武汉市新希望杯历年精选题-组合精选题含答案

合集下载

2024希望杯复赛四年级试题答案解析.pptx

2024希望杯复赛四年级试题答案解析.pptx

【解析】击-砺=100“+1昉+C-100r_10/,-。=100(«-c)-(«-c)=200-2
=198
5、正方形A的边长是10,若正方形B,C的边长都是自然数,且B1C的面积和等于A的面
积,则B和C的边长的和是
.
【答案】14
【解析】B1C的面积和等于A的面积,即B1C的面积和是10x10=100,则tP+c⅛100,
2024希望杯复赛四年级试题答案解析
2024年第14届四年级希望杯复赛解析 一、填空题(每小题5分,共60分) 1、计算:2024×2024-2024×2024+2024×2024-2024×2024= . 【答案】1 【解析】 2016×2014-20l3×20l5+2012×2015-2013×2016 =2。I6χ(2。I4-2。I3)-2。I5×(2。I3-2。I2) =20l6×l-20l5×l =1 2、60的不同约数(1除外)的个数是 【答案】11 【解析】60=l×60=2×30=3×2。=4×15=5×12=6×10. 60的约数(1除外)有:2、3、4、5、6.10、12、15,20、30、60,共11个。 3、今年丹丹4岁,丹丹的苦爸28岁,a年后,苦苦的年龄是丹丹年龄的3倍,则a的值
所以正方形e的面积是:6×6=36(平方厘米) 14、有两块地,平均亩产板食675千克,耳中第一块地是5亩,亩产辐食705千克,假如 其次块地亩产粮食650千克,那么,其次块地有多少亩? 【解析】第一块地总共比平均少:(705-675)×5=150(千克) 所以其次块地比平均多150千克 只次块地的亩数:150÷(675-650)=6(亩) 4个连续的自然数,从小到大依次是11的倍数、7的倍数、5的倍数、3的倍数,求这4个自然数的和的最小值. 【解析】方法一:设这4个连续的自然数为a、a+1、a+2.a+3∙ 依据题京,a+3是3的倍数,所以,a也是3的倍数,而a是11的倍数,则a是33的倍数. 又因为第三个数a+2是5的倍数,个位为0或者5. 则第一个数a的个位应当为3或者8. 又a是33的倍数, a最小为33x1=33,后面的数为34、35、36,而34不是7的俄,解除. a可以为33×6=168,后面的数为169、170、171,而169不是7的倍数,解除.

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案 (满分120分;时间120分钟) 一、填空题(每题5分;共60分) 1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根。

解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根。

4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________。

(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66。

2021希望杯试题及答案初三

2021希望杯试题及答案初三

2021希望杯试题及答案初三试题及答案:2021希望杯初三数学竞赛【试题一】题目:某工厂生产一批零件,原计划每天生产50个零件,预计30天完成。

实际生产过程中,由于技术改进,实际每天生产60个零件。

请问实际需要多少天完成这批零件?【答案】解:设实际需要x天完成这批零件。

根据题意,原计划总零件数为50×30=1500个。

实际每天生产60个零件,所以有60x=1500。

解得x=1500/60=25。

答:实际需要25天完成这批零件。

【试题二】题目:已知直角三角形ABC,其中∠A=90°,AB=6,AC=8,求斜边BC 的长度。

【答案】解:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和。

即BC² = AB² + AC² = 6² + 8² = 36 + 64 = 100。

所以BC = √100 = 10。

答:斜边BC的长度为10。

【试题三】题目:某班有40名学生,其中参加数学竞赛的有20人,参加物理竞赛的有15人,两科都参加的有5人。

求只参加数学竞赛的学生人数。

【答案】解:设只参加数学竞赛的学生人数为x人。

根据题意,参加数学竞赛的人数为20人,其中5人同时参加物理竞赛,所以只参加数学竞赛的人数为20-5=15人。

答:只参加数学竞赛的学生人数为15人。

【试题四】题目:一个水池,单开进水管注满需要6小时,单开排水管放空需要4小时。

如果同时打开进水管和排水管,问需要多少时间才能注满水池?【答案】解:设水池的容量为V,进水管每小时注水量为V/6,排水管每小时排水量为V/4。

同时打开进水管和排水管时,每小时净注水量为V/6 - V/4 = V/12。

设需要t小时注满水池,则有V = (V/12) × t。

解得t = 12小时。

答:需要12小时才能注满水池。

【试题五】题目:某工厂生产一批产品,原计划每件产品成本为100元,但实际生产过程中,由于原材料价格上涨,每件产品成本上涨了10%。

希望杯培训题3答案

希望杯培训题3答案

希望杯培训题3答案51.形的面积等于矩形面积减去三个小三角形面积,而三个小三角形面积恰好是短形面积的,因此52.○中填的数是:□中填的数是:而53.○中填1,△中填0,□填8。

(1+8)×0=0.54.由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是(-3)(-2)(-1)=-6,(-3)(-2)4=24,(-3)(-2)5=20,(-3)(-1)4=12,(-3)(-1)·5=15,(-3)(4)(5)=-60,(-2)(-1)·4=8,(-2)(-1)·5=10,(-2)·4·5=-40,(-1)·4·5=-20.最大乘积是30,最小的乘积是-60.-(-30)÷-60=-55. 1-===56.按规则,甲同学的标准体重为161-110=51,正常体重应在与之间,即因此57.若则若<0,则>0.因此的最小值是0.58.==59.由图可见,又;由图可知因此:60.分三种情形讨论:(1)当时,(2)当时,(3)当时,综合(1),(2),(3),可得,最小值是61.设线段的长度为,则因此即即长度为62.由于36是的倍数,因此只能是0或3,同理,36也是的倍数,因此只能是0或1.因此是3或18,是1或4.在四对数3,1;3,4;18,1和18,4中,只有18和4的最小公倍数是36,因而因此63.设乙跑了X米,则在秒时乙发出叫声,声音传到甲处用了秒,两段时刻之和等于5,因此米64.因为因此65.设大正方形长为,小正方形边长为,则S△ABC平方厘米.66.设则其中为8或9,因为250052,10,被11除的余数分别为0,-1,1,可设250052=为正整数,故可得因此所求四位数是1885或1995.67.设1分、2分、5分硬币分别为枚,则得当时,,;当,3,4时均不合题意;当5时,,;当6,7,8均不合题意.因此,原方程的解为或,或.68.设那个数学小组的成员共有人,男小孩为人,则均为自然数,且.即:且.因此:且则:因此因此最小值是7.这时因此因此,那个数学小组成员至少有7个人。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)

希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)

球的正上方悬挂有相同的灯泡。A 灯泡位置比 B 灯泡位置低。当灯泡点亮时,受
光照部分更多的是
球。
18.用 20 厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。 其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长 ______ 厘米,宽______ 厘米。
千米。
13.甲、乙、丙三人中只有 1 人会开汽车。甲说:“我会开。”乙说:“我
不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是

14.为了支援西部,1 班班长小明和 2 班班长小光带了同样多的钱买了同一
种书 44 本,钱全部用完,小明要了 26 本书,小光要了 18 本书。回校后,小明
第一届小学“希望杯”全国数学邀请赛(第 1 试)
四年级 第 1 试
1.下边三个图中都有一些三角形,在图 A 中,有
在图 C 中,有
个。
个;在图 B 中,有
个;
2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷

3.观察 1,2,3,6,12,23,44,x,164 的规律,可知 x =
目录
1. 第一届小学“希望杯”全国数学邀请赛(第 1 试) ........................................2 2. 第一届小学“希望杯”全国数学邀请赛(第 2 试) ........................................5 3. 第二届小学“希望杯”全国数学邀请赛(第 1 试) ........................................7 4. 第二届小学“希望杯”全国数学邀请赛(第 2 试) ......................................10 5. 第三届小学“希望杯”全国数学邀请赛(第 1 试) ......................................13 6. 第三届小学“希望杯”全国数学邀请赛(第 2 试) ......................................16 7. 第四届小学“希望杯”全国数学邀请赛(第 1 试) ......................................18 8. 第四届小学“希望杯”全国数学邀请赛(第 2 试) ......................................21 9. 第五届小学“希望杯”全国数学邀请赛(第 1 试) ......................................23 10. 第五届小学“希望杯”全国数学邀请赛(第 2 试) ......................................26 11. 第六届小学“希望杯”全国数学邀请赛(第 1 试) ......................................28 12. 第六届小学“希望杯”全国数学邀请赛(第 2 试) ......................................30 13. 第七届小学“希望杯”全国数学邀请赛(第 1 试) ......................................32 14. 第七届小学“希望杯”全国数学邀请赛(第 2 试) ......................................36 15. 第八届小学“希望杯”全国数学邀请赛(第 1 试) ......................................39 16. 第八届小学“希望杯”全国数学邀请赛(第 2 试) ......................................41 17. 第九届小学“希望杯”全国数学邀请赛(第 1 试) ......................................44 18. 第九届小学“希望杯”全国数学邀请赛(第 2 试) ......................................46 19. 第十届小学“希望杯”全国数学邀请赛(第 1 试) ......................................48 20. 第十届小学“希望杯”全国数学邀请赛(第 2 试) ......................................50 21. 第一届---第八届“希望杯”全国数学邀请赛参考答案………………………53

