工科数学分析基础试题
大学工科数学分析期中考试___试题及答案
20XX年复习资料大学复习资料专业:班级:科目老师:日期:一、客观题(每题4分,共40分)1. 曲线⎩⎨⎧==21yx xyz 在点)1,1,1(处切线的的参数方程为 .2. 设函数(,)z z x y =由方程2222(,)0F x y y z --=所确定,其中(,)F u v 是可微函数,且0v zF ≠,则z z yx x y ∂∂+=∂∂ . xy z3. 当 , , a b c ===时,抛物线2y ax bx c =++与正弦曲线sin y x=在点(,1)2π相切,并有相同的曲率.1,2a =-,2b π=21.8c π=-4.用柯西收敛原理叙述级数1n n a ∞=∑收敛的充分必要条件是 .;正项级数1n n a ∞=∑收敛的充分必要条件是 .(1)0ε∀>,0N ∃>,当n N >时,对p ∀∈,有1pn i i a ε+=<∑. (2)部分和数列有界.5. 函数)ln(22z y x u ++=在点)1 ,0 ,1(A 处沿A 点指向)2 ,2 ,3(-B 点的方向导数为21,在点)1 ,0 ,1(A 处的方向导数的最大值为22,最小值为22-.本题分数 40得 分6. 曲面cos sin x u vy u v z av=⎧⎪=⎨⎪=⎩当1,4u v π==时的切平面方程为 .20x y +=7. 设zy xu =,则=∂∂)2,2,3(yu( )( C ) (A )3ln 4 (B )3ln 8 (C )3ln 324 (D )3ln 1628. 旋转曲面2221499x y z ++=是( )(B )(A )xOy 平面上椭圆22149x y +=绕Oy 轴旋转成的椭球面(B )xOy 平面上椭圆22149x y +=绕Ox 轴旋转成的椭球面(C )xOz 平面上椭圆22149x z +=绕Oz 轴旋转成的椭球面(D )xOz 平面上椭圆22149x z +=绕Oy 轴旋转成的椭球面9. 设1,02()122,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,01()cos ,2n n a S x a n x x π∞==+-∞<<+∞∑,其中102()cos ,(0,1,2,.....)n a f x n xdx n π==⎰ ,则5()2S -=( )(A )(A )34 (B )34- (C )12 (D )12-20XXXX.下列结论正确的是( )(C )(A )若级数1n n a ∞=∑和1n n b ∞=∑均为发散,则级数()1n n n b a ∞=+∑必为发散(B )p -级数11p n n ∞=∑当1p >时收敛,现在因为111n +>,所以级数1111n nn ∞+=∑收敛(C )若1lim 1n n nu r u +→∞=>,则1n n u ∞=∑必发散(D )若1,1,2n n u u n +<=且lim 0n n u →∞=,则1n n u ∞=∑收敛,其和1S u ≤二、解答题(共60分)11. (8分)设),(),,(y x g y x f 有连续的二阶偏导数,令2(,(,))z f x g x x =,求22d d zx.12. (8分)设直线0:30x y b l x ay z ++=⎧⎨+--=⎩在平面π上且平面π又与曲面22z x y =+相切于点(1,2,5)-,求,a b 的值.解:曲面22z x y =+的法向量为()2,2,1x y -,则平面方程为()()()214250x y z --+--=,即245x y z --=,于是直线的方向向量可取为()()()1,1,01,,11101,1,111i j ks a a a →=⨯-==---,由()2,4,10s →⋅--=可得5a =-,由直线方程知2430x y z b --+-=,故2b =-. 20XXXX. (20XXXX 分)求幂级数21112n+1n n x ∞=⎛⎫-⎪⎝⎭∑的收敛域与和函数()S x .解:令∑∞=+=121121)(n nx n x S ,∑∞==122)(n n x x S , 则 )()()(21x S x S x S -=,).1,1(-∈x 由于本题分数 60得 分∑∞==122)(n nxx S =221x x -, )1,1(,1))((22121-∈-=='∑∞=x xx xx xS n n, 因此 ⎰-++-=-=xx xx dt tt x xS 022111ln 211)(, 又由于 0)0(1=S ,故.0,1,0,11ln 211)(1=<⎪⎩⎪⎨⎧-++-=x x xx x x S 所以 )()()(21x S x S x S -=.0,1,0,1111ln 212=<⎪⎩⎪⎨⎧---+=x x x x xx20XXXX. (8分) 已知ABCD 是等腰梯形,,,8,BC AD BC AD AB BC CD <++=∥ 求AB ,BC ,AD 的长,使该梯形绕AD 旋转一周所得旋转体的体积最大.解:设, AB x AE y ==,则旋转体体积为22222222(,)()()(82)()(82)33F x y y x y x y x x y x y πππ=-+--=--+. 由0,0x y F F ==,得3,1x y ==. 故3,2,4AB BC AD ===. 也可以用条件极值做!15. (7分) 证明:53275x y z xyz ++⎛⎫≤ ⎪⎝⎭.证明:令a x y z =++,3(,,,)()F x y z xyz x y z a λλ=-++-,则3320, 0, 30, 0,x y z F yz F xz F xyz F x y z a λλλλ=-==-==-==++-=由上述解得:3,,555a a a x y z ===. 所以33553()27()27()55555a a a a x y z xyz ++≤==,即原不等式得证.16. (7分) 证明函数()222222220(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)连续且偏导数存在, 但偏导数在(0,0)不连续, 而f 在原点(0,0)可微. 解:由于221sin x y +有界,()2222(,)(0,0)lim 0x y x y x y→+=+,所以(,)f x y 在(0,0)连续. 同时220sinsin(0,0)0, (0,0)0x yx x y x y x f f →→===.可得222222222220(,)0,0x x x y f x y x y x y x yx y ⎧+≠⎪=+++⎨⎪+=⎩,显然(,)(0,0)lim (,)x x y f x y →不存在,故x f 在(0,0)不连续,同理y f 在(0,0)不连续. 又由于()22222222(,)(,)sinlim lim0x yx y x y xy xf yf x y x y x yx y→→+--++=++,所以f 在原点(0,0)可微. 20XXXX. (6分) 讨论1(1)(1)nnn en∞=--∑的收敛性,若收敛是条件收还是绝对收敛. 解:条件收敛。
