成都大学附属中学七年级上册数学期末试卷及答案-百度文库

合集下载

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 3.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .124.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .2C 2D 325.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm6.在下边图形中,不是如图立体图形的视图是( )A.B.C.D.7.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×28.估算15在下列哪两个整数之间( )A.1,2 B.2,3 C.3,4 D.4,59.已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°10.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>011.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 12.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是()A.513 B.﹣511 C.﹣1023 D.1025二、填空题13.把5,5,35按从小到大的顺序排列为______.14.如图,若12l l //,1x ∠=︒,则2∠=______.15.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.16.若a 、b 是互为倒数,则2ab ﹣5=_____.17.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.20.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.22.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.23.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题25.已知:如图,平面上有A 、B 、C 、D 、F 五个点,根据下列语句画出图形:(Ⅰ)直线BC 与射线AD 相交于点M ;(Ⅱ)连接AB ,并反向延长线段AB 至点E ,使AE =12BE ; (Ⅲ)①在直线BC 上求作一点P ,使点P 到A 、F 两点的距离之和最小;②作图的依据是 .26.如图所示,OE 和OD 分别是∠AOB 和∠BOC 的平分线,且∠AOB =90°,∠EOD =67.5°的度数.(1)求∠BOD 的度数;(2)∠AOE 与∠BOC 互余吗?请说明理由.27.计算:()1()20230---+()2()()2242314-÷--⨯-+28.解方程:x﹣2=2 3 x+29.解方程:5711232x x-+-=+.30.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.四、压轴题31.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.32.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

七年级上册成都四川师范大学附属中学数学期末试卷综合测试卷(word含答案)

七年级上册成都四川师范大学附属中学数学期末试卷综合测试卷(word含答案)

七年级上册成都四川师范大学附属中学数学期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。

(2)① 利用绝对值等于7的数是±7,就可得出a-3=±7,解方程即可;② 由已知数轴上表示数a的点位于﹣4与3之间,可得出a+4>0,a-3<0,先去掉绝对值,再合并同类项即可;③ 根据线段上的点到线段两端的距离的和最短,可得出答案。

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案一、选择题1.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .34.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯5.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+6.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒7.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 8.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+9.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣310.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-412.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=2二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________. 14.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____. 15.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.16.|-3|=_________; 17.若523m xy +与2n x y 的和仍为单项式,则n m =__________.18.当a=_____时,分式13a a --的值为0. 19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可). 20.|﹣12|=_____. 21.计算:3+2×(﹣4)=_____.22.钟表显示10点30分时,时针与分针的夹角为________. 23.用度、分、秒表示24.29°=_____.24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级上册数学期末考试试卷及答案 一、选择题 1.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1073.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 4.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 7.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=68.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 9.﹣3的相反数是( )A .13- B .13 C .3- D .310.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+ 11.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 12.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离13.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元 14.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( ) A .2019-B .2019C .1-D .1 15.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.17.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.18.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.19.已知单项式245225n m x y x y ++与是同类项,则m n =______.20.36.35︒=__________.(用度、分、秒表示)219________22.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.23.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.24.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.25.若方程11222m x x --=++有增根,则m 的值为____. 26.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)27.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).28.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 29.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.30.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.34.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.35.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .请你用以上知识解决问题: 如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒,①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.(3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?37.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ; (2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.38.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】 解:A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错;C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A.【点睛】 本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型. 4.A解析:A【解析】【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上.【详解】解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.5.A解析:A【解析】【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.6.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .7.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.8.D解析:D【解析】【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.9.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.10.B解析:B【解析】A. 2x 2x 1-+是二次三项式,故此选项错误;B. 32x 1+是三次二项式,故此选项正确;C. 2x 2x -是二次二项式,故此选项错误;D. 32-+是三次三项式,故此选项错误;x2x1故选B.11.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.13.A解析:A【解析】【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.14.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 15.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A .【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题16.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.18.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.19.9【解析】【分析】根据同类项的定义进行解题,则,解出m、n的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.20.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.21.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.22.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.23.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.24.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5, 第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.25.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键26.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.27.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.28.﹣1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y ﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】由题意得:x +2=0,y ﹣2=0,解得:x =﹣2,y =2,所以,(x y )2019=(22-)2019=(﹣1)2019=﹣1. 故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.29.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠= 因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.30.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】x=代入方程,得把1m⨯-=141m=∴5故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.三、压轴题31.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x ,则∠1=3x +30°,∵∠1+∠2=90°,∴x +3x +30°=90°,∴x =15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM =180°﹣45°=135°,∠COM =180°﹣15°=165°,∵OE 为∠BOM 的平分线,OF 为∠COM 的平分线,∴∠MOF =12∠COM =82.5°,∠MOE =12∠MOB =67.5°, ∴∠EOF =∠MOF ﹣∠MOE =15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.34.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=20,。

七年级上册成都数学期末试卷(Word版 含解析)

七年级上册成都数学期末试卷(Word版 含解析)

七年级上册成都数学期末试卷(Word版含解析)一、选择题1.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为()A.-2 B.6 C.23-D.22.据江苏省统计局统计:2018年三季度南通市GDP总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为()A.36.1728910⨯亿元B.261.728910⨯亿元C.56.1728910⨯亿元D.46.1728910⨯亿元3.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角. 其中说法正确的有( )A.0个B.1个C.2个D.3个4.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.3505(10)40810--+=x xB.3505(10)40810+--=x xC.850104035+-=x x+10 D.850104035-+=x x+105.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为()A .116元B .145元C .150元D .160元6.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头7.下列立体图形中,俯视图是三角形的是( )A .B .C .D .8.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小9.下列图形,不是柱体的是( ) A .B .C .D .10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140 B .120 C .160 D .100 11.-3的相反数为( )A .-3B .3C .0D .不能确定12.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .13.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x 个“中国结”,可列方程( ) A .9764x x --= B .96x -=74x +C .x 9x+764+= D .x 9x 764+-= 15.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )A .B .C .D .二、填空题16.2019上半年溧水实现GDP 为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP 为_________元.17.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3.18.正方体切去一块,可得到如图几何体,这个几何体有______条棱.19.若3842α'∠=︒,则α∠的余角等于_______.20.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .21.若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是______. 22.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同. 年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级 17 6 8 八年级 14.5 57九年级12.5则九年级科技小组活动的次数是_____.23.如果关于x 方程ax b 0+=的解是x=0.5,那么方程bx 0a -=的解是____________. 24.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.25.32-的相反数是_________; 三、解答题26.化简:(1)-3x +2y +5x -7y ; (2)2(x 2-2x )-(2x 2+3x ). 27.解方程:(1)5236x x +=+ (2)4320.20.5x x +--= 28.某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.请根据上述收费标准解答下列问题:(1)小明家1月份用电140度,应交电费______________元; (2)小明家2月交电费98元,则他家2月份用电多少度?29.如图,OC 是一条射线,OD 、OE 分别是AOC ∠和BOC ∠的平分线.(1)如图①,当80AOB ∠=︒时,则DOE ∠的度数为________________;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,∠BOE 、EOD ∠、DOA ∠三角之间有怎样的数量关系?并说明理由;(3)当射线OC 在AOB ∠外如图③所示位置时,(2)中三个角:∠BOE 、EOD ∠、DOA ∠之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC 在AOB ∠外如图④所示位置时,∠BOE 、EOD ∠、DOA ∠之间数量关系是____________.30.如图,已知三角形ABC ,D 为AB 边上一点.(1) 过点D 画线段BC 的平行线DE ,交AC 于点E ;过点A 画线段BC 的垂线AH ,垂足为点H .(2)用符号语言分别描述直线DE 与线段BC 及直线AH 与线段BC 的位置关系. (3)比较大小:线段BH 线段BA ,理由为 .31.如图,COD ∠为平角,,2AO OE AOC DOE ⊥∠=∠,求AOC ∠的度数.32.先化简,再求值:3x 2+(2xy -3y 2)-2(x 2+xy -y 2),其中x =-1,y =2. 33.解方程(1)5x ﹣1=3(x +1) (2)2151136x x +--= 四、压轴题34.一般情况下2323a b a b++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 35.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