历年希望杯初一竞赛试题精选及答案

历年希望杯初一竞赛试题精选及答案

1.1992年第三届希望杯初中一年级第二试试题及答案2.1995年第六届希望杯初中一年第二试试题及答案3.20XX年第二十届希望杯全国数学邀请赛初一第一试希望杯第三届(1992年)初中一年级第二试题一、选择题(每题1分,共10分)1.若8.0473=521.077119823,则0.80473等于[ ]A.0.521077119823.B.52.1077119823.C.571077.119823.D.0.005210 77119823.2.若一个数的立方小于这个数的相反数,那么这个数是[ ]A.正数. B.负数.C.奇数.D.偶数.3.若a>0,b<0且a<|b|,则下列关系式中正确的是 [ ]A.-b>a>-a>b.B.b>a>-b>-a.C.-b>a>b>-a.D.a>b>-a>-b.4.在1992个自然数:1,2,3,…,1991,1992的每一个数前面任意添上“+”号或“-”号,则其代数和一定是 [ ]A.奇数. B.偶数.C.负整数. D.非负整数.5.某同学求出1991个有理数的平均数后,粗心地把这个平均数和原来的1991个有理数混在一起,成为1992个有理数,而忘掉哪个是平均数了.如果这1992个有理数的平均数恰为1992.则原来的1991个有理数的平均数是 [ ]A.1991.5.B.1991.C.1992.D.1992.5.6.四个互不相等的正数a,b,c,d中,a最大,d最小,且,则a+d与b+c的大小关系是[ ]A.a+d<b+c.B.a+d>b+c.C.a+d=b+c.D.不确定的.7.已知p为偶数,q为奇数,方程组199219933x y px y q-=⎧⎨+=⎩的解是整数,那么[ ]A.x是奇数,y是偶数.B.x是偶数,y是奇数.C.x是偶数,y是偶数.D.x是奇数,y是奇数.8.若x-y=2,x2+y2=4,则x1992+y1992的值是 [ ]A.4. B.19922.C.21992.D.41992.9.如果x,y只能取0,1,2,3,4,5,6,7,8,9中的数,并且3x-2y=1,那么代数式10x+y可以取到[ ]不同的值.A.1个.B.2个.C.3个.D.多于3个的.10.某中学科技楼窗户设计如图15所示.如果每个符号(窗户形状)代表一个阿拉伯数码,每横行三个符号自左至右看成一个三位数.这四层组成四个三位数,它们是837,571,206,439.则按照图15中所示的规律写出1992应是图16中的[ ]二、填空题(每题1分,共10分)1.a,b,c,d,e,f是六个有理数,关且11111,,,,,23456a b c d eb c d e f=====则fa=_____.2.若三个连续偶数的和等于1992.则这三个偶数中最大的一个与最小的一个的平方差等于______.3.若x3+y3=1000,且x2y-xy2=-496,则(x3-y3)+(4xy2-2x2y)-2(xy2-y3)=______.4.三个互不相等的有理数,既可表示为1,a+b,a的形式,又可表示为0,ba,b, 的形式,则a1992+b1993=________.5.海滩上有一堆核桃.第一天猴子吃掉了这堆核桃的个数的25,又扔掉4个到大海中去,第二天吃掉的核桃数再加上3个就是第一天所剩核桃数的58,那么这堆核桃至少剩下____个.6.已知不等式3x-a≤0的正整数解恰是1,2,3.那么a的取值范围是______.7.a,b,c是三个不同的自然数,两两互质.已知它们任意两个之和都能被第三个整除.则a3+b3+c3=______.8.若a=1990,b=1991,c=1992,则a2+b2+c2-ab-bc-ca=______.9.将2,3,4,5,6,7,8,9,10,11这个10个自然数填到图17中10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于p.则p的最大值是______.10.购买五种教学用具A1,A2,A3,A4,A5的件数和用钱总数列成下表:那么,购买每种教具各一件共需______元.三、解答题(每题5分,共10分)1.将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.2.一个自然数a,若将其数字重新排列可得一个新的自然数b.如果a恰是b的3倍,我们称a是一个“希望数”.(1)请你举例说明:“希望数”一定存在.(2)请你证明:如果a,b都是“希望数”,则ab一定是729的倍数.答案与提示一、选择题提示:所以将8.0473=512.077119823的小数点向前移三位得0.512077119823,即为0.80473的值,选A.2.设该数为a,由题意-a为a的相反数,且有a3<-a,∴a3+a<0,a(a2+1)<0,因为a2+1>0,所以a<0,即该数一定是负数,选B.3.已知a>0,b<0,a<|b|.在数轴上直观表示出来,b到原点的距离大于a到原点的距离,如图18所示.所以-b>a>-a>b,选A.4.由于两个整数a,b前面任意添加“+”号或“-”号,其代数和的奇偶性不变.这个性质对n个整数也是正确的.因此,1,2,3…,1991,1992,的每一个数前面任意添上“+”号或“-”号,其代数和的奇偶性与(-1)+2-3+4-5+6-7+8-…-1991+1992=996的奇偶性相同,是偶数,所以选B.5.原来1991个数的平均数为m,则这个1991个数总和为m×1991.当m混入以后,那1992个数之和为m×1991+m,其平均数是1992,∴m=1992,选C.6.在四个互不相等的正数a,b,c,d中,a最大,d最小,因此有a>b,a>c,a>d,b>d,c>d.所以a+b>b+c,成立,选B.7.由方程组以及p为偶数,q为奇数,其解x,y又是整数.由①可知x为偶数,由②可知y是奇数,选B.8.由x-y=2 ①平方得x2-2xy+y2=4 ②又已知x2+y2=4 ③所以x,y中至少有一个为0,但x2+y2=4.因此,x,y中只能有一个为0,另一个为2或-2.无论哪种情况,都有x1992+y1992=01992+(±2)1992=21992,选C.9.设10x+y=a,又3x-2y=1,代入前式得由于x,y取0—9的整数,10x+y=a的a值取非负整数.由(*)式知,要a为非负整数,23x必为奇数,从而x必取奇数1,3,5,7,9.三个奇数值,y相应地取1,4,7这三个值.这时,a=10x+y可以取到三个不同的值11,34和57,选C.二、填空题提示:与666,所以最大的一个偶数与最小的一个偶数的平方差等于6662-6622=(666+662)(666-662)=1328×4=5312.3.由于x3+y3=1000,且x2y-xy2=-496,因此要把(x3-y3)+(4xy2-2x2y)-2(xy2-y3)分组、凑项表示为含x3+y3及x2y-xy2的形式,以便代入求值,为此有(x3-y3)+(4xy2-2x2y)-2(xy2-y3)=x3+y3+2xy2-2x2y=(x3+y3)-2(x2y-xy2)=1000 -2(-496)=1992.4.由于三个互不相等的有理数,既可表示为1,下,只能是b=1.于是a=-1.所以,a1992+b1993=(-1)1992+(1)1993=1+1=2.5.设这堆核桃共x个.依题意我们以m表示这堆核桃所剩的数目(正整数),即目标是求m的最小正整数值.可知,必须20|x即x=20,40,60,80,……m为正整数,可见这堆核桃至少剩下6个.由于x取整数解1、2、3,表明x不小于3,即9≤a<12.可被第三个整除,应有b|a+c.∴b≥2,但b|2,只能是b=2.于是c=1,a=3.因此a3+b3+c3=33+23+13=27+8+1=36.8.因为a=1990,b=1991,c=1992,所以a2+b2+c2-ab-bc-ca9.将2,3,4,5,6,7,8,9,10,11填入这10个格子中,按田字格4个数之和均等于p,其总和为3p,其中居中2个格子所填之数设为x与y,则x、y均被加了两次,所以这3个田字形所填数的总和为2+3+4+5+6+7+8+9+10+11+x+y=65+x+y于是得3p=65+x+y.要p最大,必须x,y最大,由于x+y≤10+11=21.所以3p=65+x+y≤65+21=86.所以p取最大整数值应为28.事实上,如图19所示可以填入这10个数使得p=28成立.所以p的最大值是28.10.设A1,A2,A3,A4,A5的单价分别为x1,x2,x3,x4,x5元.则依题意列得关系式如下:③×2-④式得x1+x2+x3+x4+x5=2×1992-2984=1000.所以购买每种教具各一件共需1000元.三、解答题1.解①(逻辑推理解)我们知道,用1,2,3,4,5,6,7,8,9排成的最大九位数是987654321.但这个数不是11倍的数,所以应适当调整,寻求能被11整除的最大的由这九个数码组成的九位数.设奇位数字之和为x,偶位数字之和为y.则x+y=1+2+3+4+5+6+7+8+9=45.由被11整除的判别法知x-y=0,11,22,33或44.但x+y与x-y奇偶性相同,而x+y=45是奇数,所以x-y也只能取奇数值11或33.于是有但所排九位数偶位数字和最小为1+2+3+4=10>6.所以(Ⅱ)的解不合题意,应该排除,由此只能取x=28,y=17.987654321的奇位数字和为25,偶位数字和为20,所以必须调整数字,使奇位和增3,偶位和减3才行。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