工程数学基础试题及答案
工程数学基础试题及答案一、单项选择题(每题2分,共10分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于一个确定的值,这个值称为该点的极限。
以下哪个选项正确描述了极限的定义?A. 函数值在某点的值B. 函数值在某点的导数C. 函数值在某点的差分D. 函数值在某点的趋近值答案:D2. 以下哪个选项是连续函数的定义?A. 在某点可导B. 在某区间内可导C. 在某点有极限D. 在某区间内函数值无突变答案:D3. 微分中,dy/dx表示的是:A. 函数y的导数B. 函数y的积分C. 函数y的微分D. 函数y的不定积分答案:A4. 以下哪个选项是不定积分的定义?A. 函数的原函数B. 函数的导数C. 函数的微分D. 函数的极限答案:A5. 以下哪个选项是定积分的定义?A. 函数的原函数B. 函数在区间上的极限C. 函数在区间上的累积和D. 函数在区间上的导数答案:C二、填空题(每题3分,共15分)1. 函数f(x)=x^2在区间[0,1]上的定积分表示为∫_0^1 x^2 dx,其值为____。
答案:1/32. 函数f(x)=sinx的不定积分是____。
答案:-cosx + C3. 函数f(x)=e^x的导数是____。
答案:e^x4. 函数f(x)=lnx的导数是____。
答案:1/x5. 函数f(x)=x^3的二阶导数是____。
答案:6x三、计算题(每题10分,共20分)1. 计算定积分∫_0^π/2 sinx dx。
答案:12. 计算不定积分∫x^2 dx。
答案:1/3x^3 + C四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。
答案:略2. 证明函数f(x)=e^x在区间(-∞, +∞)上是连续函数。
答案:略五、应用题(每题20分,共20分)1. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+2x+100,其中x为生产数量。
工科数学分析试卷+答案
工科数学分析试题卷及答案考试形式(闭卷):闭 答题时间:150 (分钟) 本卷面成绩占课程成绩 80 %一、填空题(每题2分,共20分)1.---→xx x x sin 11lim 30 3-2.若⎪⎩⎪⎨⎧=≠-+=0,0,13sin )(2x a x xe x xf ax 在0=x 处连续,则a 3- 3.设01lim 23=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x ,则 =a 1 , =b 0 4.用《δε-》语言叙述函数极限R U ⊂∈=→)(,)(lim 0x x A x f x x 的定义: εδδε)()()(:000A x f x x ∈→∈∀>∍>∀U 5.若当)1(,023+++-→cx bx ax e x x是3x 的高阶无穷小,则=a61=b21=c 1 6.设N ∈=--→n x x x f x f nx x ,1)()()(lim2000,则在0x x =处函数)(x f 取得何种极值? 答: 极小值姓名: 班级: 学号:遵守 考 试 纪 律 注 意 行 为 规 范7.设x x y +=,则dydx x)211(+⋅8.设x x y sin =,则=dy dx xxx x xx)sin ln (cos sin +9.⎰=+dx x x 21arctan C x +2arctan 21 10.⎰=+dx ee xx12 C e e x x ++-)1l n ( 二、选择题:(每题2分,共20分)1.设0,2)1()1l n (2s i n2t a n li m 2222≠+=-+-+-→c a e d x c xb x a x x ,则必有( D )(A )d b 4=;(B )c a 4-=;(C )d b 4-=;(D )c a 2-= 2.设9320:0<<>k x ,则方程112=+x kx 的根的个数为( B )(A )1 ;(B ) 2 ; (C ) 3 ; (D )03.设)(x f 连续,且0)0(>'f ,则存在0>δ使得( A )(A ))(x f 在),0(δ内单增; (B )对),0(δ∈∀x 有)0()(f x f >; (C )对)0,(δ-∈∀有)0()(f x f >; (D ))(x f 在)0,(δ-内单减。
工科数学分析基础题集
工科数学分析题集一、选择题1. 下列关于函数极限的定义,正确的是()A. 对于任意给定的正数ε,存在正数δ,当 0 < |x - x₀| < δ时,|f(x) - L| < ε成立,则称函数 f(x) 在 x → x₀时的极限为 LB. 对于任意给定的正数ε,存在正数δ,当 |x - x₀| < δ时,|f(x) - L| < ε成立,则称函数 f(x) 在 x → x₀时的极限为 LC. 对于任意给定的正数ε,存在正数δ,当 0 < |x - x₀| < δ时,|f(x) - L| ≤ε成立,则称函数 f(x) 在 x → x₀时的极限为 LD. 对于任意给定的正数ε,存在正数δ,当 |x - x₀| < δ时,|f(x) - L| ≤ε成立,则称函数 f(x) 在 x → x₀时的极限为 L 答案:A解析:函数极限的精确定义为:对于任意给定的正数ε,存在正数δ,当 0 < |x - x₀| < δ时,|f(x) - L| < ε成立,则称函数 f(x) 在 x → x₀时的极限为 L。
2. 关于无穷小量的描述,正确的是()A. 以零为极限的变量称为无穷小量B. 绝对值无限趋近于零的变量称为无穷小量C. 函数值无限趋近于零的变量称为无穷小量D. 当自变量趋于某个值时,函数值无限趋近于零的变量称为无穷小量答案:A解析:以零为极限的变量称为无穷小量。
3. 下列关于无穷大量的说法,错误的是()A. 绝对值无限增大的变量称为无穷大量B. 当自变量趋于某个值时,函数值的绝对值无限增大的变量称为无穷大量C. 无穷大量一定是无界变量D. 无界变量一定是无穷大量答案:D解析:无界变量不一定是无穷大量,但无穷大量一定是无界变量。
4. 对于函数极限的性质,下列说法不正确的是()A. 函数极限具有唯一性B. 函数极限具有局部有界性C. 函数极限具有局部保号性D. 函数极限具有可加性,即若 lim(x→x₀) f(x) 和 lim(x→x₀) g(x) 存在,则 lim(x→x₀) (f(x) + g(x)) = lim(x→x₀) f(x) + lim(x →x₀) g(x) 一定成立答案:D解析:函数极限具有唯一性、局部有界性、局部保号性。
工科数学分析习题
(B)若,则。由,故对,存在,当时有,即, 从而存在,当时有,即严格递减的, 故由可得,即
(C)若,令,利用(B)可证明。 (2)严格增,且,若,则 证明:(A)若,则, 令,即,故对,则存在使得当时 由得得(使用迭代)