七年级上册成都大学附属中学数学期末试卷综合测试(Word版 含答案)

七年级上册成都大学附属中学数学期末试卷综合测试(Word版 含答案)

七年级上册成都大学附属中学数学期末试卷综合测试(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.2.如图(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段(2)解:,理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),∴2x= =m(m-1),∴x=(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行场比赛【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.3.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC 和BC的中点.(1)若点C恰好是AB中点,则DE=________cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.【答案】(1)7(2)解:∵AC=4cm ∴BC=AB-AC=10cm 又∵D为AC中点,E为BC中点∴CD=2cm,CE=5cm ∴DE=CD+CE=7cm.(3)解:∵AC=acm ∴BC=AB-AC=(14-a)cm 又∵D为AC中点,E为BC中点∴CD=cm,CE= cm ∴DE=CD+CE= +∴无论a取何值(不超过14)DE的长不变。

成都四川师范大学附属实验学校七年级上册期末数学模拟试卷及答案

成都四川师范大学附属实验学校七年级上册期末数学模拟试卷及答案

成都四川师范大学附属实验学校七年级上册期末数学模拟试卷及答案一、选择题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .3 4.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3C .2- D .2275.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④ 6.计算:2.5°=( )A .15′B .25′C .150′D .250′7.下列各组数中,互为相反数的是( )A .2与12B .2(1)-与1C .2与-2D .-1与21-8.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯9.下列图形中,哪一个是正方体的展开图( )A .B .C .D .10.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3 B .13 C .13- D .3二、填空题11.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.12.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………13.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.14.|-3|=_________;15.单项式22ab -的系数是________. 16.分解因式: 22xy xy +=_ ___________17.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.18.若α与β互为补角,且α=50°,则β的度数是_____.19.将520000用科学记数法表示为_____.20.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)三、解答题21.如图,已知∠1=∠2,∠BAC=∠DEC ,试判断AD 与FG 的位置关系,并说明理由.22.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马.(1)当良马追上驽马时,驽马行了 里(用x 的代数式表示).(2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?23.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.24.计算:(1)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭(2)2211(10.5)19(5)3⎡⎤---⨯⨯--⎣⎦. 25.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.26.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.27.解方程:(1)3723x x --=+ (2)123126x x +--=- 28.我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.深圳市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A :了解很多”、“B :了解较多”、“C :了解较少”、“D :不了解”),对本市某所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅不完整统计图:根据以上信息,解答下列问题:()1补全条形统计图;()2本次抽样调查了______名学生;在扇形统计图中,求出“D”的部分所对应的圆心角度数.()3若该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.29.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,图中点A 表示﹣12,点B 表示12,点C 表示20,我们称点A 和点C 在数轴上相距32个长度单位,动点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t 秒,问:(1)动点Q 从点C 运动至点A 需要 秒;(2)P 、Q 两点相遇时,求出t 的值及相遇点M 所对应的数是多少?(3)求当t 为何值时,A 、P 两点在数轴上相距的长度是C 、Q 两点在数轴上相距的长度的54倍(即P 点运动的路程=54Q 点运动的路程). 30.东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准 不超出2km 的部分起步价8元 超出2km 的部分 2.6元/km(1)若行驶路程为5km ,则打车费用为______元;(2)若行驶路程为()km 6x x >,则打车费用为______元(用含x 的代数式表示);(3)某同学周末放学回家,已知打车费用为34元,则他家离学校多少千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A .【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.2.C解析:C【解析】试题解析:A ∵0的绝对值是0,故本选项错误.B ∵互为相反数的两个数的绝对值相等,故本选项正确.C 如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .3.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】解:∵ 2.5-<1-<0<3,∴最小的数是 2.5-,故选:C .【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意, 故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.A解析:A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确; ②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误; ③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误; ④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A .【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.6.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C .【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.7.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.8.D解析:D【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.9.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.10.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3, ∴在数3,﹣3,13,13-中,最小的数为﹣3. 故选:A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.二、填空题11.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.13.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.14.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.15.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.16.【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y1)+【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.17.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC =80°,则∠AOB =∠BOC+∠AOC =110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE =40°,∴∠BOC =80°,∴∠AOB =∠BOC+∠AOC =80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.18.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.19.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.三、解答题21.AD//FG,理由见解析.【解析】【分析】由∠BAC=∠DEC,根据同位角相等,两直线平行可得AB//DE,继而可得∠BAD=∠2,由等量代换可得∠1=∠BAD,再根据同位角相等,两直线平行即可求得答案.【详解】AD//FG,理由如下:∵∠BAC=∠DEC,∴AB//DE,∴∠BAD=∠2,∵∠1=∠2,∴∠1=∠BAD,∴AD//FG.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定方法与性质定理是解题的关键. 22.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y 天后与良马相距450里.①当良马未出发时,150y =450,解得:y =3;②当良马未追上驽马时,150y ﹣240(y ﹣12)=450,解得:y =27;③当良马追上驽马时,240(y ﹣12)﹣150y =450,解得:y =37;④当良马到达B 站时,7500﹣150y =450,解得:y =47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x 的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.23.30°.【解析】【分析】依据平行线的性质,即可得到∠DOE =60°,再根据三角形外角性质,即可得到∠E 的度数.【详解】解:∵AB ∥CD ,∠A =60°,∴∠DOE =∠A =60°,又∵∠C =∠E ,∠DOE =∠C+∠E ,∴∠E =12∠DOE =30°. 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.24.(1)-12;(2)0【解析】【分析】(1)将除法变乘法计算,最后计算减法即可;(2)先算乘方和括号内的式子,然后计算乘法,最后计算加减.【详解】(1)解:原式=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=12-(2)解:原式=()111192523--⨯⨯-=()1166--⨯- =11-+=0【点睛】 本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.25.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD 和∠BOD ,进而求出AOB ∠的度数.【详解】解:∠EOD=∠EOC -∠DOC=65°-25°=40°,∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD +∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.26.()1(42-8x )元,(28-4x )元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x 元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x )元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x 元,则爱心气球的单价是(14-3x )元,根据题意得 第②束气球的总价格是:x+3(14-3x )=x+42-9x=42-8x (元);第③束气球的总价格是:2x+2(14-3x )=2x+28-6x=28-4x (元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.27.(1)2x =-;(2)76-【解析】【分析】(1)按照移项,合并同类项,系数化为1的步骤解答即可;(2)先去分母,然后去括号,移项,合并同类项,系数化为1即可.【详解】解:(1)-3x-2x=3+7-5x=10x=-2;(2)3(x+1)-(2-3x)=-63x+3-2+3x=-63x+3x=-6-3+26x=-7x=7 6 -.【点睛】本题考查了一元一次方程的解法,熟记解法的一般步骤是解决此题的关键.28.()120人;(2)100 ,18;()3400名.【解析】【分析】(1)根据A的人数和A所占的百分比即可得到抽样调查的学生总人数,根据各了解程度的人数之和等于总人数即可求出C对应的人数即可补全条形图;(2)利用360乘以D程度的人数所占的比例即可求得答案;(3)用2000乘以C的百分比即可求得答案【详解】解:(1)由题意可知:被调查的学生总人数为3030%100()÷=人,则C对应的人数为100(30455)20()-++=人,补全图形如下:()2由()1知本次抽样调查了100名学生,则扇形统计图中,“D”的部分所对应的圆心角度数为536018100⨯=,()3估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有202000400()100⨯=名【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,明确不同统计图的数据所代表的意义是解题关键,条形统计图清楚地表示每个项目的数据,扇形统计图清楚的反映部分占总体的百分比大小.29.(1)26秒;(2)t的值是10,相遇点M所对应的数是8;(3)26【解析】【分析】(1)由时间=路程÷速度即可解答;(2)根据相遇时,P,Q所用时间相等的等量关系,列方程、解方程即可解答;(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的54倍需分两直角边分别情况讨论,并根据P点运动的路程=54Q点运动的等量关系,列方程、解方程即可解答。