最全希望杯数学竞赛真题及答案

最全希望杯数学竞赛真题及答案

“希望杯”全国数学竞赛(第1-23届)第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

希望杯级考前题题目和答案

希望杯级考前题题目和答案

第十五届(2017年)小学“希望杯”全国数学邀请赛五年级培训题1. 计算:2016×-2017×.2. 计算:÷+386÷54-÷.3. 计算:6051×-×1949+×.5. 用[a]表示不超过 a的最大整数,{a}表示 a 的小数部分,即{a}=a-[a],定义一种运算“⊕”:a⊕b=(a-b)÷(b+1),求[]⊕{}+[]的值.6. 找规律,填数:0,2,12,36,80,150,252,______,_______,…7. 如图 1 所示的七个圆内填入七个连续自然数,使每相邻圆内的数之和等于连线上的数,求这七个自然数的和.8. 有一串数,最前面的 4 个数是 2,0,1,6,从第 5 个数起,每一个数是它前面相邻 4 个数之和的个位数字,问在这一串数中,会依次出现 2,0,1,7 这 4个数吗9. 小华在电脑上玩一种游戏:输入一个大于零的自然数,则输出的数比输入的数扩大一倍还多 1,若先输入的数既不是质数,也不是合数,再将输出的数输入,…则输出的数中,首先超过100的数是多少10. 从1123个1×1的正方形纸片中,依次取出 1个,3个,5个,7 个,…,(2n-1)个,求最大的 n.11. 已知x是两位数,y是一位数,若1123=x× x+11y× y,求x+y.12. ++的个位数字是多少(定义:x n表示n个 x相乘)13. 1×2×3×4×…×2016×2017 的积的末尾有多少个连续的 014. 111a是四位数,若111a-3是7的倍数,求自然数a.15. 有三个连续的自然数,它们的和是三位数,并且是 31 的倍数,求这三个数的和的最小值.16. 若11ab̅̅̅̅̅̅是四位数,并且11ab ̅̅̅̅̅̅-3是7的倍数,那么a + b 有多少个不同的值17. 100 名同学面向老师站成一行.大家先从左至右按 1,2,3,…依次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 5 的倍数的同学向后转. 问:背向老师的有多少人18. 一个自然数,它除了 1以外的两个不同约数的和最大是 60,求这个自然数.19. 三位数中,被6 除,余数是5的有多少个20. 有一类四位数,除以5余3,除以7余6,除以9余6,求这类四位数中最小的数.21. 求被 7除余5,被8除余2的最小的三位数.22. 2b5̅̅̅̅̅是三位数,若2b5̅̅̅̅̅-a 可被13整除,求自然数a 的最小值.23 . 20a̅̅̅̅̅是三位数,若20a ̅̅̅̅̅+1 是7的倍数,20a ̅̅̅̅̅-1是13的倍数,求自然数 a.24. a =201720162016……2016⏟ 10个2016,求a ÷7 得到的余数.25. 五年级(2)班同学分为 5 组,按组活动.第一组到第五组的人数分别是 12 人,6人,10人,13人,7 人. 其中有一个小组需要留在教室内,其余四组去操场跑步和跳绳,若跑步的人数比跳绳的人数的 2 倍多5人,则留在教室的是第几组26. 小华将连续偶数 2,4,6,8,10,…逐个相加,结果是2016. 验算时发现漏加了一个数,那么,这个漏加的数是多少27. 三个质数的平方和是 390,这三个质数分别是多少28. 3个不同的质数 a,b,c满足a+b=c,且 b× c=143,求a×(b+c)的值.29. 下面是着名的百羊问题.原文如下:《算法统宗》(明)程大位甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否甲云所说无差谬,所得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透原文的意思是说,一个牧羊人赶着一群羊,有人牵着一只羊从后面跟来,问牧羊人:“你这群羊有 100 只吗”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半,再加上一半的一半,连同你这一只羊,就刚好满 100 只.”请问牧羊人赶着多少只羊30. 用两个 3,三个 2,两个1可以组成多少个互不相同的七位数31. 从1 到2017的所有奇数的平方数中,个位数是 5的有几个32. 从1 到101这101 个自然数中,(1) 至少选出_____个才能保证其中一定有两个数的和是 7的倍数;(2) 如果要保证其中一定有两个数的和是 6的倍数至少要选出______个.33. A,B,C,D四人久别重逢.(1) 四人站成一排照相,问有多少种站法(2) 四人围成一圈照相有多少种站法34. 电视台打算 3天播完 6集电视剧,其中可以有若干天不播,共有多少种播出的方法35. 属相各异的 12 位同学按鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、犬、猪的顺序围成一圈传递一袋不足 200 颗糖的幸运礼包.每人接到礼包后取出一颗糖,然后将礼包往下传.属牛的最牛,先取糖,将礼包传给属虎的同学,…,若最后取到糖的同学属龙,则(1) 礼包里至少有多少颗糖(2) 礼包里至多有多少颗糖36. 纸箱中有赤,橙,黄,绿,青,蓝,紫七色袜子,每种袜子都是单色,且数量足够多,那么从中至少取多少只袜子可以保证有一双同色的袜子37. 五年(1)班有 46 名学生参加 3 项活动.其中有 24 人参加了数学小组,20 人参加了语文小组,参加美术小组的人数是既参加数学小组又参加美术小组人数的 4倍,又是3项都参加的人数的 8倍,既参加美术小组也参加语文小组的人数是 3项都参加的人数的 3 倍,既参加数学小组又参加语文小组的有 10 人,问参加美术小组的人数是多少38. 有1 克、2克、4 克、8克、16 克重的砝码 5枚,若只能在一边放砝码,问:(1) 用这些砝码可称出多少种不同的重量(2) 若4克的砝码破损后只剩下 3克,则可称出多少种不同的重量39. 小明家住在一条胡同里,这条胡同里的门牌号码从 1号、2号、…连续下去.全胡同所有住户的门牌号之和减去小明家的门牌号码,其结果为265. 则(1) 这条胡同共有多少家住户(2) 小明家的门牌号码是几号40. 数一数,图2中共有多少个三角形41. (1) 图3中有多少个长方形(包括正方形)(2) 图3中包含*的长方形有多少个(包括正方形)42. 波兰数学家谢尔宾斯基(Sierpinski)在1915年提出了谢尔宾斯基三角形. 以下是它的构造方法:①取一个实心的等边三角形;②沿三边中点的连线,将它分成四个小三角形;③去掉中间的那一个小三角形;④对其余三个小三角形重复②③④.这样下去可以重复无数次操作,如图 4 所示. 如果原来的大等边三角形面积为256,那么在 4次操作之后,三角形中被去掉的空白部分面积为多少43. 如图 5,8个小等边三角形组成了一个梯形.(1) 数一数图5中有几个等边三角形;(2) 若去掉一个三角形,使得三角形的总数减少 1个,你能办得到么减少两个呢44. 所谓闭折线,就是一些线段首尾相接构成一个回路.比如五角星,它是一个有5条边的闭折线,并且它的 5条边互相相交,共有5个交点(不包括线段的端点交点). 请问:一个有 6 条边的闭折线,它的 6 条边之间最多可以有多少个交点(不包括线段的端点交点)45. 如图 6,将正面为白色,背面为红色,面积为 105 的长方形彩纸背面向正面折起一部分,使这部分重合到彩纸内,这时,白色彩纸的面积只剩下了原来的倍,求被折起的这部分(阴影部分)的面积.46. 如图 7,长方形 ABCD 中,△ABP 的面积为 30,△CDQ 的面积为 35,求阴影部分的面积.47. 如图 8,8边形的 8个内角都是 135°.已知 AB=EF,BC=20,DE=10,GF=30,求AH的长.48. 如图 9,四边形 ABCD 是一个正方形,梯形 AEBD 的面积是 26,△AOE 的面积比△BOD的面积小 10,求正方形的边长.49. 如图 10,直角梯形 ABCD 中,DF⊥BC,AB=10,DE 的长度是 EF 的 4 倍,阴影部分的面积为90. 求梯形ABCD的面积.50. 如图 11,在梯形 ABCD中,AB=15,CD=5,梯形的面积为80,求△AOB的面积.51. 如图 12,过平行四边形 ABCD 内的一点 P 作边的平行线 EF,GH,若平行四边形BEPH的面积为 4,平行四边形PFDG的面积为7,求△PAC 的面积.52. 如图 13,△ABC 中,试在AB上取点E,在AC 上取点F,D,连接 EF,ED,BD,使得△AEF,△EDF,△BDE,△BCD 的面积都相等(说出一种方法即可,但要证明其正确性).53. 如图 14(a)边长分别为 13,5 的两个正方形叠放在一起,两个正方形内部的阴影部分的面积差为M. 如图14(b)边长分别为15, 9的两个正方形叠放在一起,两个正方形内部的阴影部分的面积差为 N. 试比较 M与N 的大小.54. 在边长是 2米的等边三角形内任意丢放 5颗小石子,则总有两颗小石子的距离不大于1米,请说出理由.55. 张大伯利用一堵旧墙 AB,用长 50m 的篱笆围成一个留有 1m 宽的门的梯形场地CDEF(CD∥EF),如图15所示.若DE的长为 10m,则梯形场地 CDEF的最大面积是多少56. 如图 16,ABCD 是正方形,AEGD,EFHG,FBCH 都是长方形,若图 16 中所有长方形(含正方形)的周长之和为190,EF=5,求正方形ABCD的面积.57. 用2017 个等腰直角三角形能不能拼成一个正方形请说明理由. (注:等腰直角三角形不要求一样大).、58. 一只乌鸦从其鸟巢飞出,飞向其巢北10 千米东7千米的A地,在 A地它发现有一个稻草人,所以就转向巢北 4 千米东 5 千米的 B 地飞去,在 B 地吃了一些谷物后立即返巢,其所飞的途径构成了一个三角形,这个三角形的面积为多少平方千米59. 图 17 是一个正方体纸盒的展开图,当折叠成纸盒时,与点 1 重合的点的编号有哪些60. 一组积木组成的图形,从正面看是,从侧面看是,则(1) 这组积木最少是用多少块正方体积木摆出来的(2) 这组积木最多是用多少块正方体积木摆出来的61. 甲、乙、丙在猜一个完全平方的两位数.甲说:它的因数个数为奇数,而且它比90大.乙说:它是奇数,而且它比 80小.丙说:它是偶数,而且它比 100小.如果他们三个人每个人都有半句真话,半句假话,那么这个数是多少62. 如图 18,三根绳子系在一起,现在要在绳子的某处点火,如果每分钟火燃烧的距离是1,那么至少需要几分钟才能烧光这些绳子63. 已知“西门鸡翅”的价格是3元钱2个鸡翅,“好伦哥”的价格是20元自助餐(无论吃多少个鸡翅都是 20 元),请根据图 19 中的对话判断,小笨至少能吃多少个鸡翅64. 