2017-2018高一数学上学期期末考试试题及答案

合集下载

2017-2018学年高一数学上学期期末统一考试试题及答案(新人教A版 第34套)

2017-2018学年高一数学上学期期末统一考试试题及答案(新人教A版 第34套)

中山市高一级2017-2018学年度第一学期期末统一考试数学科试卷本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。

共150分,考试时间100分钟。

注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不可以使用计算器.4、考试结束,将答题卡交回,试卷不用上交.5、参考公式:球的体积公式34,3V R π=球,其中R 是球半径. 锥体的体积公式V锥体13Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式V台体1()3h S S '=+,其中,S S '分别是台体上、下底面的面积,h 是台体的高.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)1.已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆ 2.下列函数中,在区间()0,1上是增函数的是( )A .x y =B .x y -=3C .xy 1=D .42+-=x y3.在同一坐标系中,函数y =x-2与y =log 2 x 的图象是( ).ABCD4.如左图是一个物体的三视图,则此三视图所描述的物体是下列几何 体中的( )正视图左视图俯视图5.已知lg 2,lg3,a b ==则lg 45的值用a ,b 表示为 ( ) A .21b a +-B .12b a +-C .3a b +D .2a b b ++6.若函数22)(23--+=x x x x f 的一个正数零点附近的函数值用二分法逐次计算,得到如下参考数据: 那么方程02223=--+x x x 的一个近似根(精确到0.1)为A .1.2B .1.3C .1.4D .1.57.若213211()(),22a a +-<则实数a 的取值范围是 A .(1,)+∞B .1(,)2+∞C .(,1)-∞D .1(,)2-∞8.已知直线b kx y +=经过一、二、三象限,则有( )A .k<0,b <0B .k<0,b>0C .k>0,b>0D .k>0,b<09.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( ) A .①③B .②④C .①④D .②③10.若()21231log log log 0a a a x x x ++==>,则123,,x x x 之间的大小关系为( ).A .3x <2x <1xB .2x <1x <3xC .1x <3x <2xD .2x <3x <1x第Ⅱ卷(非选择题 共100分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11.点(1,1) 到直线:3430l x y ++=的距离为 . 12.某同学利用TI-Nspire 图形计算器作图作出幂函数34()f x x =的图象如右图所示. 结合图象,可得到34()f x x =在区间[1,4]上的最大值为 .ABCD(结果用最简根式表示)13.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .14.过点P (3,0)的直线m ,夹在两条直线03:1=++y x l 与022:2=--y x l 之间的线段恰被点P 平分,那么直线m 的方程为三、解答题:(本大题共 6 小题,共 80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分) (I)求值:022*******log 9log 3log 3log --+;(Ⅱ)设函数f (x )是定义在R 上的偶函数,且)2()(-=x f x f ,当x∈[0,1]时,1)(+=x x f ,求)23(f 的值.16.(本小题满分14分)(I)求两条平行直线01243=-+y x 与068=++y mx 之间的距离; (Ⅱ)求两条垂直直线022=++y x 与024=-+y nx 的交点坐标.17.(本小题满分13分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.18.(本小题满分13分)A 、B 两城相距100km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数25.0=λ.若A 城供电量为20亿度/月,B 城为10亿度/月.(I)把月供电总费用y 表示成x 的函数,并求定义域;B 1 CB A DC 1A 1。

最新-高一数学上学期期末考试试题及答案

最新-高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己の姓名、座号、考籍号分别填写在试卷和答题纸规定の位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体の体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高2.球の表面积公式24S R π=,球の体积公式343R V π=,其中R 为球の半径.一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出の四个选项中,只有一项是符合题目要求の.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线の两条直线 ( )A .平行B .相交C .异面D .以上均有可能 3.已知幂函数()αx x f =の图象经过点⎝ ⎛⎭⎪⎫2,22,则()4f の值等于 ( ) A .16 B.116 C .2 D.124. 函数()lg(2)f x x =+の定义域为 ( )A.(-2,1)B.[-2,1]C.()+∞-,2D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|の最小值为 ( )AB .CD .26.设m 、n 是两条不同の直线,α、β是两个不同の平面,则下列命题中正确の是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上の奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭の值域是 ( )A .RB .⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞) D. (0,+∞) 9.已知圆0964:221=+--+y x y x c ,圆019612:222=-+++y x y x c ,则两圆位置关系是 ( )A .相交B .内切C .外切D .相离10. 当10<<a 时,在同一坐标系中,函数xay -=与x y a log =の图象是 ( )A. B. C. D.11. 函数f(x)=e x-x1の零点所在の区间是 ( ) A.(0,21) B. (21,1) C. (1,23) D. (23,2) 、12. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若(21)()f a f a +>,则实数a の取值范围是( )A .1(,1)(,)3-∞-⋃-+∞ B . (,3)(1,)-∞-⋃-+∞C . 1(1,)3-- D .(3,1)--第Ⅱ卷(非选择题,共72分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 计算 =+⨯+2lg 5lg 2lg )5(lg 2________.14. 已知直线013:1=-+y ax l 与直线()0112:2=+-+y a x l 垂直,则实数a =_____. 15. 已知各顶点都在一个球面上の正方体の棱长为2,则这个球の体积为 . 16. 圆心在y 轴上且通过点(3,1)の圆与x 轴相切,则该圆の方程是 .三、解答题:本大题共6小题, 共56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设集合{|13}A x x =-≤<,{|242}B x x x =-≥-, {|1}C x x a =≥-.(Ⅰ)求A B ;(Ⅱ)若B C C =,求实数a の取值范围.18.(本小题满分10分)已知函数()log (1)log (3) (01)a a f x x x a =-++<<. (Ⅰ)求函数()f x の零点;(Ⅱ)若函数()f x の最小值为4 ,求a の值.19.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (Ⅰ)当a 为何值时,直线l 与圆C 相切;(Ⅱ)当直线l 与圆C 相交于A ,B 两点,且AB =22时,求直线l の方程.20.(本小题满分12分)三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,△ABC 是边长为4の等边三角形,D 为AB 边中点, 且CC 1=2AB .(Ⅰ)求证:平面C 1CD⊥平面ADC 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)求三棱锥D ﹣CAB 1の体积.21. (本小题满分12分)已知f (x )是定义在[-1,1]上の奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(Ⅰ)判断f (x )在[-1,1]上の单调性,并证明; (Ⅱ)解不等式:()()x f x f 3112-<-;(Ⅲ)若f (x )≤m 2-2am +1对所有のa ∈[-1,1]恒成立,求实数m の取值范围.2017-2018学年高一上学期期末考试高一数学答案一、选择题C D D D B D A B C D B A 二、填空题13、1 14、35 15、16、x 2+y 2-10y =0三、解答题17、解: (Ⅰ)由题意知,{|2}B x x =≥分 所以{}|23A B x x ⋂=≤<分 (Ⅱ)因为B C C ⋃=,所以B C ⊆分 所以12a -≤,即3a ≤分18、解:(Ⅰ)要使函数有意义:则有1030x x -⎧⎨+⎩>>,解之得:31x -<<2分函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+由()0f x =,得2231x x --+=即2220xx +-=,1x =-±(3,1)±-∵-1()f x ∴の零点是1-5分(Ⅱ)函数化为:22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦31x -∵<< 201)44x ++≤∴<-(7分01a ∵<<2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴即min ()log 4a f x =由log 44a =-,得44a-=,14242a -==∴ 10分19、解:(Ⅰ)若直线l 与圆C 相切,则有圆心(0,4)到直线l :ax +y +2a =0の距离为21242=++a a3分解得43-=a . 5分 (Ⅱ)过圆心C 作CD ⊥AB ,垂足为D.则由AB =22和圆半径为2得CD = 27分因为21242=++=a a CD所以解得7-=a 或1-.故所求直线方程为7x -y +14=0或x -y +2=0.10分20、解:(Ⅰ)∵CC 1⊥平面ABC ,又AB ⊂平面ABC ,∴CC 1⊥AB ∵△ABC 是等边三角形,CD 为AB 边上の中线,∴C D ⊥AB2分∵CD ∩CC 1=C ∴AB ⊥平面C 1CD∵AB ⊂平面ADC 1∴平面C 1CD⊥平面ADC 1; 4分(Ⅱ)连结BC 1,交B 1C 于点O ,连结DO .则O 是BC 1の中点,DO 是△BAC 1の中位线.∴DO∥AC 1.∵DO ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1;8分(Ⅲ)∵CC 1⊥平面ABC ,BB 1∥CC 1,∴BB 1⊥平面ABC .∴BB 1 为三棱锥D ﹣CBB 1 の高.=.∴三棱锥D ﹣CAB 1の体积为.12分21、解:(Ⅰ)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1+-x 2·(x 1-x 2),2分由已知得f x 1+f -x 2x 1+-x 2>0,x1-x2<0,∴f(x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增. 4分(Ⅱ)∵f(x)在[-1,1]上单调递增,∴⎪⎩⎪⎨⎧-<-≤-≤-≤-≤-x xxx3112131111216分∴不等式の解集为⎭⎬⎫⎩⎨⎧<≤520x x . 7分(Ⅲ)∵f(1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]恒成立. 9分下面来求m の取值范围.设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为aの一次函数,若g (a)≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0且g (1)≥0,∴m ≤-2或m ≥2. 综上,m =0 或m ≤-2或m ≥212分。

2017-2018学年度高一数学期末考试试题

2017-2018学年度高一数学期末考试试题

2017—2018学年度第一学期期末考试试题高一数学 2017.10考试说明:1.本试题分第I 卷和第II 卷两部分。

第I 卷和第II 卷答案填涂在答题卡的相应位置,考试结束只上交答题卡。

2.满分150分,考试时间120分钟。

第Ⅰ卷(共60分)一、选择题:(本题共12道小题,每小题5分,共60分)1.已知全集U ={0,1,3,4,5,6,8},集合A ={1,4,5,8},B ={2,6},则集合(∁U A)∪B =( )A .{1,2,5,8}B .{0,3,6}C .{0,2,3,6}D .∅2、设132,2()log (21),2x xe xf x x -⎧<=⎨-≥⎩,则f [f (2)] 等于( ) A .2 B .1 C .0 D .33.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,那么f (x )与g (x )在同一坐标系内的图象可能是( )4.函数1()()22xf x x =-+的零点所在的一个区间是( )A .(﹣1,0)B .(0,1)C .(2,3)D .(1,2) 5.要得到函数y=sin (3x+)的图象,只需要将函数y=sin3x 的图象( )A .向右平移个单位B .向左平移个单位C .向左平移个单位 D .向右平移个单位6. 已知向量=(2,tanθ),=(1,﹣1),且∥,则tan (+θ)等于( )A .2B .﹣3C .﹣1D .﹣7. 4sin15°cos75°﹣2等于( ) A .1 B .﹣1 C .D .﹣8. 在▱ABCD 中,点E 满足=,若=m+n,则m ﹣n 等于( )A .B .C .﹣D .9.已知函数y=sin (ωx +φ)(ω>0,0<φ≤)的部分图象如图所示,则cos (5ωφ)等于( )A .B .﹣C .D .﹣10.设、是两个不共线的向量,已知向量=m+2, =﹣2﹣, =﹣2,若A 、B 、D 三点共线,则实数m 的值为( )A .﹣B .﹣6C .2D .﹣311. 设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 12.将函数f (x )=sin2x 的图象向右平移φ(0<φ<)个单位后得到函数g (x )的图象,若函数g (x )在区间[0,]上单调递增,则φ的取值范围是( )A .[,]B .[,) C .[,]D .[,]第II 卷(非选择题90)二、填空题:(本题共4道小题,每小题5分,共205分) 12.已知幂函数()⋅αfx =k x的图象过点)41,21(则k +α = 。

