《材料科学基础讲义》PPT课件
合集下载
《材料科学基础》课件
THANKS
感谢观看
稳定性
材料在化学环境中保持其组成和结构的能力。
腐蚀性
材料与化学物质反应的能力,一些材料容易受到腐蚀。
活性
材料参与化学反应的能力和程度。
耐候性
材料在各种气候条件下的稳定性,如耐紫外线、耐风雨等。
材料的力学性质
弹性模量
描述材料抵抗弹性变形的能力。
硬度
材料表面抵抗被压入或划痕的能力。
韧性
材料吸收能量并抵抗断裂的能力。
材料科学的发展历程
总结词
概述材料科学的发展历程,包括重要的里程碑和代表 性人物。
详细描述
材料科学的发展历程可以追溯到古代,如中国的陶瓷和 青铜器制作,古埃及的石材加工等。然而,材料科学作 为一门独立的学科是在20世纪中期才开始形成的。在 这个时期,一些重要的里程碑包括开发出高温超导材料 、纳米材料和光电子材料等新型材料,这些材料的出现 极大地推动了科技的发展。同时,一些杰出的科学家如 诺贝尔奖得主也在这个领域做出了卓越的贡献。随着科 技的不断进步,材料科学的发展前景将更加广阔。
。
绿色材料与可持续发展
绿色材料
采用环保的生产方式,开发具有环保性能的新型材料,如可降解 塑料、绿色建材等。
节能减排
通过采用新型材料和技术,降低能源消耗和减少污染物排放,实现 节能减排的目标。
可持续发展
推动材料科学的发展,实现经济、社会和环境的协调发展,促进可 持续发展。
非晶体结构与性质
非晶体的结构特征
非晶体中的原子或分子的排列是无序的,不遵循长程有序的晶体 结构。
非晶体的物理和化学性质
非晶体的物理和化学性质与晶体不同,如玻璃态物质具有较好的化 学稳定性和机械强度。
材料科学基础完整ppt课件
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
离子% 结 )= [-1 e 合 -1 4(X A 键 X B )( 2 1% 00
另一种混合键表现为两种类型的键独立 纯在例如一些气体分子以共价键结合,而 分子凝聚则依靠范德瓦力。聚合物和许多 有机材料的长链分子内部是共价键结合, 链与链之间则是范德瓦力或氢键结合。石 墨碳的上层为共价键结合,而片层间则为 范德瓦力二次键结合。
.
5
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
八.材料科学研究的内容:材料结构的基础知识、
晶体结构、晶体缺陷、材料的相结构及相图、材
料的凝固、材料中的原子扩散、热处理、工程材
料概论等主要内容。 .
子,因此,它们都是良好的电绝缘体。但当
.
16
处在
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
高温熔融状态时,正负离子在外电场作用 下可以自由运动,即呈现离子导电性。
2.共价键
(1)通过共用电子对形成稳定结构
.
13
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
三.结论
1.原子核周围的电子按照四个量子数的规定 从低能到高能依次排列在不同的量子状态 下,同一原子中电子的四个量子数不可能 完全相同。
材料科学基础PPT精品课件幻灯片
❖ 材料发展动力: ▪ 社会需求(市场拉动) ▪ 技术发展(技术推动) ▪ 科学发展(对物质的了 解,是创新的源泉)
• 硅时代(1950年)
• 20新20/材12/1料9 时代(1990年材、料科特学征与工是程多学院种材材料学料教研并室存)
8
2020/12/19
材料科学与工程学院材料学教研室
9
材料的历史:300,000 BC—3,500 BC
川徐家岭楚墓出土。龙首、虎颈、虎身、虎尾、
编钟:春秋中期,1978年河南淅川出土, 龟足,张口吐舌,牙齿犀利。龙首上附六条蛇
最大钟通高120.4厘米,舞修52.3厘米,
形龙。脊背上有有一方座,座上有一神兽也为
铣间59.7厘米。该钟一组26件,形制相同, 龙首,口衔一条龙,龙 首。通身饰动物纹和
大2小02依0/1次2/递19减。
2020/12/19
材料科学与工程学院材料学教研室
3
提到“材料”,同学们会想到什么?列举一下现 代生活中用到了哪些材料?给材料下个定义。
请同学们能不能根据材料的发展来划分历史?如 果能,是怎样划分的? 材料科学与材料工程有什么区别?