七年级上册成都四川师范大学附属中学数学期末试卷综合测试卷(word含答案)

七年级上册成都四川师范大学附属中学数学期末试卷综合测试卷(word含答案)

七年级上册成都四川师范大学附属中学数学期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.2.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.例如:如图1所示,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)如图1所示,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数:(2)已知∠AOB=90°,如图2所示,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以点O为中心,将∠COD顺时针旋转n度得到∠C’DD’,当OA恰好是∠C’OD’的三分线时,求n的值.【答案】(1)解:如图1,∵ OC是∠AOB的一条三分线,且∠BOC>∠AOC,∴∠AOC= ∠AOB,又∵∠AOB=60°,∴∠AOC=20°(2)解:① 如图2,∵∠AOB=90°,OC,OD是∠AOB的两条三分线,∴∠COD = ∠AOB =30°;② 分两种情况:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时,∠AOC'=10°,∴∠DOC'=30°-10°=20°,∴∠DOD'=20°+30°=50°;当OA是∠C'OD'的三分线,且∠AOD'<∠AOC'时,∠AOC'=20°,∴∠DOC'=30°-20°=10°,∴∠DOD'=10°+30°=40°;综上所述,n=40°或50°【解析】【分析】(1)根据题中给出的角的三分线的定义结合已知条件可得∠AOC=∠AOB ,计算即可得出答案.(2)①根据题中给出的角的三分线的定义结合已知条件∠COD =∠AOB,计算即可得出答案;②根据题意分情况讨论:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时;当OA 是∠C'OD'的三分线,且∠AOD'<∠AOC'时;分别结合角的三分线的定义计算即可得出答案.3.【探索新知】如图1,射线OC在∠AOB内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“二倍线”.(1)一个角的角平分线________这个角的“二倍线”.(填是或不是)(2)【运用新知】如图2,若∠AOB=120°,射线OM绕从射线OB的位置开始,绕点O按逆时针方向以每秒10°的速度向射线OA旋转,当射线OM到达射线OA的位置时停止旋转,设射线OM旋转的时间为t(s),若射线OM是∠AOB的“二倍线”,求t的值. (3)【深入研究】在(2)的条件下.同时射线ON从射线OA的位置开始,绕点O按顺时针方向以每秒5°的速度向射线OB旋转,当射线OM停止旋转时,射线ON也停止旋转.请直接写出当射线OM是∠AON的“二倍线”时t的值.【答案】(1)是(2)解:若∠AOM=2∠BOM时,且∠AOM+∠BOM=120°∴∠BOM=40°∴t= =4,若∠BOM=2∠AOM,且∠AOM+∠BOM=120°∴∠BOM=80°∴t= =8若∠AOB=2∠AOM,或∠AOB=2∠BOM,∴OM平分∠AOB,∴∠BOM=60°∴t= =6综上所述:当t=4或8或6时,射线OM是∠AOB的“二倍线”.(3)解:若∠AON=2∠MON,则5t=2×(5t+10t-120)∴t=9.6若∠MON=2∠AOM,则5t+10t-120=2×(120-10t)∴t=若∠AOM=2∠MON,则120-10t=2×(5t+10t-120)∴t=9综上所述:t=9.6或或9.【解析】【解答】(1)解:∵一个角的平分线平分这个角,且这个角是所分两个角的两倍,∴一个角的角平分线是这个角的“二倍线”,故答案为:是【分析】(1)由角平分线的定义可得;(2)分三种情况讨论,由“二倍线”的定义,列出方程可求t的值;(3)分三种情况讨论,由“二倍线”的定义,列出方程可求t的值.4.如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.(1)①若α,β满足|α-2β|+(β-60)2=0,则①α=________;②试通过计算说明∠AOD与∠COB有何特殊关系________;(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.【答案】(1)120°;解:∵∠AOB=α°=120°,∠COD=β°=60°,∴∠AOD=∠AOB-∠DOB=120°-∠DOB,∠COB=∠COB+∠DOB=60°+∠DOB,∴∠AOD+∠COB=180°,即∠AOD与∠COB互补(2)解:设∠AOC=θ,则∠BOC=120°-θ.∵OE平分∠BOC,∴∠COE= ∠BOC= (120°-θ)=60°- θ,∴∠DOE=∠COD-∠COE=60°-60°+ θ= θ= ∠AOC;(3)解:OM⊥ON.理由如下:∵OM,ON分别平分∠AOC,∠DOB,∴∠COM= ∠AOC,∴∠DON= ∠BOD,∴∠MON=∠COM+∠COD+∠DON= ∠AOC+ ∠BOD+∠COD= (∠AOC+∠BOD)+∠COD= (∠AOB-∠COD)+∠COD= (∠AOB+∠COD)= (α°+β°)∵α°,β°互补,∴α°+β°=180°,∴∠MON=90°,∴OM⊥ON【解析】【解答】(1)①由题意得:α-2β=0,β=60°,解得:α=120°;【分析】(1)①由绝对值和偶次方的非负性可得α-2β=0,β-60°=0,解方程可求得α和β的度数;②由①可知α和β的度数分别为:β=60°,α=120°;即所以∠AOB+∠COD=α+β=180°;而由图中角的构成可得∠AOD=∠AOB-∠BOD;∠COB=∠COD+∠BOD,所以∠∠AOD+∠COB=∠AOB-∠BOD+∠COD+∠BOD=∠AOB+∠COD=180°;(2)由角平分线的定义可得∠COE=∠BOE= ∠BOC,由图中角的构成可得∠DOE=∠COD-∠EOC,代入整理结合(1)中求得的度数即可得解;(3)由角平分线的定义可得∠COM= ∠AOC,∠DON= ∠BOD,由图中角的构成和已知条件可求得∠MON=90°;由垂线的定义即可判断OM⊥ON。

四川省四川师范大学附属中学2021-2022学年七年级上学期期末数学试题(含答案)