2017-2018高一数学上学期期末考试(带答案)

2017-2018高一数学上学期期末考试(带答案)

2017-2018学年上学期期末考试 高中一年级 数学 参考答案一、选择题二、填空题13. 1314. {}6,5,2- 15.55-16. {}1,0,1-三、解答题17.解:{}1A aa=-,,{}2,B b =,.................................2分 (Ⅰ)若2a =,则{}12A =,,A B=∴11b a =-=.若12a -=,则3a =,{}23A =,,∴3b =.综上,b的值为1或3.......................................5分 (Ⅱ)∵{|24}C x x =<<,,A C C A C=∴⊆,.................................7分 ∴24,214a a <<⎧⎨<-<⎩∴34a <<. ∴a的取值范围是(3,4).......................................10分 18.解:(I)直线BC的斜率32141BC k +==+.∴BC边上的高线斜率1-=k,........................... ......3分∴BC边上的高线方程为:()23y x-=-+即:10x y++=,......................... ..............6分(II) )2,1(),3,4(--CB由)2,1(),3,4(--CB得直线BC的方程为:10x y--=........................... ......9分A∴到直线BC的距离d==1152ABC S ∆∴=⨯=........................................12分19.解:根据上表销售单价每增加1元日均销售量就减少40桶,设在进价基础上增加x 元后,日均销售利润为y 元,而在此情况下的日均销售量就为()48040152040x x--=-,.......................3分 由于x >,且520x ->,即0x <<,.......................................6分于是,可得()520y x =-240522,x xx =-+-<<.......................9分 易知,当6.5x =时,y有最大值,所以,只需将销售单价定为11.5元,就可获得最大的利润.......................12分 20.证明(Ⅰ)CDEFABCD 平面平面⊥,CDCDEF ABCD =平面平面 ,在正方形CDEF中,ED DC ⊥∴ABCDED 平面⊥,ED BC∴⊥.................................2分取DC的中点G连接BG,12DG DC =,在四边形ABCD中,//,AB DC 12AB DC =,ABGD四边形∴为平行四边形,所以,点B在以DC为直径的圆上,所以DB BC⊥,............................4分 又ED BD D=,所以BBC 平面⊥,......................................6分 (Ⅱ)如图,取DC的中点G,连接AG,在DC上取点P使13DP DC =,连接NP13D ND P D ED C ==,//PN EC ∴,//PN BCE∴面,................8分连接MP,23DM DP G DC DA DG ∴==为中点,,//MP AG ∴.又//,,AB CG AB CG ABCG=∴为平行四边形,//AG BC∴,//MP BC∴,//MP BCE∴面,.................................10分 又MP NP P=,MNP BCE ∴平面//平面. MNPMN 平面⊂ ,所以MN//平面B........................................12分21.解:(Ⅰ)当3m =时, f(x)为R 上的奇函数。

2017-2018学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第124套)

2017-2018学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第124套)

黑龙江省大庆铁人中学2017-2018学年高一上学期期末数学试题
满分:150分 考试时间:120分钟
第Ⅰ卷(选择题 满分60分)
一、选择题(每小题5分,共60分)
1. 非空集合{}{}135,116X x a x a Y x x =+≤≤-=≤≤,使得()X X Y ⊆⋂成立的所有
a 的集合是( ) A. {}37a a ≤≤ B. {}07a a ≤≤ C.{}37a a <≤ D.{}7a a ≤
考点:对数函数,含绝对值的函数图像
3. 将函数g()3sin 26x x π⎛⎫=+
⎪⎝⎭图像上所有点向左平移6π个单位,再将各点横坐标缩短为 原来的12
倍,得到函数()f x ,则( ) A .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44
ππ⎛⎫ ⎪⎝⎭单调递减 C .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫ ⎪⎝⎭
单调递增
5.下列函数中最小正周期为2
π的是( ) A. sin4y x = B. sin cos()6
y x x π
=+ C. sin(cos )y x = D. 42sin cos y x x =+
6. 已知P 是边长为2的正ABC ∆的边BC 上的动点,则()
AP AB AC + ( ) A.最大值为8 B.是定值6 C.最小值为6 D.是定值3
7. 在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a = ,BD b = ,则AF = ( ) A.1142a b + B.1233a b + C.1124a b + D.2133a b +。

2017-2018学年高一上学期期末考试数学试题(20201014181259)

2017-2018学年高一上学期期末考试数学试题(20201014181259)

现在沿 AE 、 AF 及 EF 把这个正方形折成一个四面体,使 B 、 C 、 D 三点重合,重合后
的点记为 H ,如图②所示,那么,在四面体 A EFH 中必有 ( )
图①
图②
A . AH ⊥△ EFH 所在平面
B. AG ⊥△ EFH 所在平面
C. HF ⊥△ AEF 所在平面
D. HG ⊥△ AEF 所在平面
22 ( 2 3) 2 1 ,即 | m | 1 解得 m
2
2
0或 1 2
2
20.解: ∵ PA⊥平面 ABCD ,CD? 平面 ABCD ∴ PA⊥ CD
∵ CD ⊥AD , AD ∩PA= A∴CD ⊥平面 PAD .[来源:Z#xx#] ∵ PD ? 平面 PAC,∴ CD⊥ PD [来源:Z*xx*]

A. a 1或 a 2
B. a 2或 a 1
C. a 1
D. a 2
5.设 l 是直线, , 是两个不同的平面,(

A .若 l ∥ , l ∥ ,则 ∥
B.若 l ∥ , l ⊥ ,则 ⊥
C.若 ⊥ , l ⊥ ,则 l ⊥
D.若 ⊥ , l ∥ ,则 l ⊥
6.直线 2 x 3 y 6 0 关于点 (1, 1) 对称的直线方程是 ( )
三、解答题
3x 4y 5 0
17. 解:由
,得 M ( 1, 2)
2x 3y 8 0
22
( 1) x 1 ( 2)设直线方程为 x 2 y C 0 ,则, C 5 ,即 x 2y 5 0
18.解:圆 x2 y2 4 的圆心坐 标为 (0,0) , 半径 r 4
∵ 弦 AB 的长为 2 3 ,
故圆心到直线的距离 d 19.解:

2017-2018学年高一上学期期末联考数学试题(解析版)

2017-2018学年高一上学期期末联考数学试题(解析版)

豫南九校2017-2018学年上期期末联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2A =,则集合(){,|,}B x y x A y A =∈∈中元素的个数为( ) A. 1 B. 2C. 3D. 4【答案】D 【解析】 【分析】由题意,集合B 是由点作为元素构成的一个点集,根据,x A x B ∈∈,即可得到集合B 的元素. 【详解】由题意,集合B 中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D . 【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.2.已知直线1:10l ax y +-=与直线22:0l x ay a ++=平行,则a 的值为A .1B. -1C. 0D. -1或1【答案】A 【解析】由于直线l 1:ax +y -1=0与直线l 2:x +ay +2a =0平行所以210a -=, 即a =-1或1,经检验1a =成立. 故选A.3.函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,则1(())8f f =( )A.14B. 4C.18D. 8【答案】D 【解析】因为函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,所以211388f log ⎛⎫==- ⎪⎝⎭,()3113882f f f -⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选A. 【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出18f ⎛⎫⎪⎝⎭的值,进而得到18f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值.4.设,αβ是两个不同的平面,m 是直线且m α⊂,//m β,若使//αβ成立,则需增加条件( ) A. n 是直线且n ⊂α,//n β B. ,n m 是异面直线,//n β C. ,n m 是相交直线且n ⊂α,//n β D. ,n m 是平行直线且n ⊂α,//n β【答案】C 【解析】【详解】要使//αβ成立,需要其中一个面的两条相交直线与另一个面平行,,n m 是相交直线且n ⊂α,//n β,m α⊂,//m β,由平面和平面平行的判定定理可得//αβ. 故选C.5.已知函数()223f x x ax =--在区间[]1,2上是单调增函数,则实数a 的取值范围为( )A. (),1-∞B. (],1-∞C. ()2,+∞D. [)2,+∞【答案】B 【解析】 【分析】根据二次函数的图象与性质,可知区间[]1,2在对称轴0x a =的右面,即1a ≤,即可求得答案.【详解】函数()223f x x ax =--为对称轴0x a =开口向上的二次函数,在区间[]1,2上是单调增函数,∴区间[]1,2在对称轴0x a =的右面,即1a ≤, ∴实数a 的取值范围为(],1-∞.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.6.已知矩形ABCD ,6AB =,8BC =,沿矩形的对角线AC 将平面ACD 折起,若,,,A B C D 四点都在同一球面上,则该球面的面积为( ) A. 36π B. 64πC. 100πD. 200π【答案】C 【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为100π. 故选C.7.设()f x 是定义在实数集上的函数,且(2)()f x f x -=,若当1x ≥时,()ln f x x =,则有( ) A. (1)(0)(2)f f f -<= B. (1)(0)(2)f f f ->= C. (1)(0)(2)f f f -<< D. (1)(0)(2)f f f ->>【答案】B 【解析】由f (2-x )=f (x )可知函数f (x )的图象关于x =1对称,所以()()02f f =,()()13f f -=,又当x ≥1时,f (x )=ln x 单调递增,所以()()()102f f f ->=,故选B.8.已知2()f x ax bx =+是定义在[1,2]a a -上的偶函数,那么()f x 的最大值是( ) A. 0 B.13C.427D. 1【答案】C 【解析】∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13. 又f (-x )=f (x ),∴b =0,∴()213f x x =,所以()21243327min f x ⎛⎫=⨯=⎪⎝⎭. 故选C.9.某四面体的三视图如图,则该四面体的体积是( )A. 1B.43C.32D. 2【答案】B 【解析】在正方体ABCD -A 1B 1C 1D 1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D 1-BCB 1,如图所示,该四面体的体积为114V 222323=⨯⨯⨯⨯=. 故选B .点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10.已知实数,x y 满足方程22410x y x +--=,则2y x -的最小值和最大值分别为( ) A. -9,1 B. -10,1C. -9,2D. -10,2【答案】A 【解析】22410x y x +--=即为()2225x y -+=y -2x 可看作是直线y =2x +b 在y 轴上的截距,当直线y =2x +b 与圆相切时,纵截距b 取得最大值或最小值,=解得b =-9或1.所以y -2x 的最大值为1,最小值为-9. 故选A.11.已知函数2()21f x ax x =-+,若对一切1[,2]2x ∈,()0f x >都成立,则实数a 的取值范围为( ) A. 1[,)2+∞ B. 1(,)2+∞C. (1,)+∞D. (,1)-∞【答案】C 【解析】由题意得,对一切1,22x ⎡⎤∈⎢⎥⎣⎦,f (x )>0都成立,即22221211a (1)1x x x x x->=-=--+, 而21(1)11x--+≤,则实数a 的取值范围为()1,+∞. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x > ,若()0f x <恒成立max ()0f x ⇔<;(3)若()()f x g x > 恒成立,可转化为min max ()()f x g x >(需在同一处取得最值) . 12.已知,AC BD 为圆229O x y +=:两条互相垂直的弦,且垂足为()1,2M ,则四边形ABCD 面积的最大值为( ) A. 10 B. 13C. 15D. 20【答案】B 【解析】。