即 两边除以,再同时减去得 故当时 又,则存在使得当时 对,取使得当时 故 (B)若,则。由,故对,存在,当时有,即 故严格增的,再由得,从而时,,从而由(A)得,故 (C)若,令,利用(B)可证明。 2设证明 (1) 证明 利用O.Stolz公式(2)只需令,,则 故。 或利用定义直接证明。 (2)利用O.Stolz公式可得,或均成立。但,不成立,例,故时 O.Stolz公式也不成立。 (3)见附录参考答案及提示。
16 设,且,则 证明:对,由知使得当时, 故对,取,当时,故 17.求极限 (1) (2) (3) (4)
习题1.1(B)
1 O.Stolz公式 (1)设,且严格减。若,则 证明:(A)若,对,则存在使得当时,即 从而当时 ······ 把上式不等式相加的 其对成立 又,故当时由得当时有 故对,取,当时有
,,欲使,只需,即。 故对,取当时有 故 (注意:若用夹逼法:) 2.证明:的充分必要条件是对,只有的有限多项不在 中。 证明:(必要性)若,则,, 时有,故至多有项在不在中。 (充分性)对,只有的有限多项不在中,不妨设不在 中项为,取(即取不在 中项脚标的最大者,故当时有,即。 4.证明若,则。反之不一定,举例说明。但若,则有
单调性:显然,设,则 求极限:设,由取极限得,解出
(3)见学习辅导“例25” (4), 解 有界性:
单调性:
,若,则,否则 求极限:设,由得,故。 15 试判断数列的敛散性: (1),其中; 解 欲使,只需
北京航空航天大学《工科数学分析》考试试题及参考答案(2012-2013第一学期)
3. 证明下面问题(10 分) 设数列 xn 满足 xn1 xn 4. 证明下面不等式 (10 分)
e x sin x 1
x2 , x 0, p . 2
5. ( 10 分 ) 设 函 数 f x 和 g x 在 a, b 存 在 二 阶 导 数 , 并 且 g '' x 0 , 且
二、第一次考试题目及答案
1. 计算下面各题(满分 40 分,每个题目 5 分) 1) 2) 计算极限 lim
x 0
1 x sin x 1 e x 1
2
.
求下面无穷小的阶
1 tan x 1 sin x x 0 .
3)
设 f sin x 设
cos x
0 x p
8)
1 x m sin , x 0, 已知 f x m 为正整数. x 0, x 0.
求:
m 满足什么条件,函数在 x 0 连续,
------------------------------------------------------------------------------基金项目: 《北京市精品课程建设》项目和校重点教改项目《工科数学分析开放式教学研究与实践》资助. 作者简介:杨小远(1964-),女,籍贯:江苏,博士,北京航空航天大学数学与系统科学学院教授.主要研究 方向计算数学、应用调和分析和图像处理,电子邮箱:xiaoyuanyang@.
n P2
........
1 1 1 1 n P2 ........ 1 n P1 2 2 2 2
1 p 1 1 1 2 n 1 2n1 . 2 2
工科数学分析试题及答案
A一、 求解下面问题(每小题6分,满分48分)1.设),(y x f 为一连续函数,求极限.),(122220lim dxdy y x f rr y x r ⎰⎰≤+→+π解 (0,0)),(12222limf dxdy y x f r r y x r =⎰⎰≤+→+π建议:中间过程4分2. 改变累次积分的积分顺序:dy y x f dx x x ),(-21-426-2⎰⎰0820-1(,)(,)ydy f x y dx dy f x y dx---=+⎰⎰⎰⎰3. 计算二重积分dxdy y x D22sin +⎰⎰,其中积分区域为}.4|),{(2222ππ≤+≤=y x y x D解:D⎰⎰4. 计算三重积分dxdydz x y V⎰⎰⎰+)1(2012,其中V 由22--4y x z =与223y x z +=所成的立体.解:由于V 是关于yoz 平面对称的,且x y 2012是关于x 的奇函数,所以02012=⎰⎰⎰d x d y d z x yV,于是23220121()r VVyx dxdydz dxdydz d πθ+==⎰⎰⎰⎰⎰⎰⎰⎰223)r d rdr πθ=⎰2223001)()2r d d r πθ=⎰22220012(4)()62r d r d r πθ⎤=--⎢⎥⎣⎦⎰34222001219(4)6236r d r πθπ⎡=⋅---=⎢⎥⎣⎦⎰ (写出对称性给2分,计算过程适当给分)2204sin 6d r rdr πππθπ==-⎰⎰5. 计算积分2(2)I x z ds Γ=+⎰,其中曲线Γ为2222,0.x y z a x y z ⎧++=⎨++=⎩(利用对称性)解: 利用轮换对称性知2322222212()333a a x ds y ds z ds x y z ds ds πΓΓΓΓΓ===++==⎰⎰⎰⎰⎰1()03zds xds yds x y z ds ΓΓΓΓ===++=⎰⎰⎰⎰ 所以322(2)3a x z ds πΓ+=⎰(建议:两个对称性各3分,写出参数方程直接计算适当给分)6. 计算第一型曲面积分()x y z dS ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分. (可利用对称性) 解: 利用对称性知0xdS ydS ∑∑==⎰⎰⎰⎰设xy D ={|),(y x 2222x y a h +≤-} 则()x y z dS ∑++⎰⎰=zdS ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-(建议:对称性0xdS ydS∑∑==⎰⎰⎰⎰2分 ,= 1分,zdS ∑⎰⎰计算过程3分)7. 证明向量场))2(),2(),2((z y x xy z y x xz z y x yz F ++++++= 是有势场,并求其势函数.解:先验证有势场0)2()2()2(=++++++=∂∂∂∂∂∂z y x xy z y x xz z y x yz F rot zyxk j故是有势场. ---------3分.)2()2()2(.),,222000000),,(),,(),,(),,(0000000C xyz z xy yz x dz z y x xy dy z y x xz dx z y x z y RdzQdy Pdx s d F z y x zzyy xx z y x z y x z y x z y x +++=++++++++=++==⎰⎰⎰⎰⎰(φ(另一种方法也可(这里略),请判卷的时候注意。
大连理工大学10,11,12,13上学期工科数学分析基础试题答案