请问同学们材料是怎样分类的?
如何认识材料的科学问题? (链接)
2020/12/19
•
由于材料的重要性,历史学家常常根据人类使用的材料来划分
人类社会发展的历史阶段。从古代到现在人类使用材料的历史共经
历了七个时代,其中的有些时代持续了几个世纪,各时代的开始时
间:
• 旧、新石器时代(公元前10万年) • 陶器时代 • 青铜器时代(公元前3000年) • 铁器时代(公元前1000年) • 水泥时代(公元0年) • 钢时代(1800年)
6
《材料科学基础》PPT课件
编辑版ppt
9
w(Cu)为35%的Sn-Cu合金冷却到415℃时发生L+ε→η的包晶转变,如图 7.35(a)所示,剩余的液相冷却227℃又发生共晶转变,所以最终的平 衡组织为η+(η+Sn)。而实际的非平衡组织(见图7.35(b))却保留相 当数量的初生相ε(灰色),包围它的是η相(白色),而外面则是黑色 的共晶组织。
Pt等。
编辑版ppt
3
图7.30所示的PT-AG相图是具 有包晶转变相图中的典型代 表
图中ACB是液相线,AD,PB是固相线,DE是Ag在Pt为基的α固溶体的 溶解度曲线,PF是Pt在Ag为基的β固溶体的溶解度曲线。水平线DPC是包晶转变 线,成分在DC范围内的合金在该温度都将发生包晶转变:
LC+αD βP 包晶反应是恒温转变,图中P点称为包晶点
室温平衡组织 为:β+αⅡ
合金Ⅱ缓慢冷至包晶转变前的结晶过程与上述包晶成分合金相同,由于合金Ⅱ中的液相 的相对量大于包晶转变所需的相对量,所以包晶转变后,剩余的液相在继续冷却过程中, 将按匀晶转变的方式继续结晶出β相,其相对成分沿CB液相线变化,而β相的成分沿PB线 变化,直至t3温度全部凝固结束,β相成分为原合金成分。在t3至t4温度之间,单相β无 任何变化。在t4温度以下,随着温度下降,将从β相中不断析出αⅡ。
第七章 二元系相图及其合金的凝固
制作人:李凌锋 080207022
编辑版ppt
1
7.3.3包晶相图及其合金凝固
1.包晶相图 2.包晶合金的凝固及其平衡组织 3.包晶合金的非平衡凝固 7.3.4溶混间隙相图与调幅分解
编辑版ppt
2
ONE.包晶相图
包晶转变定义:
组成包晶相图的两组元,在液态可无限互溶, 而在固态只能部分互溶。在二元相图中, 包晶转变就是已结晶的固相与剩余液相反 应形成另一固相的恒温转变。具有包晶转 变的二元合金有Fe-C,Cu-Zn,Ag-Sn,Ag-
《材料科学基础教案》PPT课件
1学时 1学时 2学时 3学时 2学时 1学时
教材及教学参考书
1.,《材料科学基础教程》 赵品 XX工业大学出版社 2.《材料科学基础教程习题与解答》 赵品 XX工业大学出版社 3.《材料科学基础》 赵品 XX工业大学出版社 1999年 4.《金属学原理》 刘国勋主编 工业冶金出版社 1980年 5.《金属学》 胡庚祥主编 上海科技出版社 1980年 6.《金属学教程》卢光熙主编 机械工业出版社 1985年 7.《金属学原理》 李 超主编 哈工大出版社 1996年 8.《材料科学基础》 马泗春主编 XX科学技术出版社 1998年 9.《材料科学基础》石德珂主编 XX交大出版社 1995年
第二部分 总纲
• 一、课程性质及教学目的 • 二、课程内容 • 三、与其它课程的关系 • 四、教学对象 • 五、教学时间 • 六、教学地点 • 七、教学指导思想 • 八、教学重点 • 九、教学难点 • 十、教学方法 • 十一、学时分配 • 十二、教学过程 • 十三、实验内容 • 十四、教材及教学参考书
编 XX科学技术出版社 1998年
7《材料科学基础》石德珂主编 XX交大出版社
1995年
讲授内容
1、材料在国民经济中的重要地位与作用 2、材料的分类 3、材料的发展历史 4、材料科学的发展方向 5、本课程的任务与内容
材料在国民经济中的重要地位与作用
材料是用来制造各种有用物件的物质. 它是人类生存与发展、征服和改造自然的物质基础,也是 人类社会现代文明的重要支柱.因此史学家将人类发展分为石 器时代、青铜器时代、铁器时代、水泥时代、钢时代、硅时 代和新材料时代.材料科学的发展及进步成为衡量一个国家科 学技术发展的重要标准.材料科学的发展在国民经济中占有极 其重要的地位,因此,材料、能源、信息被誉为现代经济发展 的三大支柱.