四川省四川师范大学附属中学2021-2022学年七年级上学期期末数学试题(含答案)
3.影片《长津湖》表现了志愿军战士不惧强敌敢于战斗的精神,敢于胜利的英雄气概.电影上映不到两个月,含预售票房已近57亿元,数据57亿用科学记数法表示为()
A.57×108B.5.7×1010C.0.57×1010D.5.7×109
4.下列说法中正确的是()
A.两点之间直线最短B.单项式 πx2y的系数是
四川省成都市师大附中2021-2022学年七年级(上)期末
数学试卷
A卷(共100分)
一、选择题(体大题共10个小题,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
1.3 相反数为( )
A.﹣3B.﹣ C. D.3
2.如图所示的几何体,从上面看得到的形状图是()
A. B. C. D.
【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.
5.下列图形经过折叠不能围成棱柱的是( )
A. B.
C. D.
【答案】D
【解析】【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.
【详解】解:A可以围成四棱柱,
B可以围成三棱柱,
12.若2n﹣m=14,那么6n﹣3m﹣40的值为_____.
13.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=40°,则∠CON的度数为___.
14.对于任意有理数a、b,定义一种新运算“⊕”,规则如下:a⊕b=ab+(a﹣b),则(﹣4)⊕7=_____.
三、解答题(答案写在答题卡上)
2.如图所示的几何体,从上面看得到的形状图是()
A. B. C. D.
【答案】D
【解析】【分析】主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.

七年级上册成都数学期末试卷(Word版 含解析)

七年级上册成都数学期末试卷(Word版 含解析)

七年级上册成都数学期末试卷(Word 版 含解析)一、选择题1.下列各组单项式中,是同类项的一组是( )A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′A D ′=16°,则∠EAF 的度数为( ).A .40°B .45°C .56°D .37°3.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b -- 4.下列计算正确的是( ) A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -= 5.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 6.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .7.下列几何体中,是棱锥的为()A .B .C .D .8.某数x 的43%比它的一半还少7,则列出的方程是( )A .143%72x ⎛⎫-= ⎪⎝⎭ B .1743%2x x -= C .143%72x x -= D .143%72x -= 9.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=10.下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )A .B .C .D .11.下列各式进行的变形中,不正确的是( )A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b =D .若32a b =,则94a b =12.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( )A .-4B .-2C .2D .4 13.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .14.下列各图是正方体展开图的是( )A .B .C .D .15.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x 个“中国结”,可列方程( )A .9764x x --=B .96x -=74x +C .x 9x+764+=D .x 9x 764+-= 二、填空题16.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.17.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________. 18.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.19.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.20.如图,一副三角板如图示摆放,若α=70°,则β的度数为_____°.21.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.22.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF 的度数为_______.23.比较大小:227-__________3-. 24.已知a ﹣2b =3,则7﹣3a +6b =_____.25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.解下列方程:(1)76163x x +=-;(2)253164y y ---=. 27.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.28.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.29. a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值(2)若1※x=3,求x 的值(3)若(-2)※x=-2+x ,求x 的值.30.如图,直线,,AB CD EF 相交于点O ,OG CD .(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.31.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD=8cm,BD=1cm(1)求AC 的长(2)若点E 在直线AD 上,且EA=2cm,求BE 的长32.根据要求完成下列题目 (1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图; (3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,若这样的几何体最少要个a 小正方体,最多要b 个小正方体,则+a b 的值为___________.33.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<< ()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC 也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).四、压轴题34.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.35.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

七年级上册成都数学期末试卷(Word版 含解析)

七年级上册成都数学期末试卷(Word版 含解析)

