固体物理中的晶体缺陷讲解
固体物理:4.1 晶体缺陷的主要类型
点缺陷对晶体材料性能的影响
• 3. 比热容 形成点缺陷需向晶体提供附加的能量(空位生成焓), 因而引起附加比热容。 4. 其他 此外,点缺陷还影响其他物理性质,如扩散系数、 介电常数等。在碱金属的卤化物中,点缺陷称为 色心,会使晶体呈现色彩。点缺陷对金属力学性 能的影响较小,它只通过与位错的交互作用,阻 碍位错运动而使晶体强化。但在高能粒子辐照的 情形下,由于形成大量的点缺陷而能引起晶体显 著硬化和脆化(辐照硬化)。
肖特基缺陷
当晶体中的原子脱离格点位置后不在晶体内部形成填隙原 子,而是占据晶体表面的一个正常位置,并在原来的格点位置 产生一个空位,这种缺陷称为肖特基缺陷。
晶体表面上的原子运动到晶体内部的间隙位置. 这时晶体内 部只有填隙原子. 这种情况称为填隙原子缺陷。
构成填隙原子的缺陷时,必须使原子挤入晶格的间隙位置, 所需的能量要比造成空位的能量大些,所以对于大多数的情形, 特别是在温度不太高时,肖特基缺陷存在的可能性大于弗仑克尔 缺陷。
化学缺陷: 由于掺入杂质或同位素,或者化学 配比偏离理想情况的化合物晶体中 的缺陷,如杂质,色心等。
在晶体中,缺陷的种类很多,产生缺陷的机制也比较复杂。 按缺陷的几何形状和涉及的范围,缺陷分类为:
点缺陷、线缺陷、面缺陷、体缺陷等。
4.1.1 点缺陷
点缺陷:它是在格点附近一个或几个晶格常量范围内, 空间 三位线度都很小的一种晶格缺陷,如空位、填隙原子、杂质等。
由于空位和填隙原子的数目与温度有直接的关系,或者说 与原子的热振动有关,因此称他们为热缺陷。
热缺陷
弗仑克尔缺陷
肖特基缺陷 间隙原子
1.弗仑克尔缺陷、肖特基缺陷和填隙原子缺陷
弗仑克尔缺陷 当晶格中的原子脱离格点后,移到间隙位置形成填隙原 子时,在原来的格点位置处产生一个空位,填隙原子和空位成 对出现,这种缺陷称为弗仑克尔缺陷。
固体物理学§12 晶体中的缺陷与扩散
固体物理
固体物理学
晶粒间界
固体从蒸汽、溶液或熔体中结晶出来时,只有在一定条 件下,例如有籽晶存在时,才能形成单晶,而大多数固体属 于多晶体。多晶是由许多小晶粒组成。这些小晶粒本身可以 近似看作单晶,且在多晶体内做杂乱排列。多晶体中晶粒与 晶粒的交界区域称为晶粒间界.
