物理岩石的基本物理力学性质

合集下载

岩石的基本物理力学性质

岩石的基本物理力学性质

岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。

岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。

第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。

岩石是构成岩体的基本组成单元。

相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。

岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。

回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。

●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。

●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。

●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。

回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。

其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。

回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。

结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。

这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。

岩石力学第2章岩石的基本物理力学性质PPT课件

岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在

岩体力学考试重点(经典)分析

岩体力学考试重点(经典)分析

第二章 岩石的基本物理力学性质1、全应力—应变曲线(岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程)(1)OA 阶段,通常被称为孔隙裂隙压密阶段。

其特征是应力—应变曲线呈上凹型,在此阶段岩石试件中原有的张开型结构面和微裂隙逐渐闭合,横向膨胀较小,试件体积随载荷的增大而减小。

本阶段对节理裂隙丰富的岩石表现较为明显,对坚硬少裂隙的岩石不明显。

(2)AC 阶段,通常称此阶段为弹性变形阶段。

其中AB 阶段为线弹性变形阶段;BC 为非线性变形阶段。

BC 阶段中出现了微裂隙的破裂,因此也称为破裂稳定发展阶段。

(3)CD 阶段,非稳定破裂发展阶段或称累积性破坏阶段。

C 点是岩石从弹性变为塑性的转折点,称为屈服点,其相应的应力称为屈服应力(屈服极限),数值约为峰值应力的三分之二左右。

进入此阶段后,微破裂的发展出现了质的变化,它们不断聚合形成了宏观裂隙,直至岩石试件完全破坏。

此时,试件由体积压缩转为扩容,轴向应变和体积应变速率迅速增大。

当达到D 点时,岩石已经破坏,此时的强度称为峰值强度。

(4)DE 阶段称为破坏后阶段。

当载荷达到D 点后,岩石试件内部结构已遭到破坏,但试件基本保持整体形状。

进入本阶段后,宏观裂隙快速发展,并且相互交叉联合形成宏观断裂面,岩块的变形主要表现为沿宏观断裂面的块体滑移,试件的承载能力迅速下降,但不会到零,岩石仍具有一定的承载能力。

应该指出,对于坚硬的岩石来说,这一塑性阶段很短,有的几乎不存在,它所表现的是脆性破坏的特征。

所谓脆性是指应力超出了屈服应力却并不表现出明显的塑性变形的特性,而因此达到破坏,即为脆性破坏。

2、单轴压缩条件下的岩石变形特征:①岩石的变形特性通常可以从试验时所记录下来的应力—应变曲线中获得;②岩石的应力—应变曲线反映了各种不同应力水平下所对应的应变(变形)规律;③岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程,可全应力-应变曲线来表示。

3、三轴压缩条件下的岩石变形特征A 、 时岩石变形特征①岩石的强度随围压( )的增加,岩石的屈服应力随之提高;②总体来说,岩石的弹性模量变化不大,有随围压增大而增大的趋势;③随着围压的增加,峰值应力所对应的应变值23σσ=23σσ=有所增大,其变形特征表现出低围压的脆性向高围压的塑性转换的规律。

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。

(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。

2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。

公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。

2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。

它间接地反映了岩石中裂隙间相互连通的程度。

四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。

它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。

岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。

它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。

3 岩石的膨胀性:岩石浸水后体积增大的性质。

(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。

(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。

(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。

五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。

岩石的基本物理力学性质及其试验方法

岩石的基本物理力学性质及其试验方法

岩石的基本物理力学性质及其试验方法第一讲岩石的基本物理力学性质及其试验方法(之一)一、内容提要:本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。

二、重点、难点:岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。

一、概述岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。

所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。

由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。

岩体是指在一定工程范围内的自然地质体。

通常认为岩体是由岩石和结构面组成。

所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。

这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。

从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。

因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。

【例题1】岩石按其成因可分为()三大类。

A.火成岩、沉积岩、变质岩B.花岗岩、砂页岩、片麻岩C.火成岩、深成岩、浅成岩D.坚硬岩、硬岩、软岩答案:A【例题2】片麻岩属于()。

A.火成岩B.沉积岩C.变质岩答案:C【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是()。

A.岩石的种类B.岩石的矿物组成C.结构面的力学特性D.岩石的体积大小答案:C(一)岩石的质量指标与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。