材料科学基础说课PPT课件
2020/1/2
14
材料要素
• 材料科学与工程所探讨的是材料的制备、结构、性能与功
效之间的相互关系。
Composition 成分/结构
表征
合成/ Synthesis/ 加工
2020/1/2
图3材料四要素(英国科学家)
性能 效能
15
图4 材料要素(中国)
2020/1/2
16
材料科学的形成历史
2020/1/2
• 材料科学导论,冯端、师昌绪、刘治国 主编,化学工业出版社,2006.01
2020/1/2
21
• 1936年Mott与Jones的专著“金属与合金性质的理论”(The Theory of Properties of Metals and Alloys)问世,表明了应用 量子力学对理解金属材料物性所取得的突破。
• 20世纪60年代初,美国许多大学建立了跨学科的材料研究 中心,不同类型的材料在同一实验室平行地被研究,促进 了不同材料学科的相互借鉴和融汇贯通。美国高校开始出 现以“材料科学与工程”系取代原先的冶金系的变更,将 专业范围由金属扩大到陶瓷,然后到高分子材料。
2020/1/2
25
• 1949年创刊的“金属物理学进展”(Progress in Metal Physics)于1961年更名为“材料科学的进展”(Progress in Materials Science),明确地指出,材料科学是在实 用和理论上相当重要的领域,而金属物理学仅是其重要的 组成部分,而非其全部。这是材料科学名称的首次提出。
26
• 金属、半导体和陶瓷之间的共同点较多:以晶态为主,辅 以非晶态的玻璃。而以高分子为主的有机材料的发展途径 和研究工具和无机材料有较大差异。
材料科学基础ppt课件
11
• 这类聚合物是由缩聚反应或开环聚合而成的, 因主链带极性,易水解,醇解或酸解
• 优点:耐热性好,强度高 • 缺点:易水解
• 这类聚合物主要用作工程塑料
12
元素高分子
➢主链中不含碳原子,而是由Si 、B 、As等元素和O元 素组成,但在侧链上含有有机取代基团。这类高分 子兼具无机和有机高分子特性,如有机硅高分子。
• 支化高分子的形式:星形(Star)、 梳形 (Comb)、无规(Random)
23
网状(交联)大分子
• 缩聚反应中有三个或三个以上官能 度的单体存在时,高分子链之间通 过支链联结成一个三维空间网形大 分子时即成交联结构
• 交联与支化有本质区别 支化(可溶,可熔,有软化点) 交联(不溶,不熔,可膨胀)
2
•
3-1 材料组成和结构的基本内容
Principal Contents of Materials Composition and Structures
• 材料的组成: 构成材料的基本单元的成分及数目
• 材料的结构: 材料的组成单元(即原子或分子)之间相互吸引 和相互排斥作用达到平衡时在空间的几何排列。
(2)
结构单元 的键接方式 ( 几何构型 Geometric
Configuration) (链节)
16
加聚
缩聚
• 由以上知:
• 由于高分子是链状结构,所以把简单重复(结构)单元称为“链节”(chains) • 简单重复(结构)单元的个数称为聚合度DP(Degree of Polymerization1