XXX2017-2018学年高一上学期期末数学试卷(有答案)

XXX2017-2018学年高一上学期期末数学试卷(有答案)

XXX2017-2018学年高一上学期期末数学试卷(有答案)1.已知集合$A=\{x|0<x\leq6\}$,集合$B=\{x\in N|2x<33\}$,则集合$A\cap B$的元素个数为()。

A.6 B.5 C.4 D.32.给定性质:①最小正周期是$\pi$,②图像关于直线$x=\pi$对称,那么下列四个函数中,同时具有性质①②的是()。

A。

$y=\sin(\frac{x}{2}+\frac{\pi}{6})$ B。

$y=\sin(2x-\frac{\pi}{6})$ C。

$y=\sin(2x+\frac{\pi}{6})$ D。

$y=\sin|x|$3.平面内已知向量$a=(2,-1)$,若向量$b$与$a$方向相反,且$|b|=25$,则向量$b$=()。

A。

$(2,-4)$ B。

$(-4,2)$ C。

$(4,-2)$ D。

$(-2,4)$4.下列函数中,其定义域和值域分别与函数$y=10\lg x$相同的是()。

A。

$y=x$ B。

$y=\lg x$ C。

$y=2x$ D。

$y=\frac{1}{x}$5.已知角$a$的终边上有一点$P(1,3)$,则$\cos(\frac{3\pi}{2}-a)+2\cos(-\pi+a)$的值为()。

A。

$-\frac{2}{5}$ B。

$-\frac{4}{5}$ C。

$-\frac{4}{7}$ D。

$-4$6.如图,在$\triangle ABC$中,$AD=\frac{2}{3}AC$,$BP=\frac{1}{3}BD$,若$AP=\lambda AB+\mu AC$,则$\lambda$,$\mu$的值为()。

A。

$-3$,$3$ B。

$3$,$-3$ C。

$2$,$-2$ D。

$-2$,$2$7.为了得到函数$y=\sin(2x-\frac{\pi}{3})$的图象,可以将函数$\cos 2x$的图象()。

A.向右平移$\frac{\pi}{6}$个单位 B.向右平移$\frac{\pi}{3}$个单位 C.向左平移$\frac{\pi}{6}$个单位D.向左平移$3$个单位8.向量$a=(x,1)$,$b=(1,-3)$,且$a\perp b$,则向量$a-3b$与$b$的夹角为()。

2017-2018高一(上)期末数学试卷(二)

2017-2018高一(上)期末数学试卷(二)