14
固体物理
固体物理学
• 晶界结构和性质与相邻晶粒的取向差有关,当取向差小 于10˚时,晶界称为小角晶界;当取向大于10˚时晶界称为 大角度晶界。实际的多晶材料一般都是大角度晶界,但 晶粒内部的亚晶界则是小角晶界。最简单的小角晶界是 对称倾斜晶界。
n D2n t
—— Fick第二定律
• 方程的解与初始条件和边界条件有关。
固体物理
固体物理学
1)恒定源扩散
N
初始条件:
0
n
x,
0
{
n0
N
0
x 0 x
x>
• 约束条件: n x,t dx N 0
nx,t
N
x2
Dt
exp
4Dt
固体物理
固体物理学
2)保持表面浓度不变
固体物理
固体物理学
第十二章 晶体中的缺陷与扩散
晶体缺陷(晶格的不完整性):晶体中任何对完整周 期性结构的偏离就是晶体的缺陷。
按缺陷的几何形状和涉及范围将缺陷分为:点缺陷、 线缺陷和面缺陷。
1.点缺陷
点缺陷是在格点附近一个或几个晶格常量范围内的一 种晶格缺陷, 如空位、填隙原子、杂质等。
1
固体物理
固体物理学
F E
b
8
固体物理
固体物理学
9
固体物理
固体物理学
固体物理中的晶体缺陷
固体物理中的晶体缺陷在固体物理研究中,晶体缺陷是一个非常重要的课题。
晶体是由周期性排列的原子、分子或离子构成的固体,而晶体缺陷则是指晶体中的缺陷点、线和面。
这些缺陷对于晶体的性质和行为产生了显著的影响。
本文将从晶体缺陷的分类、形成机制以及对物性的影响等方面进行探讨。
一、晶体缺陷的分类晶体缺陷根据其维度可以分为点缺陷、线缺陷和面缺陷。
点缺陷是指晶体中存在的原子位置的空位(vacancy)和替位(substitution)缺陷。
线缺陷包括位错(dislocation)、脆性裂纹(brittle fracture)、折叠失配(folding fault)等。
面缺陷主要是晶界(grain boundary)、孪晶(twin boundary)和表面(surface)等。
二、晶体缺陷的形成机制晶体缺陷的形成机制多种多样。
其中,点缺陷的形成主要包括热激活、辐射效应、化学效应等。
线缺陷的形成可以通过应力场的作用和晶体生长过程中的失配等方式。
而面缺陷的形成则与晶体生长过程中的界面结构和生长条件等有关。
三、晶体缺陷对物性的影响晶体缺陷对物性的影响是多方面的。
首先,点缺陷会降低晶体的密度和导致电子、离子、空穴和电子空穴对的迁移,从而影响晶体的电导率。
其次,线缺陷会导致晶体的力学性能发生变化,影响其强度、塑性和断裂行为。
此外,面缺陷会引起界面的能量变化,影响晶体的界面迁移和晶粒生长等过程。
晶体缺陷还对光学性质、磁性和热导率等方面有影响。
四、应用和研究进展晶体缺陷的研究不仅对于基础科学的发展具有重要意义,而且在材料科学、电子器件、能源领域等方面也有广泛的应用前景。
例如,通过控制晶体缺陷可以改善材料的导电性能、光学性能和力学强度,从而提高材料的性能。
近年来,一些新型晶体缺陷的发现和调控方法的研究也取得了重要进展,为材料设计和制备提供了新的思路。
总结起来,固体物理中的晶体缺陷是一个复杂而又引人注目的研究领域。
通过对晶体缺陷的分类、形成机制以及对物性的影响的研究,我们可以更好地理解晶体的性质和行为,并为材料科学和其他相关领域的发展提供重要参考。
固体物理基础第2章 缺陷理论
并考虑到N>>ns,即可得到
us
ns Ne kBT
10
第2章 缺陷理论
2.1.3 间隙(填隙)原子 同样是由于晶格的热运动,如果晶体表面格点上的原子
移动到晶格内部的间隙位置,则会在晶体内部形成间隙原子 这种缺陷。根据间隙原子的形成过程,有时也把这种缺陷称 为反肖特基缺陷。间隙原子的计算公式为