28
无 规 共 聚 ( random)
• 两种高分子无规则地平行联结
ABAABABBAAABABBAAA
• 这类聚合物是由缩聚反应或开环聚合而成的, 因主链带极性,易水解,醇解或酸解
• 优点:耐热性好,强度高 • 缺点:易水解
• 这类聚合物主要用作工程塑料
12
元素高分子
➢主链中不含碳原子,而是由Si 、B 、As等元素和O元 素组成,但在侧链上含有有机取代基团。这类高分 子兼具无机和有机高分子特性,如有机硅高分子。
• 支化高分子的形式:星形(Star)、 梳形 (Comb)、无规(Random)
23
网状(交联)大分子
• 缩聚反应中有三个或三个以上官能 度的单体存在时,高分子链之间通 过支链联结成一个三维空间网形大 分子时即成交联结构
• 交联与支化有本质区别 支化(可溶,可熔,有软化点) 交联(不溶,不熔,可膨胀)
2
•
3-1 材料组成和结构的基本内容
Principal Contents of Materials Composition and Structures
• 材料的组成: 构成材料的基本单元的成分及数目
• 材料的结构: 材料的组成单元(即原子或分子)之间相互吸引 和相互排斥作用达到平衡时在空间的几何排列。
(2)
结构单元 的键接方式 ( 几何构型 Geometric
Configuration) (链节)
16
加聚
缩聚
• 由以上知:
• 由于高分子是链状结构,所以把简单重复(结构)单元称为“链节”(chains) • 简单重复(结构)单元的个数称为聚合度DP(Degree of Polymerization1
28
无 规 共 聚 ( random)
• 两种高分子无规则地平行联结
ABAABABBAAABABBAAA
材料科学基础上海交大版讲义绪论PPT课件
玻璃纤维增强高分子复合材料
• 现代航空发动机燃烧室 温度最高的材料就是通 过粉末冶金法制备的氧 化物粒子弥散强化的镍 基合金复合材料。很多 高级游艇、赛艇及体育 器械等是由碳纤维复合 材料制成的,它们具有 重量轻,弹性好,强度 高等优点。
航空发动机
Processing, Synthesis, And phase transformation
举例1 金刚石(钻石)和石墨,都是由碳原子组成,但前 者是自然界中最坚硬的固体,而后者却很软(因晶体结构 不同)。
举例2 同样长的一段铁丝和钢丝,经弯曲后发现铁丝易弯 曲,而钢丝不易弯曲,即塑性不同(因两者成分不同)。
举例3 两根锯条,同时加热(800℃),然后一根水冷,一 根空冷,用手折时,发现前者很脆,后者很韧(因组织不 同)。
4000年前的夏朝我们的祖先已经能够炼铜,到殷、商 时期,我国的青铜冶炼和铸造技术已达到很高水平。
司母戊鼎
河南安阳晚商遗址出土 青铜铸造 高133厘米 重875kg 饰纹优美
越王勾践剑
春秋晚期越国青铜兵器 出土于湖北江陵楚墓 长55.7厘米 剑锷锋芒犀利 锋能割断头发
古代剑刃制造中的特殊技术
梯
Titanic的沉没是必然还是偶然?
建造中的Titanic 号,可以看到船身上长长的焊缝
Titanic的沉没是必然还是偶然?