2017-2018高一(上)期末数学试卷(二)一、选择题:本大题共14小题,每小题3分,共42分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.已知集合A={1,2,3},集合B={2,3,4},则A∩B等于()A.{2,3} B.{1,2} C.{3,4} D.{1,2,3,4}2.函数f(x)=2tan(2x+)的最小正周期为()A.B.C.π D.2π3.已知向量=(3,1),=(2,4),则向量=()A.(5,5)B.(6,4)C.(﹣1,3)D.(1,﹣3)4.为了得到函数y=sin(x+)的图象,只需把y=sinx图象上所有的点()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位5.已知cosα=,则sin(+α)=()A.B.﹣C.﹣D.6.﹣=()A.lg B.1 C.﹣1 D.lg7.已知向量=(3,4),=(1,﹣2),若⊥(+t),则实数t的值为()A.﹣5 B.1 C.﹣1 D.58.已知tan(π﹣α)=﹣2,则=()A.﹣3 B.﹣C.D.39.已知0<a<1,f(x)=a x,g(x)=log a x,h(x)=,当x>1时,则有()A.f(x)<g(x)<h(x)B.g(x)<f(x)<h(x)C.g(x)<h(x)<f(x)D.h(x)<g(x)<f(x)10.已知函数f(x)=,则f(﹣)+f()=()A.3 B.5 C.D.11.函数f(x)=ln(﹣x)的图象大致为()A.B.C.D.12.已知向量,满足||=2,|+|=2,|﹣|=2,则向量与的夹角为()A.B.C.D.13.已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2,n]上的最大值为4,则n﹣m=()A.B.C.D.14.已知函数f(x)=a•()x+bx2+cx(α∈R,b≠0,c∈R),若{x|f (x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为()A.(0,4)B.[0,4]C.(0,4]D.[0,4)二、填空题:本大题共6个小题,每小题3分.、共18分.15.已知幂函数f(x)的图象经过点(3,),则f(x)=.16.已知函数f(x)是奇函数,当x>0时,f(x)=x3+1,则f(﹣2)=.17.已知点O为△ABC内一点,满足++=,则△AOB与△ABC 的面积之比是.18.函数f(x)=log3(x﹣1)+log3(3﹣x)的单调递增区间为.19.已知θ∈(,),若存在实数x,y同时满足=,+=,则tanθ的值为.20.已知函数f(x)=sin+e﹣|x﹣1|,有下列四个结论:①图象关于直线x=1对称;②f(x)的最大值是2;③f(x)的最大值是﹣1,;④f(x)在区间[﹣2015,2015]上有2015个零点.其中正确的结论是(写出所有正确的结论序号).三、解答题:本大题共5小题,共40分,解答应写出文字说明、证明过程或演算步骤.21.已知函数f(x)=2x,x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+(a<1)的定义域为B.(Ⅰ)求集合A,B;(Ⅱ)若B⊆A,求实数a的取值范围.22.已知函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,且它的图象过点(,).(Ⅰ)求ω,φ的值;(Ⅱ)求函数y=f(x)的单调增区间.23.已知函数f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].(Ⅰ)若函数f(x)为偶函数,求tanθ的值;(Ⅱ)若f(x)在[﹣,1]上是单调函数,求θ的取值范围.24.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足=λ.(Ⅰ)若λ=,用向量,表示;(Ⅱ)若||=4,||=3,且∠AOB=60°,求•的取值范围.25.已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].(Ⅰ)当a=b=2时,求函数f(x)的最大值;(Ⅱ)证明:函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:f(x)+|2a﹣b|+a≥0.2017-2018学年高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14小题,每小题3分,共42分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.函数f(x)=2tan(2x+)的最小正周期为()A.B.C.π D.2π【考点】正切函数的图象.【分析】根据正切函数的周期公式进行求解即可.【解答】解:函数的周期T=,故选:B.2.已知集合A={1,2,3},集合B={2,3,4},则A∩B等于()A.{2,3} B.{1,2} C.{3,4} D.{1,2,3,4}【考点】交集及其运算.【分析】根据集合交集的定义,列举出集合A、B的全部元素组成集合,即可得答案.【解答】解:根据题意,A={1,2,3},B={2,3,4},集合A、B的公共元素为2,3.则A∩B={2,3}.故选A.3.已知向量=(3,1),=(2,4),则向量=()A.(5,5)B.(6,4)C.(﹣1,3)D.(1,﹣3)【考点】平面向量的坐标运算.【分析】根据向量的坐标加减的运算法则计算即可.【解答】解:向量=(3,1),=(2,4),则向量=﹣=(2,4)﹣(3,1)=(﹣1,3),故选:C.4.为了得到函数y=sin(x+)的图象,只需把y=sinx图象上所有的点()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x+),只是横坐标由x变为x+,∴要得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点向左平行移动个单位长度.故选:A.5.已知cosα=,则sin(+α)=()A.B.﹣C.﹣D.【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式进行化简求值,可得结果.【解答】解:∵cosα=,则sin(+α)=cosα=,故选:A.6.﹣=()A.lg B.1 C.﹣1 D.lg【考点】对数的运算性质.【分析】判断lg2﹣1的符号化简.【解答】解:﹣=lg5﹣1﹣(1﹣lg2)=lg5+lg2﹣2=1﹣2=﹣1.故选:C.7.已知向量=(3,4),=(1,﹣2),若⊥(+t),则实数t的值为()A.﹣5 B.1 C.﹣1 D.5【考点】平面向量数量积的运算.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵=(3,4),=(1,﹣2),∴+t=(3+t,4﹣2t),∵⊥(+t),∴•(+t)=0,∴3(3+t)+4(4﹣2t)=0,∴t=5,故选:D.8.已知tan(π﹣α)=﹣2,则=()A.﹣3 B.﹣C.D.3【考点】同角三角函数基本关系的运用;运用诱导公式化简求值.【分析】利用诱导公式及已知可得tanα=2,利用同角三角函数基本关系式化简所求后即可计算得解.【解答】解:∵tan(π﹣α)=﹣tanα=﹣2,可得:tanα=2,∴===3.故选:D.9.已知0<a<1,f(x)=a x,g(x)=log a x,h(x)=,当x>1时,则有()A.f(x)<g(x)<h(x)B.g(x)<f(x)<h(x)C.g(x)<h(x)<f(x)D.h (x)<g(x)<f(x)【考点】对数函数的图象与性质;指数函数的图象与性质.【分析】由题意和三个函数的单调性可得函数的值域,比较可得.【解答】解:∵0<a<1,∴f(x)=a x在R上单调递减,∴当x>1时,f(x)<f(1)=a<1,结合指数函数的值域可得f(x)∈(0,1);同理∵0<a<1,∴g(x)=log a x在(0,+∞)上单调递减,∴当x>1时,g(x)<g(1)=0,结合对数函数的值域可得g(x)∈(﹣∞,0);又∴h(x)=在[0,+∞)上单调递增,∴当x>1时,g(x)>h(1)=1,故g(x)<f(x)<h(x),故选:B.10.已知函数f(x)=,则f(﹣)+f()=()A.3 B.5 C.D.【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数f(x)=,∴f(﹣)=f()﹣1=﹣1=1,f()==2,∴f(﹣)+f()=1+2=3.故选:A.11.函数f(x)=ln(﹣x)的图象大致为()A.B.C.D.【考点】函数的图象.【分析】求出函数的定义域,求出函数的单调性即可判断.【解答】解:∵﹣x>0,即<0,解得x<﹣1或0<x<1,设t=﹣x,则t′=﹣﹣1<0,∴t在(﹣∞,0),(0,1)上为减函数,∵y=lnx为增函数,∴f(x)在(﹣∞,0),(0,1)上为减函数,故选:B12.已知向量,满足||=2,|+|=2,|﹣|=2,则向量与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据向量的夹角公式,以及向量的垂直,向量模计算即可【解答】解:设与的夹角为θ,∵||=2,|+|=2,|﹣|=2,∴|+|2=||2+||2+2•=4,|﹣|2=||2+||2﹣2•=20,∴•=﹣4,||=2∴cosθ===﹣,∵0≤θ≤π,∴θ=,故选:C.13.已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2,n]上的最大值为4,则n﹣m=()A.B.C.D.【考点】对数函数的图象与性质.【分析】由已知和对数的性质可得0<m<1<n,且mn=1,再由最大值为4可得m=或n=16,分别解另一个值验证可得.【解答】解:∵f(x)=|log0.5x|,正实数m,n(m<n)满足f(m)=f(n),∴0<m<1<n,且|log0.5m|=|log0.5n|,∴log0.5m=﹣log0.5n,∴log0.5m+log0.5n=0,解得mn=1,又∵f(x)在区间[m2,n]上的最大值为4,∴|log0.5m2|=4或|log0.5n|=4,即log0.5m2=4或log0.5n=﹣4,解得m=或n=16,当m=时,由mn=1可得n=4,此时n﹣m=;当n=16时,由mn=1可得m=,这与m<n矛盾,应舍去.故选:B.14.已知函数f(x)=a•()x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为()A.(0,4)B.[0,4]C.(0,4]D.