小笨得到了一笔压岁钱,但却忘了具体有多少钱. 他只记得这个三位数的各位数字之和是17,其中十位数字比个位数字大 1. 如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大 198. 请你帮小笨算算,这笔压岁钱有多少元65. 某次考试共有 12 道判断题.小聪划了 7 个钩和 5 个叉,结果对了 8 道;小笨划了 3 个钩和9 个叉,结果对了 10 道;大壮一道不会,索性全部打叉,那么他至少可以蒙对多少道题66. 如图 20,在空格内填入数字 1~4,使得每行、每列和每个粗线围成的区域里数字都是1~4恰好各一个,若M+N>4,则 M× N 的值是多少67. 有 61 个人坐成一横排.首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站:(1) 如果邻座的人站起来,那么1秒钟后自己也站起来;(2) 站起1秒钟后坐下;(3) 如果左右邻座的人都是站着的,那么即使过了 1秒钟,自己仍然坐着.那么最初的那个人站起7秒钟后,有几个人站着68. 某学生俱乐部有 11 个成员,他们的名字分别是 A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11 个人里面,总说谎话的有几个人”那天,J 和K休息,余下的9个人这样回答:那么这个学生俱乐部的 11 个成员中,总说谎话的有多少个人69. 某单位空降一名总经理,五位职员了解了这位经理的一些情况,现列表如下:这五位职员了解的情况,每人只有1项是正确的,请判定该经理的情况.70. 班长小英让 x 名同学去种少于 100棵的树苗.若每人种7棵,则余下 5棵;若每人种8棵,则有1 人只须种6棵. 求:(1)人数x; (2)树苗的棵数.71. 全家四口人,父亲比母亲大 3岁,姐姐比弟弟大 2岁. 4年前他们全家的年龄之和是58岁,而现在是 73岁. 问现在母亲的年龄是多少岁72. 有一根木棍有三种刻度,第一种刻度将木棍分成 10 等份,第二种刻度将木棍分成12等份,第三种刻度将木棍分成15等份.如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段73. 某快递公司已囤积部分快件,但仍有快件不断运来,公司决定用快递专车将快件分给客户,若 9 辆车发货,12 小时运完;若用 8 辆车发货,16 小时可以运完. 问:如果先用6 辆车运,3小时后需再增加几辆车,再过5小时可以运完74. 10 点多的某个时刻,小明发现 1 分钟后表的时针与 1 分钟前表的分针夹角是180°,那么现在是 10点几分75. 三堆苹果共 48 个. 先从第一堆中拿出与第二堆个数相等的苹果放入第二堆,再从第二堆中拿出与第三堆个数相等的苹果放入第三堆,最后又从第三堆中拿出与第一堆个数相等的苹果放入第一堆,这时三堆苹果数恰好相等.第一堆苹果原来有多少个76. 甲、乙共有 26 颗糖.甲先拿走乙的一半,乙发现后,也拿走了甲的一半. 甲不服气,又偷偷拿了乙 5颗糖,此时甲比乙多 2颗,问:乙刚开始时有多少颗糖果77. 甲、乙两车同时从 A,B两地相向而行,在距A地70千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距 A 地 50 千米处相遇. 问:A,B 两地相距多少千米78. 一列火车速度不变地驶过长为 600米的铁路桥需 1分钟,以相同的速度完全穿过长为2200米的隧道需要 3分钟,问:火车长多少米 (从车头上桥到车尾离桥即为完全驶过铁路桥)79. 张华从家到学校上课,先用每分钟 80 米的速度走了 3 分钟,发现这样走下去将迟到3分钟;于是她就改用每分钟 110米的速度前进,结果提前了 3分钟到校.张华家离学校有多远80. 有 A,B,C 三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用 6分钟、10 分钟、12 分钟追上骑车人.现在知道 A车每小时行24 千米,B车每小时行 20千米,那么,C 车每小时行多少千米81. 某人沿着电车道旁的便道以千米每小时的速度步行,每分钟有一辆电车迎面开过,每 24 分钟有一辆电车从后面追过来,如果电车按相等的时间间隔以同一速度不停的往返运行,问:电车发车间隔是多少分82. 星期六小王去球馆打球,去时发现家中的钟没电了,于是换上电池,把钟暂时调整到 8 时整,到球馆时球馆的钟刚好是 8 时整,打球到 11 时整,他以原速度回家发现家中的钟刚好是 12 时整,小王根据这些时间关系再次调整了时间,如果小王在路上的速度是 60米/分钟,请问:(1) 从家到球馆的路程是多少米(2) 小王到家的准确时间是几点83. 某汽车从 A 地开往 B 地,如果在计划行驶时间的前一半时间每小时行驶 30千米,而后一半时间每小时行驶 50千米,则按时到达;但汽车以每小时行驶 40千米的速度从A地行驶至离 A,B 中点还差 40 千米的地方发生故障,而停车检修半小时,此后以50 千米每小时的速度行驶,仍按时到达B地,问:(1) 原计划时间是几小时(2) A,B两地的距离是多少千米84. 甲、乙两名同学从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动. 已知山坡长 360 米,甲上山的速度是乙上山的速度的倍,并且甲乙下山的速度是各自上山速度的倍. 当甲第三次到达山顶时,乙所在的位置距山顶多少米85. 熊大和熊二清晨起床后去学校的环形跑道上跑步锻炼,已知环形跑道的一周是 400 米,两只熊分别在相距 80 米的 A,B 两处同时跑,熊大每秒跑 3 米,熊二每秒跑2米,那么熊大和熊二几秒后第一次相遇86. 甲、乙二人在一条相距 20 千米的平直公路的两处同时同向骑自行车(时速不超过 60 千米)前进,一小时后两人相距 15 千米,已知乙的时速比甲的时速的 2倍少10 千米,求甲,乙二人的时速.87. 加工一批零件,如果甲先做4 小时,乙再加入一起做,完成时甲比乙多做 400个,如果乙先做 4 小时,甲再加入一起做,完成时甲比乙多做 40 个. 如果一开始甲乙就一起做,那么,完成时甲比乙多做多少个88. 猴子 A,B 一起上山摘桃子,猴子 B 单独摘完需要 50 天,如果猴子 A 第一天摘,猴子B第二天摘,这样交替摘,恰好整天数可摘完. 如果猴子 B 第一天摘,猴子 A 第二天摘,这样交替摘,恰好比上次轮流的方法多用半天摘完,那么猴子A单独摘完需要多少天89. 一个玻璃容器里所装的糖水中含有10克糖,再倒入浓度为5%的糖水200克,配成浓度为%的糖水. 那么原来这个玻璃容器的水有多少克90. 用黑、白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑、白皮块 32 块,则(1) 黑色皮块有多少块(2) 白色皮块有多少块91. 小聪与小笨一起爬楼梯上楼,小聪家住 5层,小笨算了一下,自己的速度必须是小聪的2倍,这样才可以与小聪同时到达各自家中,那么小笨家住几层92. 一个牧民买了一头母羊,每年能生 2只公羊, 4只母羊,每只小母羊两年后,又可以每年生6只羊,其中2只公羊,4只母羊.这样从今年开始到第 4年底,一共有多少只羊93. 一辆长途汽车的起点是甲站,终点是丙站,中途停靠乙站. 从甲站到乙站和从乙站到丙站的票价都是 2元,而从甲站到丙站的票价是 3元,一天这辆长途汽车离开甲站时载有 45 名乘客,到了乙站有 12 人下车,19 人上车,那么该长途汽车这一天的车票收入是多少元94. 甲、乙两人共带 90 千克行李坐飞机旅行,机场规定:每人所带行李重量不超过规定重量免费,超出部分重量按标准收费.两人分开带行李分别收费是元和元;如果由一人带行李就要收 42元.问:免费规定重量是不超过多少千克95. 大壮加工一批产品,他每加工出一件正品,得报酬元,每加工出一件次品,罚款元,这天他加工的正品是次品的 7倍,得到元的报酬. 那么他这天加工出几件次品96. 一个工人与用人单位签订了一个月的短期合同,双方约定,每工作一天得 80元,不上班不但没工资,且每天要倒扣10元.月末结账时,该工人领到工资 2030元,问这个工人工作了多少天97. 顾客和店主有如下对话:顾客:老板,这件商品多少元店主:这件商品五折减 5角和六折减6角的结果一样.顾客:按“五折减5 角”的优惠价买可以么店主:不行!顾客:按“九折减9 角”的优惠价来买可以吗店主:不行!问:(1) 这件商品的单价是多少(2) 店主为什么坚持不卖98. 小聪赶着一头猪到山外的生猪收购站去卖,过秤知猪重150斤,他和收购站的工作人员有如下对话:收购员:你这头猪肚子这么大又这么重,是不是故意让猪吃了很咸的猪食,然后大量喝水造成的不收!小聪:我们家有诚信的家风,绝不会这样!请收购吧,我走了很远的山路才到这里.收购员:如果马上收购,猪的重量要打九折,如果你明天早上来,当面再称猪的重量,收购价提高两成五,两种选择由你确定!请帮助小聪作出选择,并说明理由.”,如果只从经济方面考虑,你选择去哪家商店99. 一种商品,甲店:“买四赠一”,乙店:“优惠14100. 有27位客人来某厂参观学习,厂领导派车去火车站接人,厂里有两种车子:可乘 3 人(司机除外)的小轿车和可乘 7 人(司机除外)的面包车,若要求车子全都满载,请确定派车的方案.参考答案1. 02. 13. 304. 105.6. 392,5767. 358. 不会9. 12710. 3311. 3512. 813. 50214. 615. 18616. 1317. 3518. 40 或4519. 15020. 120321. 13822. 123. 9 24. 425. 4或 526. 5427. 2,5,1928. 4829. 3630. 21031. 20232. 47,3733. 24,634. 2835. 19636. 837. 2438. 31,2739. 23,1140. 1641. 360,10842. 17543. 10,可以44. 745. 4246. 6547. 2048. 649.50. 4551.52. 略53. M = N54. 略55. 20556. 10057. 可以58. 1159. 2, 660. 3,961. 8162. 2163. 1464. 47665. 766. 967. 868. 969. 姓黄,男性,年薪240万元,硕士学历70. 7,5471. 3172. 2873. 874. 2375. 2276. 1677. 13078. 200 79. 200080. 1981. 1882. 1800,11:3083. 3,12084. 12085. 32086. 15,20;或5,087. 22088. 2589. 59090. 12,2091. 992. 9793. 16194. 2095. 396. 2697. 1元.98. 略99. 乙100. 9 辆小车或者 2 辆小车 3 辆面包车。