Titanic 号钢板(左图)和近代船用钢板(右图)的冲击试验结果
光学显微镜
人类对材料的认识是逐步深入的。
• 1863年,光学显微镜首次应用于 金属研究,诞生了金相学,使人 们能够将材料的宏观性能与微观 组织联系起来。
度
材
料
春秋战国时代的
古 已
青铜剑,剑身及
材料科学基础ppt
组织是指用金相观察方法观察材料内部时看到的涉及晶体或晶粒大小、方向、形状排 列状况等组成关系的组成物。不同的组织具有不同的力学性能和物理性能。
第一章 材料结构的基本知识
一、原子的电子排列
第一节 原子结构
原子
原子核
中子 质子
核外电子
原子的结构示意图
原子的运动轨道是有四个量子数所确定的,它们分别为主量子数、次量子数、磁 量子数以及自旋量子数。四个量子数中最重要的是主量子数n(n=1、2、3、4·····),
正方晶系: d h k 1 / l h [ /a ) ( 2 ( k /b ) 2 ( l/c ) 2 ] 1 /2
六方晶系:
d h k 1 / l4 / [ 3 ( h 2 h k k 2 ) /a 2 ( l/c ) 2 ] 1 /2
第二节 纯金属的晶体结构
一. 典型金属的晶体结构
金属晶体中的结合键是金属键,由于金属键没有方向性和饱和性,使大多数金属晶 体都具有排列紧密、对称性高的简单晶体结构。最常见的典型金属通常具有面心立方(A1 或fcc)、体心立方(A2或bcc)和蜜排六方(A3或hcp)三种晶体结构。
四. 晶面间距
1. 晶面间距:相邻两平行晶面间的距离。
2. 计算公式
对于各晶系的简单点阵,晶面间距与晶面指数 (hkl) 和点阵常数(a,b,c)之间有如下
关系:
立方晶系:
dhk la/h ቤተ መጻሕፍቲ ባይዱ2k2l2]1/2
四方晶系:
d h k1 l/h [2 (k 2 )/a 2 ( l/c )2 ] 1 /2
二.材料性能与内部结构的关系
材料的不同性能都是由其内部结构决定的。从材料的内部结构来看,可分为四个 层次:原子结构、结合键、原子的排列方式(晶体和非晶体)以及显微组织。
第一章 材料结构的基本知识
一、原子的电子排列
第一节 原子结构
原子
原子核
中子 质子
核外电子
原子的结构示意图
原子的运动轨道是有四个量子数所确定的,它们分别为主量子数、次量子数、磁 量子数以及自旋量子数。四个量子数中最重要的是主量子数n(n=1、2、3、4·····),
正方晶系: d h k 1 / l h [ /a ) ( 2 ( k /b ) 2 ( l/c ) 2 ] 1 /2
六方晶系:
d h k 1 / l4 / [ 3 ( h 2 h k k 2 ) /a 2 ( l/c ) 2 ] 1 /2
第二节 纯金属的晶体结构
一. 典型金属的晶体结构
金属晶体中的结合键是金属键,由于金属键没有方向性和饱和性,使大多数金属晶 体都具有排列紧密、对称性高的简单晶体结构。最常见的典型金属通常具有面心立方(A1 或fcc)、体心立方(A2或bcc)和蜜排六方(A3或hcp)三种晶体结构。
四. 晶面间距
1. 晶面间距:相邻两平行晶面间的距离。
2. 计算公式
对于各晶系的简单点阵,晶面间距与晶面指数 (hkl) 和点阵常数(a,b,c)之间有如下
关系:
立方晶系:
dhk la/h ቤተ መጻሕፍቲ ባይዱ2k2l2]1/2
四方晶系:
d h k1 l/h [2 (k 2 )/a 2 ( l/c )2 ] 1 /2
二.材料性能与内部结构的关系
材料的不同性能都是由其内部结构决定的。从材料的内部结构来看,可分为四个 层次:原子结构、结合键、原子的排列方式(晶体和非晶体)以及显微组织。
《材料科学基础》培训讲座PPT(35张)
在飞机发动机中一 种掺镍化合物制成称作 718合金被广泛的用于制 造波音777客机上的发动 机的压缩机、叶片及紧 固件。
• 形状记忆合金
形状记忆合金百叶窗
超级钢 近来,钢铁工业已经开发出一种汽车用钢,比原先的轻24%,而强度
34%,称为超级钢。其优点是:高撞击能量吸收率;高强度-质量比;实用
材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括 属、陶瓷、高分子材料)的微观结构和宏观结构规律建立在共同的理论基础 用于指导材料的研究、生产、应用和发展。它涵盖了材料科学和材料工程的 础理论。