1岩石的颗粒密度(原称为比重)岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。

岩石颗粒密度通常采用比重瓶法来求得。

其试验方法见相关的国家标准。

岩石颗粒密度可按下式计算2岩石的块体密度岩石的块体密度是指单位体积岩块的质量。

按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。

(1)岩石的干密度岩石的干密度通常是指在烘干状态下岩块单位体积的质量。

岩石的物理力学性质

岩石的物理力学性质
(2)大开空隙率nb:即岩石试件内大开型空隙的体积(Vnb) 占试件总体积(V)的百分比。
nb Vnb 100% V
(3)小开空隙率nl:即岩石试件内小开型空隙的体积(Vnl) 占试件总体积(V)的百分比。
nl Vnl 100% V
(4)总开空隙率(孔隙率)n0: 即岩石试件内开型空隙的 总体积(Vn0)占试件总体积(V)的百分比。
cf ) , 以
此强度下降值与融冻试验前的抗压强度 σ c之比的百
c cf Cf 100% c
可见:抗冻系数Cf 越小,岩石抗冻融破坏的能力越强。
7.岩石的碎胀性
岩石破碎后的体积VP 比原体积 V增大的性能称为岩石
的碎胀性,用碎胀系数ξ 来表示。
VP V
碎胀系数不是一个固定值,是随时间而变化的。 永久碎胀系数(残余碎胀系数)――不能再压密时 的碎胀系数称为永久碎胀系数.
岩石的软化性是指岩石在饱水状态下其强度相对 于干燥状态下降低的性能,可用软化系数η 表示。
软化系数指岩石试样在饱水状态下的抗压强度
σ
cb与在干燥状态下的抗压强度σ c之比,即
cb c c
各类岩石的η c=0.45~0.9之间。 η η
c c
Байду номын сангаас
>0.75,岩石软化性弱、抗水、抗风化能力强; <0.75,岩石的工程地质性质较差。
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
反复加卸载对岩石变形的影响
围压对岩石变形的影响
三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。

岩石物理力学性质(物理力学指标)

岩石物理力学性质(物理力学指标)

岩石的物理力学指标(目标:掌握岩石的物理力学指标及其试验方法)密度:单位体积所具有的质量称为密度,公式ρ=m/V(kg/m 3);块体密度(或岩石密度)是指岩石单位体积内的质量,按岩石的含水状态,又有干密度、饱和密度和天然密度之分,在未指明含水状态时一般指岩石的天然密度。

试验方法:岩石颗粒密度是岩石固相物质的质量与体积的比值,采用比重瓶法或水中称量法测定。

比重瓶法测定岩石的颗粒密度,又分为土工试验方法、岩石试验方法和建筑材料试验方法三种。

岩石的块体密度是指单位体积的岩石质量,是岩石试件的质量与其体积之比。

岩石的块体密度试验量积法适用于能制备成规则试件的岩石;水中称量法适用于除遇水不崩解、不溶解和不干缩湿胀的其他各类岩石:密封法适用于不能用量积法或直接在水中称量进行试验的岩石。

岩石的比重:岩石的比重就是绝对干燥时岩石固体部分实体积(即不包含孔隙的体积)的重量与同体积水(4℃)的重量之比。

岩石的容重:单位体积内岩石(包括孔隙体积)的重量称为岩石的容重,单位(N/m ³)。

公式γ=G/V (N/m 3),容重等于密度和重力加速度的乘积,即γ=ρg ,单位是牛/立方米(N/m ³)。

干容重:就是指不含水分状态下的容重。

一般用于表示土的压实效果,干容重越大表示压实效果越好。

最大干容重:是在实验室中得到的最密实状态下的干容重。

含水率:岩石含水率反映了岩石在天然状态下的实际情况,用烘干前的质量减去烘干后的质量与烘干后的质量之比来表示。

试验方法:烘干法。

%10000⨯-=d d m m m w岩石试件的含水率对测试成果的影响尤为明显,因为具有膨胀特性的岩石,吸水膨胀。

试验前试件的含水率应尽量接近天然含水状态,实行干法加工。

岩石膨胀特性稳定时间:膨胀试验时间一般在48h 以内,膨胀压力试验则往往超过48h 。

水理性质:岩石在水溶液作用下表现出来的性质; 吸水性:岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。