七年级上册成都数学期末试卷(Word 版 含解析)一、选择题1.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120202.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60°3.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .39 4.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1 B .2 C .1- D .2- 5.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =AB B .BD ﹣CD =CBC .AB =2ACD .AD =12AC 6.下列四个数中,最小的数是()A .5B .0C .1-D .4-7.下列各组中的两个单项式,属于同类项的一组是( )A .23x y 与23xyB .3x 与3xC .22与2aD .5与-38.点P 为直线L 外一点,点A 、B 、C 为直线上三点,PA=6cm ,PB=8cm ,PC=4cm ,则点P 到直线l 的距离为( )A .4cmB .6cmC .小于 4cmD .不大于 4cm9.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头10.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( )A .115×103B .11.5×104C .1.15×105D .0.115×10611.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 12.在 3.14、227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个 B .2 个 C .3 个 D .4 个13.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( )A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯14.-5的相反数是( )A .15B .±5C .5D .-1515.下列图形中1∠和2∠互为余角的是( )A .B .C .D .二、填空题16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数).“C 运算”不停地重复进行,例如,66n =时,其“C 运算”如下:…若35n =,则第2020次“C 运算”的结果是________.17.若221x x -+的值是4,则2245x x --的值是_________.18.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.19.当温度每下降100℃时,某种金属丝缩短0.2mm .把这种15℃时15mm 长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm .20.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.21.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.22.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.23. 若32x +与21x --互为相反数,则x =__.24.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.25.如果一个角的余角等于它本身,那么这个角的补角等于__________度.三、解答题26.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.27.如图,点C 在PAQ ∠内.(1)过点C画直线//CB AQ,交AP于点B;(2)过点C画直线//CD AP,交AQ于点D;(3)连接AC,并过点C画AP的垂线CE,垂足为E.在线段AC、BC、EC中,哪条线段最短,并说明理由.28.解方程:(1)()()210521x x x x-+=+-(2)1.7210.70.3x x--=29.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a,b,c各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e==,2f=时,画出这个几何体从左面看得到的形状图.30.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0-300(含)a3第二阶梯300-600(含)0.5a+ 3.5第三阶梯 600以上 1.5a + 5 (1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含a 的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?31.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.32.如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.33.先化简,后求值.(1)化简:()()22222212a b abab a b +--+- (2)当()221320b a -++=时,求上式的值.四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯.则第10个算式是________,第n 个算式是________. 根据以上规律解读以下两题: (1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值. 35.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题.(1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______. ()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.37.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.38.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)39.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.40.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?41.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.42.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.43.观察下列各等式:第1个:22()()a b a b a b -+=-;第2个:2233()()a b a ab b a b -++=-;第3个:322344()()a b a a b ab b a b -+++=-……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b a a b a b a b ab b -------++++++=______; (2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B .【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.2.B解析:B【解析】【分析】由角平分线的定义可得,∠COM=12∠AOC ,∠NOC=12∠BOC ,再根据∠MON=∠MOC-∠NOC 解答即可.【详解】∵OM 平分AOC ∠,∴∠COM=12∠AOC , ∵ON 平分∠BOC ,∴∠NOC=12∠BOC , ∴∠MON=∠MOC-∠NOC=12 (∠AOC-∠BOC)=12∠AOB=45°. 故选B.【点睛】本题考查角的相关计算,解题的关键是通过角平分线的定义将所求的角转化已知角. 3.D解析:D【解析】【分析】根据题意可知第一次所得的结果≤26,第二次所得的结果>26,列不等式组并解除不等式组得解后再计算满足条件的所有整数的和即可.【详解】由题意得31263(31)126x x -≤⎧⎨--⎩①>②,解不等式①得,x≤9,解不等式②得,x >103, ∴x 的取值范围是103<x≤9, ∴满足条件的所有整数x 的和为4+5+6+7+8+9=39.故答案选D .【点睛】本题考查一元一次不等式组的应用,解题的关键是正确理解程序所表示的意义,能根据题意列出不等式组.4.C解析:C【解析】【分析】根据题意将解代入方程解出a 即可.【详解】将x =-a 代入方程得:-a -3a =4,解得:a =-1.故选C.【点睛】本题考查一元一次方程的解题方法,熟练掌握解题方法是关键.5.C解析:C【解析】【分析】根据图形和题意可以分别判断各个选项是否正确.【详解】解:由图可得,AD +BD =AB ,故选项A 中的结论成立,BD ﹣CD =CB ,故选项B 中的结论成立,∵点C 是线段AB 上一点,∴AB 不一定时AC 的二倍,故选项C 中的结论不成立, ∵D 是线段AC 的中点,∴12AD AC,故选项D 中的结论成立, 故选:C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想解答. 6.D解析:D【解析】【分析】按照正数大于0,0大于负数,两个负数比大小,绝对值大的反而小的法则进行数的大小比较,从而求解.【详解】解:由题意可得:-4<-1<0<5故选:D【点睛】本题考查有理数的大小比较,掌握正数大于0,0大于负数,两个负数比大小,绝对值大的反而小是本题的解题关键.7.D解析:D【解析】【分析】所含字母相同,相同字母的指数也相同的项叫同类项,由此可确定.【详解】A选项,相同字母的指数不同,不是同类项,A错误;B选项,3x字母出现在分母上,不是整式,更不是单项式,B错误;C选项,不含有相同字母,C错误;D选项,都是数字,故是同类项,D正确.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.8.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离4cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于4cm,综上所述:点P到直线l的距离不大于4cm.故答案选:D.【点睛】本题考查了点到直线的距离的相关知识,解题的关键是根据题意判断出点到直线的距离. 9.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“秦”字对面的字是“灯”,“淮”字对面的字是“头”,“会”字对面的字是“源”.故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.C解析:C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将115000用科学记数法表示为:1.15×105.故选C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.D解析:D【解析】【分析】根据余角、邻补角、对顶角的定义即可求解.【详解】由图可知,∵OE CD ⊥∴ 1∠与2∠互为余角,A 正确;3∠与2∠互为余角,B 正确;3∠与AOD ∠互为补角,C 正确;AOD ∠与BOC ∠是对顶角,故D 错误;故选D.【点睛】此题主要考查相交线,解题的关键是熟知余角、邻补角、对顶角的定义.12.A解析:A【解析】【分析】根据无理数的定义确定即可.【详解】解:在 3.14、227、 0、π、1.6这 5个数中,π为无理数,共1个. 故选:A.【点睛】本题考查实数的分类,无限不循环的小数为无理数. 13.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:448300 4.8310=⨯;故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.C解析:C【解析】解:﹣5的相反数是5.故选C .15.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D 中∠1和∠2之和为90°,互为余角.故选D .