【实用资料】希望杯培训题5答案 .doc

【实用资料】希望杯培训题5答案 .doc

第十一届“希望杯”数学邀请赛培训题答案一、选择题1.-7的绝对值是它的相反数7。

选B。

2.1999-==1+2000=2001 选C。

3.既然只有零和它的相反数相同,所以①不正确,②是正确的,另外1与-1都等于其倒数,因此④不正确,③是正确的。

所以选择B。

4.根据同类项定义判定。

选择C。

5.设六月份产量为A,则七月份产量为。

设八月份比七月份要增加X才能达到六月份产量A,则,解得所以八月份的产量要比七月份的增加℅。

选B。

6.其实,要比较的大小,易知最小,与的差的绝对值最小的数是选D。

7.==选C8.(1)若则,因此所以有(2)若则必有则也有故选D。

9.(-1)+(-1)-(-1)(-1)÷(-1)=(-2)-(-1)=-1 选A。

10.其中(A)、(C)、(D)运算都是正确的,而(B)的运算是错误的,事实上正确运算应为。

选B。

11.当<0时,∴选D。

12.选A。

13.由于,所以A不正确;又,所以B不正确;所以C不正确;D是正确的。

选D。

14.-的相反数-的相反数的负倒数,也就是的负倒数,等于选A。

15.设参加聚会共个人,其年龄分别为则即两年前,这个人的年龄依次为所以其平均年龄为:=所以选C。

16.∵<0,∴选C。

17.由可知所以选A。

18.图中可见<<0<1<, 由<,则有<,(A)不真; 由<且>0,则有<,(C) 不真;由c<a且b<0,则有>不真而真,所以选D。

19.由∴的正整数角为1,2,3,4共4个,选C。

20.顺序A的三项任务相对等待时间之和为顺序B的三项任务相对等待时间之和为顺序C的三项任务相对等待时间之和为顺序D的三项任务相对等待时间之和为比较知最小。

选A21.由图可知S小于宽为2.5,长为3的矩形的面积,大于宽为1.8 ,长为3的矩形面积,即。

选 C22.设每届参赛人数的平均增长率为,由题意知,满足关系式11=148,所以即而,,可见30%选B。

希望杯历年真题集(九年级)-附答案

希望杯历年真题集(九年级)-附答案

目录第二十二届“希望杯”全国数学邀请赛(第1试) (3)第二十三届“希望杯”全国数学邀请赛(第1试) (7)第二十三届“希望杯”全国数学邀请赛(第2试) (11)第二十四届“希望杯”全国数学邀请赛(第1试) (15)第二十四届“希望杯”全国数学邀请赛(第2试) (19)第二十五届“希望杯”全国数学邀请赛(第1试) (23)第二十五届“希望杯”全国数学邀请赛(第2试) (27)第二十六届“希望杯”全国数学邀请赛(第1试) (31)第二十六届“希望杯”全国数学邀请赛(第2试) (35)第二十七届“希望杯”全国数学邀请赛(第1试) (40)第二十八届“希望杯”全国数学邀请赛(第1试) (43)参考答案 (47)第二十二届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为( )A .8分钟B .7分钟C .6分钟D .5分钟 2.若关于x 的一元二次方程()2320a b x ax b +++=有唯一解,则这个解是( )A .23-B .32-C .23D .323.如图,已知////AD EF BC ,::1:2:4AD EF BC =,则梯形AEFD 与梯形EBCF 的面积之比为( )A .1:2B .1:3C .1:4D .2:34.一个兵乓球队有男队员6人,女队员5人,其中男、女左撇子分别有3人和2人,若从这个球队任意抽取2人,则抽到2个左撇子的概率是( )A .211 B .511 C .15D .251215.已知x ,y 都是负整数,且满足66xy x=-,则y 的最小值为( ) A .3- B .4- C .5- D .6-6.已知等腰ABC 中,,30AB AC BAC =∠=︒,AD 为BC 边上的高,P 点在AC 上,E 点在AD 上,若PE EC +的最小值为4,则ABC 的面积为( )A .8B .16C .32D .647.如图,AB 是圆O 的直径,点C 平分AB ,点D 平分AC ,DB 、CA 交于点E ,则DEEB的值( )A .13B .14 C .1 D8.已知直线()0y kx k =<与双曲线2y x=-交于点()11A x y ,和()22B x y ,两点,则122138x y x y -的值是( ) A .10- B .5- C .5 D .109.用一些棱长是1的小正方体堆成一个立体,下图分别是它的俯视图和主视图,则这个立体的表面积(含下底面面积)的值最小是( )A .42B .43C .44D .4610.如图,在ABC 中,BAC ∠、BCA ∠的平分线相交于点I ,若35B ∠=,BC AI AC =+,则BAC ∠的度数为( )A .60B .70C .80D .90二、A 组填空题(每小题4分,共40分)11.如图,正六边形的边向外延长一倍,连接端点后又构成一个大的正六边形,则小正六边形与大正六边形的面积之比为 ;12.若对于p 的任意值,抛物线2231y x px p =-++都过一个定点,则这个定点的坐标是 ; 13.如图,正方形ABCD 的边长为 4,E 点在BC 上,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则EC = ;14.在锐角ABC 中,54AB AC ==,,则BC 的取值范围是 ;15.袋中装有大小相同的黑球、白球、红球各2个,规定:取出一个黑球计0分,取出一个白球计1 分,取出一个红球计2分;在抽取这些球的时候,看不到球的颜色.甲先取出3个球,不再放回袋中,然后,乙取出剩余的3个球;取出球的总积分多者获胜.则甲乙成平局的概率为 ;16.不等式21x x a -+-≥对所有实数x 都成立,则 a 的最大值是 ; 17.如图,设M 是ABC 的重心,过M 的直线分别交边AB AC 、于P Q 、 两点,且APm PB=,AQ n QC =,则11m n+= ;18.已知抛物线()20y ax bx c c =++≠与x 轴的交点坐标为()()1,0,3,0-,当25x -≤≤时,y 的最大值为12,则该抛物线的解析式为 ;19.已知平面直角坐标系中有()1,3A ,()3,1B 两点,在x y 、轴上分别找一点C D 、,使四边形的周长最小,则最小周长为 ;20.明明用计算器求代数式()a b c +的值.他依次按出“,,,,,a b c ⨯+=”,显示11;当他依次按“,,,,b c a +⨯=”,显示14 (其中,,a b c 均为正整数).这时他才明白不按括号时,计算器先做乘法再做加法.那么如果他按键正确(该加括号时加括号)时,显示结果应为 ;三、B 组填空题(每小题 8 分,共 40 分)21.已知代数式22 342x xy y x by ---+-能分解为两个关于x y 、的一次式的乘积,则b = 或 ; 22.已知,,x y z 是三个非负实数,满足3252x y z x y z ++=+-=,,若2S x y z =+-,则S 的最大值为 最小值为 ;23.已知()2f x ax bx c =++,若()01f =,并且()()12f x f x x +-=,则()1f = ,()1f -= ,a = ,b = ;24.如图,在平面直角坐标系中,矩形OABC 的顶点A C 、分别在轴上,顶点B 在()14,8,点E F 、分别在OA 、 OB 、上.将AEF 沿EF 对折,使点A 落在线段BC 上的点D 处.经过抛物线()2220y ax abx ab c c =-++<顶点P 的每一条直线总平分矩形OABC 的面积.若点P 在线段DE 上,AF 的长为整数,且已知抛物线与线段EF 仅有一个交点,则点F 的坐标是 ,a 的取值范围是 ;25.某种在同一平面内进行传动的机械装置如左图,右图是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程 中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的O 上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O 做 OH l ⊥于点H ,并测得4OH = 分米,3PQ = 分米,2OP = 分米.则点Q 在l 上 允许滑动的最大距离为 分米,点P在O 上的最大移动路线长为 分米;第二十三届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.如图1所示,一个正方体和一个圆柱体紧靠在一起,则它们的主视图是( )图1 A B C D2.完成一项工作,甲单独做需a 天,乙单独做需b 天,甲乙合作需c 天,则丙单做全部工作所需的天数是( )A .abc ab ac bc -- B .abc ab ac bc +- C .ab ac bcabc++ D .()ab c b a c --3.已知1,0,1x ≠-,则1111x x x x x x -+++-+的值可能是( ) A .比3大的数 B .比3-小的数 C .1,3±± D .比3-大,并且比3小的数4.如图,梯形ABCD 中,//AB CD ,两条对角线交于点E .已知ABE 的面积是a ,CDE 的面积是b ,则梯形ABCD 的面积是( )A .22a b +B )a b +C .2D .()2a b +5.已知a ,b 是实数,关于x 的不等式组的解集表示在数轴上如图所示,则这个不等式组是( )A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩6.如图,AB BC ⊥,AB BC =,点D 在BC 上,以D 为直角顶点作等腰直角,则当D 从B 运动到C 的过程中,点E 的运动轨迹是( )A .圆弧B .抛物线C .线段D .双曲线7.已知实数1234,,,x x x x 满足条件1231234234134124x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩其中1234a a a a <<<,则1234,,,x x x x 的大小关系是( )A .1234x x x x <<<B .2314x x x x <<<C .3214x x x x <<<D .4321x x x x <<< 8.已知23x ≤≤,则函数()21y x =-的取值范围是( )A .14y ≤≤和916y ≤≤B .116y ≤≤C .49y ≤≤D .19y ≤≤ 9.如图,已知梯形ABCD 中,//AB DC A C αβ∠=∠=,,,则:AD BC 等于( )A .sin :cos αβB .sin :sin αβC .sin :sin βαD .cos :sin αβ10.若关于x 的二次函数221y x mx =-+的图像与端点在()1,1-和()3,4的线段只有一个交点,则m 的取值可能是( )A .52B .13-C .12D .13二、A 组填空题(每小题4分,共40分)11.若两位数除以他的数字和等于7,则这样的两位数有 个. 12.已知21x y -=,则22425x y x y ---+= ;13.二次函数2y ax bx c =++的图象如图所示,已知2OB OA OA OC =<,,则,,a b c 满足的关系式是 ;14.如图,已知A B C 、、三点在同一个圆上,并且AB 是圆O 的直径,若点C 到AB 的距离5CD =,则圆O 的面积最小是;15.如图,在边长为1的正方形中,分别以四个顶点为圆心,作半径为1的圆弧,则图中阴影部分的面积是 ;16.如图,在梯形ABCD 中,2//76BA CD AD AB AB CD m BC m ⊥===,,,,,若以BC 为直径的圆与AD 没有公共点,则m 的取值范围是 ;17.设()f x 是关于x 的多项式,()f x 除以()21x +,余式是3;()2f x 除以()32x -,余式是4-,那么,()3f x 除以()242x x --,余式是 ;18.已知实数,a b 满足3a ab b ++=,若m a ab b =-+,则m 的取值范围是 ;19.Tom’s computer has password,which contains only numbers from 0 to 9.If the probability to guess the right password only one time is less than12012,then at least the password has digits. 20.Suppose point ()1,A m - is on the graph of the function 2y x=-,,,,B C D respectively,are point As symmetric points of x -axis,origin,y-axis.Then the area of the quadrilateral ABCD is ;三、B 组填空题(每小题8分,共40分) 21.反比例函数1k y x =和一次函数2y k x b =+的图象交于点2(3,)3M -和点()1,2N -,则1k = ,2k = ,一次函数的图象交x 轴于点 ;22.已知,a b 是实数,且2210a a -=,则a = ,b = ;23.已知,a b 是有理数,1x =是方程20x ax b -+=的一个解,则a 的值是 ,b 的值是 ; 24.如图,已知ABC 中,CD AB ⊥于点D ,26BD AD CD ==,,8cos 9ACD ∠=,BE 是AC 边上的高,则AD = ,BE = ;25.已知点A B Pa=︒,∠=,点M是上的动点,且使ABM为等腰三角形.若45、、是O上不同的三点,APB a则所有符合条件的点M有个,若满足题意的点M有2个,则a=;第二十三届 “希望杯”全国数学邀请赛(第2试)一、 选择题(每小题4分,共40分) 1.若反比例函数k y x =的图像经过点1,22⎛⎫- ⎪⎝⎭,则k 的值为( ) A .1- B .1 C .4- D .42.已知二次函数2y ax bx c =++的图像如图所示,则下列代数式的值恒为正值的是( )A .abcB .acC .bcD .ab3.若存在12x ≤≤,使得2120ax -->,则a 的取值范围是( )A .14a <-B .34a >C .1344a -<<D .14a <-或34a >4.直线k y x k=总是下列哪个函数图像的对称轴?( )A .y k x =B .ky x=C .2y kx =D .y kx = 5.若实数,,a b c 满足2222221,2,3,a b b c c a +=+=+=则ab bc ca ++的最小值为( )A .B .C .D 6.如图,双曲线(0)ky k x=>经过Rt AOB ∆的斜边AB 的中点C ,,AF AO ⊥,BF BO ⊥,AF BF 与双曲线分别交于点,D E ,若8,6,OA OB ==则四边形ODFE 的面积是( )A .12B .24C .36D .407.对于实数a ,规定[]a 表示不大于a 的最大整数,如[][]2.12, 1.52,=-=-则方程[][]224x y +=的解在xOy 坐标系中的图像是( )A B C D 8.某商店对于某个商品的销售量与获利做了统计,得到下表:若获利是销售量的二次函数,则该商店获利的最大值是( )A .9万元B .9.25万元C .9.5万元D .10万元9.如图,已知长方形ABCD 的边长32AB AD ==,,点E 在BC 边上,且AE EF ⊥,EF 交CD 于F ,设,BE x FC y ==,则当点E 从点B 运动到点C 时,y 关于x 的函数图像是( )A B C D10.若凸n 边形12n A A A 适合以下:(1)1100A ∠=,(2)18,1,2,,1,k k A A k n +∠=∠+=-则n 的值是( )A .5B .6C .7D .8 二、A 组填空题(每小题4分,共40分)11.若ABC ∆是半径为1的圆的内接三角形,BC =则A ∠= ; 12.方程11112012201420162018x x x x -=-----的解是x = ; 13.如图,P 是等边ABC ∆内一点,3,4,5,AP BP PC ===则APB ∠= ;14.边长为整数,且周长为2012的等腰三角形有 个.15.已知关于x 的一元二次方程222(1)(1)0x m x m --+-=有两个不相等的实根,αβ,若224,αβ+=则m = ; 16.已知ABC ∆的三个顶点的坐标分别为(1,5),(6,2),(1,2),A B C ----则ABC ∆外接圆半径的长度为 ;17.