[0,4)【考点】函数的零点与方程根的关系.【分析】设x1∈{x|f(x)=0}={x|f(f(x))=0},从而可推出f(0)=0,从而化简f(x)=bx2+cx;从而可得(bx2+cx)(b2x2+bcx+c)=0与bx2+cx=0的根相同,从而解得.【解答】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},则f(x1)=0,且f(f(x1))=0,∴f(0)=0,即a()x=0∴a=0;故f(x)=bx2+cx;由f(x)=0得,x=0或x=﹣;f(f(x))=b(bx2+cx)2+c(bx2+cx)=0,整理得:(bx2+cx)(b2x2+bcx+c)=0,当c=0时,显然成立;当c≠0时,方程b2x2+bcx+c=0无根,故△=(bc)2﹣4b2c<0,解得,0<c<4.综上所述,0≤c<4,故答案选:A.二、填空题:本大题共6个小题,每小题3分.、共18分.15.已知幂函数f(x)的图象经过点(3,),则f(x)=x﹣1.【考点】幂函数的概念、解析式、定义域、值域.【分析】设出幂函数的解析式,用待定系数法求出f(x)的解析式.【解答】解:设幂函数y=f(x)=x a,其图象经过点(3,),∴3a=,解得a=﹣1;∴f(x)=x﹣1.故答案为:x﹣1.16.已知函数f(x)是奇函数,当x>0时,f(x)=x3+1,则f(﹣2)=﹣9.【考点】函数奇偶性的性质.【分析】利用奇函数的性质即可求出.【解答】解:∵函数f(x)是定义在R上的奇函数,当x>0时f(x)=x3+1,∴f(﹣2)=﹣f(2)=﹣(23+1)=﹣9.故答案为:﹣9.17.已知点O为△ABC内一点,满足++=,则△AOB与△ABC的面积之比是.【考点】向量的加法及其几何意义.【分析】可作图,取AB中点D,从而有,这样即可得出,从而有D,O,C三点共线,且得到,这样便可得出△AOB与△ABC的面积之比.【解答】解:如图,取AB中点D,则:;∴由得,;∴;∴D,O,C三点共线,且OD=;∴△AOB与△ABC的面积之比是.故答案为:.18.函数f(x)=log3(x﹣1)+log3(3﹣x)的单调递增区间为(1,2).【考点】对数函数的图象与性质.【分析】先求出函数的定义域,根据复合函数的单调性判断即可.【解答】解:∵f(x)=log3(x﹣1)+log3(3﹣x),∴函数的定义域是:(1,3),f(x)=的递减区间即函数y=﹣x2+4x﹣3在(1,3)上的递减区间,y′=﹣2x+4,令y′>0,解得:x<2,∴函数y=﹣x2+4x﹣3在(1,2)上的递增,∴函数f(x)在(1,2)递增,故答案为:(1,2).19.已知θ∈(,),若存在实数x,y同时满足=,+=,则tanθ的值为.【考点】二维形式的柯西不等式.【分析】设==t,求出sinθ、cosθ的值,代人另一式化简,再由sin2θ+cos2θ=1,求出+=;利用tanθ==得出方程tan2θ+=,求出方程的解,再考虑θ∈(,),从而确定tanθ的值.【解答】解:设==t,则sinθ=ty,cosθ=tx,所以+=可化为:+=①;又sin2θ+cos2θ=t2x2+t2y2=1,得t2=②;把②代入①,化简得+=③;又tanθ==,所以③式化为tan2θ+=,解得tan2θ=2或tan2θ=;所以tanθ=±或tanθ=±;又θ∈(,),所以tanθ>1,所以取tanθ=.故答案为:.20.已知函数f(x)=sin+e﹣|x﹣1|,有下列四个结论:①图象关于直线x=1对称;②f(x)的最大值是2;③f(x)的最大值是﹣1,;④f(x)在区间[﹣2015,2015]上有2015个零点.其中正确的结论是①②④(写出所有正确的结论序号).【考点】函数的图象.【分析】根据函数的性质一一判断即可.【解答】解:对于①,∵y=sin,关于x=1对称,y=e﹣|x﹣1|关于x=1对称,∴f(x)图象关于直线x=1对称,故①正确,对于②,∵﹣1≤sin≤1,0<e﹣|x﹣1|≤1,∴f(x)的最大值是2,故②正确,③不正确,对于④,∵y=sin的周期为T==4,由①知,关于x=1对称,每个周期内都有两个零点,故有2015个零点,故④正确.故答案为:①②④三、解答题:本大题共5小题,共40分,解答应写出文字说明、证明过程或演算步骤.21.已知函数f(x)=2x,x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+(a<1)的定义域为B.(Ⅰ)求集合A,B;(Ⅱ)若B⊆A,求实数a的取值范围.【考点】集合的包含关系判断及应用;集合的表示法;函数的定义域及其求法.【分析】(Ⅰ)根据指数函数以及对数函数的性质解出即可;(2)根据集合的包含关系得到关于a的不等式组,解出即可.【解答】解:(Ⅰ)已知函数f(x)=2x,x∈(0,2)的值域为A,∴A=(1,4),函数g(x)=log2(x﹣2a)+(a<1)的定义域为B.∴B=(2a,a+1),a<1,(Ⅱ)若B⊆A,则(2a,a+1)⊆(1,4),∴,解得:≤a<1.22.已知函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,且它的图象过点(,).(Ⅰ)求ω,φ的值;(Ⅱ)求函数y=f(x)的单调增区间.【考点】余弦函数的图象.【分析】(Ⅰ)由周期求出ω,由特殊点的坐标求出φ的值.(Ⅱ)根据函数的解析式,再利用余弦函数的单调性,求出函数y=f(x)的单调增区间.【解答】解:(Ⅰ)∵函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,∴=π,∴ω=2.∵它的图象过点(,),∴cos(+φ)=,∴+φ=﹣,∴φ=﹣.(Ⅱ)由以上可得,f(x)=cos(2x﹣),令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,∴函数y=f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.23.已知函数f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].(Ⅰ)若函数f(x)为偶函数,求tanθ的值;(Ⅱ)若f(x)在[﹣,1]上是单调函数,求θ的取值范围.【考点】三角函数中的恒等变换应用;函数奇偶性的判断.【分析】(Ⅰ)根据函数奇偶性的定义建立方程关系进行求解即可.(Ⅱ)利用一元二次函数的单调性的性质进行判断即可.【解答】解:(Ⅰ)∵f(x)是偶函数,∴f(﹣x)=f(x),则x2+4[sin(θ+)]x﹣2=x2﹣4[sin(θ+)]x﹣2,则sin(θ+)=0,∵θ∈[0,2π],∴θ+=kπ,即θ=﹣+kπ,∴tanθ=tan(﹣+kπ)=﹣.(Ⅱ)∵f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].∴对称轴为x=﹣2sin(θ+),若f(x)在[﹣,1]上是单调函数,则﹣2sin(θ+)≥1或﹣2sin(θ+)≤,即sin(θ+)≥或sin(θ+)≤,即2kπ+≤θ+≤2kπ+,或2kπ+≤θ+≤2kπ+,k∈Z,即2kπ+≤θ≤2kπ+,或2kπ≤θ≤2kπ+,k∈Z,∵θ∈[0,2π],∴≤θ≤,或0≤θ≤.24.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足=λ.(Ⅰ)若λ=,用向量,表示;(Ⅱ)若||=4,||=3,且∠AOB=60°,求•的取值范围.【考点】平面向量数量积的运算;平面向量的基本定理及其意义.【分析】(Ⅰ)根据向量的加减的几何意义,即可求出;(Ⅱ)根据向量的加减的几何意义,得到=3﹣,即可求出•的取值范围.【解答】解:(Ⅰ)∵λ=,则=,∴﹣=(﹣),∴=+,则=+,(Ⅱ)∵•=||•||cos60°=6,=λ,∴﹣=λ(﹣),(1+λ)=+λ,∴=+,∴=(+)(﹣)=﹣2+2+(﹣)•===3﹣∵λ>0,∴3﹣∈(﹣10,3),∴•的取值范围为(﹣10,3).25.已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].(Ⅰ)当a=b=2时,求函数f(x)的最大值;(Ⅱ)证明:函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:f(x)+|2a﹣b|+a≥0.【考点】函数的最值及其几何意义;二次函数的性质.【分析】(Ⅰ)求出当a=b=2时,f(x)的解析式,求出对称轴,求得端点的函数值,可得f(x)的最大值;(Ⅱ)求出对称轴,讨论区间和对称轴的关系,结合单调性,可得最大值;(Ⅲ)要证f(x)+|2a﹣b|+a≥0恒成立,只需证f(x)min+|2a﹣b|+a≥0,设f(x)的最小值为m,最大值为M,由(Ⅱ)得M=|2a﹣b|+a,求出对称轴,讨论对称轴和区间[0,1]的关系,可得最值,即可证明M+m>0.【解答】解:(Ⅰ)当a=b=2时,f(x)=8x2﹣4x,x∈[0,1].对称轴为x=,f(0)=0,f(1)=4,可得f(x)的最大值为4;(Ⅱ)证明:f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得f(x)的最大值为f(0)=b﹣a,由b>4a>2a,可得|2a﹣b|+a=b﹣2a+a=b﹣a,则f(0)=|2a﹣b|+a;当<0时,区间[0,1]为增区间,可得最大值为f(1)=3a﹣b,由b<0,可得|2a﹣b|+a=2a﹣b+a=3a﹣b=f(1);当0≤≤1时,区间[0,]为减区间,[,1]为增区间,若f(0)≤f(1),即b≤2a,可得最大值为f(1)=3a﹣b=|2a﹣b|+a;若f(0)>f(1),即2a<b≤4a,可得最大值为f(0)=b﹣a=|2a﹣b|+a.综上可得函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:要证f(x)+|2a﹣b|+a≥0恒成立,只需证f(x)min+|2a﹣b|+a≥0,设f(x)的最小值为m,最大值为M,由(Ⅱ)得M=|2a﹣b|+a,由f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得m=f(1)=3a﹣b,则M+m=b﹣2a+a+3a﹣b=2a>0;当<0时,区间[0,1]为增区间,可得m=f(0)=b﹣a,M=f(1)=3a﹣b,则M+m=2a>0;当0≤≤1时,区间[0,]为减区间,[,1]为增区间,可得m=f()=,若f(0)≤f(1),即b≤2a,可得M=f(1)=3a﹣b,M+m=≥=a>0;若f(0)>f(1),即2a<b≤4a,可得M=f(0)=b﹣a,M+m==,由于2a<b≤4a,可得M+m∈(a,2a],即为M+m>0.综上可得M+m>0恒成立,即有f(x)+|2a﹣b|+a≥0.。