-03cos 2lnlim 0=+=®xx (10分)四、解:(1)0)cos )((lim 00sin )(lim 00=-¢=÷øöçèæ-=®®x x g x x x g a x x (4分)(2)200sin )(lim )0()(lim )0(x xx g x f x f f x x-=-=¢®® =12)0(2sin )(lim 2cos )(lim 00=¢¢=+¢¢=-¢®®g x x g x x x g x x∴ ïîïíì=¹---¢=¢时时010,)sin )(()cos )(()(2x x x x x g x x g x x f (8分) (3)200)sin )(()cos )((lim )(lim x x x g x x g x x f x x ---¢=¢®® =xx x g x x g x x x g x 2)cos )(()sin )((cos )(lim 0-¢-+¢¢+-¢® =)0(12)0(f g ¢==¢¢,因此)(x f ¢在(-∞,+∞+∞))连续。
连续。
(10分)五、解五、解:: 设x x x f ln)(=,由2ln 1)('xxx f -=,可知,当e x >时)(x f 单调减少单调减少 (5分)若e a b >>,则有b b a a ln ln >,推出a b b a ln ln >,即有a b b a > 2011201220122011> (10分)分)所以六、解:2)()()(x x f x f x x x f -¢=¢÷øöçèæ(4分)分) 令)()()(x f x f x x g -¢=,)()(x f x x g ¢¢=¢,令0)(=¢x g ,得0=x (唯一驻点),当0<x 时,0)(<¢x g ,当0>x 时,0)(>¢x g ,故)0(g 为最小值,故0)0()0()(>-=³f g x g ,∴0)(>¢÷øöçèæx x f ,即x x f )(单调增加。
08-09工科数学分析试卷及答案
1 哈尔滨工业大学(威海)2008/2009学年 秋季学期工科数学分析 (A 班) 试题卷(A )(答案)考试形式(闭卷):闭 答题时间:150 (分钟) 本卷面成绩占课程成绩 70 %一、填空题(每题2分,共20分)(不填题首答案按零分处理)答案:1. e 312. 1- Ⅱ 3. 21,14. 22)1(t t e t - 5. 632=-+z y x 6.337. C x x x ++----13tan 2tan 318. 22121123f f f ''+''+''9. 161- 10. 1 1.=++++++∞→3231323)1ln(limnnen n e n n n2.115+-=x x y 的间断点是=x ,且是 类间断点。
3.已知0]1[lim 2=--+++∞→b ax x x x ,则=a ,=b4.已知:⎩⎨⎧=+=tey t x 12,则=22dx yd 5.曲面632222=++z y x 在点)1,1,1(-M 处的切平面方程为教研室主任签字:第1 页(共 12 页)姓名: 班级: 学号:26.函数)0(>=z z u xy沿21P P =l 的方向导数=∂∂1P ul,其中21,P P 分别为)1,1,1(与)2,2,2(。
7.⎰=x x dx24cos sin8.设),(),2,(v u f y x y x f z ++=有二阶连续偏导数,则=∂∂∂yx z29.⎰==13ln xdx x I10.设R x xe y x ∈=-,1,则=∈y Rx max 二、选择题:(每题2分,共20分)(不填题首答案按零分处理) 答案:1.设nn x xx f 211lim)(++=∞→ ,则( )成立。
(A )有间断点1=x ; (B )有间断点1-=x ; (C )有间断点0=x ; (D )无间断点2.关于函数⎪⎩⎪⎨⎧<≥=-1,11,)(22x ex e x x f x 在1±=x 两点处的连续性与可导性为( )(A )在1±=x 处连续但不可导;(B )在1±=x 处可导 ;(C )在1=x 可导,在1-=x 处不可导 ; (D )在1=x 不可导,在1-=x 处可导。
大学工科数学分析测试试题及答案(数解几)
20XX年复习资料大学复习资料专业:班级:科目老师:日期:专题一:数项级数的敛散性 (测试题16分,每题8分)(1) 正项级数的敛散性判定; (2) 绝对收敛与条件收敛; (3) 数项级数敛散性证明.1. 讨论下列级数的敛散性,若为变号级数收敛请指出它是条件收敛还是绝对收敛:(1) 111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑; (2) ()1111n nn n∞-=⎛⎫-- ⎝∑ 解: (1) 12lim lim10111n nnnnx x nnn n n +→∞→∞==≠⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 级数发散----------(4分);(2) 设()1x f x e x =--, 则()'10x f x e =->,所以()f x 单调减则1nn a n=-单调减,且lim 0n n a →∞=,由莱布尼兹准则知级数收敛------(2分)而()22000111lim limlim 22x x x x x f x e x e x x x →→→---===,这说明1111 nn n n n与∞∞==⎛⎫- ⎝∑∑同敛散,则级数条件收敛------(4分)本题分数 30得 分2. 设级数1n n a ∞=∑收敛, 且lim 0n n na →∞=. 求证: 级数()11n n n n a a ∞+=-∑收敛,且()111n n n n n n a a a ∞∞+==-=∑∑.证:记12n n a a a σ=++, 由级数1n n a ∞=∑收敛知1lim n n n n a σ∞=→∞=∑存在------(3分)因为级数()11nn n n aa ∞+=-∑的部分和()()()12231121112 =1n n n n n n n n S a a a a n a a a a a na n a a σ++++=-+-+-=++--++-----(6分)于是由lim 0n n na →∞=知1lim lim n n n n n n a S σ→∞→∞∞===∑----(8分)专题二:幂级数及其应用 (测试题20XXXX 分,每题6分). (1) 阿贝尔(Abel)定理; (2) 幂级数的收敛域与和函数; (3) 幂级数展开.1. 已知幂级数()12nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,求幂级数()13nn n a x ∞=-∑的收敛域.本题分数 30得 分解: 记2t x =+,则由条件知1n n n a t ∞=∑在2t =处收敛,在2t =-处发散------(3分)从而得()13nn n a x ∞=-∑的收敛域为(1,5]------(6分)2. 求()()2011!nnn n x n ∞=-+∑的收敛域及和函数.解: 记()()211!nn n a n -=+,则1lim 0n n naa +→∞=,知收敛域为(),-∞+∞-----(2分)()()()()()()()()()()22000011111111!1!!1!nnnnn n n nn n n n n n n S x x x x x n n n n ∞∞∞∞====--+----===++++∑∑∑∑()()()()()1101111!!1!n nnnn n n n n x x x n n n ∞∞∞===---=-+-+∑∑∑()()()123S x S x S x =-+ -----(4分) 其中()()()()1231, 1, 1(0)x x x S x xe S x e S x x e x x---=-=-=--≠ 则()()()111, 00, 0x xx e e x S x xx --⎧-++-≠⎪=⎨⎪=⎩-----(6分)3. 