已知坐标平面xOy ,Rt ABC ∆中的直角顶点是A ,点B 与点O 重合,点C 在坐标轴上,则点C 的坐标是 ;18.已知350,x y z -+=并且230x y z ++=,则2222223323x y z xy yz zx x y z-+++-+-的值等于 ; 19.α和β是方程2210x x --=的两根,2α和2β是20x mx n ++=的两根,点(,)m n 在一次函数(3)y kx n =+-的图像上,则此函数的解析式是 .它的图像与xOy 坐标平面内的坐标轴围成的图形的面积是 ; 20.如图5,在直角梯形ABCD 中,,90,AB CD BAD ADC ∠=∠=∥两条对角线的交点为O ,O 与AD 相切,并与以AD 为直径的O '内切,已知AD 长为h ,则梯形ABCD 的面积是 ;三、解答题(每题都要写出推算过程) 21.解方程44(2)820x x +--=22.如图所示,已知二次函数28y x bx =-++的图像与x 轴交于,A B 两点,与y 轴交于点C ,且(4,0)B . (1)求二次函数的解析式及其图像的顶点D 的坐标;(2)若点(,0)M p 是x 轴上的一个动点,则当MC MD -取得最大值时,求p 的值;(3)如果点(,)E m n 是二次函数28y x bx =-++的图像上的一个动点,且ABE ∆是钝角三角形,求m 的取值范围.23.给你若干个边长都是1的正三角形,正方形,正五边形,正六边形,从其中任选两种(个数不限),将它们拼接,要求是:(1)使某边重合;(2)两种图形中的任何一种不得有公共部分.问:(1)用选出的两种图形围成正n 边形,如:用3个正方形和3个正六边形围成一个正三角形ABC (如下图). 请你再举两例,并作图说明.(2) 对于(1)中的正n 边形,求它的外接圆的半径.第二十四届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.若m n 、是方程210x -+=的两个根,则n mm n-的值是( )A .±B .±C .±D .±2.设O 的半径是5,点P 不在O 外,若点O 与P 的距离222OP m m =-+,则m 的取值范围是( ) A .1m <-或3m > B .13m -≤≤ C .1m ≤- D .3m ≥3.如图,O 内的点P 在弦AB 上,点C 在圆O 上,PC OP ⊥,若2BP =,6AP =,则CP 的长等于( )A .B .4C .D .4.如图是类似“羊头的”图案,它左右对称,由正方形,等腰直角三角形构成,如果标有数字“13”的正方形的边长是,那么标有数字“2”的等腰直角三角形的斜边的长是( )A .4B .C .2D .325.若m n 、()()m n n m +-的差的绝对值最小的整数是( ) A .55- B .56- C .16- D .15-6.如图,铁路MN 和公路PQ 在点O 处交汇,30QON ∠=︒,点A 在OQ 上,240AO = (米),当火车行驶时,周围200米以内未受到噪音的影响,现有一列火车沿MN 方向意72千米/时的速度行驶(火车的长度忽略不计),那么,A 处受噪音影像的时间为( )A .12秒B .16秒C .20秒D .24秒 7.InABC as shown in fig, ,,AB AC BD EC BE CF ===,if 50A ∠=︒,then the degree of DEF ∠ is ( )A .60︒B .65︒C .70︒D .75︒8.如图5,2O 的半径是1,正方形ABCD 的边长是6,点2O 是正方形ABCD 的中心,12O O 垂直AD 于P 点,128O O =,若将1O 绕点P 按顺时针方向旋转360°,在旋转过程中,与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .5次C .6次D .7次9.如图,在同一个平面直角坐标系内,二次函数()120y ax bx c a =++≠和一次函数()20y dx e d =+≠的图象相交于点(),A m n 和点(),B p q ,当12y y <时,用,m p 表示x 的取值范围,则是( )A .m x p <<B .x m <C .x p >D .x m >10.如图,在正方形ABCD 中,点M N 、分别在边AB BC 、上运动(不与正方形的顶点重合),2BN AM =,若图中的三个阴影三角形中至少有两个相似,则这样的点M 有( )A .1个B .2个C .3个D .4个二、A 组填空题(每小题4分,共40分)11.已知实数,a b 不相等,并且2215,15,a a b b +=+=则2211a b+= ; 12.If 111a m=-, 2111a a =-, 3211a a =-,...,then 2013a in terms of m is;13.如图,在3×2的方格纸上,以某三个格点为顶点的三角形中,等腰三角形共有 个.14.若实数,,x y z 使20x y z ++=和3250x y z ++=成立,并且0z ≠,则2222222457x y z xy x z xz -+--+的值是 ;15, ,则此三角形的面积是 ;16.已知抛物线2(0)y ax bx c c =++≠与x 轴的交点坐标为()1,0-,()3,0,当25x -≤≤时,y 的最大值为12,则该抛物线的解析式为 ;17.如图,直角梯形纸片ABCD 中,//AD BC ,AB BC ⊥,10AB =,25BC =,15AD =,以BD 为折痕,将ABD 折起,旋转180°后,点A 到点1A ,则凹五边形1BDCEA 的面积为 ;18.如图,将边长为a 的正方形ABCD 绕其顶点C 顺时针旋转45︒,得四边形A B C D '''',则图中阴影部分的面积是 ;19.If7,then the value range of real number a is ;20.如图,从边长为5的正方形纸片ABCD 中剪去直角EBF (点E 在边AB 上,点F 在边BC 上),EB BF +=则五边形AEFCD 的面积的最小值是 ;三、B 组填空题(每小题8分,共40分)21.下图是由若干个棱长为1厘米的正方形堆成的几何体,它的三视图中,面积最大的是 平方厘米,这个几何体的体积是 立方厘米22.如图,在ABC 中,502A AB AC ∠=︒==,,BD 是边AC 上的高,利用此图可求得tan15︒= ;BC = ;23.在直角坐标系内,如果一个点的横坐标和纵坐标都是整数,则称该点为整点,若凸n 边形的顶点都是整点,并且多边形内部及其边上没有其它整点,则n = ;24.如图,直角梯形中, 1.5213////90AB CD AF AD AB EF CD A ====∠=︒,,,,,,分别以AD FE ,所在的直线为x 轴、y 轴建立坐标系(,AD FE 为正方向)若抛物线过点B C 、,并且它的顶点M 在线段EF 上,则a = b = c = ;25.如图,ABC 中,90602B A AB AD ∠=︒∠=︒==,,,点M 在DC 上,以M 为圆心,以DM 为半径的半圆切边BC 于点N ,交MC 于点P ,则DM = 曲边的面积= ;附加题(每小题10分,共20分)1.若()326116f x x x ax =-+-可以被()23g x x =-整除,则a = 当()0f x >时,x 的取值范围是 ;2.有一堆黑,白围棋子,如果从中每次取出3枚黑子和2枚白子,当黑子被取完或剩下1枚或2枚时,则还剩35枚白子,如果每次取出5枚黑子和7枚白子,当白子被取完或剩下不足7枚时,则还剩下35枚黑子,那么这堆棋子中,原有黑子 枚,白子 枚;第二十四届“希望杯”全国数学邀请赛(第2试)一、选择题(每小题4分,共40分)1.如图,矩形ABCD 中,2AB =,1AD =,点M 在边DC 上,若AM 平分DMB ∠,则AMD ∠的大小是( )A .75B .60C .45D .302 )A .B .-C .D .-3.一个矩形被直线分成面积为,x y 的两部分,则y 与x 之间的函数关系只可能是( )A B C D 4.函数31x y x x-=-中,x 的取值范围是( ) A .0以外的一切实数 B .0,1-以外的一切实数 C .1±以外的一切实数 D .0,1±以外的一切实数5 )A .1B .2C .3D .4 6.代数式25x x -++( )A .有最小值,没有最大值B .有最大值,没有最小值C .既有最小值,也有最大值D .既没有最小值,也没有最大值7.如图,△ABC 中,AB=2,BC=4,CA=3,平行于BC 的直线l 过△ABC 的内心I ,分别交边AB AC 、于点D E 、,则ADE 的周长是( )A .5B .6C .7D .88.若动点)M x y (,到定点A 324⎛⎫⎪⎝⎭,的距离等于M 到直线54y =的距离,则动点)M x y (,的轨迹( )A .双曲线B .抛物线C .双曲线的一支D .一条直线9.不等式0a 的解是( ) A .0a ≠ B .1a >或1a <- C .1a >或10a -<< D .0a >或1a <-10.如图,ABC 中,1,2,90AB AC ABC ==∠=,若BD EF GH 、、都垂直于AC DE FG HI 、、、都垂直于BC ,则阴影HIC 的面积与ABC 的面积的比是( )A .634⎛⎫ ⎪⎝⎭ B .6324⎛⎫⨯ ⎪⎝⎭ C 634⎛⎫⎪⎝⎭D .62334⎛⎫⨯ ⎪⎝⎭二、填空题(每小题4分,共40分)112=的根是 ; 12.若正n 边形的一个外角为5︒,则n = ;13.已知关于x 的方程224220x x p p --++=的一个根为p ,则p = ;14.平面直角坐标系内,一只跳蚤停在点()5,0处,它要跳到点()6,0处,它每一跳都是飞越5个长度单位,并且总是跳到整点(坐标都是整数的点),也不从原路返回,那么,当它跳到点()6,0时,至少跳了 次 15.将一个圆分成三个相同的扇形,将其中一个卷成圆锥,锥顶对锥底圆周上任意两点的最大张角的余弦值是 ;16.将相同的平行四边形和相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 ;17.ABC 中,3,5,120AC BC ACB ==∠=,点M 平分AB ,则tan MCA ∠= ,MC = ;18.方程组3322181x y z x y z +=-⎧⎨+=-⎩的正整数解(),,x y z 是 ; 19.ABC 的三条高依次是643AD BE CF ===,,,则cos C = ,ABC 的面积是 ; 20.已知()f x 是一个多项式,若()f x 除以()1x -,余5;若()f x 除以()2x +,余2,则()f x 除以()()12x x -+,得到的余式是 ;三、解答题(每题都要写出推算过程) 21.(本题满分10分)已知二次函数24y mx x m =+++的图象在直线2y =-的上方. (1)求m 的取值范围;(2)当2m =时,求此二次函数的图象在x 轴上截得的线段长.22.(本题满分15分)一家商店销售某种计算器,开始按定价(小于200元的整数元)售出,后来按定价的六折售出,当售出200台时,共得款30498元.问:打折前,按定价售出了多少台?23.(本题满分15分)设()0)f x x =>(1)将()f x(a b ,是不同的整数)的形式;(2)求()f x 的最大值及相应的x 的值.第二十五届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.以下三角形中,与图1中的三角形相似的是( )图1 A B C D2.某商品原价200元,先降价%a ,又提价%a ,售价是182元,则下列关系式中正确的是( )A .()()2001%1%182a a -÷+=B .()()1821%1%200a a -÷+=C .()()2001%1%182a a +÷-=D .()()1821%1%200a a ÷-÷+= 3.一个几何体的三视图如图所示,则该几何体可能是下列四个选项中的( )主视图 左视图 俯视图A B C D4.若关于x 的一元二次方程()2223560m x x m m -++-+=的常数项为0,则m 的值是( )A .2B .3C .2或3D .0 5.方程20142014x x -=-的正整数解有( )A .2013个B .2014个C .2015个D .无穷多个6.在ABC 中,若AC =BC AB =ABC 的面积为( )A B . C .112D .67.Given equationx ,then the number of solutions for this equation is ( )A .0B .1C .2D .countless8.若()()6xx+=,则x =( )A .2B .2-C .2±D .12±9.如图,AB AC AD DE EC BC ====,,则ABC ∠的度数为( )A .30︒B .40︒C .45︒D .60︒ 10.如图,设AB 是O 的弦,CD 是O 的直径,且CD 与AB 相交,若CABOABm SS=-,OABn S=,则( )A .2m n >B .2m n =C .2m n <D .m 与2n 的大小关系无法确定. 二、A 组填空题(每小题4分,共40分)11.若2420y y ++=,则22224y y y =-+ ;12.如图,矩形ABCD 中,60AB =,23BD BC CD =+,则BC = ;13.InABC as shown in Fig., 40BAC ∠=︒.Both BD and CD are the interior angle bisectors of ABC which intersect atpoint D , BE and CE are exterior angle bisectors of ABC which intersect at point E ,then BDC BEC ∠-∠= °14.有1,2,5,10g g g g 的砝码各2个,从中任取2个放在已经平衡的天平的两端,则天平依然保持平衡的概率P = ;15.如图,将等边ABC 的外接圆对折,使点A 与弧BC 的中点F 重合,折痕与边AB AC 、分别交于点D E 、.若3BC =,则ADE 的面积是 ;16.如图,Rt ABC 中,9021C AC BC ∠=︒==,,,若以C 为圆心,CB 为半径的圆交AB 于点D ,则AD DB= ;17.在平面直角坐标系中,抛物线C 经过点()()3,87,8A B ,,且与x 轴恰有一个交点,则抛物线C 上纵坐标为32的两个点的距离为 ;18.如图,等边AFG 被线段BC DE ,分割成周长相等的三部分:等边三角形ACB 、梯形BCED 、梯形DEGF ,其面积分别为123S S S ,,,若263S =,则12S S -= ;19.如图,四边形ABCD 中,90571ABC CDA AD DC AB BC ∠=∠=︒====,,,,则BD = ; 20.正方体骰子的每个面内都写了一个正整数.随意地投掷这样的两个骰子,若朝上的两个面内的数的和为偶数的概率最小为P ,则P = ;三、B 组填空题(每小题8分,共40分.)21.若关于x 的方程()()()()2424x x p p --=--的两个实数根12x x ,是某直角三角形的两条直角边的长,则此直角三角形的面积最大是 ,此时P = ;22.If ,x y and z satisfy the equation x y z ++,then x y z ++= ,and xyz = ;23.若ABC 的三条边长,,a b c 满足2101261b c bc a a +==-+,,则ABC 的周长等于 ,面积等于 ;24.如图,在平面直角坐标系x O y --中,反比例函数()0ky x x=>的图象交矩形OBCD 的边BC 于点E ,交CD 于F 点,且14DF CD =,若四边形OECF 的面积为24,则k = ,OEFS= ;25.在直角坐标系xOy 中,抛物线2y ax bx c =++(,,a b c 是正整数)与x 轴有两个不同的交点()()12,0,,0A x B x .若1x 和2x 都大于1,则abc 的最小值是 ,此时a b c ++= ;第二十五届“希望杯”全国数学邀请赛(第2试)一、选择题(每小题4分,共40分)1.If both a and c are real numbers , 2and 3are the two solutions of the equation 2100ax x c -+= for x ,then the value of a c + is ( )A .10B .12C .14D .162.如图,在ABC 中,BC CA AB >>,D E F 、、分别是AB BC CA 、、边上的点,//,//DE AC FD CB ,若 :1:2AD DB =,则图中的相似三角形有( )对。