苏教版2017-2018学年高一数学上学期期末考试试题(精品Word版,含答案解析)

苏教版2017-2018学年高一数学上学期期末考试试题(精品Word版,含答案解析)

2017-2018学年高一(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A. B. C. D.2.如图,正三棱柱ABC-A1B1C1中,各棱长都相等,则二面角A1-BC-A的平面角的正切值为()A.B.C. 1D.3.在正三棱柱ABC-A1B1C1中,若AB=BB1,D是CC1中点,则CA1与BD所成角的大小是()A. B. C. D.4.若圆有且仅有三个点到直线的距离为1,则实数a的值为()A. B. C. D.5.已知f(x)=为奇函数,g(x)=ln(x2-b),若对∀x1、x2∈R,f(x1)≤g(x2)恒成立,则b的取值范围为()A. B. C. D.6.已知两条直线ax-y-2=0和(2-a)x-y+1=0互相平行,则a等于()A. 2B. 1C. 0D.7.下列函数中,既是偶函数又在区间(0,+∞)上单调增的是()A. B. C. D.8.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④m⊂α,n⊂α,且l⊥m,l⊥n,则l⊥α;其中真命题的序号是()A. B. C. D.9.圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是()A. 外离B. 外切C. 相交D. 内含10.如图是一个几何体的三视图,则该几何体的表面积为()A. 46B. 48C. 50D. 52二、填空题(本大题共4小题,共16.0分)11.直线x+ay=3与圆(x-1)2+y2=2相切,则a=______.12.过A(-1,1),B(1,3),圆心在x轴上的圆的标准方程为______.13.已知函数f(x)=与g(x)=log2x,则函数h(x)=f(x)-g(x)的零点个数是______.14.在四面体S-ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为______.三、解答题(本大题共4小题,共44.0分)15.如图,在直三棱柱ABC-A1B1C1(侧棱与底面垂直的棱柱称为直棱柱)中,AB=AC=AA1=2,∠BAC=90°.(1)求证:BA⊥A1C;(2)求三棱锥A-BB1C1的体积.16.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的方程.17.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=,现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.(1)求证:AM∥平面BEC;(2)求证:BC⊥平面BDE;(3)求直线DC与平面BEC所成角的正弦值.18.已知线段AB的端点B(4,0),端点A在圆(x+4)2+y2=16上运动(Ⅰ)求线段AB的中点C的轨迹方程.(Ⅱ)设动直线y=k(x-1)(k≠0)与圆C交于A,B两点,问在x轴正半轴上是否存在定点N,使得直线AN与直线BN关于x轴对称?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C.2.【答案】D【解析】【分析】本题主要考查二面角的平面角及求法.解决本题的关键在于通过取BC的中点E,得二面角A1-BC-A的平面角为∠A1EA,进而求出结论.先取BC的中点E,可得二面角A1-BC-A的平面角为∠A1EA,再在直角三角形A1EA中求出其正切即可.【解答】解:设棱长为a,BC的中点为E,连接A1E,AE,由正三棱柱ABC-A1B1C1中,各棱长都相等.可得A1E⊥BC,AE⊥BC所以;二面角A1-BC-A的平面角为:∠A1EA,在RT△ABC中,AE=a,所以:tan∠A1EA===.即二面角A1-BC-A的平面角的正切值为:故选D.解:如图过D作DE∥CA1交A1C1于E,则E是A1C1的中点,连接BE,则∠BDE为CA1与BD所成角,设AB=2,则BD=,DE=,B1E=,BE=,在△BDE中,cos∠BDE==0,所以∠BDE=;故选:C.由题意,画出图形,通过作平行线得到所求角的平面角,利用余弦定理求大小.本题考查了正三棱柱的性质以及异面直线所成的角的求法;关键是找到平面角,利用余弦定理求值.4.【答案】B【解析】解:化圆x2+y2+2x-6y+6=0为(x+1)2+(y-3)2=4.可得圆心坐标为C(-1,3),半径r=2.如图:要使圆x2+y2+2x-6y+6=0有且仅有三个点到直线x+ay+1=0的距离为1,则圆心C到直线x+ay+1=0的距离为1,即,解得a=.故选:B.化圆的一般方程为标准方程,求出圆心坐标与半径,把圆x2+y2+2x-6y+6=0上有且仅有三个点到直线x+ay+1=0的距离为1,转化为圆心C到直线x+ay+1=0的距离为1,再由点到直线的距离公式求解得答案.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法和数学转化思想方法,是中档题.解:由于f(x)=为奇函数,故f(0)=0,a=1;则f(x)==1-∈(-1,1),由题意,要求f(x)max≤g(x)min,而f(x)∈(-1,1),从而要求ln(x2-b)≥1,x2-b≥e在R上恒成立,b≤(x2-e)min,b≤-e,故选:A根据f(x)为奇函数,求出a值,进而求出值域,将对∀x1,x2∈R,f(x1)≤g(x2)恒成立,转化为:f(x)≤g(x)min,可得答案.max本题考查的知识点是函数奇偶性性质,熟练掌握函数奇偶性的性质是解答的关键.6.【答案】B【解析】解:∵两条直线ax-y-2=0和(2-a)x-y+1=0互相平行,∴,解得a=1.故选:B.利用直线与直线平行的性质求接求解.本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线平行的性质的合理运用.7.【答案】C【解析】根据函数的单调性以及函数的奇偶性判断即可.本题考查了成绩函数的奇偶性和单调性的性质,是一道基础题.解:对于A,函数是奇函数,不合题意,对于B,函数是非奇非偶函数,不合题意,对于C,函数是偶函数,x>0时,y=x-1,递增,符合题意,对于D,函数是偶函数,在(0,+∞)递减,不合题意,故选:C.8.【答案】C【解析】解:若α∥β,l⊂α,由面面平行的性质定理可得l∥β,故正确;若m⊂α,n⊂α,m∥β,n∥β,若m∥n,则α∥β不一定成立,故错误;若l∥α,由线面平行的性质定理可得存在b⊂α,使b∥l,又由l⊥β,可由线面垂直的第二判定定理得b⊥β,由面面垂直的判定定理可得α⊥β,故正确;m⊂α,n⊂α,且l⊥m,l⊥n,若m∥n,则l⊥α不一定成立,故错误;故选C由面面平行的性质定理,可得的真假;由面面平行的判定定理,可得的真假;根据线面平行的性质定理,线面垂直的判定方法及面面垂直的判定定理可得的真假;由线面垂直的判定定理可得的真假,进而得到答案.本题考查空间中直线与平面之间的位置关系,解题的关键是掌握空间中线面位置关系判断的定理,本题是考查双基的题,知识性较强.9.【答案】C【解析】解:∵圆C1:x2+y2+2x+8y-8=0的圆心C1(-1,-4),半径r1==5,圆C2:x2+y2-4x-4y-1=0的圆心C2(2,2),半径r2==3,∴|CC2|==3,|r1-r2|=2,,1∵|r1-r2|<|C1C2|<r1+r2,∴圆C1与圆C2相交.故选C.由圆C1:x2+y2+2x+8y-8=0的圆心C1(-1,-4),半径r1=5,圆C2:x2+y2-4x-4y-1=0的圆心C2(2,2),半径r2=3,知|r1-r2|<|C1C2|<r1+r2,由此得到圆C1与圆C2相交.本题考查圆与圆的位置关系的判断,是基础题.解题时要认真审题,仔细解答.10.【答案】B【解析】解:由三视图知,几何体是一个四棱锥,高为3,四棱锥的一条侧棱与底面垂直,底面是边长为4的正方形,∴该几何体的表面积为2××3×4+2××4×5+4×4=12+20+16=48.故选:B.几何体是一个四棱锥,四棱锥的一条侧棱与底面垂直,高为3,底面是边长为4的正方形,即可求出该几何体的表面积本题考查由三视图求该几何体的表面积,考查由三视图还原几何体的直观图.11.【答案】±1【解析】解:圆心坐标为(1,0),半径R=,∵直线和圆相切,∴圆心到直线的距离d===,即2=•,平方得1+a2=2,得a2=1,则a=±1,故答案为:±1求出圆心和半径,结合直线和圆相切的等价条件,建立方程关系进行求解即可.本题主要考查直线和圆相切的位置关系的应用,结合圆心到直线的距离等于半径是解决本题的关键.12.【答案】(x-2)2+y2=10【解析】解:∵圆的圆心在x轴上,设圆心为M(a,0),由圆过点A(-1,1)和B(1,3),即|MA|=|MB|可得MA2=MB2,即(a+1)2+1=(a-1)2+9,求得a=2,可得圆心为M(2,0),半径为|MA|=,故圆的方程为(x-2)2+y2=10.故答案为:(x-2)2+y2=10.设圆心为M(a,0),由|MA|=|MB|求得a的值,可得圆心坐标以及半径的值,从而求得圆的方程.本题主要考查求圆的标准方程,求出圆心的坐标,是解题的关键,属于基础题.13.【答案】3【解析】解:可由题意在同一个坐标系中画出f(x)和g(x)的图象其中红色的为g(x))=log2x的图象,由图象可知:函数f(x)和g(x)的图象由三个公共点,即h(x)=f(x)-g(x)的零点个数为3,故答案为:3由题意可作出函数f(x)和g(x)的图象,图象公共点的个数即为函数h(x)=f(x)-g(x)的零点个数.本题为函数零点个数的求解,转化为函数图象的交点个数来求是解决问题的关键,属中档题.14.【答案】【解析】解:解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S-AC-B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE===,∴该四面体外接球的表面积S=4πR2=4=.故答案为:.取AC中点D,连接SD,BD,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE,由此能求出该四面体外接球的表面积.本题考查四面体的外接球的表面积的求法,考查四面体、球等基础知识,考查推理论证能力、运算求解能力,数形结合思想,是中档题.15.【答案】证明:(1)∵在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°.∴A1A⊥平面ABC,∴BA⊥AA1,又∵∠BAC=90°,∴BA⊥AC,A1A∩AC=A,∴BA⊥平面ACC1A1,∴BA⊥A1C.解:(2)∵AC⊥AB,AC⊥AA1,AB∩AA1=A,∴AC⊥平面ABB1,∴C1到平面ABB1的距离为AC=2,∵在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°.∴△ =2,∴三棱锥A-BB1C1的体积:==△=.【解析】(1)推导出A1A⊥平面ABC,从而BA⊥AA1,由∠BAC=90°,得BA⊥AC,从而BA⊥平面ACC1A1,由此能证明BA⊥A1C.(2)三棱锥A-BB1C1的体积=,由此能求出结果.本题考查线线垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.16.【答案】证明:(1)直线l:mx-y+1-m=0转化为m(x-1)-y+1=0,∴直线l经过定点(1,1),∵12+(1-1)2<5,∴定点(1,1)在圆C内,∴对m∈R,直线l与圆C总有两个不同的交点.解:(2)由圆心(0,1)到直线mx-y+1-m=0的距离d==,而圆的弦长|AB|=2=,即2=,17=4(4+),m2=3,解得m=,故所求的直线方程为或-.【解析】(1)直线l经过定点(1,1),定点(1,1)在圆C内,由此能证明对m∈R,直线l与圆C总有两个不同的交点.(2)由圆心(0,1)到直线mx-y+1-m=0的距离d=,圆的弦长|AB|=2=,由此能求出直线方程.本题考查直线与圆总有两个交点的证明,考查直线方程的求法,考查直线过定点、圆、点到直线的距离公式、弦长等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.【答案】证明:(1)取EC中点N,连结MN,BN,在△EDC中,M,N分别为ED、EC的中点,∴MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,∴四边形ABMN为平行四边形.∴BN∥AM.又∵BN⊂平面BEC,且AM⊄平面BEC,∴AM∥平面BEC.(2)在正方形ADEF中,ED⊥AD,又∵平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,∴ED⊥平面ABCD,∴ED⊥BC,在直角梯形ABCD中,AB=AD=1,CD=2,得BC=.在△BCD中,BD=BC=,CD=2,BD2+BC2=CD2,∴BC⊥BD.∵ED∩BD=D,∴BC⊥平面BDE.解:(3)作DH⊥平面BEC于点H,连接CH,则∠DCH为CD与平面BEC所成角,由(2)知,BC⊥BE,BC⊥BD,∴S△BCD=,又∵ED⊥平面ABCD,△ =.∴DH=,∴sin∠ ==.∴CD与平面BEC所成角的正弦值为.【解析】11(1)取EC中点N,连结MN,BN,推导出四边形ABMN为平行四边形,从而BN∥AM,由此能证明AM∥平面BEC.(2)推导出ED⊥AD,ED⊥BC,BC⊥BD,由此能证明BC⊥平面BDE.(3)作DH⊥平面BEC于点H,连接CH,则∠DCH为CD与平面BEC所成角,由此能求出CD与平面BEC所成角的正弦值.本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.【答案】解:(Ⅰ)设线段AB中点为C(x,y),点A(x0,y0),∵B(4,0),∴2x=x0+4,2y=y0+0,∴x0=2x-4,y0=2y,∴(2x-4+4)2+4y2=16,∴x2+y2=4,(Ⅱ)设N(t,0),A(x1,y1),B(x2,y2).由,得(k2+1)x2-2k2x+k2-4=0.∴x1+x2=,x1x2=若直线AN与直线BN关于x轴对称,则k AN=-k BN⇒+=0⇒+=0,即2x1x2-(t+1)(x1+x2)+2t=0⇒-+2t=0,解得t=4.∴在x轴正半轴上存在定点N(4,0),使得AN与直线BN关于x轴对称【解析】(Ⅰ)设出C和A点的坐标,由中点坐标公式得到两点坐标的关系,把A的坐标用C的坐标表示,代入圆的方程后整理得答案.(Ⅱ)设N(t,0),A(x1,y1),B(x2,y2).可得,得(k2+1)x2-2k2x+k2-4=0,根据根与系数的关系以及k AN=-k BN,即可求出N的坐标本题考查了圆的方程,点的轨迹,定点问题直线和圆的位置关系,考查了运算能力,属于中档题.1。

