1)﹣2+,化简得ln﹣=0,即ln﹣=0,令t=>1,g(t)=lnt﹣,则g′(t)=﹣=>0,g(t)在(1,+∞)递增,则g(t)>g(1)=0,故不存在x0,使得f'(x0)=成立.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xoy中,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为,且曲线C在极坐标系中过点(2,π).(1)求曲线C的直角坐标方程;(2)设直线(t为参数)与曲线C相交于A,B两点,直线m过线段AB的中点,且倾斜角是直线l的倾斜角的2倍,求m的极坐标方程.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)由曲线C在极坐标系中过点(2,π),得到曲线C的极坐标方程为4ρ2sin2θ+ρ2cos2θ=4,由此能求出曲线C的直角坐标方程.(2)直线l消去参数t,得直线l的普通方程为x﹣2y+2=0,联立,得x2+2x=0,求出AB的中点为M(﹣1,),从而直线l的斜率为,由此求出直线m的斜率为.从而求出直线m的直角坐标方程,进而求出m的极坐标方程.【解答】解:(1)∵曲线C在极坐标系中过点(2,π),∴把(2,π)代入曲线C的极坐标方程,得:4=,解得a=4,∴曲线C的极坐标方程为,即4ρ2sin2θ+ρ2cos2θ=4,∴曲线C的直角坐标方程为x2+4y2=4,即=1.(2)∵直线(t为参数),∴消去参数t,得直线l的普通方程为x﹣2y+2=0,联立,得x2+2x=0,解得x=﹣2或x=0,∴A(﹣2,0),B(0,1),∴AB的中点为M(﹣1,),∵直线l的斜率为,即tanα=,∴tan2α==.∴直线m的方程为y﹣=(x+1),即8x﹣6y+11=0,∴m的极坐标方程为8ρcosθ﹣6ρsinθ+11=0.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣a|(a>0),其最小值为3.(1)求实数a的值;(2)若关于x的不等式f(x)+|x|>m2﹣2m对于任意的x∈R恒成立,求实数m的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)求出f(x)的最小值,得到关于a的方程,求出a的值即可;(2)根据不等式的性质,问题转化为m2﹣2m<3,解出即可.【解答】解:(1)f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,故|a﹣1|=3,解得:a=﹣2或4,由a>0,得a=4;(2)由(1)得f(x)=|x﹣1|+|x﹣4|,x≥4时,f(x)=x﹣1+x﹣4=2x﹣5≥3,1<x<4时,f(x)=x﹣1﹣x+4=3,x≤1时,f(x)=1﹣x﹣x+4=﹣2x+5≥3,∴f(x)+|x|≥3,当x=0时”=“成立,故m2﹣2m<3即(m+1)(m﹣3)<0,解得:﹣1<m<3,故m的范围是(﹣1,3).。

2020年吉林省长春市东北师大附中高考数学三模试卷(二)(有答案解析)

2020年吉林省长春市东北师大附中高考数学三模试卷(二)(有答案解析)
10.答案:A
解析:解:依题意,数列{an}是等比数列,所以 16a52=a2a6= ,所以 q2= ,
又因为数列{an}为正项等比数列,所以 q= ,
所以 an=
=2•43-n=27-2n,
令 an>1,即 27-2n>1,得 n< ,因为 n∈N*,所以 n≤3,
要使数列{an}的前 n 项积 Tn 中 T3 最大, 故选:A. 根据 a3=2,16a52=a2a6,求出数列{an}的通项公式,计算出 Tn 的表达式,讨论其指数的 最值即可. 本题考查了等比数列的性质、通项公式、前 n 项积的最大值等.属于中档题.
解:因为全称命题的否定是特称命题,所以:命题 p:

则¬p 为:

故选:C.
4.答案:B
解析:解:等差数列{an}中,若(a1+a4+a7)+3a9=15, 由于:a1+a7=2a4, 所以:3a4+3a9=15, 整理得:a4+a9=a1+a12=5,
则:.Biblioteka 故选:B. 直接利用等差数列的性质和前 n 项和公式的应用求出结果. 本题考查的知识要点:等差数列的性质的应用,主要考察学生的运算能力和转换能力, 属于基础题型.