八年级数学希望杯第1-21届试题汇总(含答案与提示)

八年级数学希望杯第1-21届试题汇总(含答案与提示)

希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (23)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (31)第六届(1995年)初中二年级第一试试题 (44)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 .............................................................................................................. 98 1999年第十届 “希望杯”全国数学邀请赛第二试 .......................................................................................................... 108 2000年第十一届“希望杯”数学竞赛初二第一试 ............................................................................................................. 111 2000年第十一届“希望杯”数学竞赛初二第二试 ............................................................................................................ 114 2001年希望杯第十二届初中二年级第一试试题 ................................................................................................................ 119 2001年希望杯第12届八年级第2试试题 .......................................................................................................................... 122 2002年第十三届全国数学邀请赛初二年级第一试 ............................................................................................................ 129 2002年度初二 “希望杯”全国数学邀请赛第二试 .......................................................................................................... 132 2003年第十四届“希望杯”全国数学邀请赛初二第1试 ................................................................................................. 139 2003年第十四届“希望杯” (初二笫2试) ........................................................................................................................ 142 2004年第十五届“希望杯”全国数学邀请赛初二 ............................................................................................................ 148 2004年第十五届“希望杯”全国数学邀请赛初二第2试 ..................................................................................................... 151 2005年第十六届希望杯初二第1试试题 ............................................................................................................................ 157 2005年第十六届“希望杯”全国数学邀请赛第二试 ........................................................................................................ 159 2006年第十七届“希望杯”全国数学邀请赛第一试 ........................................................................................................ 163 2006年 第十七届“希望杯’’数学邀请赛第二试 ........................................................................................................ 166 2007年第十八届”希望杯“全国数学邀请赛第一试 ........................................................................................................ 171 2007年第十八届“希望杯”全国数学邀请赛第二试 ........................................................................................................ 173 2008年第19届“希望杯”全国数学邀请赛初二第2试试题 ........................................................................................... 179 2009年第二十届“希望杯”全国数学邀请赛第一试 ........................................................................................................ 183 2009年第20届“希望杯”全国数学邀请赛第二试 .......................................................................................................... 186 2010年第二十一届“希望杯”全国数学邀请赛第一试 .................................................................................................... 193 2010年第二十一届“希望杯”全国数学邀请赛第二试 . (195)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A .7.5B .12.C .4.D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD2=BD2+CD2. B.AD2>BD2+CD2. C.2AD2=BD2+CD2. D.2AD2>BD2+CD27.方程219 1()1010x x-=+的实根个数为( ) A.4 B.3. C.2 D.18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,则a b=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b 2-2b+1<0.→(b-1)2<0. 矛盾.∴a+b ≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK ∥AB ,延长EO 和FK ,即得所求新渠.这时,HG=GM (都等于OK ),且OK ∥AB ,故△OHG 的面积和△KGM 的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM 这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH ,FG .②过O 作EH 平行线交AB 于N ,过K 作FG 平行线交于AB 于M .③连结EN 和FM ,则EN ,FM 就是新渠的两条边界线.又:EH ∥ON∴△EOH 面积=△FNH 面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

小学数学希望杯试题及答案

小学数学希望杯试题及答案

小学数学希望杯试题及答案一、选择题1. 小明有4个苹果,他吃掉了2个,还剩下________个。

A. 1B. 2C. 32. 从数学习题册的第16页翻到第19页,一共翻过了________页。

A. 2B. 3C. 43. 7 + 3 = ________A. 10B. 14C. 214. 25 - 7 = ________A. 12B. 18C. 225. 排列5个小朋友,一共有________种不同的排列方式。

A. 20B. 60C. 120二、填空题1. 计算:8 - 3 = ________2. 计算:15 + 6 = ________3. 已知 x = 3,求 x + 5 = ________4. 已知 y = 10,求 y - 7 = ________5. 小明找了12个同学参加生日聚会,一共有________个人参加。

三、解答题1. 题目:小明有7个橙子,他想分给他的朋友们,每个朋友获得2个橙子。

请问小明最多能分给多少个朋友?解答:小明最多能分给3个朋友。

因为 7 ÷ 2 = 3 余 1,意味着小明最多可以分给3个朋友,并且还剩下1个橙子。

2. 题目:某班级有32个学生,其中有20个男生。

请问男生占该班级总人数的百分比是多少?解答:男生占该班级总人数的百分比可以通过男生人数除以总人数,然后乘以100来计算。

所以百分比为 20 ÷ 32 × 100% = 62.5%。

四、解题步骤及答案1. 题目:求出下列两个数的和:45 + 17 = ________解题步骤:将两个数的个位数相加:5 + 7 = 12,在计算过程中,将个位数2写在结果的个位上,十位数进位,在计算过程中,将进位值1写在结果的十位上。

将两个数的十位数相加并加上进位值:4 + 1 = 5,在计算过程中,将个位数5写在结果的十位上。

答案:45 + 17 = 622. 题目:求出下列两个数的差:85 - 27 = ________解题步骤:从个位开始相减,如果被减数小于减数,则需要向前一位借位。