2017-2018学年高一(上)期末数学试卷(十一)

2017-2018学年高一(上)期末数学试卷(十一)

2017-2018学年高一(上)期末数学试卷(十一)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.选项填涂在答题卡上.1.圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)2+(y﹣1)2=1 B.B(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=22.已知集合A={3,5,6,8},B={1,3,5},那么A∪B等于()A.{1,3,5,6,8} B.{6,8} C.{3,5} D.{1,6,8}3.函数的定义域为()A.(0,+∞)B.(0,2]C.[1,2] D.(0,2)4.设a=2﹣3,b=3,c=log25,则()A.a<b<c B.a<c<b C.b<a<c D.c<a<b5.一个几何体的顶点都在球面上,这个几何体的三视图如图所示,该球的表面积是()A.19πB.30πC.38πD.6.以A(1,3),B(﹣5,1)为端点的线段的垂直平分线方程是()A.3x﹣y﹣8=0 B.3x+y+4=0 C.3x﹣y+6=0 D.3x+y+2=07.函数f(x)=是()A.偶函数,在(0,+∞)是增函数B.奇函数,在(0,+∞)是增函数C.偶函数,在(0,+∞)是减函数D.奇函数,在(0,+∞)是减函数8.设m、n是两条不同的直线,α,β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α9.某工厂从1970年的年产值200万元增加到40年后2010年的1000万元,假设每年产值增长率相同,则每年年产值增长率是(x为很小的正数时,ln(1+x)≈x,ln5≈1.61)()A.3% B.4% C.5% D.6%10.设函数如果f(x0)>1,则x0的取值范围是()A.(﹣1,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)11.在直线y=﹣2上有一点P,它到点A(﹣3,1)和点B(5,﹣1)的距离之和最小,则点P的坐标是()A.(1,﹣2)B.(3,﹣2)C.(﹣3,﹣2)D.(5,﹣2)12.已知f(x)=(x﹣a)(x﹣b)﹣2,(a<b)的两个零点分别为α,β,(α<β)则()A.a<α<b<βB.α<a<b<βC.a<α<β<b D.α<a<β<b二、填空题(本大题共4小题,每小题5分,共20分)13.原点O在直线l上的射影为点H(﹣2,1),则直线l的方程为.14.若f(x)=x2﹣2(a﹣1)x+2在(﹣∞,3]上是减函数,则a的取值范围是.15.若函数f(x)的图象和g(x)=2x的图象关于直线x﹣y=0对称,则f(x)的解析式为.16.定义侧面与底面垂直的棱柱为直棱柱,在直四棱柱ABCD﹣A1B1C1D1中(如图),当底面四边形ABCD满足条件时,有BD1⊥A1C1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)三、解答题:(共6个题,解答应写出文字说明,证明过程或演算步骤.共70分)17.计算:(1)(2).18.已知全集为实数集R,集合A={x|y=+},B={x|log2x>1}.(Ⅰ)求A∩B;(Ⅱ)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.19.如图,在△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求:(Ⅰ)点A和点C的坐标;(Ⅱ)△ABC的面积.20.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.(Ⅰ)求证:A1B∥平面AEC1;(Ⅱ)求证:B1C⊥平面AEC1.21.已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1.动点M到圆的切线长等于|MQ|的2倍.(Ⅰ)求出点M的轨迹C1方程.(Ⅱ)判断曲线C1与圆C是否有公共点?请说明理由.22.己知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=21og2(1﹣x).(1)求函数f(x)及g(x)的解析式;(2)用函数单调性的定义证明:函数g(x)在(0,1)上是减函数;(3)若关于x的方程f(2x)=m有解,求实数m的取值范围.2017-2018学年高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.选项填涂在答题卡上.1.圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)2+(y﹣1)2=1 B.B(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y ﹣1)2=2【考点】圆的标准方程.【专题】计算题;直线与圆.【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.2.已知集合A={3,5,6,8},B={1,3,5},那么A∪B等于()A.{1,3,5,6,8} B.{6,8} C.{3,5} D.{1,6,8}【考点】并集及其运算.【专题】集合.【分析】根据并集的概念求解即可【解答】解:∵集合A={3,5,6,8},B={1,3,5},∴A∪B={1,3,5,6,8|,故选A.【点评】本题主要考查并集的概念,属于基础题.3.函数的定义域为()A.(0,+∞)B.(0,2]C.[1,2]D.(0,2)【考点】函数的定义域及其求法.【专题】计算题;函数思想;函数的性质及应用;不等式的解法及应用.【分析】要使函数有意义,则,解不等式组即可得答案.【解答】解:要使函数有意义,则,解得:0<x≤2.∴函数的定义域为:(0,2].故选:B.【点评】本题考查了函数的定义域及其求法,考查了对数的运算性质,是基础题.4.设a=2﹣3,b=3,c=log25,则()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【考点】对数值大小的比较.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用指数函数、对数函数的性质比较大小.【解答】解:∵a=2﹣3=,1=30<b=3<=2,c=log25>log24=2.∴a<b<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的性质的合理运用.5.一个几何体的顶点都在球面上,这个几何体的三视图如图所示,该球的表面积是()A.19πB.30πC.38πD.【考点】球内接多面体;简单空间图形的三视图;球的体积和表面积.【专题】计算题;方程思想;综合法;立体几何.【分析】利用三视图判断几何体的特征,然后求出几何体的外接球的半径,即可求解球的表面积.【解答】解:三视图复原的几何体是长方体,三度分别为:3,2,5;长方体的外接球的直径就是,长方体的体对角线的长度,所以外接球的直径为:=.所以外接球的半径为:.长方体的外接球的表面积为:4×π×=138π.故选:C.【点评】本题考查三视图与几何体的关系,几何体的外接球的表面积的求法,求解外接球的半径是解题的关键.6.以A(1,3),B(﹣5,1)为端点的线段的垂直平分线方程是()A.3x﹣y﹣8=0 B.3x+y+4=0 C.3x﹣y+6=0 D.3x+y+2=0【考点】直线的一般式方程与直线的垂直关系.【专题】计算题.【分析】求出AB的中点坐标,求出AB的中垂线的斜率,然后求出中垂线方程.【解答】解:因为A(1,3),B(﹣5,1),所以AB的中点坐标(﹣2,2),直线AB的斜率为:=,所以AB的中垂线的斜率为:﹣3,所以以A(1,3),B(﹣5,1)为端点的线段的垂直平分线方程是y﹣2=﹣3(x+2),即3x+y+4=0.故选B.【点评】本题考查直线的一般式方程与直线的垂直关系,直线方程的求法,考查计算能力.7.函数f(x)=是()A.偶函数,在(0,+∞)是增函数 B.奇函数,在(0,+∞)是增函数C.偶函数,在(0,+∞)是减函数D.奇函数,在(0,+∞)是减函数【考点】奇偶性与单调性的综合.【专题】整体思想;演绎法;函数的性质及应用.【分析】根据函数奇偶性的定义和函数单调性的性质进行判断即可.【解答】解:∵f(x)=,∴f(﹣x)==﹣=﹣f(x),则函数f(x)是奇函数,∵y=e﹣x是减函数,y=e x是增函数,∴f(x)=为增函数,故选:B.【点评】本题主要考查函数奇偶性和单调性的判断,根据函数奇偶性的定义和单调性的性质是解决本题的关键.8.设m、n是两条不同的直线,α,β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】根据空间线线,线面,面面之间的位置关系分别进行判定即可得到结论.【解答】解:A.若m⊥n,n∥α,则m⊥α或m⊂α或m∥α,故A错误.B.若m∥β,β⊥α,则m⊥α或m⊂α或m∥α,故B错误.C.若m⊥β,n⊥β,n⊥α,则m⊥α,正确.D.若m⊥n,n⊥β,β⊥α,则m⊥α或m⊂α或m∥α,故D错误.故选:C【点评】本题主要考查空间直线,平面之间的位置关系的判定,要求熟练掌握相应的判定定理和性质定理.9.某工厂从1970年的年产值200万元增加到40年后2010年的1000万元,假设每年产值增长率相同,则每年年产值增长率是(x为很小的正数时,ln(1+x)≈x,ln5≈1.61)()A.3% B.4% C.5% D.6%【考点】函数解析式的求解及常用方法.【专题】计算题;函数思想;转化思想;函数的性质及应用.【分析】设每年的年产值增长率是x,由题意可得:200(1+x)40=1000,化为40ln(1+x)=ln5,即可得出40x=ln5,解x即可得出答案.【解答】解:设每年的年产值增长率是x,由题意可得:200(1+x)40=1000,则40ln(1+x)=ln5,∵ln(1+x)≈x,∴40x=ln5,∴x=,∵ln5≈1.61,∴x==0.04=4%.故选:B.【点评】本题考查了指数函数与对数函数的性质,考查了推理能力与计算能力,属于中档题.10.设函数如果f(x0)>1,则x0的取值范围是()A.(﹣1,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)【考点】分段函数的应用.【专题】计算题;分类讨论;转化思想;函数的性质及应用.【分析】根据分段函数的表达式,进行求解即可.【解答】解:若x0>0,由f(x0)>1得=>1得x0>1,若x0≤0,由f(x0)>1得﹣1>1得>2,即﹣x0>1,则x0<﹣1,综上x0>1或x0<﹣1,故选:C【点评】本题主要考查不等式的求解,根据分段函数的表达式进行讨论求解即可.11.在直线y=﹣2上有一点P,它到点A(﹣3,1)和点B(5,﹣1)的距离之和最小,则点P的坐标是()A.(1,﹣2)B.(3,﹣2)C.(﹣3,﹣2) D.(5,﹣2)【考点】两条直线的交点坐标.【专题】计算题;转化思想.【分析】若直线y=﹣2上有一点P,它到点A(﹣3,1)和点B(5,﹣1)的距离之和最小,则P点是点A(﹣3,1)关于直线y=﹣2的对称点A′(﹣3,﹣5)与点B(5,﹣1)确定的直线A′B与直线y=﹣2的交点.【解答】解:点A(﹣3,1)关于直线y=﹣2的对称点A′(﹣3,﹣5)若直线y=﹣2上有一点P,它到点A(﹣3,1)和点B(5,﹣1)的距离之和最小,则P点为直线A′B与直线y=﹣2的交点∵直线A′B的方程为:x﹣2y﹣7=0故P点坐标为(3,﹣2)故选B【点评】本题考查的知识点是两条件直线的交点坐标,直线的两点式方程,其中根据对称的思想,将问题转化为直线交点问题是解答本题的关键.12.已知f(x)=(x﹣a)(x﹣b)﹣2,(a<b)的两个零点分别为α,β,(α<β)则()A.a<α<b<βB.α<a<b<βC.a<α<β<b D.α<a<β<b【考点】二次函数的性质;函数零点的判定定理.【专题】数形结合;综合法;函数的性质及应用.【分析】可设g(x)=(x﹣a)(x﹣b),从而得到a,b是函数g(x)的两个零点,可看出f(x)的图象是由g(x)的图象向下平移2个单位得到,从而便可得出α<a<b<β.【解答】解:设g(x)=(x﹣a)(x﹣b),则a,b是g(x)的两个零点;函数f(x)的图象可以看成g(x)图象向下平移2个单位得到,且a<b,α<β,如图所示:∴α<a<b<β.故选B.【点评】考查函数零点的概念,以及沿y轴方向的平移变换,要熟悉二次函数的图象.二、填空题(本大题共4小题,每小题5分,共20分)13.原点O在直线l上的射影为点H(﹣2,1),则直线l的方程为2x﹣y+5=0.【考点】两条直线垂直的判定.【专题】计算题;直线与圆.【分析】根据题意,直线l是经过点H且与OH垂直的直线.因此求出OH的斜率,从而得到l的斜率,由直线的点斜式方程得到l的方程,再化成一般式即可.【解答】解:直线OH的斜率为k==﹣∵原点O在直线l上的射影为点H(﹣2,1),∴直线l与OH互相垂直,可得l的斜率k1==2,且点H是直线l上的点.由直线方程的点斜式,得l的方程为y﹣1=2(x+2),整理得:2x﹣y+5=0故答案为:2x﹣y+5=0【点评】本题给出原点在直线上的射影点,求直线的方程,着重考查了直线的方程、直线的位置关系等知识,属于基础题.14.若f(x)=x2﹣2(a﹣1)x+2在(﹣∞,3]上是减函数,则a的取值范围是[4,+∞).【考点】函数单调性的性质;函数单调性的判断与证明.【专题】函数思想;转化法;函数的性质及应用.【分析】根据一元二次函数单调性的性质进行求解即可.【解答】解:若f(x)=x2﹣2(a﹣1)x+2在(﹣∞,3]上是减函数,则函数的对称轴x==a﹣1≥3,即a≥4,故答案为:[4,+∞);【点评】本题主要考查函数单调性的应用,根据一元二次函数单调性的性质建立对称轴和单调区间的关系是解决本题的关键.15.若函数f(x)的图象和g(x)=2x的图象关于直线x﹣y=0对称,则f(x)的解析式为y=log2x(x >0).【考点】反函数;函数解析式的求解及常用方法.【专题】函数思想;转化法;函数的性质及应用.【分析】根据反函数的定义进行求解即可.【解答】解:∵函数f(x)的图象和g(x)=2x的图象关于直线x﹣y=0对称,∴函数f(x)与g(x)互为反函数,则f(x)=log2x(x>0);故答案为:y=log2x(x>0);【点评】本题主要考查函数解析式的求解,根据图象关于y=x对称,得到两个函数是反函数是解决本题的关键.16.定义侧面与底面垂直的棱柱为直棱柱,在直四棱柱ABCD﹣A1B1C1D1中(如图),当底面四边形ABCD 满足条件BD⊥AC时,有BD1⊥A1C1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)【考点】空间中直线与直线之间的位置关系.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】根据题意,由A1C⊥B1D1,结合直棱柱的性质,分析底面四边形ABCD得到BD⊥AC,进而验证即可得答案.【解答】解:∵四棱柱A1B1C1D1﹣ABCD是直棱柱,∴B1D1⊥A1A,若A1C⊥B1D1,则B1D1⊥平面A1AC1C,∴B1D1⊥AC,又由B1D1∥BD,则有BD⊥AC,反之,由BD⊥AC亦可得到A1C⊥B1D1,故答案为:BD⊥AC.【点评】本题主要通过开放的形式来考查线线,线面,面面垂直关系的转化与应用.三、解答题:(共6个题,解答应写出文字说明,证明过程或演算步骤.共70分)17.计算:(1)(2).