式中,ui
27
第2章 缺陷理论
图2.5 晶体中位错缺陷的形成过程
28
第2章 缺陷理论 从上面两种位错的形成过程不难看出,位错的形成主要
与晶体中存在的应力和形变有关,因此位错主要对晶体的机 械性能产生影响,并且在晶体生长中起着重要作用。另外, 由于位错线上的原子具有断裂的化学键(称为悬挂键),这种 未饱和的悬挂键可以通过向晶体释放电子或者从晶体中俘获 电子,从而对晶体的电学性质产生影响。由于位错线上的原 子化学性质比较活泼,因此其化学腐蚀速度比其他区域快, 当晶体表面经过一定的化学腐蚀液的腐蚀后,就会在有位错 的地方形成腐蚀坑,结合晶体的各向异性,这些腐蚀坑往往 具有特殊的形状,正如第1章中讲到的金刚石结构(100)和 (111)晶面的化学腐蚀坑分别为正方形和正三角形。
ui
ni Ne kBT
(2.3)
11
第2章 缺陷理论 从上面三种缺陷的形成过程不难理解,一个费仑克尔缺
陷其实就包含一个肖特基缺陷和一个间隙原子,即uf=us+ui, 而相对于肖特基缺陷,形成间隙原子时所引起晶格局部畸变 的程度更大,因此必然有uf>ui>us。同时我们还可以想到, 当晶体中存在肖特基缺陷时,相邻格点上的原子跳跃进入该 空位所需要的能量是很小的,即空位(肖特基缺陷)的迁移能
以肖特基缺陷为例,设晶体由N个原子构成,温度为T
第四章 固体物理-晶体缺陷
点缺陷
• Frenkel 缺陷 、Schottky缺陷、填隙原子缺陷 成对出现 只有空位 只有填隙原子
线缺陷
刃位错:刃位错的构成象似一把刀劈柴似的,把半个原子面夹到完整晶体中,这半 个面似刀刃,因而得名。它的特点是:原子只在刃部的一排原子是错排的,位错线 垂直于滑移方向。
F H A’
b
刃位错
A
B
有N个原子的体系,如果有n1个空位,每个原子旁有 空位的几率为n1/N,因此因空位引起的单位时间内的 原子迁移几率为(扩散率):q = n1q’/N。将(4.6) 和(4.4)代入有:
q n 01e
(u1 E1 ) / kT
( 4.15 )
将(4.15)代入(4.9)有:
1 2 (u1 E1 ) / kT D1 n 01e 6 即 D1 D01e Q1 / kT
( 4.16 ) ( 4.17 )
1 2 D01 n 01, Q1 N ( ), A u1 E1 6 N A为阿弗加德罗常数,和 ( 4.6 )所示经验公式符合
二、填隙原子机制
当原子由正常位置进入间隙位置之后,可以比较容易在 两个间隙中发生移动,从而产生扩散。
从正常位置跳入间隙位置的所需能量为u2,跳入几率为:
B’
E
螺位错:当晶体中存在螺位错时,原来的一组晶面就象变成似单个晶面组成的螺旋阶梯 。它的特点是:原子只在靠近阶梯的部分排错一列原子,位错线和位移方向平行。
A’
螺位错
A B
A’
b
A’
B
A
C
面位错 晶界和堆垛层错
§4.2 热缺陷数目的统计方法
热缺陷是处在不断产生、不断运动和不断复合的热运动 平衡过程中。
固态物理学中的晶格缺陷和杂质
固态物理学中的晶格缺陷和杂质引言在固态物理学中,晶体是研究的重点之一。
晶体是由一定规则排列的原子或分子构成的,具有高度有序的结构。
然而,在实际应用和生产过程中,晶体中常常存在着各种各样的缺陷和杂质。
本文将通过对晶格缺陷和杂质的探讨,展示它们在固态物理学中的重要性和影响。
一、晶格缺陷1. 点缺陷点缺陷是晶体中最简单的缺陷形式。
它们可以是缺失了一个或多个原子的位置,或者是插入了一个或多个附加原子的位置。
点缺陷的存在对晶体的物理性质和化学性质产生重要影响。
例如,空位缺陷是一种常见的点缺陷形式。