将 ()2147f x x x =++ 展开成()2x +的幂级数.解: ()()22114723f x x x x ==++++------(3分) ()()210112,23233nnn n x x ∞+==-+-<<-+∑分)专题三:傅里叶级数展开及应用 (测试题14分,每题7分)(1) 狄里克雷(Dirichlet)定理; (2) 正弦级数和余弦级数; (3) 求数项级数的和.1. 设函数1, 201, 0 2x f xx在[]2, 2-上展开为傅里叶级数01(cossin)222n n n a n x n xa b ,求该傅里叶级数的和函数()S x .解: 根据狄里克雷(Dirichlet)定理得和函数()1,201,020,00,2x x S x x x --<<⎧⎪<<⎪=⎨=⎪⎪=±⎩-- --------------------------(6分)2. 将(), [0,)f x x x ππ=-∈展开成余弦级数, 并求数项级数222111135+++ 的和.解: 将()f x 偶延拓:(),0,0x x F x x x ππππ-≤<⎧=⎨+-≤<⎩-------------(2分)则0, 1, 2,n b n ==()()022, 11, 1, 2,nn a a n n ππ==--=从而224cos3cos5()cos 235x xf x x ππ⎛⎫=++++ ⎪⎝⎭-------------(4分) 本题分数 30得 分当0x =时,()0f π=,从而22221111358π+++=.. 专题四:空间向量的知识 (测试题20分,每题5分)(1)向量的坐标; (2) 向量的运算; (3) 向量的夹角;(4) 向量法证明.1. 已知两点1(42,1)M 和2(3,0,2)M , 求向量12M M 的三个方向角以及与12M M 同方向的单位向量012M M .解: 三个方向角为23,,343πππ-----------(3分) 单位向量012121{,}22M M =-.--------(5分)2. 已知||5, ||1, ||4, a b a b a b 求. 解: 3a b -------(5分)3. 求直线1233x ty t z =+⎧⎪=+⎨⎪=⎩与平面2550x y z +-+=的夹角.解: 夹角为6π.--------(5分)4. 利用向量证明:三角形三中线长度的平方和等于三边长度平方和的本题分数 20XX得 分34.证: 三边向量为,,a b c ,则三中线向量为111,,,222l b c m c a n a b =+=+=+222222222111()()()2225()()4l m n b c c a a b a b c a b c a b c ++=+++++=+++⋅+⋅+⋅又0a b c ++=,则2()0a b c ++=,由此得2221()()2a b c a b c a b c ++=-⋅+⋅+⋅故2222223()4l m n a b c ++=++…--------(5分)专题五:点、直线与平面 (测试题20XX 分,每题5分)(1) 点到平面的距离公式;(2) 点到直线的距离公式;(3)求平面方程;(4)求直线方程.1. 求点(1,2,3)-到平面:5340x y z π-++=的距离.解: 距离0d =.-------(5分)2. 求点(2,3,1)-到直线1213114x y z ---==的距离. 本题分数 20XX得 分解: 距离6d =. ----(5分)3. 求经过点1(3,2,9)P -和2(6,0,4)P --, 且垂直于平面:2480x y z π-+-=的平面方程.解: {}{}129,2,13, 2,1,4PP n =--=- 所求平面法向量为{}125,10,5PP n ⨯=---------(3分) 得平面的方程为:220x y z --+=-------(5分)4.求过点(11,9,0)与直线1135:243x y z l -+-==和直线221:512x y z l -+==-都相交的直线方程和两交点12,P P 的坐标.解: 设所求直线l 与直线1l 的交点为1(12,34,53)P t t t +-++,与直线2l 的交点为2(5,2,12)P ρρρ--+,因0(11,9,0)M 与点1P ,2P 共线,所以有1002PM M P即111293453,5112912t t t λρρρ--+---===----+令① ……………(2分) 上式成为 210(511)()412(7)()35(21)()t i t ii t iii λρλρλρ-=-⎧⎪-=--⎨⎪+=-⎩将()2()i ii ⋅-得11158λρλ=- ②将()3()4ii iii ⋅-⋅得111756λρλ=-+ ③由②③有,2λ=,1ρ=代入( i )有,1t =- ……………(4分)从而得交点1(1,7,2)P --和2(5,1,1)P 两点间的直线方程为:182:681x y z l ++-==-…………(5分)专题六:求旋转曲面的方程 (测试题20XXXX 分,每题6分)(1) 坐标面内的曲线绕坐标轴旋转;(2) 一般空间曲线绕定直线旋转.1. ()22340x y z ⎧-+=⎪⎨=⎪⎩绕y 轴旋转所得旋转曲面方程.解: 旋转曲面方程为()222234x z y ±++=………(6分)2. 直线1:210x y z -Γ==绕直线:L x y z ==旋转所得旋转曲面方程. 解: 设1111(,,)M x y z 是母线上的任意点,因为旋转轴通过原点,所以过1M 的纬圆方程是本题分数 20XXXX 得 分11 / 11 111222222111()()()0x x y y z z x y z x y z -+-+-=⎧⎨++=++⎩---------------(3分) 由于1111(,,)M x y z 在母线上得1111210x y z -------------(4分) 消去111,,x y z 得旋转曲面方程-----------(6分)222251(1)9x y z x y z ++-=++-。
工科数学分析上册基本题型练习
极限题1、求.)(cos lim 21x x x → 2、6sin )1(lim22xdt e x tx ⎰-→求极限。