【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.二、填空题16.1【解析】【分析】计算出n=35时第一、二、三、四、五、六、七、八次运算的结果,找出规律再进行解答即可.【详解】解:若n=35,第一次结果为35×3+1=106,第2次结果为:,第3次解析:1【解析】【分析】计算出n=35时第一、二、三、四、五、六、七、八次运算的结果,找出规律再进行解答即可.【详解】解:若n=35,第一次结果为35×3+1=106,第2次结果为:106532=, 第3次“C 运算”的结果是:53×3+1=160第4次结果为:516052=, 第5次结果为:5×3+1=16, 第6次结果为:41612= , 第7次结果为:1×3+1=4,第8次结果为:2412= …可以看出,从第6次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1,次数是奇数时,结果是4,第2020次是偶数,结果是1,故答案为:1.【点睛】本题主要考查了数字的变化类,能根据所给条件得出n=26时七次的运算结果,找出规律是解答此题的关键. 17.1【解析】【分析】根据题意,得到,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵,∴,∴;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到,熟练运用整解析:1【解析】【分析】根据题意,得到223x x -=,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵2214x x -+=,∴223x x -=,∴222452(2)52351x x x x --=--=⨯-=;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到223x x -=,熟练运用整体代入法进行解题. 18.59°【解析】【分析】根据折叠的性质,得到,再根据平行线的性质得到,求出解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠则故答案是59°. 【点睛】本题考查了折叠的性质解析:59°【解析】【分析】根据折叠的性质,得到DEF FEM ∠=∠,再根据平行线的性质得到62EGF ︒∠=,求出118,DEG ︒∠=解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠62AEG ︒∠=62,EGF DEF FEM ︒∴∠=∠=∠118,DEG ︒∴∠=则59DEF FEM ︒∠=∠=故答案是59°.【点睛】本题考查了折叠的性质以及平行线的性质,解决本题的关键是熟练掌握折叠与平行线的性质,找到相等的角.19.96【解析】【分析】由题意得到,温度下降1℃,金属丝缩短0.002mm ,然后计算15℃冷却到零下5℃,温度下降15+5=20℃,从而求出金属丝长度即可.【详解】解:由题意可得:0.2÷10 解析:96【解析】【分析】由题意得到,温度下降1℃,金属丝缩短0.002mm ,然后计算15℃冷却到零下5℃,温度下降15+5=20℃,从而求出金属丝长度即可.【详解】解:由题意可得:0.2÷100=0.00215-0.002×(15+5)=15-0.002×20=15-0.04=14.96mm故答案为:14.96【点睛】本题考查有理数的混合运算,解题关键是读懂题意.20.58°.【解析】【分析】由折叠可得,∠2=∠CAB ,依据∠1=64°,即可得到∠2= (180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB ,又∵∠1=64°,∴∠2=(18解析:58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12(180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°,故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.21.2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要解析:2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB 内,AC=4﹣2=2.故填2或6.考点:两点间的距离;数轴.22.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.23.-1【解析】【分析】由于与互为相反数,由此可以列出方程解决问题.【详解】解:∵与互为相反数,∴+()=0,解得:x=-1.故答案为:-1.【点睛】此题主要考查了一元一次方程的解法解析:-1【解析】【分析】由于32x +与21x --互为相反数,由此可以列出方程解决问题.【详解】解:∵32x +与21x --互为相反数,∴32x ++(21x --)=0,解得:x=-1.故答案为:-1.【点睛】此题主要考查了一元一次方程的解法,解题时首先正确理解同一,然后利用题目的数量关系列出方程解决问题.24.【解析】【分析】由线段AB 的中点对应的数为15,可知点A 、B 两点分别在点M 的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a+b 的值为30.【详解】解:如图所示:解析:【解析】【分析】由线段AB 的中点对应的数为15,可知点A 、B 两点分别在点M 的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a +b 的值为30.【详解】解:如图所示:∵点A 、B 对应的数为a 、b ,∴AB =a ﹣b ,∴152a b a --=, 解得:a +b =30,故答案为:30.【点睛】 本题主要考查数轴,线段中点,数形结合是解题的关键.25.135【解析】【分析】根据互余两角和为,由题意可得出这个角的度数,再根据两个互补的角和为求解即可.【详解】解:设这个角为,由题意可得,,解得,,∵,∴这个角的补角等于135度.故答案解析:135【解析】【分析】根据互余两角和为90︒,由题意可得出这个角的度数,再根据两个互补的角和为180︒求解【详解】解:设这个角为α,由题意可得,α90α=︒-,解得,α45=︒,∵18045135︒-︒=︒,∴这个角的补角等于135度.故答案为:135.【点睛】本题考查的知识点是余角和补角的概念定义,掌握余角和补角的概念定义是解此题的关键.三、解答题26.(1)见详解;(2)CD ;(3)<,垂线段最短.【解析】【分析】(1)连接B 、C 两个端点即可;以A 为端点,过点B 画射线即可;利用方格特点可过点A 画BC 的平行线AM ;(2)根据题意作图,依据点到线的距离即为垂线段的长可得结论;(3)依据直线外一点与直线上各点连接的所有线段中垂线段最短可得线段CD 与CB 的长短.【详解】解:(1)如图,线段BC ,射线AB ,平行线AM 即为所求(2)如图由点到直线的距离即为垂线段的长可知点C 到AB 的距离是线段CD 的长.(3)线段CD 是点C 到直线AB 的垂线段,所以线段CD <线段CB ,理由是垂线段最短.本题考查了在网格中作线段、射线、平行线、垂线,同时涉及了点到直线的距离、垂线段的性质,灵活利用网格的特点进行作图是解题的关键.27.(1)见解析;(2)见解析;(3)图详见解析,线段EC最短,理由是直线外一点与直线上各点连接的所有线段中,垂线段最短.【解析】【分析】(1)根据平行线的特点即可作图;(2)根据平行线的特点即可作图;(3)根据垂线段的特点即可求解.【详解】解(1)如图,直线CB即为所求;(2)如图,直线CD即为所求;(3)如图AC、CE为所求.线段EC最短.理由是直线外一点与直线上各点连接的所有线段中,垂线段最短.【点睛】此题主要考查平行线、垂线的作图与性质,解题的关键是熟知平行线、垂线的特点.28.(1)x=−43;(2)x=1417.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)去括号得:2x−x−10=5x+2x−2,移项合并得:-6x=8,解得:x =−43; (2)方程整理得:101720173x x --=, 去分母得:30x-21=7(17-20x),移项合并得:170x =140,解得:x =1417. 【点睛】此题考查了解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.29.(1)3a =,1b =,1c =;(2)最多由11个小立方体搭成;最少由9个小立方体搭成;(3)见解析.【解析】【分析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,那么b=1,c=1,a=3;(2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可;(3)左视图有3列,每列小正方形数目分别为3,1,2.【详解】(1)3a =,1b =,1c =;(2)62311++=(个),4239++=(个).这个几何体最多由11个小立方体搭成;最少由9个小立方体搭成.(3)如图所示. 【点睛】本题考查由三视图判断几何体及作三视图,解题关键在于熟练掌握几何体的三视图的相关知识.30.(1)280a ;(2)2.5;(3)丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米【解析】【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解a 的值;(3)根据题意分①2019年用气量不超过300立方米,②2019年用气量超过300立方米,但不超过600立方米分别列出方程即可求解.【详解】(1)甲用户家2018年用气总量为280立方米,则总费用为280a 元,故答案为:280a .(2)由题意得:()3001500.51200a a ++=.解得: 2.5a =.∴a 的值为2.5.(3)设丙用户家2019年用气x 立方米,2018年用气()1200x -立方米.∵2018年用气量大于2019年用气量,∴2018年用气量大于600立方米,2019年用气量小于600立方米.①2019年用气量不超过300立方米,由题意得:()7509004120060033625x x ++--+=.解得:425x =.不合题意,舍去.②2019年用气量超过300立方米,但不超过600立方米.由题意得:()75090041200600x ++--()3300 3.5300x +⨯+⨯-3625=.解得:550x =,符合题意.∴1200650x -=.答:丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米.【点睛】本题考查了一元一次方程的应用,解题的关键是根据收费标准,列式计算;找准等量关系,正确列出一元一次方程.31.(1)见解析;(2)26;(3)2.【解析】【分析】(1)依据画几何体三视图的原理画出视图;(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,根据(1)中的三视图即可求解.(3)利用左视图的俯视图不变,得出可以添加的位置.【详解】(1)三视图如图:(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,所以该几何体的表面积为 2×(4+3+5)=24cm 2(3)∵添加后左视图和俯视图不变,∴最多可以在第二行的第一列和第二列各添加一个小正方体,∴最多可以再添加2个小正方体.【点睛】本题考查了画三视图以及几何体的表面积,正确得出三视图是解答此题的关键.32.(1)8;(2)三视图见解析【解析】【分析】(1)根据图示可知这个几何体由8小正方体组成;(2)主视图有4列,每列小正方形数目分别为1,3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有4列,每行小正方形数目分别为1,2,1,1.【详解】(1)这个几何体由8小正方体组成;(2)该几何体的三个视图如图所示:【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.33.(1)2a b -1;(2)a=-2,b=12;1. 【解析】试题分析:(1)首先根据去括号的法则将括号去掉,然后再进行合并同类项化简;(2)根据非负数的性质求出a 和b 的值,然后代入化简后的式子进行计算,得出答案. 试题解析:(1)原式=22a b +22ab -22ab +1-2a b -2=2a b -1(2)根据非负数的性质可得:2b -1=0,a+2=0 解得:a=-2,b=12 ∴原式=2a b -1=4×12-1=2-1=1. 考点:(1)化简求值;(2)非负数的性质四、压轴题。