晶体中的空位缺陷可以使晶体的导电率降低或增加,因为它们可以提供自由的电子或空穴用于电荷传输。
此外,空位缺陷还会对晶体的热导率、力学性能和光学性质产生影响。
2. 线缺陷除了点缺陷,还存在着线缺陷。
线缺陷是晶体中原子排列顺序的局部改变,通常形成晶体中的界面或晶体中的位错。
位错是晶体中最常见的线缺陷形式之一。
位错不仅可以改变晶体的力学性质,还可以影响晶体的导电性、热导性和光学性质。
事实上,位错是材料的强度和塑性的重要起因之一,它能够在晶体中改变原子的排列,从而使材料具有更好的弯曲性和延展性。
3. 面缺陷晶体中的面缺陷是晶格缺陷中最复杂的形式之一。
它们包括晶面、晶粒边界和相界面等。
晶面是晶体中平面的缺陷形式。
晶面的存在会对晶体的力学性质、电子性质和表面化学反应等产生影响。
例如,晶面的形状和取向可能会决定晶体的光学性质和生长方向。
晶粒边界是由不同晶粒之间的界面构成的。
晶粒边界可以影响材料的结晶度、导电性和塑性等。
相界面是晶体中不同相之间的界面。
相界面的存在可以导致晶体中出现相变、形成新的晶体结构和改变材料的热导性、力学性质和电子性质等。
二、晶格杂质除了晶格缺陷,杂质也是固态物理学中重要的研究对象。
杂质是指处于晶体中的与晶体中原子组成和排列不同的原子或分子。
杂质的存在对晶体的性质产生显著影响。
它们可以改变晶体的电子能带结构、晶格常数和电子性质等。
固体物理 第三章_ 晶体中的缺陷
4
由以上讨论可知: 刃位错: 外加切应力的方向、原子的滑移方向和位错 线的运动方向是相互平行的。 螺位错: 外加切应力的方向与原子的滑移方向平行, 原子的滑移方向与螺位错的运动方向垂直。 在左右两部分受到向上和向下的切应力的作 用时,位错线向前移动,直到位错线移动到 尽头表面,这时左右两部分整个相对滑移b 的距离,晶体产生形变。
固体物理第三章
1. 热缺陷:由热起伏的原因所产生的空位和填隙原 子,又叫热缺陷,它们的产生与温度直接有关
(a) 肖脱基缺陷
(b)弗伦克耳缺陷
(c) 间隙原子
固体物理第三章
( a )肖特基缺陷 (vacancy) :原子脱离正常格点 移动到晶体表面的正常位置,在原子格点位置 留下空位,称为肖特基缺陷。 (b)弗伦克尔缺陷(Frenkel defect),原子脱离格 点后,形成一个间隙原子和一个空位。称为弗 伦克尔缺陷。 (c)间隙原子(interstitial):如果一个原子从正常 表面位置挤进完整晶格中的间隙位置则称为间 隙原子,由于原子已经排列在各个格点上,为 了容纳间隙原子,其周围的原子必定受到相当 大的挤压。
固体物理第三章 固体物理第三章
产生位错的外力: 机械应力:挤压、拉伸、切割、研磨 热应力:温度梯度、热胀冷缩 晶格失配: 晶体内部已经存在位错,只用较小的外力就 可推动这些位错移动,原来的位错成为了位错 源,位错源引起位错的增殖,有位错源的晶体 屈服强度降低。 晶体的屈服强度强烈地依赖于温度的变化。 T升高,原子热运动加剧,晶体的屈服强度下 降,容易产生范性形变。
固体物理第三章
在实际晶体中,由于存在某种缺陷,所以晶 面的滑移过程,可能是晶面的一部分原子 先发生滑移,然后推动同晶面的另一部分 原子滑移。按照这样的循序渐移,最后使 上方的晶面相对于下方的晶面有了滑移。 1934 年, Taylor( 泰勒 ), orowan( 奥罗万 ) 和 Polanyi( 波拉尼)彼此独立提出滑移是借助 于位错在晶体中运动实现的,成功解释了 理论切应力比实验值低得多的矛盾。
固体物理 12-01晶体的缺陷
大 arrangement of the surrounding atoms.