材料科学基础的地位
人类社会发展的历史阶段常常用当时主要使用的材料来划分。从古代到现 人类使用材料的历史共经历了七个时代,各时代的开始时间:
结构材料实际上是一种按结合键种类 来分类的方法。由此可将材料分为金属、 陶瓷、高分子和由金属、陶瓷和高分子分 别组合成的各种复合材料材料。
金属材料:黑色金属材料(钢铁)、有色黑色金属材料(除钢铁 以外的) 陶瓷材料:氧化物陶瓷、非氧化物陶瓷 高分子材料:塑料、橡胶合成纤维 复合材料:金属基复合材料、陶瓷基复合材料、树脂基复合材料 功能材料:电子材料、光电子材料、超导材料
《材料科学基础》
《Foundations of Materials Science》
主讲:徐敏虹
绪论
一、《材料科学基础》的基本概念 二、《材料科学基础》的地位 三、学习《材料科学基础》的意义 四、《材料科学基础》的内容 五、如何学好《材料科学基础》
《材料科学基础》的基本概念
材料是指人类社会能接受地,经济地的制造有用物品的物质。 材料科学是研究材料的成分、组织结构、制备工艺、加工工艺、材料的 能与材料应用之间的相互关系的科学。材料科学是当代科学技术发展的基础 工业生产的支柱,是当今世界的带头学科之一。纳米材料科学与技术是20世 80年代发展起来的新兴学科,成为21世纪新技术的主导中心。
• 形状记忆合金
形状记忆合金百叶窗
超级钢 近来,钢铁工业已经开发出一种汽车用钢,比原先的轻24%,而强度
34%,称为超级钢。其优点是:高撞击能量吸收率;高强度-质量比;实用
材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括 属、陶瓷、高分子材料)的微观结构和宏观结构规律建立在共同的理论基础 用于指导材料的研究、生产、应用和发展。它涵盖了材料科学和材料工程的 础理论。
材料科学基础的地位
人类社会发展的历史阶段常常用当时主要使用的材料来划分。从古代到现 人类使用材料的历史共经历了七个时代,各时代的开始时间:
结构材料实际上是一种按结合键种类 来分类的方法。由此可将材料分为金属、 陶瓷、高分子和由金属、陶瓷和高分子分 别组合成的各种复合材料材料。
金属材料:黑色金属材料(钢铁)、有色黑色金属材料(除钢铁 以外的) 陶瓷材料:氧化物陶瓷、非氧化物陶瓷 高分子材料:塑料、橡胶合成纤维 复合材料:金属基复合材料、陶瓷基复合材料、树脂基复合材料 功能材料:电子材料、光电子材料、超导材料
《材料科学基础》
《Foundations of Materials Science》
主讲:徐敏虹
绪论
一、《材料科学基础》的基本概念 二、《材料科学基础》的地位 三、学习《材料科学基础》的意义 四、《材料科学基础》的内容 五、如何学好《材料科学基础》
《材料科学基础》的基本概念
材料是指人类社会能接受地,经济地的制造有用物品的物质。 材料科学是研究材料的成分、组织结构、制备工艺、加工工艺、材料的 能与材料应用之间的相互关系的科学。材料科学是当代科学技术发展的基础 工业生产的支柱,是当今世界的带头学科之一。纳米材料科学与技术是20世 80年代发展起来的新兴学科,成为21世纪新技术的主导中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E is larger if Eo is larger.
smaller Elastic Modulus
larger Elastic Modulus
.
1161
• Coefficient of thermal expansion, a
coeff. thermal expansion
L Lo
= a (T2-T 1)
(Bonding forces and energies) 吸引力(attractive force, Fa)
排斥力(repulsive force, Fr) 合力(net force, Fn):
Fn=Fa+ Fr
位能(potential energy):
r
r
r
E F n d r F a d r F rd r E a E r
.