D. ∅
3. 已知命题 p:
,则¬p 为( )
A.
B.
C.
D.
4. 等差数列{an}中,若(a1+a4+a7)+3a9=15,则此数列的前 12 项和 S12=( )
A. 24
B. 30
C. 36
D. 48
5. 已知向量
, =(2,x-3),
,若 且 ,则 x 的值为( )
A. 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.(12 分) 四棱锥 P-ABCD 中,ABCD 为直角梯形,BC//AD,AD⊥DC,BC=CD=1,AD=2,PA=PD,E 为 PC 中点, 平面 PAD⊥平面 ABCD,F 为 AD 上一点,PA//平面 BEF.
(1)求证:平面 BEF⊥平面 PAD; (II)若 PC 与底面 ABCD 所成的角为 60°.求二面角 E-BF-A 的余弦值.
16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面 ABCD 为正 方形,AB=2,侧面△PAD 为等边三角形,线段 BC 的中点为 E,若 PE=1.则所需球体原材料的最小体积为 ____.
三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考 生都必须作答。第 22~23 题为选考题,考生根据要求作答。
(二)选考题:共 10 分,请考生在 22-23 题中任选一题作答,如果多做则按所做的第一题计分.
22.[选修 4-4 坐标系与参数方程](10 分)
以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线 C 的极坐标方程为
2
12 3 sin2
(
[0,
2
])
,直线
1
的参数方程为
ቤተ መጻሕፍቲ ባይዱ
x
4
21.(12 分)
已知函数 f (x) m ln x, g(x) x 1 (x 0) . x
(1)讨论函数 F(x)=f(x)-g(x)在(0,+∞)上的单调性; (II)是否存在正实数 m,使 y=f(x)与 y=g(x)的图象有唯一一条公切线,若存在,求出 m 的值,若不存在, 请说明理由.
A.110
B.220
C.440
D.880
12.设椭圆的左右焦点为 F1, F2 , 焦距为 2c,过点 F1 的直线与椭圆 C 交于点 P,Q,若 | PF2 | 2c, 且
|
PF1
|
4 3
|
QF1
|
,则椭圆
C
的离心率为
A. 1 2
B. 3 4
C. 5 7
D. 2 3
2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.一名信息员维护甲、乙两公司的 5G 网络,一天内甲公司需要维护和乙公司需要维护的概率分别 为 0.4 和 0.3,则至少有一个公司不需要维护的概率为___.
14.等差数列{an}中, a1 1, 公差 d∈[1,2],且 a3 a9 a15 15, 则实数λ的最大值为___.
15.若 x1, x2 是函数 f (x) x2 7x 4lnx 的两个极值点,则 x1x2 __; f (x1) f (x2 ) ___.(本题第一空 2 分,第二空 3 分)
(1)当 x∈R 时,有 f(x)≤g(x),求实数 m 的取值范围; (II)若不等式 f(x)≥0 的解集为[1,3],正数 a,b 满足 ab-2a-b=3m-1,求 a+b 的最小值.
5
6
7
8
9
10
11
①若 m⊥α,m//β,则α⊥β;
②若 m⊥α,m//n,n β,则α⊥β;
③若 n⊥α,n⊥β,m⊥α,则 m⊥β;
④若 m⊥α,m⊥n,则 n//α.
其中真命题的个数是
A.1
B.2
C.3
D.4
8.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边
1
形和正八边形.右下图是风雨桥中塔的俯视图。该塔共 5 层,若 B0B1 B1B2 B2B3 B3B4 0.5m, A0B0 8m. 这五层正六边形的周长总和为
D. {2, 1, 0,1}
2.已知复数 z=(a+i)(1-2i)(a∈R)的实部为 3,其中 i 为虚数单位,则复数 z 的虚部为
A.-1
B.-i
C.1
D.i
3.已知向量
a
=(1,-2),
b
=(3,-3),
c
=(1,t),若向量
a
与向量
b
c
共线,则实数
t=
A.5
B.-5
C.1
D.-1
4.已知函数 f (x) cos x 3 sin x 的图象为 C,为了得到关于原点对称的图象,只要把 C 上所有的点
其中 x 为改进工艺前质量标准值 x 的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降 2 元, 请判断该公司是否应该购买这种机器,并说明理由.