学
Solid State Physics
固 体 物 理
(a)空位
(b)杂质质点
(c)间隙质点
西
南 科
晶体中的点缺陷
技
大
学
Solid State Physics
固
体
物 理
热缺陷
定义:热缺陷亦称为本征缺陷,是指由热
起伏的原因所产生的空位或间隙质点
化学计量化合物半导体,又分为金属离子过剩
西 南
(n型)(包括负离子缺位和间隙正离子)和负
科
技
离子过剩(p型)(正离子缺位和间隙负离子)
大
学
Solid State Physics
固 体 物
理 一、由于负离子缺位,使金属离子过剩
TiO2、ZrO2会产生这种缺陷,分子式
可写为TiO2-x, ZrO2-x,产生原因是环境
科
技 大
成这种缺陷的缘故。
学
Solid State Physics
固 体 物 理
e
西 南
科 由于间隙正离子,使金属离子过剩型结构
技 大 学
Solid State Physics
固 体
物 三、由于存在间隙负离子,使负离子
理
过剩
具有这种缺陷的结构如图所示。目前只发现
UO2+x,可以看作U2O8在UO2中的固溶体,具有 这样的缺陷。当在晶格中存在间隙负离子时,为
理
为在缺陷区域保持电中性,过剩的电子或过剩正电
荷(电子空穴)就处在缺陷的位置上。
在点缺陷上的电荷,具有一系列分离的允许能级。
这些允许能级相当于在可见光谱区域的光子能级,
固体物理 第四章 晶体中的缺陷
实际 理论
位错滑移
原因:存在于晶体内部的位错极大地降低了产生滑 移所需的临界应力. 一部分原子先运动 其它原子相继运动
(形成位错)
晶体沿滑移面的整体滑移
二、刃位错(棱位错)的滑移
位错线附近原子结构已有明显畸变,使原子处于不稳 定状态,施加较小的切变力 ,畸变后的原子将在滑 τ 移面上平行于切变力方向移动;当位错线移出,在晶 体表面形成一个原子台阶。
3、堆积层错
就是指正常堆垛顺序中引入不正常顺序堆 垛的原子面而产生的一类面缺陷。
抽出型层错
插入型层错
3)杂质缺陷
由外加杂质的引入所产生的缺陷,亦称为组成缺陷。 杂质缺陷的浓度与温度无关。 为了有目的地改善器件性能,人为地引入杂质原子。 例如: 硅半导体中:
掺入一个硼原子 105 个硅原子 电导率增加 103倍
红宝石激光器中:
刚玉晶体 Al2O3 形成发光中心 铬离子 Cr
4) 由于形成点缺陷需向晶体提供附加的能量,因而引起附加 比热容。
5) 点缺陷还影响其它物理性质:如扩散系数、内耗、介电常 数等。
§4.2 空位、填隙原子的运动和统计计算 一、空位、填隙原子的运动 空位和填隙原子的跳跃依靠热涨落,与温度紧密相关。 以填隙原子为例说明。 势 能 势能ε约为几个eV
掺入微量
3、点缺陷对材料性能的一般影响
原因:无论哪种点缺陷的存在,都会使其附近的原子稍微 偏离原结点位置才能平衡,即造成小区域的晶格畸变。
效果:
1) 改变材料的电阻 电阻来源于离子对传导电子的散射。在完 整晶体中,电子基本上是在均匀电场中运动,而在有缺陷 的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化, 因而对电子产生强烈散射,导致晶体的电阻率增大。 2) 加快原子的扩散迁移 空位可作为原子运动的周转站。 3) 形成其他晶体缺陷 过饱和的空位可集中形成内部的空洞,集 中一片的塌陷形成位错。
晶体中的缺陷
第三章晶体中的缺陷第一节概述一、缺陷的概念大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。
因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。
当然这也是因为客观上晶体的理论相对成熟。
在晶体理论发展中,空间点阵的概念非常重要。
空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。
空间点阵在晶体学理论的发展中起到了重要作用。
可以说,它是晶体学理论的基础。
现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。
严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。
但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。
所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。