岩体力学02-岩石的基本物理力学性质.资料

岩体力学02-岩石的基本物理力学性质.资料
波速比(Kv):风化岩石弹性波纵波波 速(cp)与新鲜岩块弹性波纵波波速 (rp)之比的平方。
风化系数(Kf):风化岩石的饱和单轴
抗压强度(cw’)与新鲜岩石饱和单轴 抗压强度(cw)之比。
Iw
mw mrd
Kv
vcp vrp
2
Kf
' c
w
cw
硬质岩石风化风化程度分类表
风化程度 全风化 强风化
中等风化 微风化 未风化
代表性岩石
硬质 岩石
极硬岩石 次硬岩石
>60 30~60
花岗岩、花岗片麻岩、闪长岩、玄 武岩、石灰岩、石英砂岩、石英岩、
大理岩、硅质砾岩等
软质 岩石
次软岩石 极软岩石
5~30 <5
粘土岩、页岩、千枚岩、绿泥石片 岩、云母片岩等
§2.2 岩石的基本物理性质
岩石是由固体、液体和气体三相组成的。岩石 的力学性质常与岩石中三相的比例关系及固相 与水相互作用有密切的关系。
m g/cm 3
V—岩石试件的总体积;
V
m—岩石试件的总质量
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个
2、饱和密度( sat)
岩石中空隙全部被水充填时单位体积的质量,即
sa tm s V V vw g/c3 m
•岩石的粒间连结分结晶连结与胶结连结 •结晶连结:矿物颗粒通过结晶相互嵌合在一起, 它是通过共用原子或离子使不同晶粒紧密接触。 •胶结连结:矿物颗粒通过胶结物连结在一起。 胶结连结的岩块强度:硅质胶结>铁质、 钙质>泥质胶结
三、岩块的风化
岩石经过风化,矿物组成和结构改变,岩块的物 理力学性质改变:强度降低、抗变形性能减弱、 空隙率增大、渗透性加大。

岩体力学第二章岩石的基本物理力学性质PPT课件

岩体力学第二章岩石的基本物理力学性质PPT课件

岩石的强度和破坏
强度
岩石抵抗外力破坏的能力, 通常分为抗压、抗拉和抗 剪强度。
破裂准则
描述岩石在不同应力状态 下从弹性到破坏的过渡规 律。
破裂模式
岩石破坏时的形态和方式, 如脆性、延性、剪切等。
04
岩石的物理力学性质与岩体力学应用
岩石的物理力学性质在岩体工程设计中的应用
岩石的物理性质在岩体工程设计中具有重要影响, 如密度、孔隙率、含水率等参数,决定了岩体的承 载能力和稳定性。
岩石的物理力学性质在岩体工程治理中的应用
在岩体工程治理中,需要根据岩石的 物理力学性质制定相应的治理方案。
在治理过程中,还需要根据岩石的变形和 破坏模式,采取相应的监测和预警措施, 以确保工程治理的有效性和安全性。
如对于软弱岩体,可以采用加固、注浆等措 施提高其承载能力和稳定性;对于破碎岩体 ,可以采用锚固、支撑等措施防止其崩塌和 滑移。
弹性波速
表示岩石中弹性波传播速度, 与岩石的密度和弹性模量等有 关。
岩石的塑性和流变
01
02
03
塑性
当应力超过岩石的屈服点 时,岩石会发生塑性变形, 不再完全恢复到原始状态。
流变
在长期应力作用下,岩石 的变形不仅与当前应力状 态有关,还与应力历史有 关。
蠕变
在恒定应力作用下,岩石 变形随时间逐渐增加的现 象。
岩体力学第二章岩石的基本物 理力学性质ppt课件

CONTENCT

• 引言 • 岩石的物理性质 • 岩石的力学性质 • 岩石的物理力学性质与岩体力学应
用 • 结论
01
引言
岩石的基本物理力学性质在岩体力学中的重要性
岩石的基本物理力学性质是岩体力学研究的基础,对于理解岩体 的变形、破坏和稳定性至关重要。