3、、)(arctan sin arctan lim 20x x xx x -→ 4、210sin lim x x x x ⎪⎭⎫ ⎝⎛→ 5、⎰⎰+∞→xt xt x dte dt e 020222)(lim 6、)1ln(1lim -→+x e x x7、xx x e x cos 1120)1(lim -→+ 8、 xx x x xx ln 1lim 1+--→9、)1ln()2(sin )1)((tanlim2302x x e x x x +-→ 10、10lim()3x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞→xx e x 12、)cot 1(lim 220x x x -→ 13、[])1(3sin 1lim 11x e x x ---→ 14、210)sin (lim x x xx → 15、()⎪⎩⎪⎨⎧=≠+=0021)(3x Ax x x f x在0=x 点连续,则A =___________导数题1、.sin 2y x x y ''=,求设2、.),(0y x y y e e xy yx'==+-求确定了隐函数已知方程 3、.)5()(23的单调区间与极值求函数-=x x x f4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?5、)()2)(1()(n x x x x f ---= .求)()(x fn6、yx y x = 求dy 7、⎰=x xdt t x F 1sin 12sin )( 求)(x F '8、设⎩⎨⎧≤+>+=0401)(x b ax x e x f x 求b a ,使)(x f 在0=x 点可导.9、设)(x f 可导且1)1()0(==f f .若)2(sin 2sin 2)2(x f x f y = 求0=x dy10、设xxxee e y 221ln arctan +-=, 求y '. 11、设yy x =, 求dy .12、设xn e n x x x x f -++++=)!!21()(2 ,n 为正整数,求)(x f 的极值. 13、设)(x f 在0=x 点连续,0)0(≠f ,又)(2x f 在0=x 点可导且)0(|])([02f x f x ='=,求)0(f '.14、设)(x f 在]1,0[上连续,)1,0(内可导,0)1()0(==f f ,1)21(=f . 证明:)1,0(∈∃ξ使1)(='ξf15、设函数0)(>x f 且二阶可导,)(ln x f y =,则=''y __________ 16、0)cos(sin =--y x x y ,则=dy __________ 17、xxy sin =,求y '18、求函数21x xy +=的极值19、()y x y +=sin ,求22dxyd20、()xx y cos sin =,求dxdy 21、求过原点且与曲线59++=x x y 相切的切线方程。
大一工科数学分析试卷及答案
大一工科数学分析试卷及答案大一工科数学分析试卷考试形式闭卷答题时间:120 (分钟)本卷面成绩占课程成绩80 %一、填空题(每题3分,共30分)1.=+∞→nnnx n 42lim 22.=+-∞→xx x 1)21(lim3.设?>+≤=00)(22x x x x x x f ,则=-)(x f4.摆线??-=-=ty t t x cos 1sin 在2π=t 处的法线方称为5.函数x x f arctan )(=按马克老林公式展开到)(12+n x ο的表达式为: 6.若??x t dt t f dt e 11)(32,则=)(x f7.若?++=c x dx x f 2cos sin )((其中c 时任意常数),则 =)(x f8.?-=-+112)1cos (dx x x x9.设)100()2)(1()(---=x x x x f ,则=')1(f姓名: 班级:学号:遵守考试纪律注意行为规范10.若-ba xb dxα)(收敛(其中0>α),则α的取值范围是二、试解答下列各题:(每题5分,共50分)1.求极限)2122321(lim 2nn n -+++∞2.已知0)11(lim 2=--++∞→b ax x x x ,求b a ,。
遵守考试纪律注意行为规范3.设1lim )()1()1(2+++=--∞→x n x m n e bax e x x f ,求b a ,使)(x f 可导。
4.求由等式0333=-+xy y x 确定的)(x f y =在0>x 范围内的极限点。
5.设ttte y e x ==-,,求22,dx y d dx dy 。
6.求曲线)1ln()(2++=x x x f 在1=x 时的曲率。
7.计算不定积分?-dx e x11。
8.计算定积分?20xdx x 。
9.设?<+≥+=011011)(x e x xx f x,求-2)1(dx x f 。
工科数学分析习题答案(下)
习题6.11.(1)(a )23()()()d ()d ,x y x y σσσσ+>+⎰⎰⎰⎰ (b )23()()()d ()d ,x y x y σσσσ+<+⎰⎰⎰⎰(2)(a)2()()e d e d xyxy σσσσ<⎰⎰⎰⎰, (d )2()()e d e d xy xy σσσσ>⎰⎰⎰⎰2.(1)02I ≤≤; (2)0I ≤≤ (3)e I ππ≤≤ (4)3075I ππ≤≤习题6.21.(1)221; (2)3221; (3)4(3115-; (4)62e 9e 4--;(5)54ln 22-; (6)425-; (7)21)15; (8)3cos1sin1sin 42+-2.(1)2 44 04d (,)d d (,)d yy xI x f x y y y f x y x ==⎰⎰⎰⎰;(2) sin 1 arcsin 0 0 0 arcsin d (,)d d (,)d ;xyyI x f x y y y f x y x ππ-==⎰⎰⎰⎰(3)()()()⎰⎰⎰⎰⎰⎰+==21212121211d ,d d ,d d ,d yyxxx y x f y x y x f y y y x f x I(4)21 01 01 21d (,)d d (,)d I x f x y y y f x y x ---==⎰⎰⎰⎰.3.(1)2 10 d (,)d xx x f x y y ⎰⎰; (2) 1 0d (,)d y f x y x ⎰⎰; (3) 1eed (,)d y y f x y x ⎰⎰;(4)1220 0 1d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰; (5) 132 0d (,)d yy f x y x -⎰;(6)22 2 2 00 22d (,)d d (,)d d (,)d aa aa aay y a aaay f x y x y f x y x x f x y x +++⎰⎰⎰⎰⎰⎰;(7)214d (,)d yy f x y x -⎰⎰; (8) 12 01d (,)d yy f x y x -⎰⎰。
工科数学分析练习题
2. 设 A ( x 2 yz ) i ( y 2 xz ) j ( z 2 xy ) k ,则 div A
是球面 x 2 y 2 z 2 R 2 的外侧. 11.计算二次积分 dy
1 4 2 y
ln x dx . x2 1
12.求 ( x 2 y 2 )dV ,其中 是由曲面 4 z 2 25( x 2 y 2 ) 及平面 z 5 所围成的闭区域.