7
Chapter 1 The structure of crystalline solids
1.3二次键(secondary bonding) 范德瓦耳斯键(van der Waals bonding) 如果原子的正电荷中心和负电荷中心不重叠,则产生一个偶极矩。 这种偶极矩所产生的原子间结合力-----范德瓦耳斯键 结合力较弱,塑料、石蜡等
材料﹑能源﹑信息
新材料,信息技术和生物技术
材料的发展史
原始社会
奴隶社会
封建社会
资本主义
铁器时代
新材料时代
{
中华民族处于世界领先地位
.
3
分析方法与手段
❖ 光学显微镜(1863),2000倍,金相学
电子显微镜(1932),几十万倍
扫描隧道显微镜(1981)
观察,移动和重新排列原子
作用力为零的平衡距离下位能达到最低值,系统最稳定
结合能(Bonding energy): Eo,平衡距. 离下的作用能
6
Chapter 1 The structure of crystalline solids
1.2一次键(primary bonding) 1)离子键(ionic bonding): NaCl 金属和非金属原子分别形成正负离子, 结合力强 熔点高、强度高、塑性低
• a ~ asymmetry at ro
a is larger if Eo is smaller.
.
1172
Ceramics
(Ionic & covalent bonding):
Metals
(Metallic bonding):
Large bond energy
large Tm large E small a
材料科学基础
Foundations of Materials Science
.
1
材料科学的发展概况
金属材料
{ 按照物理化学属性
无机非金属材料 高分子材料
复合材料
{ 按用途
电子材料,航空航天材料,核材料
建筑材料,能源,生物材料等等
{ 其它分类
结构材料和功能材料
传统材料和新型材料
.
2
材料的重要性
三大支柱与重要标志
费曼语录:如何将信息储存到一个微小的尺度?另人惊讶的是 自然界早就解决了这个问题,在基因的某一点上,仅30个原子 就隐藏了不可思议的遗传信息。。。如果有一天人们能够按照 自己的意愿排列原子和分子,那将创造什么样的奇迹。
.
4
材料工作者面临的任务
开发新材料
挖掘现有材料的潜力
成分 合 成 /加 工
性能
受环境影响 (气氛﹑温度﹑受力状态)
2.2 单晶体(single crystal) 如果晶体周期性的规则排列贯穿整个试样而没有中断,则形成单晶 2.3 多晶体材料(polycrystalline materials) 如果材料是由小晶体或晶粒组成,则称其为多晶体材料。
Variable bond energy
moderate Tm moderate E moderate a
Polymers
(Covalent & Secondary):
Directional Properties
Secondary bonding dominates small Tm small E large a
.
13
Chapter 1 The structure of crystalline solids
2.原子的排列(arrangement of atoms) 2.1 晶体和非晶体(crystalline and
noncrystalline materials) 晶体(crystalline solids)
原子按一定方式在三维空间内 周期性地规则重复排列
固定的熔点,各向异性等
非晶体(noncrystalline solids, amorphous materials)
原子没有长程的周期排列 无固定的熔点,各向同性等
.
14
Chapter 1 The structure of crystalline solids
• Melting Temperature, Tm
Tm is larger if Eo is larger.
.
10
• Elastic modulus, E
Elastic modulus
F A
=
o
E
L Lo
• E ~ curvature at ro Energy
unstretched length
ro r
氢键(hydrogen bonding) 类似于范德瓦耳斯键,结合力较范德瓦耳斯键强。 氢原子起关键作用
.
8
Chapter 1 The structure of crystalline solids
Bonding energies and melting temperatures
.
9
PROPERTIES FROM BONDING: TM
组织结构
理论﹑材料 或工艺设计
使用效能
.
5
第一章 材料的晶体结构
(Chapter 1 The structure of crystalline solids)
§1.1 材料结构的基本知识 (Fundamental concepts)
1 原子结合键(atomic bonding) 1.1 结合键和能量
2)共价键(covalent bonding): 相邻原子共享电子对 来达到稳定结构-----SiO2 熔点高、强度高、塑性低
3)金属键(metallic bonding): 金属原子容易失去外层价电子形成 阳离子在空间整齐排列,远离核的 电子在正离子之间形成“电子气” 导电、导热、塑性好、固溶能力强