岩石物理力学性质-知识归纳整理

岩石物理力学性质-知识归纳整理

1 岩石的物理力学性质岩石是由固体相、液体相和蔼体相组成的多相体系。

理论以为,岩石中固体相的组分和三相之间的比例关系及其相互作用决定了岩石的性质。

在研究和分析岩石受力后的力学表现时,必然要联系到岩石的某些物理性质指标。

岩石物理性质:岩石由于其固体相的组分和三相之间的比例关系及其相互作用所表现出来的性质。

主要包括基本物理性质和水理性质。

岩石在受到外力作用下所表现出来的性质称为岩石的力学性质。

岩石的力学性质主要有变形性质和强度性质,在静荷载和动荷载作用时,岩石的力学性质是有所不同的,表如今性质指标的差异上。

岩石的物理力学性质通常经过岩石物理力学性质测试才干确定。

1.1 岩石的基本物理性质指标 反映岩石组分及结构特征的物理量称为岩石的物理性质指标,这里主要是指一些基本属性:密度、比重、孔隙性、水理性等。

反映了岩石的组分和三相之间的比例关系。

为了测定这些指标,一股都采用岩样在室内作试验,,必要时也可以在天然露头上或探洞(井)中举行现场试骀。

在选用岩样时应思量到它们对所研究地质单元的代表性并尽可能地保持其天然结构。

最好采用同一岩样逐次地测定岩石的各种物理性质指标。

下面分述各种物理性质指标。

1.1.1 岩石的密度和重度(容重)1、定义密度:单位体积岩石(包括岩石内空隙体积在内)所具有的质量。

重度(容重):单位体积岩石所受的重力。

2、计算式密度:V M =ρ(g/cm 3,t/m 3)容重度:V MgV W ==ρ(kN/m 3)密度与重度的关系:γ=ρg。

上述各式中,M —岩石质量;W —岩石分量;V —岩石体积(包括空隙在内);g 为重力加速度,g=9.8m/s 2,工程上普通取10m/s 2。

密度与容重的种类:天然密度ρ、干密度ρd 、饱和密度ρsat 。

天然密度与干密度的关系:ρ=ρd (1+0.01ω)(ω为含水率,以百分数计)。

3、影响因素 影响岩石密度大小的因素:矿物成分、孔隙及微裂隙发育程度、含水量。

第2章 岩石的物理力学性质

第2章 岩石的物理力学性质
第二章 岩石的物理力学性质
目 录
1、岩石的物理性质 2、岩石的强度特性 3、岩石的变形特性 4、岩体结构面的力学性质 5、岩体的力学性质 6、工程岩体的分类 7、岩石力学性质的时间效应
2.1 岩石的物理性质
岩石由固体、液体和气体三相介质组成, 其物理性质是指因岩石三相组成部分的相 对比例关系不同所表现出来的物理状态。
(2)变角板剪切试验(图) P (cos f sin ) A P (sin f cos ) A
此法的主要缺点是a角不能太大,也不能太小。
4 岩石的三轴压缩强度(Triaxial compressive strength)
岩石试件在三向压应力作用下能抵抗的最大轴向压力。
体积变形模量:平均正应力与单位体积变形之比
e V e 1 2 3 V K

切变模量:弹性或准弹性的切变模量
E G 2(1 )
岩块的变形模量和泊松比受岩石矿物组 成、结构构造、风化程度、空隙性、含水率、 微结构面及其与荷载方向的关系等多种因素 的影响,变化很大(图)。
f c tan
大量研究表明:当压力不大时(小于 10MPa),直线形强度包络线能够满足工程 要求,是目前应用最为广泛的强度理论。
(2)二次抛物线形莫尔强度准则(图) 软弱至中等硬度完整岩石,如泥灰岩、 砂岩、泥岩等岩石的强度包络线近似于二次 抛物线。
n( t )
VD D / D 100%
(2)岩石的侧向约束膨胀率
VHP H1 / H 100%
(3)膨胀压力
6 岩石的透水性 达西定律
Vx kix
岩石的渗透系数一般都很小,新鲜致 密岩石的渗透系数一般均小于10-7cm/s。裂 隙发育时,渗透系数一般比新鲜岩石大4~ 6个数量级。