【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;规律型;函数的性质及应用.【分析】(1)利用平方和公式化简求解即可.(2)利用对数运算法则化简求解即可.【解答】解:(1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查有理指数幂以及对数运算法则的化简求解,考查计算能力.18.已知全集为实数集R,集合A={x|y=+},B={x|log2x>1}.(Ⅰ)求A∩B;(Ⅱ)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.【考点】集合的包含关系判断及应用;交集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)化简集合A,B,即可求A∩B;(Ⅱ)已知集合C={x|1<x<a},若C⊆A,分类讨论求实数a的取值范围.【解答】解:(Ⅰ)A={x|1≤x≤3},B={x|x>2}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以A∩B={x|2<x≤3}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≤1时,C=∅,此时C⊆A;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当a>1时,C⊆A,则1<a≤3.…综合①②,可得a的取值范围是(﹣∞,3].…【点评】本题考查集合的关系与运算,考查学生的计算能力,属于中档题.19.如图,在△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求:(Ⅰ)点A和点C的坐标;(Ⅱ)△ABC的面积.【考点】点到直线的距离公式;待定系数法求直线方程.【专题】方程思想;综合法;直线与圆.【分析】(Ⅰ)先求出A点的坐标,求出AB的斜率,得到直线AC的方程,从而求出B点的坐标;(Ⅱ)求出|BC|的长,再求出A到BC的距离,从而求出三角形的面积即可.【解答】解:(Ⅰ)由得顶点A(﹣1,0).﹣﹣﹣﹣﹣﹣﹣又AB的斜率k AB==1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵x轴是∠A的平分线,故AC的斜率为﹣1,AC所在直线的方程为y=﹣(x+1)①﹣﹣﹣﹣﹣﹣已知BC上的高所在直线的方程为x﹣2y+1=0,故BC的斜率为﹣2,BC所在的直线方程为y﹣2=﹣2(x﹣1)②﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解①,②得顶点C的坐标为(5,﹣6).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又直线BC的方程是2x+y﹣4=0A到直线的距离﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以△ABC 的面积=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考察了求直线的斜率、方程问题,考察点到直线的距离公式,是一道中档题.20.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.(Ⅰ)求证:A1B∥平面AEC1;(Ⅱ)求证:B1C⊥平面AEC1.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】对(I),根据三角形的中位线平行于底边,在平面内作平行线,再由线线平行⇒线面平行.对(II),根据直棱柱的性质,侧棱与侧面都与底面垂直,可证平面内的AE与B1C垂直;利用平面几何与三角函数知识,证C1E与B1C垂直;再由线线垂直⇒线面垂直.【解答】证明:(I)连接A1C交AC1于点O,连接EO∵ACC1A1为正方形,∴O为中点∴EO∥A1B,EO⊂平面AEC1,A1B⊄平面AEC1,∴A1B∥平面AEC1.(Ⅱ)∵AB=AC,E是BC的中点,∴AE⊥BC∵直三棱柱ABC﹣A1B1C1中,平面ABC⊥平面BB1C1C,∴AE⊥平面BB1C1C,B1C⊂平面BB1C1C,∴B1C⊥AE在矩形BCC1B1中,tan∠CB1C1=tan∠EC1C=,∵∠CB1C1+∠B1CC1=∴∠B1CC1+∠EC1C═,∴B1C⊥EC1,又AE∩EC1=E,∴B1C⊥平面AEC1【点评】本题考查线面垂直的判定、线面平行的判定.证明(I)也可由面面平行证线面平行,即取B1C1的中点F,证平面BFA1∥平面AEC1.在证明(II)时,利用三角函数知识与平面几何知识证线线垂直也是常用方法.21.已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1.动点M到圆的切线长等于|MQ|的2倍.(Ⅰ)求出点M的轨迹C1方程.(Ⅱ)判断曲线C1与圆C是否有公共点?请说明理由.【考点】轨迹方程.【专题】综合题;方程思想;综合法;直线与圆.【分析】(Ⅰ)由题意,则,整理后即可得到答案.(Ⅱ)判断圆心距与距离和的关系,即可得出结论.【解答】解:(Ⅰ)如图所示,过点M的直线与圆相切于点P,设M(x,y),连结OP,OM.,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣若,则,∴3x2+3y2﹣16x+17=0.∴点M的轨迹方程为3x2+3y2﹣16x+17=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)点M的轨迹方程为即圆C1:圆心距,两圆C,C1半径之和﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣因为.所以两圆C,C1无公共点﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查了轨迹方程的求法,考查了直线与圆的关系,求解轨迹方程问题的关键步骤是列出动点所满足的关系式,是中档题.22.己知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=21og2(1﹣x).(1)求函数f(x)及g(x)的解析式;(2)用函数单调性的定义证明:函数g(x)在(0,1)上是减函数;(3)若关于x的方程f(2x)=m有解,求实数m的取值范围.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(1)根据f(x),g(x)的奇偶性便有﹣f(x)+g(x)=2log2(1+x),联立f(x)+g(x)=2log2(1﹣x)便可解出f(x)=,g(x)=;(2)根据减函数的定义,设任意的x1,x2∈(0,1),且x1<x2,然后作差,可以得出,根据对数函数的单调性便可得出g(x1)>g(x2),从而得出g(x)在(0,1)上单调递减;(3)求出,根据1﹣2x>0便可得出1+2x的范围,从而得出﹣1+的范围,根据对数函数的单调性便可得出f(2x)的范围,从而便可得出m的取值范围.【解答】解:(1)根据题意:f(﹣x)+g(﹣x)=2log2(1+x);∴﹣f(x)+g(x)=2log2(1+x),联立f(x)+g(x)=2log2(1﹣x)得:f(x)=log2(1﹣x)﹣log2(1+x)=,g(x)=log2(1+x)+log2(1﹣x)=;即;(2)设x1,x2∈(0,1),且x1<x2,则:;∵0<x1<x2<1;∴;∴;∴;∴g(x1)>g(x2);∴g(x)在(0,1)上是减函数;(3);∵1﹣2x>0;∴0<2x<1;∴;∴;∴f(2x)<0;∴m<0;∴m的取值范围为(﹣∞,0).【点评】考查奇函数、偶函数的定义,对数的运算,以及减函数的定义,根据减函数的定义证明一个函数为减函数的方法和过程,作差的方法比较g(x1),g(x2),对数函数的单调性,分离常数法的运用.第21页(共21页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径.一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能 3.已知幂函数()αx x f =的图象经过点⎝ ⎛⎭⎪⎫2,22,则()4f 的值等于 ( ) A .16 B.116 C .2 D.124. 函数()lg(2)f x x =+的定义域为 ( )A.(-2,1)B.[-2,1]C.()+∞-,2D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞) D. (0,+∞) 9.已知圆0964:221=+--+y x y x c ,圆019612:222=-+++y x y x c ,则两圆位置关系是 ( )A .相交B .内切C .外切D .相离10. 当10<<a 时,在同一坐标系中,函数xay -=与x y a log =的图象是 ( )A. B. C. D.11. 函数f(x)=e x-x1的零点所在的区间是 ( ) A.(0,21) B. (21,1) C. (1,23) D. (23,2) 、12. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若(21)()f a f a +>,则实数a 的取值范围是( )A .1(,1)(,)3-∞-⋃-+∞ B . (,3)(1,)-∞-⋃-+∞C . 1(1,)3-- D .(3,1)--第Ⅱ卷(非选择题,共72分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 计算 =+⨯+2lg 5lg 2lg )5(lg 2________.14. 已知直线013:1=-+y ax l 与直线()0112:2=+-+y a x l 垂直,则实数a =_____. 15. 已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为 . 16. 圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是 .三、解答题:本大题共6小题, 共56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设集合{|13}A x x =-≤<,{|242}B x x x =-≥-, {|1}C x x a =≥-.(Ⅰ)求A B ;(Ⅱ)若B C C =,求实数a 的取值范围.18.(本小题满分10分)已知函数()log (1)log (3) (01)a a f x x x a =-++<<. (Ⅰ)求函数()f x 的零点;(Ⅱ)若函数()f x 的最小值为4-,求a 的值.19.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (Ⅰ)当a 为何值时,直线l 与圆C 相切;(Ⅱ)当直线l 与圆C 相交于A ,B 两点,且AB =22时,求直线l 的方程.20.(本小题满分12分)三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,△ABC 是边长为4的等边三角形,D 为AB 边中点, 且CC 1=2AB .(Ⅰ)求证:平面C 1CD⊥平面ADC 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)求三棱锥D ﹣CAB 1的体积.21. (本小题满分12分)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(Ⅰ)判断f (x )在[-1,1]上的单调性,并证明; (Ⅱ)解不等式:()()x f x f 3112-<-;(Ⅲ)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.2017-2018学年高一上学期期末考试高一数学答案一、选择题C D D D B D A B C D B A 二、填空题13、1 14、35 15、16、x 2+y 2-10y =0三、解答题17、解: (Ⅰ)由题意知,{|2}B x x =≥分 所以{}|23A B x x ⋂=≤<分 (Ⅱ)因为B C C ⋃=,所以B C ⊆分 所以12a -≤,即3a ≤分18、解:(Ⅰ)要使函数有意义:则有1030x x -⎧⎨+⎩>>,解之得:31x -<<2分函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+由()0f x =,得2231x x --+=即2220xx +-=,1x =-±(3,1)±-∵-1()f x ∴的零点是1-5分(Ⅱ)函数化为:22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦31x -∵<< 201)44x ++≤∴<-(7分01a ∵<<2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴即min ()log 4a f x =由log 44a =-,得44a-=,14242a -==∴ 10分19、解:(Ⅰ)若直线l 与圆C 相切,则有圆心(0,4)到直线l :ax +y +2a =0的距离为21242=++a a3分解得43-=a . 5分 (Ⅱ)过圆心C 作CD ⊥AB ,垂足为D.则由AB =22和圆半径为2得CD = 27分因为21242=++=a a CD所以解得7-=a 或1-.故所求直线方程为7x -y +14=0或x -y +2=0.10分20、解:(Ⅰ)∵CC 1⊥平面ABC ,又AB ⊂平面ABC ,∴CC 1⊥AB ∵△ABC 是等边三角形,CD 为AB 边上的中线,∴C D ⊥AB2分∵CD ∩CC 1=C ∴AB ⊥平面C 1CD∵AB ⊂平面ADC 1∴平面C 1CD⊥平面ADC 1;4分 (Ⅱ)连结BC 1,交B 1C 于点O ,连结DO .则O 是BC 1的中点,DO 是△BAC 1的中位线.∴DO∥AC 1.∵DO ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1;8分(Ⅲ)∵CC 1⊥平面ABC ,BB 1∥CC 1,∴BB 1⊥平面ABC .∴BB 1 为三棱锥D ﹣CBB 1 的高.=.∴三棱锥D ﹣CAB 1的体积为.12分21、解:(Ⅰ)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1+-x 2·(x 1-x 2),2分由已知得f x 1+f -x 2x 1+-x 2>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增. 4分(Ⅱ)∵f (x )在[-1,1]上单调递增,∴⎪⎩⎪⎨⎧-<-≤-≤-≤-≤-x x x x 3112131111216分∴不等式的解集为⎭⎬⎫⎩⎨⎧<≤520x x . 7分(Ⅲ)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1. 问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]恒成立. 9分下面来求m 的取值范围.设g (a )=-2m ·a +m 2≥0. ①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立, 必须g (-1)≥0且g (1)≥0,∴m ≤-2或m ≥2. 综上,m =0 或m ≤-2或m ≥212分。

相关文档
最新文档