3
18.(12 分) 在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,且 a=4ccosB. (1)求证:sinBcosC=3sinCcosB; (II)求 B-C 的最大值.
A.35m
B.45m
C.210m
D.270m
9.已知圆 E 的圆心在 y 轴上,且与圆 C: x2 y2 2x 0 的公共弦所在直线的方程为 x 3y 0, 则圆 E 的方程为
A. x2 ( y 3)2 2
B. x2 ( y 3)2 2
C. x2 (y 3)2 3
D. x2 ( y 3)2 3
(一)必考题:共 60 分。
17.(12 分)
笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的 “纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸 按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸 10000 刀(每刀 100 张),公司按照某 种质量标准值 x 给宣纸确定质量等级,如下表所示:
2020 年长春市高三数学(理)高考三模试卷
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目 要求的.
1.设集合 A {x Z | x2 4} ,B={x|-4<x<2},则 A∩B=
A.{x|-2≤x<2}
B.{x|-4<x≤2}
C.{2, 1, 0,1, 2}
y
2 3
25 5 5t 5
t
(t
为参数).
(1)求曲线 C 的参数方程与直线 l 的普通方程;
(II)设点 P 为曲线 C 上的动点,点 M 和点 N 为直线 l 上的点,且满足△PMN 为等边三角形,求△PMN 边长的取值范围.
23.[选修 4-5 不等式选讲](10 分)
已知函数 f x m x 2 , m R,g x x 3 .
2
2
A.向左平移 个单位 3
B.向左平移 2 个单位 3
C.向右平移 个单位 3
D.向右平移 2 个单位 3
5.函数
f (x)
x3 ex ex
的图象大致为
6.在
(x
1 x2
)5
的展开式中,一定含有
A.常数项
B.x 项
C. x1 项
D. x3 项
7.已知直线 m,n 和平面, , , 有如下四个命题:
x
(48,52] (44,48]∪(52,56] (0,44]∪(56,100]
质量等级 正牌
副牌
废品
公司在所生产的宣纸中随机抽取了一刀(100 张)进行检验,得到频率分布直方图如图所示,已知每 张正牌纸的利润是 10 元,副牌纸的利润是 5 元,废品亏损 10 元.
(1)估计该公司生产宣纸的年利润(单位:万元); (II)该公司预备购买一种售价为 100 万元的机器改进生产工艺,这种机器的使用寿命是一年,只能 提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值 x 的频率,如下表所示:
B.所有主题中,三个学段的总和“图形与几何”条目数最多,占 50%,综合与实践最少,约占 4%
C.第一、二学段“数与代数”条目数最多,第三学段“图形与几何”条目数最多.
D.“数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形与几何”条目数, 百分比都随学段的增长而增长.
11. 已 知 数 列 {an} 的 各 项 均 为 正 数 , 其 前 n 项 和 Sn 满 足 4Sn an2 2an , (n N*) , 设 bn (1)n anan1, Tn 为数列{bn} 的前 n 项和,则 T20
10.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如 下表),下右图是将统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四 个结论,其中错误的是
A.除了“综合与实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第 三学段增加较多,约是第二学段的 3.5 倍。
20.(12 分) 已知点 A(0,1),点 B 在 y 轴负半轴上,以 AB 为边做菱形 ABCD,且菱形 ABCD 对角线的交点在 x 轴上,设点 D 的轨迹为曲线 E. (1)求曲线 E 的方程; (II)过点 M(m,0),其中 1<m<4,作曲线 E 的切线,设切点为 N,求△AMN 面积的取值范围.
相关文档
最新文档