第二章岩石的基本物理力学性质

第二章岩石的基本物理力学性质

ms——岩石固体的质量。
试验方法:105~110℃烘24h。
1.岩石的密度
(4)重力密度:单位体积中岩石的重量,简称重度。 由密度乘上重力加速度而得,单位kN/m3。
♪工程中应用最广泛的参数之一,不仅反映了岩石的致 密程度,还可计算岩体的自重应力。
2.岩石的颗粒密度
岩石固体物质的质量与固体的体积之比。(比重瓶)
二、岩石的孔隙性 反映裂隙发育程度的指标
1.孔隙比 e VV / Vs VV——孔隙体积(水银充填法求出)
2.孔隙率
n VV 100% V
V=Vs+VV
e~n关系
e VV Vs
VV / V Vs / V
VV V
V VV V
n 1 n
n 1 d s
三、岩石的水理性质
1.岩石的含水性质
(1)含水率:岩石孔隙中含水量mW与固体质量之比的百分数
具有侧向约束的试件浸入水中,使岩石试件仅产生轴向 膨胀变形而求得的膨胀率。
VHP
H HP H
100%
3、膨胀压力:岩石试件浸水后,使试件保持原有体积所 施加的最大压力。
五、岩石的抗冻性
Kf
Rf Rs
Kf—抗冻性系数; Rf—岩石冻融后的饱和单轴抗压强度; Rs—岩石冻融前的饱和单轴抗压强度。
冻融条件下强度损失原因: 1.各种矿物的膨胀系数有差异; 2.空隙中的水结冰,体积增大。
(3)岩石的膨胀性(含有粘土矿物的岩石)
——评价膨胀性岩体工程的稳定。
1、自由膨胀率 —无约束条件下,浸水后膨胀变形与原尺寸之比。
轴向自由膨胀
VH
H H
100%
(%)H——试件高度
径向自由膨胀
VD

岩石物理力学性质和影响的主要因素

岩石物理力学性质和影响的主要因素
15. 环全加应载力条应件变下曲的线岩的石三破个坏。用途?
第二章 岩石物理力学性质-习题
16试论述岩石应力-应变曲线类型及成因,并画出相应的曲 线图。
类型I 直线型 弹性 应力与应变关系是一直线或 近似直线,直到试件发生突 然破坏为止。具有这种变形 性质的岩石有玄武石、石英 岩、白云岩以及极坚固的石 灰岩。由于塑性阶段不明显, 这些材料被称为弹性体。
第二章 岩石物理力学性质-习题
类型II 下凹型 弹塑性 应力较低时,应力-应变曲线近似于直线, 当应力增加到一定数值后,应力-应变曲线 向下弯曲,随着应力逐渐增加而曲线斜率 也就越变越小,直至破坏。具有这种变形 性质的岩石有较弱的石灰岩、泥岩以及凝 灰岩等,这些材料被称为弹-塑性体。
类型III 上凹型 塑弹性 在应力较低时,应力-应变曲线略向上弯 曲。当应力增加到一定数值后,应力-应 变曲线逐渐变为直线,直至发生破坏。具 有这种变形性质的代表岩石有砂岩、花岗 岩、片理平行于压力方向的片岩以及某些 辉绿岩等,这些材料被称为塑-弹性体。
4. 岩石受力后表现为何种形式的破坏下列那个因素没有关系( C ) A)岩石自身性质 (B)岩石赋存环境(C)最大主应力(D围压
第二章 岩石物理力学性质-习题
5. 在岩石单向抗压强度试验中,岩石试件高与直径的比值h/d和 试件端面与承压板之间的磨擦力在下列哪种组合下,最容易 使试件呈现锥形破裂。( B )
第三章 岩体力学性质
了解 岩体结构分类依据和分类方案,各类岩体结构的地
质特征及对工程岩体结构分类;了解结构面类型及特 征,掌握结构面分级的依据,岩体质量评价及其分类。 重点掌握: 1、岩体结构的基本定义; 2、岩体的强度特征及强度测定; 3、岩体的变形特征; 4、岩体分类与质量评价方法。 5、结构面的剪切变形特征; 6、结构面的抗剪强度; 7、结构面的力学效应。 8、岩体的水力学性质

岩石的基本物理力学性质及其试验方法2

岩石的基本物理力学性质及其试验方法2

第二讲岩石的基本物理力学性质及其试验方法(之二)一、内容提要:本讲主要讲述岩石的变形特性、强度理论二、重点、难点:岩石的应力-应变曲线分析及岩石的各种强度理论。

三、讲解内容:四、岩石的变形特性与岩石的强度特性一样,岩石的变形特性也是岩石的重要力学特性。

只有对岩石的变形特性的变化规律有了足够的了解,才能应用某些数学表达式描述岩石的变形特性,进而运用这些表达式计算岩石在外荷载作用下所产生的变形特性,并评价其稳定性。