. .
x 2 y 2 介于 z 0, z 1 之间的部分,则曲面积分 I ( x 2 y 2 )dS
x 2 y 2 z 2 3x 0 在点 (1,1,1) 处的切线方程是 13. 曲线 2 x 3 y 5 z 4 0
.
14. 球面 z a 2 x 2 y 2 在柱面 x 2 y 2 a x 内部的部分的表面积 A= 15. 函数 u ln( xy z ) 2 yz 2 在点 (1,3,1) 处沿方向 l (1,1,1) 方向的方向导数
a
n 0
n
( x 1) n , 2 x 0 ,则 a n
7. 已知
( x a y )dx y dy 是某函数的全微分,则常数 a ( x y )2
2
8.设函数 f ( x ) x ,0 x 1 , 而 S ( x )
b
n1
n
sin n x , x . 其中
)
数学分析基础试题
数学分析基础试题试题一:函数极限与连续性1. 求极限:$\lim_{x \to 0} \frac{\sin x}{x}$。
解:根据“三角函数极限公式”可得:$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$2. 设函数$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$,判断$f(x)$在$x = 0$处是否连续。
解:要判断$f(x)$在$x = 0$处是否连续,需满足以下三个条件:(1)存在$f(0)$:由定义可知$f(0) = 0$。
(2)$\lim_{x \to 0} f(x)$存在:对于$x \neq 0$,由于$-1 \leq \sin \frac{1}{x} \leq 1$,所以:$$-|x|^2 \leq x^2 \sin \frac{1}{x} \leq |x|^2$$利用夹逼定理可得:$$\lim_{x \to 0} (-|x|^2) = 0, \quad \lim_{x \to 0} |x|^2 = 0$$因此,$\lim_{x \to 0} f(x) = 0$。
(3)$\lim_{x \to 0} f(x) = f(0)$:由(1)(2)可知,$\lim_{x \to 0} f(x) = f(0)$,即$f(x)$在$x = 0$处连续。
试题二:导数与微分1. 求函数$f(x) = \sin^2 x + 4x^2 - 3x - 2$的导函数。
解:由导数的四则运算法则可得:$$f'(x) = (2\sin x \cos x) + (8x - 3)$$化简得:$$f'(x) = 2\sin 2x + 8x - 3$$2. 设函数$y = e^x \sin x$,求$y''$。
解:根据求导法则可得:$$y' = e^x \cos x + e^x \sin x$$再次求导得:$$y'' = e^x \cos x - e^x \sin x + e^x \sin x + e^x \cos x = 2e^x \cos x$$试题三:积分与微积分基本定理1. 求积分$\int (4x^3 + 5x^2 - 2x + 3) \ dx$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010工科数学分析基础(微积分)试题一、填空题 (每题6分,共30分)1.函数⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≥+=010)(2 x xe x bx a xf bx ,=-→)(lim 0x f x ,若函数)(x f 在0=x 点连续,则b a ,满足 。
2.=⎪⎭⎫⎝⎛+∞→xx x x 1lim , =⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++++∞→n n n n n n n n n 2222211lim 。
3.曲线⎩⎨⎧==t e y te x tt cos 2sin 在()1,0处的切线斜率为 ,切线方程为 。
4.1=-+xy eyx ,=dy ,='')0(y 。
5.若22lim 221=-+++→x x bax x x ,则=a ,=b 。
二、单项选择题 (每题4分,共20分)1.当0→x 时,1132-+ax 与x cos 1-是等价无穷小,则( ) (A )32=a , (B )3=a , (C). 23=a , (D )2=a 2.下列结论中不正确的是( )(A )可导奇函数的导数一定是偶函数; (B )可导偶函数的导数一定是奇函数; (C). 可导周期函数的导数一定是周期函数;(D )可导单调增加函数的导数一定是单调增加函数;3.设xxx x f πsin )(3-=,则其( )(A )有无穷多个第一类间断点; (B )只有一个跳跃间断点; (C). 只有两个可去间断点; (D )有三个可去间断点;4.设x x x x f 3)(+=,则使)0()(n f存在的最高阶数n 为( )。
(A )1 (B )2 (C) 3 (D )45.若0)(sin lim30=+→x x xf x x , 则20)(1lim x x f x +→为( )。
(A )。
0 (B )61, (C) 1 (D )∞三.(10分)求xx x x x arctan tan 211lim⋅--++→四.(10分)设⎪⎩⎪⎨⎧=≠-=0,,sin )()(x a x xx x g x f ,其中)(x g 具有二阶连续导数,1)0(=g ,1)0(='g ,(1)求a 的值使)(x f 连续;(2)求)(x f ';(3)讨论)(x f '连续性。
五.(10分)函数⎪⎪⎪⎩⎪⎪⎪⎨⎧--+=-+=0,4sin 1,60,arcsin )1ln()(23 x x x ax x e x x xx ax x f ax 问a 为何值,)(x f 在0=x 处(1)连续;(2)为可去间断点;(3)为跳跃间断点;(4)为第二类间断点;六.(10分)设141=x , 21+=+n n x x ),2,1(⋅⋅⋅=n ,(1)求极限n n x ∞→lim ; (2)求极限2112)2(4lim -+∞→⎪⎪⎭⎫⎝⎛--n x n n n x x七.(10分)设函数)(x f 在[]b a ,连续,()b a ,可导,证明:至少存在一点∈ξ()b a ,,使ξξξ--='b a f f f )()()(2011工科数学分析基础(微积分)试题一、填空题 (每题6分,共30分)1.=⎪⎭⎫⎝⎛-+∞→nn n n 11lim ;=+→xxx x x tan )1sin 1(2sin lim 0 。