成都四川师范大学附属中学七年级数学上册期末测试卷及答案

成都四川师范大学附属中学七年级数学上册期末测试卷及答案

成都四川师范大学附属中学七年级数学上册期末测试卷及答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是()A.30°B.40°C.50°D.90°2.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171 B.190 C.210 D.3804.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查5.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+56.计算:2.5°=()A.15′B.25′C.150′D.250′7.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.8.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠49.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱10.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 11.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.14.单项式﹣22πa b的系数是_____,次数是_____.15.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___16.如图,若12l l //,1x ∠=︒,则2∠=______.17.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 20.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 21.方程x +5=12(x +3)的解是________. 22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题25.解方程:(1)3524x x -=- (2)4132y y-+= 26.已知x ay b=⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则3a b -=_____.27.已知方程313752x x -=+与关于 x 的方程3a -8=2(x +a)-a 的解相同. (1)求 a 的值;(2)若 a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c )2018的值.28.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度? 29.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6. (1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S △POB =23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.30.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足2|2|(8)0a c ++-=,1b =,(1)a=_____________,c=_________________;(2)若将数轴折叠,使得A点与B点重合,则点C与数表示的点重合.(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式x a x b x c-+-+-取得最小值时,此时x=____________,最小值为||||||__________________.(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示)四、压轴题31.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.32.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.4.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.5.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.6.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.7.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.8.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.9.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.10.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.11.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 14.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.16.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.17.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP平分,所以只要求的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】 解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=, BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 18.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面19.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.20.5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+BC=8+3=11cm ;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.21.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.22.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x =-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.-7【解析】【分析】先根据题意求出a 的值,再依此求出b 的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a 的值,再依此求出b 的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.三、解答题25.(1)1x =;(2)1y =.【解析】【分析】(1)先移项,再合并同类项,最后化系数为1即可;(2)先去分母,再去括号并移项与合并同类项,最后化系数为1即可.【详解】解:(1)3524x x -=-移项得:3425x x +=+合并同类项得:77x =化系数为1得:1x =.(2)4132y y -+= 去分母得:2(4)3(1)y y -=+ 去括号得:8233y y -=+移项得:2338y y --=-合并同类项得:55y -=-化系数为1得:1y =.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的解题步骤是解题关键.26.【解析】【详解】解:∵x a y b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解, ∴2025a b a b -=⎧⎨+=⎩①②, ①+②得,3a ﹣b =5.故答案为5.27.(1)4a =-;(2)1.【解析】【分析】(1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-, 再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±= 【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.28.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C表示的数为3t,当203<t≤503时,点C表示的数为20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.29.(1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明见解析.【解析】【分析】(1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根据S△POB=23S△ABC,可得OP=6,即可写出点P的坐标;(3)先得到点H的坐标,再结合点B的坐标可得到BH//AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)∵A(4,0),∴OA=4,∵C点x轴负半轴上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=12×6×3=9,S△BOP=12OP×2=OP,又∵S△POB=23S△ABC,∴OP=23×9=6,∴点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明如下:∵把点C往上平移3个单位得到点H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如图1,当点M在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;综上,∠BMA=∠MAC±∠HBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键. 30.(1)2-,8;(2)9-;(3)1;10;(4)82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧=⎨----=->⎩.【解析】 【分析】(1)根据两个非负数的和为零则这两个数均为零即可得出答案;(2)先求出AB =3,则折点为AB 的中点,故折点表示的数为B 点表示的数减去12AB ,即折点表示的数为:1-12×3=-0.5,再求出C 点与折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9;(3)当P 与点B 重合时,即当x =b 时,|x -a |+|x -b |+|x -c |取得最小值;(4)分小球乙碰到挡板之前和之后,即当0≤t ≤3.5,t >3.5时,表示出甲、乙两小球之间的距离d 即可. 【详解】解:(1)2|2|(8)0a c ++-=,|2|0a +≥,2(8)0c -≥20a ∴+=,80c -= 2a ∴=-,8c =; 故答案为:2-,8;(2)因为2a =-,1b =, 所以AB =1-(-2)=3,将数轴折叠,使得A 点与B 点重合, 所以对折点为AB 的中点,所以对折点表示的数为:1-12×3=-0.5,C 点与对折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9, 即点C 与数-9表示的点重合, 故答案为:-9;(3)当x =b =1时,|x -a |+|x -b |+|x -c |=|x -(-2)|+|x -1|+|x -8|=10为最小值; 故答案为:1;10;(4)t 秒后,甲的位置是2t --,乙的位置是82(0 3.5)12( 3.5)26( 3.5)t t t t t -≤≤⎧⎨+-=->⎩,82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧∴=⎨----=->⎩.【点睛】此题考查是列代数式,数轴上两点之间的距离,掌握数轴上两点之间的距离求法是解决问题的关键.四、压轴题31.探究三:16,6;结论:n², ;应用:625,300.【解析】 【分析】探究三:模仿探究一、二即可解决问题; 结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题. 【详解】 解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个. 结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.32.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.33.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣3t+21(3)当t为2秒或133秒时,△OPM的面积是长方形OBCD面积的13.此时点P的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a,b,c的值,即可得到B、C两点的坐标;(2)分两种情况:①P在OB上时,直接根据三角形面积公式可得结论;②P在BC上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM的面积为8,根据(2)中的结论分别代入可得对应t的值,并计算此时点P的坐标.【详解】(1)∵6a+|2b+12|+(c﹣4)2=0,∴a+6=0,2b+12=0,c﹣4=0,∴a=﹣6,b=﹣6,c。

2020-2021成都大学附属中学七年级数学上期末模拟试题(附答案)

2020-2021成都大学附属中学七年级数学上期末模拟试题(附答案)