(完整版)新希望杯六年级数学试卷及解析答案.doc

(完整版)新希望杯六年级数学试卷及解析答案.doc

壹新希望杯(2011年)小学六年级数学邀请赛试卷及解析答(满分120分,时间120分钟)一、填空题(每题5分,共60分)1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:x ◆y =y x y x 22++,x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯,1⊗2=5115632121==+⨯, 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯,而11463.0=••,所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴,在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…,如图1,拼成的图形中,若最下面一层有15个正方形,则需火柴__________根。

解析:第二个图形比第一个图形多9根火柴,第三个图形比第二个图形多13根火柴,经尝试,第四个图形比第三个图形多17根火柴,而最下面一层有15根火柴的是第8个图形,所以共需要火柴4+(9+13+17+21+25+29+33)=151根。

4、若自然数N 可以表示城3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12个连续自然数的和,则N 的最小值是_________。

(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数,所以N 能被3和11整除,也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数,所以N 等于一个整数加上0.5再乘以12,也就是被12除余6,最小为66。

历届(1-18)希望杯数学邀请赛高二试题(含答案) 全国通用

历届(1-18)希望杯数学邀请赛高二试题(含答案) 全国通用

高中竞赛必备资料第一届“希望杯”全国数学邀请赛(高二)第二试一、选择题1、直线A x + B y + C = 0(A ,B 不全为零)的倾斜角是( )(A )B = 0时,倾斜角是2π,B ≠ 0时,倾斜角是arctan ( –A B )(B )A = 0时,倾斜角是2π,A ≠ 0时,倾斜角是arctan ( –BA )(C )A = 0时,倾斜角是0,A ≠ 0时,倾斜角是arctan ( –B A ) (D )B = 0时,倾斜角是0,B ≠ 0时,倾斜角是arctan ( –AB)2、数列{ a n }:a 1 = p ,a n + 1 = q a n + r (p ,q ,r 是常数),则r = 0是数列{ a n }成等比数列的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )不充分也不必要条件 3、f 是R → R 上的一一映射,函数y = f ( x )严格递增,方程x = f ( x )的解集为P ,方程x = f [ f ( x )]的解集为Q ,则( )(A )P ⊂ Q (B )P = Q (C )P ⊃ Q (D )以上都不对4、点( x ,y )的坐标x ,y 都是有理数时,该点称为有理点,在半径为r ,圆心为( a ,b )的圆中,若a ∈Q ,b ∈Q ,则这个圆上的有理点的数目( )(A )最多有一个 (B )最多有两个 (C )最多有三个 (D )可以有无穷多个5、以某些整数为元素的集合P 具有以下性质:(1)P 中元素有正数也有负数;(2)P 中元素有奇数也有偶数;(3)– 1 P ;(4)若x ,y ∈P ,则x + y ∈P 。

对于集合P ,可以断定( ) (A )0∈P ,2 P (B )0 P ,2∈P (C )0∈P ,2∈P (D )0 P ,2 P 二、填空题6、方程arcsin ( sin x 的实根个数是 。

7、使不等式| ( x – 1 ) ( x + 1 ) | + | ( x – 2 ) ( x + 2 ) | + | ( x – 3 ) ( x + 3 ) | < ( t – x ) ( t + x )的解集为空集的实数t 形成一个集合,把这个集合用区间形式写出来,就是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合精选a
主■知识:体育比«.援作问越、flKft 问S
<2014新希望杯决赛)某足球联赛枳分规则如下:毎队赛30场.胜一场得3分.平1场得 1分・负一场御0分・在2013赛李中.希望队以总枳分77分位居枳分榜首位-且负的场数 比平的场
数少• W 这个春季该队共胜了(
A. 22
B. 24 【考点】体育比春
【各案】24
设胜了 X 场.负y 场,ft (30-x-y ) 有3旳•■77 30-(巧)S 則"24 逸B
(2012新希盘决赛)如RH.圈周上写冇3. I. 8三个数・称如下操作为一次操作,在所冇 相邻的两个数Z 间写上这两个相邻的数的和・图1到图2为第I 次操作.那么5次操作后. 岡周上所右数的和为 ______________ •
【考点】操作 【各案】2916 考虑0周上的ZZ 个救: ai + a.、a ・+a 「即操作一次后所有數字和变成了原来
的三倍.
)场比赛 C. 23
D. 25 0|、勺、•••・叫,操作一次新写上的數字为a^+O ]、丐+竹、•• 图2 图1
爪来的數字和为8 + 3 + 1 = 12,每操作一次戟字和变为3倍,操作了 5次,所以現在戟字和 为 12x3'-2916.
(2013新希望初赛)现有一个4x4的方格图形.将其中”个方格涂成黑色・使得任意划去
两行或两列方格,都能划去至少4个黒格•那么刃的最小值是 ____ .
才龙任倉两行柿必須能划去2个黑福有:ffll
此时如果划启的两列与两仟有艾叉,那么就无法保证一定划去至少4个黑格.引出有图2, 如此构造无法保证无论划哪两行哪两列赫知识4个黑格。

(2314新希*«杯决宾)如图所示.么机6旅0、/分别她ZI0内六个不同的n 然CG 且 而
标右崗个箭头的毎一个数恰等于箭头起点的WftZ 和(如〃■“ + 〃)•那么圏中C 最大
应为(
A ・ a
7
T h I
d B. 9 c T
C. 8
D. 10 【考
点】
【各
案】
最值构遗 D 3 T 1 t 10 t

2011新希規)如图• 一剧扑克牌的排列《序为,第一张圧大王•第二张足小王•然后按
♦• • • 四种花色排列.每种花色的牌又按照A- 2. 3. 4 ................................ J. Q. 1<的《序排列•将这54张牌•按卜54编号.称如下操作为一次操作:取走所有编号为奇数的牌-将剩下的牌(如果有)从I开始廈新编(人若干次操作厉.全部的牌都被取左.请问:取龙最后一张牌的是第几次操作?最后一张牌是什么?
【才点】數论
【$*J6次,<$>4.琴次号,啊下的♦是2的箸千次方的4^做,BJ此最后一金啊下32号牌.即
a.
(2013新希望决赛)把分别写有1~14的M张卡片按从小到大的《佯叠成一《,按如下步9进行操作:
第一步:把这摞卡片分别写成上、下数S相同的两部分•上半摞称为/•下半《成为第二
步:把8中最上面一张卡片拿出来-放在桌子上^然后把X中最上面一张片…… 如此取完叠成一«•宪成以上两步地一次操作.如下Rb
请问:U)第2次操作后,fi上面的卡片上的数是多少?请说明理由。

⑵笫2013次操作后・最上面的a片上的ft出多少?说明理由・
【考点】操作
【各案】4: 7
⑴每次操作,原来的第7张变为第1张・因此第2次后■ 4在第一张的位JL
A B
操作前I234567891011121314第一次操作后7146135124113102918
第二次操作后4812159132610143711
⑵第4次樣作后.最上面的卡片与操作前相同,所以樣作周期为4.
2013-5-4 = 503……U 即第2013次操作与第I次操作姑果相同,为7
周期为:U 7、4、门、1.4个一周屯
解:创下的5金數一定是皋行皋列各由于每列4t 戍成等4數列.环么啊下的五个数
之和是 0+5 + 10+15 + 20+(1 + 2+3+4+5) = 65
事:和是相#的.这个數農65.
<2012新希黒决赛)将1-5填入第一行的五个0中・
⑴将相邻曲个O 中的e 的和填入F —行的O 中-如此下去rt 到只«—个ft.如图1・这个 数最小是多少?请给出一种填写噸序,并说明理由:
(2)将相邻两个O 中的ft 的差(大数减小数)填入下一行的O 中.如此下去直到只剩一个ft. 如W2・这个大她多少?请给出一种填岭顺胖-井说朗理由•
① © OOO © © O® ® © ®
图I 【#点】最值问题
【各案】(1) 35;⑵3
仃)观麻发现其実中何的it*尽可小,*后的和才尽可能小• *后的救和第-柠的救有如 下关系J a b c d €
a'b b + c c'd </+e
a+2b 卜 c b 卜 2cW
c+Ze/ie tj*3A+3c+</ 6+3c 卜 Wy
o+46+6c+4</+e
所以要使石最小・C 要最小・为I; b 、H 其次.为2和3: S £最大为4和5.比时这个 數为:
4 + 5+4x{2 + 3)+6x| = 35.下面给出一种填法:
5 2 13 4
7 3 4 7
O® ©OO ①①①© ® ® ® 图2
(2015新希望杯决赛)如图,在一个5x5的方格表中有25个数字•将这25个数字按如下 过程进行操作:先选择一个小方格-然后把这个方格所在的行与列上的其他ft 划掉-反复操
10 7 II
17 18
35
⑵才念第二行四个數•彖大是4 (上一行*大數和最小敎的i人*小为丨:
«后考总第三行三个數•最大为3(上一行*大数和最小數的養),*小为0(上一仟可以出现两个1):热后考念第四仟两个數•董大为3,遼小为0:
最后才念*后一拧一个數・最大只能为3.下曲给出一甘填法2
5 12 3 4
4 111
3 0 0
3 0
3
(2015新希眾杯决赛)上e学课时,江老师说:"我这里打三张殳片・上面可冇不同的第一张卡片上的数字是某种商品的单价-是一个两位数.单位是元:第二张卡片上的数字是购买这种商a的ftfi:第三张卡片上的tt字見购买这种商品的总价.且小干60元.现在请数学成绩最好的三名同学王宇.李华、肖雯到讲台上來.三人各抽一张卡片,每个人只能看门己所抽卡片上的散分别見多少?-三名同学也不能W接间其他两人的長片上的a楚參少. 他们有以下对话:王宇说:“我只知道爪价「
李华说:“我只知道总价•”
李华问肖雯:“你都知道吗?"
丹雯说:“我只知道数ftj
王宇说:•'现在我都知道了广
根据以上对话•请求出这三张卡片上的ftN是多少・
【分折】
解:(1)根《江老师讲话推出ft量不是1.可施是2、3、4 A5
(2)由王宇只知道单价■说明单价一定大于等于W,小于20元・
(3)李华只知道总价・说明总价分解不蛆说明町fe是30・lh2・10x3.
36 = 18x2 = 12x3, 48 = 16x3 = 12x4 :
<4)由肖芟只知道Mt,可推出救童不是4.町ft是2戎3・
(5) i宇说5 “現我知道了”・所以&肯主没说话之前,王字不能推出热他两ft.可出单份只炬是12.从而总价<36.
各:三张卡片上的數字分别是12. 3、36。

相关文档
最新文档