2.设函数)(x y y =由方程e xy e y=+确定,则=dxdy,曲线)(x y y = 在)1,0(点处切线方程为 。
3.设函数)(x y 由参数方程⎩⎨⎧+-=++=131333t t y t t x 确立,则函数)(x y 单调增加的x 的取值范围是 ,曲线)(x y y =下凸的x 取值范围是 。
4.设当0→x 时,)1(2++-bx ax e x 是比2x 高阶的无穷小,则=a ,=b 。
5.设x x x f sin )(3=,则=')0(f ,=)0()2011(f。
二、单项选择题 (每题4分,共20分)1.下列结论正确的是( ) (A ).如果)(x f 连续,则)(x f 可导。
(B ).如果)(x f 可导,则)(x f '连续. (C). 如果)(x f '不存在,则不)(x f 连续(D ). n x 落在),(εε+-a a 外如果)(x f 可导,则)(x f 连续. 2.数列{}n x 极限是a 的充要条件是( )(A )对任意ε>0,存在正整数N ,当n >N 时有无穷多个n x 落在),(εε+-a a 中 (B )对任意ε>0,存在正整数N ,当n >N 时有无穷多个n x 落在),(εε+-a a 外 (C). 对任意ε>0,至多有有限多个n x 落在),(εε+-a a 外 (D )以上结论均不对。
3.设xx x f πsin 1)(2-=,则其( )(A )有无穷多个第一类间断点; (B )只有一个可去间断点; (C).有两个跳跃间断点; (D )有两个可去间断点;4.曲线21x xe y =的渐进线有( )条。
(A )1条; (B )2条; (C).3条; (D )4条。
5.设)(x f 在a x =可导,则函数)(x f 在a x =不可导的充分条件是( ) (A ))(a f >0且)(a f '>0; (B ))(a f <0且)(a f '<0; (C). )(a f =0且)(a f '≠0; (D ))(a f =0且)(a f '=0三.(10分)求⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++→13cos 221arctan 1lim 20x x x x x 四.(10分)设⎪⎩⎪⎨⎧=≠-=0,,sin )()(x a x xxx g x f ,其中)(x g 具有二阶连续导数,1)0(=g ,1)0(='g ,2)0(=''g ,(1)求a 的值使)(x f 连续;(2)求)(x f ';(3)讨论)(x f '连续性。
五.(10分)比较20122011和20112012的大小,并叙述理由。
六.(10分))(x f ''>0,)0(f <,证明函数xx f )(在)0,(-∞和),0(∞+内单调增加。
七.(10分)设)(x f 在[]1,0连续,()1,0可导,0)1(=f ,证:存在)1,0(0∈x 使0)()(000='+x f x x nf ,n 为正整数。
2012工科数学分析基础(微积分)试题一、填空题 (每题6分,共30分)1) 123lim ()5n n n n →+∞+=3; 222321lim sin x x x x x→∞++=+3.(2) 曲线()n y x n N +=∈在点(1,1)处的切线方程为1(1)y n x -=-,记该切线与x 轴的交点为(,0)n ξ,则lim n n n ξ→+∞=1e -.(3) 设22ln(1)x t t y t ⎧=+⎨=+⎩,则d d yx =212(1)t +,22d d y x=412(1)t -+. (4)cos2x 的Maclaurin (麦克劳林)公式为cos2x =24(2)(2)12!4!x x -+5o()x +,设2()cos 2g x x x =,则(4)(0)g =48-.(5) 当0x →时,22()f x tan x x =-是x 的4阶无穷小(写出阶数),(0)f '''=.二、单项选择题 (每题4分,共20分)(1) 以下极限计算中正确的是 .A .01lim sin 1x x x →=;B .1lim sin 0x x x →∞=;C .011lim sin x x x →=∞;D .1lim sin 1x x x →∞=.(2) 函数2sin(2)()(1)(2)x x f x x x x ⋅-=--在下列哪一个区间内有界?A .(1,0)-;B .(0,1);C .(1,2);D .(2,3).(3) 对于定义在(1,1)-上的函数()f x ,下列命题中正确的是 .A .如果当0x <时()0f x '<,当0x >时()0f x '>,则(0)f 为()f x 的极小值;B .如果(0)f 为()f x 的极大值,则存在01δ<≤,使得()f x 在(,0)δ-内单调增加,在(0,)δ内单调减少;C .如果()f x 为偶函数,则(0)f 为()f x 的极值;D .如果()f x 为偶函数且可导,则(0)0f '=.(4) 若220ln(1)()lim 2x x ax bx x→+-+=,则 . A .51,2a b ==-; B .51,2a b ==;C .1,2a b ==-;D .0,2a b ==. (5) 设函数()f x 在点0x =的某邻域内三阶可导,且0()lim 11cos x f x x→'=--,则 .A .(0)f 为()f x 的一个极大值;B .(0)f 为()f x 的一个极小值;C .(0)f '为()f x '的一个极大值;D .(0)f '为()f x '的一个极小值.三、(10分)已知函数()y y x =由方程221(0)x y y y +=>确定,求d d y x,并求()y y x =的极值.四、(10分) 求极限 sin 260lim ln(1)sin x xx e e x x x x→-+-+五、(10分) 已知函数,0()cos ,0x x f x a b x x x ≤⎧⎪=+⎨>⎪⎩ 在点 0x = 处可导,求常数a和b .六、(10分)(1)证明:111ln(1)()1n N n n n +<+<∈+; (2)设 111ln ()2n u n n N n+=+++-∈,证明数列{}n u 收敛. 七、(10分) 设函数()f x 在[0,]π上连续,在(0,)π内可导,(0)0f =.证明:至少存在一点(0,)ξπ∈,使 2()tan ()2f f ξξξ'=⋅.。