2020-2021成都大学附属中学七年级数学上期末模拟试题(附答案)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或22.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错.误.的个数有 ( ) A .1个B .2个C .3个D .4个3.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A .x+1=2(x ﹣2) B .x+3=2(x ﹣1) C .x+1=2(x ﹣3)D .1112x x +-=+ 4.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个. A .2 B .3 C .4 D .55.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -46.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭7.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米8.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个9.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 10.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)11.下列比较两个有理数的大小正确的是( ) A .﹣3>﹣1B .1143> C .510611-<-D .7697->- 12.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A .3B .9C .7D .1二、填空题13.若一件商品按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的实际售价为______元.14.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁. 15.若代数式213k--的值是1,则k= _________. 16.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入33⨯的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是______.17.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线记作 a b c d ⎧⎫⎨⎬⎩⎭,定义 a b ad bc c d ⎧⎫=-⎨⎬⎩⎭,若 1 161 2x x +-⎧⎫=⎨⎬-⎩⎭,则x =__________. 18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.若代数式45x -与36x -的值互为相反数,则x 的值为____________. 20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD=20°,∠AOB=140°,求∠DOE 的度数.22.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车? 请解答上述问题.23.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是 与 , 与 , 与 ; (2)若设长方体的宽为xcm ,则长方体的长为 cm ,高为 cm ;(用含x 的式子表示)(3)求这种长方体包装盒的体积.24.在我们的课本第142页“4.4课题学习”中,有包装纸盒的设计制作方法.这里的右图,是设计师为“XX快递”设计的长方体包装盒的轮廓草图,其中长30CM、宽20CM、高18CM,正面有“快递”字样,上面有“上”字样,棱AB是上盖的掀开处,棱CD是粘合处.请你想想,如何制作这个包装盒,然后完善下面的制作步骤.步骤1:在符合尺寸规格的硬纸板上,画出这个长方体的展开图(草图).注意,要预留出黏合处,并适当剪去棱角.步骤2:在你上面画出的展开草图上,标出对应的A、B、C、D的位置,标出长30CM、宽20CM、高18CM所在线段,并把“上”和“快递”标注在所在面的位置上.步骤3:裁下展开图,折叠并粘好黏合处,得到长方体包装盒.25.某水果店用1000元购进甲、乙两种新出产的水果共140kg,这两种水果的进价、售价如表所示:进价(元/kg)售价(元/kg)甲种58乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价售完这批水果,获得的利润是多少元?(3)如果这批水果是在一天之内按照售价销售完成的,除了进货成本,水果店每天的其它销售费用是0.1元/kg,那么水果店销售这批水果获得的利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案. 【详解】∵x 是3-的相反数,y 5=, ∴x=3,y=±5, 当x=3,y=5时,x+y=8, 当x=3,y=-5时,x+y=-2, 故选C. 【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.D解析:D 【解析】 【分析】 【详解】解:①3a+2b 无法计算,故此选项符合题意; ②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a ²,∴原式计算错误,故此选项符合题意; ④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意; ⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意; 故选D3.C解析:C 【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊, ∴乙有13122x x +++=只, ∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=- 即x +1=2(x −3) 故选C.4.B解析:B 【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B .5.C解析:C 【解析】 【分析】由已知的三个图可得到一般的规律,即第n 个图形中三角形的个数是4n ,根据一般规律解题即可. 【详解】解:根据给出的3个图形可以知道: 第1个图形中三角形的个数是4, 第2个图形中三角形的个数是8, 第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n . 故选C . 【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.6.D解析:D 【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.7.B解析:B 【解析】 【分析】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,根据长方形的周长公式列式计算即可. 【详解】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,所以图2中两块阴影部分周长和为:2222224m a n a n m a an (厘米)故选:B 【点睛】本题考查的是列代数式及整式的化简,能根据图形列出代数式是关键.8.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3, ∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0, ∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加, 可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误. ⑥-1+2=1,故正数加负数,其和一定等于0错误. 正确的有2个, 故选C .9.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.10.D解析:D 【解析】 【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律.11.D解析:D【解析】【分析】根据负数的绝对值越大,这个数反而越小,可以对A、C、D进行判断;根据同分子分数大小比较的方法进行比较即可作出判断.【详解】A.﹣3<﹣1,所以A选项错误;B.14<13,所以B选项错误;C.﹣56>﹣1011,所以C选项错误;D.﹣79>﹣67,所以D选项正确.故选D.【点睛】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.12.C解析:C【解析】【分析】根据已知的等式找到末位数字的规律,再求出20193的末位数字即可.【详解】∵133=,末位数字为3,239=,末位数字为9,3327=,末位数字为7,4=,末位数字为1,3815=,末位数字为3,32436=,末位数字为9,37297=,末位数字为7,321878=,末位数字为1,36561故每4次一循环,∵2019÷4=504 (3)3的末位数字为7∴2019故选C【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.二、填空题13.140【解析】【分析】首先根据题意设这件商品的成本价为x元则这件商品的标价是(1+40)x元;然后根据:这件商品的标价×80=15列出方程求出x的值是多少即可【详解】解:设这件商品的成本价为x元则这解析:140【解析】【分析】首先根据题意,设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元;然后根-=15,列出方程,求出x的值是多少即可.据:这件商品的标价×80%x【详解】解:设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元,∴(1+40%)x×80%-x=15,∴1.4x×80%-x=15,整理,可得:0.12x=15,解得:x=125;∴这件商品的成本价为125元.⨯+⨯=⨯⨯=元;∴这件商品的实际售价为:125(140%)80%125 1.40.8140故答案为:140.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.14.12【解析】【分析】设乙现在的年龄是x岁则甲的现在的年龄是:2x岁根据6年前甲的年龄是乙的3倍可列方程求解【详解】解:设乙现在的年龄是x 岁则甲的现在的年龄是:2x岁依题意得:2x-6=3(x-6)解解析:12【解析】【分析】设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,根据6年前,甲的年龄是乙的3倍,可列方程求解.【详解】解:设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,依题意得:2x-6=3(x-6)解得:x=12∴2x=24故:甲现在24岁,乙现在12岁.故答案为:24,12【点睛】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.15.-4【解析】【分析】【详解】由=1解得解析:-4【解析】【分析】【详解】由213k--=1,解得4k=-.16.4【解析】【分析】根据每行每列每条对角线上的三个数之和相等解答即可【详解】根据每行每列每条对角线上的三个数之和相等可知三行三列两对角线上的三个数之和都等于15∴第一列第三个数为:15-2-5=8∴m解析:4【解析】【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【详解】根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15-2-5=8,∴m=15-8-3=4.故答案为:4【点睛】本题考查数的特点,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.17.【解析】【分析】根据题中所给定义得出关于x的方程然后解方程即可求得【详解】解:原式即:去括号得:合并同类项得:3x=5解得:x=故答案为:【点睛】本题考查解一元一次方程解一元一次方程的一般步骤是:去 解析:53【解析】【分析】根据题中所给定义得出关于x 的方程,然后解方程即可求得.【详解】解:原式即:()()()21116x x +---=去括号,得:22-16x x ++=合并同类项,得:3x=5解得:x=53故答案为:53 【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.36【解析】【分析】根据题意和展开图求出x 和A 的值然后计算数字综合即可解决【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2A=14∴数字总和为:9+3+6+6+14-2=36故答案为3解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面19.【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到x 的值【详解】解:根据题意得:移项合并得:解得故答案为:【点睛】此题考查了解一元一次方程和相反数的概念解题的关键在于根据相反数的概念列出方解析:117 【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:45+360--=x x ,移项合并得:711x = ,解得117x =, 故答案为:117. 【点睛】 此题考查了解一元一次方程和相反数的概念,解题的关键在于根据相反数的概念列出方程.20.12【解析】【分析】通过观察图形即可得到答案【详解】如图把正方体截去一个角后得到的几何体有12条棱故答案为:12【点睛】此题主要考查了认识正方体关键是看正方体切的位置解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.三、解答题21.45°【解析】【分析】根据角平分线定义求出∠AOD 和∠COE ,代入∠DOE=∠COD+∠COE 求出即可.【详解】解:∵OD 平分∠AOB ,∠AOB=140°,∴∠AOD=12∠AOB=70°,∴∠BOC=∠AOB﹣∠AOD﹣∠COD=50°,∴∠COE=12∠BOC=25°,∴∠DOE=∠COD+∠COE=45°.【点睛】本题考查角平分线的定义,解题关键是角平分线的定义的运用.22.有39人,15辆车【解析】【分析】找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x辆车,则有3(x﹣2)人,根据题意得:2x+9=3(x﹣2)解的:x=153(x﹣2)=39答:有39人,15辆车.【点睛】本题运用了列一元一次方程解应用题的知识点,找准等量关系是解此题的关键.23.(1)①,⑤,②,④,③,⑥;(2)2x,572x-;(3)这种长方体包装盒的体积是10200cm3.【解析】【分析】(1)根据长方体的展开图判断其相对面即可.(2)根据长、宽、高的关系,用含x的式子表示长和高即可.(3)根据题意列出方程求解即可.【详解】(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是①与⑤,②与④,③与⑥.故答案为:①,⑤,②,④,③,⑥;(2)设长方体的宽为xcm,则长方体的长为2xcm,高为572x-cm.故答案为:2x,572x-;(3)∵长是宽的2倍,∴(96﹣x572x--)12⨯=2x,解得:x=15,∴这种长方体包装盒的体积=15×34×20=10200cm3,答:这种长方体包装盒的体积是10200cm3.【点睛】本题考查了长方体的展开图问题,掌握长方体的展开图、长方体的体积公式、解一元一次方程的方法是解题的关键.24.步骤1见解析;步骤2见解析;步骤3见解析【解析】【分析】根据要求画出长方体的平面展开图即可.【详解】步骤一:如下图(有多种作图方案,画出一种合理的即可):步骤2:在图中标出对应的A、B、C、D的位置,标出长30CM、宽20CM、高18CM所在线段,并把“上”和“快递”标注在所在面的位置上.步骤3:按图中所示裁下展开图,折叠并粘好黏合处,即可得到长方体包装盒.【点睛】本题考查作图-应用与设计,几何体的展开图等知识,解题的关键是理解题意,灵活应用所学知识解决问题.25.(1)购进甲种水果65千克,乙种水果75千克。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都大学附属中学七年级上册数学期末试卷及答案-百度文库一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 4.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+65.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上6.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能7.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 8.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 10.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米 11.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==12.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 15.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.16.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 17.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.如果一个数的平方根等于这个数本身,那么这个数是_____.21.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.22.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.23.若4a +9与3a +5互为相反数,则a 的值为_____.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.27.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由. 28.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.29.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.30.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.31.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.32.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.C解析:C 【解析】 【分析】根据余角与补角的性质进行一一判断可得答案. . 【详解】解:A,根据角的和差关系可得∠α=∠β=45o ; B,根据同角的余角相等可得∠α=∠β; C,由图可得∠α不一定与∠β相等; D,根据等角的补角相等可得∠α=∠β. 故选C. 【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.3.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 4.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.5.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.6.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离b c -表示b 到c 的距离 a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.7.A解析:A【解析】A. 3x+1=4x 是一元一次方程,故本选项正确; B. x+2>1是一元一次不等式,故本选项错误; C. x 2−9=0是一元二次方程,故本选项错误; D. 2x −3y=0是二元一次方程,故本选项错误。

相关文档
最新文档