在实际的工程中,经常遇到岩石在单轴和三轴压缩状态下的变形问题。

(一)岩石在单向压缩应力作用下的变形特性1. 岩石在普通试验机中进行单向压缩试验时的变形特性岩石的变形特性通常可从试验时所记录下来的应力-应变曲线中获得。

岩石的应力-应变曲线反映了各种不同应力水平下所对应的应变(变形)规律。

以下先介绍具有代表性的典型的应力-应变曲线。

1)典型的岩石应力-应变曲线分析图15-1-17例示了典型的应力-应变曲线。

根据应力-应变曲线的变化,可将其分成OA,AB,BC三个阶段。

三个阶段各自显示了不同的变形特性。

(1)OA阶段,通常被称为压密阶段。

其特征是应力-应变曲线呈上凹型,即应变随应力的增加而减少。

形成这一特性的主要原因是存在于岩石内的微裂隙在外力作用下发生闭合所致。

(2)AB阶段,也就是弹性阶段。

从图15-1-17可知,这一阶段的应力-应变曲线基本呈直线。

假设在这一阶段卸荷的话,其应变可以恢复,由此可称为弹性阶段。

这一阶段常用两个弹性常数来描述其变形特性。

即弹性模量E和泊松比。

所谓弹性模量,是指应力—应变曲线中呈直线阶段的应力与应变之比值(或者是该曲线在直线段的斜率)被称作平均模量。

就模量的概念而言,岩石的模量还有初始模量、切线模量、割线模量等。

在岩石力学中比较常用的是平均弹性模量E和割线模量E50,E50是指岩石峰值应力一半的应力、应变之比值,其实质代表了岩石的变形模量。

所谓泊松比,是指在弹性阶段中,岩石的横向应变与纵向应变比之值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

nl
Vl V
100%
2.1 岩石的基本物理性质
(4)总开空隙率(孔隙率)no: 即岩石试件内开型空隙的总体 积(V0)占试件总体积(V)的百分比。
n 0
V0 V
100%
(5)闭空隙率nc: 即岩石试件内闭型空隙的体积(Vc)占试件 总体积(V)的百分比。
nc
Vc V
100%
2.1 岩石的基本物理性质
计划学时:13 重点:
1、岩石的基本物理性质; 2、岩石单轴压缩变形特性:应力-应变全过程曲线及工程意义; 3、岩石的抗压、抗拉、抗剪强度及其实验室测定方法; 4、岩石在三轴压缩条件下的力学特性; 5、莫尔强度理论、格里菲斯断裂强度理论及判据; 6、岩体强度的各向异性; 7、岩石的流变性。
难点:岩石的流变性。
大开型空隙 小开型空隙
闭型空隙:岩石中不与外界相通的空隙。
开型空隙:岩石中与外界相通的空隙。包括大开型空隙和小开型 空隙。
在常温下水能进入大开型空隙,而不能进入小开型空隙。只有 在真空中或在150个大气压以上,水才能进入小开型空隙。
2.1 岩石的基本物理性质
1、空隙率
根据岩石空隙类型不同,岩石的空隙率分为: (1)总空隙率n (2)大开空隙率nb (3)小开空隙率nl (4)总开空隙率no (5)闭空隙率nc
关键术语:
密度;重度;岩石的孔隙性;孔隙率;孔隙比;岩石的水理性; 吸水率;饱水率;饱水系数;岩石的透水性;渗透系数;岩石的碎 胀性;碎胀系数;岩石的软化性;软化系数;脆性、塑性、延性、 粘性(流变性);蠕变;松弛;弹性后效;扩容;岩石的强度;抗 压强度;抗拉强度;抗剪强度;峰值强度;长期强度;残余强度; 岩石的变形;全应力-应变曲线;刚性压力机;强度理论。
2 、空隙比(e)
所谓空隙比是指岩石试件内空隙的体积(V V)与岩石试件内固 体矿物颗粒的体积(Vs)之比。
e VV V Vs n
Vs
Vs
1 n
四、岩石的水理性质
2.1 岩石的基本物理性质
岩石遇水后会引起某些物理、化学和力学性质的改
变,岩石的这种性质称为岩石的水理性。
1、岩石的天然含水率
岩石在天然状态下,含水的质量与烘干质量的比值
Gs
Ws
Vs w
式中:GS——岩石的比重; Ws——干燥岩石的质量(g); Vs——岩石固体体积(cm3); ρW — 40C时水的密重。
三、岩石的空隙性
2.1 岩石的基本物理性质
空隙:岩石中孔隙和裂隙的总称。
空隙度:指岩石的裂隙和孔隙发育程度,其衡量指标为空 隙率(n)或空隙比(e)。
空隙
闭型空隙 开型空隙
W (g/cm3),
V
γ=ρg (kN /m3)
岩石的密度可分为天然密度、干密度和饱和密度。相应地,岩 石的重度可分为天然重度、干重度和饱和重度。
2.1 岩石的基本物理性质
1、岩石的天然密度(ρ)和天然重度(γ)
指岩石在天然状态下的密度和重度。
W
V
g
(g/cm3) (kN /m3)
式中:W――天然状态下岩石试件的质量(g;) V——岩石试件的体积(cm3); g——重力加速度。
3、饱和密度(ρ )和饱和重度(γw)
饱和密度就是饱水状态下岩石试件的密度。
w
Ww V
(g/cm3)
w wg
(kN /m3)
式中:WW——饱水状态下岩石试件的质量 (g); V——岩石试件的体积(cm3);
g——重力加速度。
2.1 岩石的基本物理性质
二、岩石的比重(Gs)
岩石的比重:岩石固体的质量与同体积水的质量之比值。 岩石固体体积:不包括孔隙体积在内的体积。 岩石的比重可在实验室进行测定,其计算公式为:
100%
岩石的吸水率的大小,取决于岩石所含孔隙、裂隙的数量、大
小、开闭程度及其分布情况。
此外,还与试验条件(整体和碎块,浸水时间等)有关。
根据岩石的吸水率可求得岩石的大开空隙率nb.
nb
Vb V
Ws V
Vb Ws
Ws V
Vba Ww
d a w
式中:W s为干燥岩石的重量;γd,γw分别为干燥岩石和水的重度。
式中:Ws为干燥岩石重量;γd,γw干燥岩石和水的重度。
2.1 岩石的基本物理性质
(3)岩石的饱水系数(kw)
岩石吸水率与饱水率之比称为岩石的饱水系数,即
Ks
a sa
饱水系数反映了岩石中大开空隙和小开空隙的相对含量。 饱水系数越大,岩石中的大开空隙越多,而小开空隙越少。 吸水性较大的岩石吸水后往往会产生膨胀,给井巷支护造成很 大压力。
2.1 岩石的基本物理性质
(2)岩石的饱水率(ωsa)
岩石的饱水率指在高压(150个大气压)或真空条件下,岩石
吸入水的重量Wsa与岩石干重量Ws之比,即:
sa
msa mdr mdr
100%
根据饱水率求得岩石的总开空隙率n0:
n0
V0 V
Ws V
V0 Ws
Ws V
Vosa
Wwsa
d sa w
2.1 岩石的基本物理性质
2、干密度(ρd)和干重度(γd )
干密度是指岩石孔隙中的液体全部被蒸发后单位体积岩石的质
量,相应的重度即为干重度。
d
Wd V
d d g
(g/cm3) (kN /m3)
式中:Wd——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
g——重力加速度。
2.1 岩石的基本物理性质
m
mrd
100%
2、岩石的吸水性
岩石吸收水分的性能称为岩石的吸水性,其吸水量
的大小取决于岩石孔隙体积的大小及其密闭程度。
岩石的吸水性指标有吸水率、饱水率和饱水系数。
2.1 岩石的基本物理性质
(1)岩石吸水率(ωa):
是指岩石试件在标准大气压力下吸入水的重量Wω1与岩石干重量
Ws之比。
a
mo mdr mdr
要求:
1、须掌握本课程重点难点内容; 2、了解岩石的扩容; 3、了解影响岩石力学性质的因素; 4、理解岩石流变本构模型。
2.1 岩石的基本物理性质
岩石由固体,水,空气等三相组成。
一、密度(ρ)和重度(γ)
单位体积的岩石的质量称为岩石的密度。 单位体积的岩石的重力称为岩石的重度(容重)。
所谓单位体积就是包括孔隙体积在内的体积。
一般提到岩石的空隙率时系指岩石的总空隙率。
2.1 岩石的基本物理性质
(1)总空隙率n: 即岩石试件内空隙的体积(VV)占试件总体积(V) 的百分比。
n
Vv V
100%
(2)大开空隙率nb:即岩石试件内大开型空隙的体积(Vb)占试件 总体积(V)的百分比。
nb
Vb V
100%
(3)小开空隙率nl:即岩石试件内小开型空隙的体积(VS)占试件 总体积(V)的百分比。
相关文档
最新文档