考虑二维实例,如图3-1所示。
图3-1 平移对称性的示意图在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。
这种情况,我们说具有平移对称性。
这样的晶体称为“理想晶体”或“完整晶体”。
图3-2 平移对称性的破坏如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。
从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。
这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。
晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
幸运的是,缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。
晶体缺陷名词解释
晶体缺陷名词解释
晶体缺陷是指因晶体的原子不能有序排列,或因晶体中存在多余或欠缺的原子,或晶体中存在附加的离子,而使晶体的特性发生变化的状态。
主要分为四类:位错、衬底格点缺陷、位错团和晶体区域失活。
位错指晶体中原子离开了正常构型排列,进入到其他构型排列中所产生的现象,起到晶体构型的破坏作用。
衬底格点缺陷指在固定位置存在具体数量的空位,从而改变晶体表面的衬底格点,以及晶体面积和晶格常数。
位错团指离子或原子被狭义放射入晶体,它们互相吸引,形成一个团簇。
晶体区域失活指晶体因内部缺陷而导致的情况,使得某些晶格在晶体结构中失去活性,从而增加晶格衰减。
晶体缺陷简述
孪晶界面
第二类面缺陷称为孪晶界面, 它所分隔开的两部分晶体间以 特定的取向关系相交接, 从而 构成新的附加对称元素,如反 映面、旋转轴或对称中心。
晶粒间界
第三类面缺陷为晶粒间界, 它们是以任意取向关系相 交接的两晶粒间的界面。
由于复合能够减少缺陷的运动激活能, 从而加速了缺陷的运动。本征点缺陷易
子组成非晶态填隙原子团而不存在悬挂键。
这个自间隙原子团有较高的能量和嫡,及较 低的激活能。
与杂质形成微缺陷而影响硅的性能。复
合增强扩散的现象将影响半导体器件的 寿命,可能导致器件在运行中失效。
四、总结
通过查阅相关文献、书籍以及网络资源,分别从几何形态和形成原因两个大方面介 绍了晶体结构缺陷的类型。按照几何形态来分,晶体结构的缺陷主要可分为点缺陷、 线缺陷、面缺陷和体缺陷;而按照形成原因来分,晶体结构的缺陷主要分为热缺陷 (本征缺陷)、杂质缺陷(非本征缺陷)以及非化学计量结构缺陷(非整比化合物)。 在介绍了晶体结构缺陷的类型的基础上,简要介绍了单晶硅中缺陷的类型,在单晶 硅中主要存在以下几种缺陷——点缺陷、线缺陷、面缺陷以及旋涡微缺陷。
置,成为填隙的杂质原子(离子)。 点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。 a 空位 c 替位杂质 b 填隙基质原子 d 填隙杂质
2、线缺陷(一维缺陷)
指在一维方向上偏离理想晶体中的周期性、 规则性排列所产生的缺陷,即缺陷尺 寸在一维方向较长,另外二维方向上很短。如各种位错( dislocation) 线缺陷有下面两种情况: 刃型位错(Edge dislocation) 晶体中某一列或若干列原子发 生有规律的错排的现象 螺型位错(Screw dislocation) 一个晶体的某一部分相对于其余部分发生滑 移,原子平面沿着一根轴线盘旋上升,每绕 轴线一周,原子面上升一个晶面间距
固体物理第四章_晶体的缺陷
A
未滑动的晶面
EC
F
B
滑动前的晶格
D
刃位错的晶格
刃位错: F原子链。 EF是晶体的挤压区与未挤压区的分界线:
F以下原子间距变大,原子间有较强吸引力;
F的左右晶格被挤压,原子间的排斥力增大。
16
例:实际晶体的小角倾斜 晶体由倾斜角很小的两部分晶体结合而成。为了使 结合部的原子尽可能地规则排列,就得每隔一定距 离多生长出一层原子面,这些多生长出来的半截原 子面的顶端原子链就是刃错位。
添加Fe、Co、Mn等“硬性”添加物后,这些 原子占据Zr或Ti的格点,显著提高该铁电材料的 机械品质因数。
9
4、色心 能吸收光的点缺陷
完善的卤化碱晶体是无色透明的。众多的 色心缺陷能使晶体呈现一定的颜色。
例如:F心,把卤化碱晶体在相应的碱金 属蒸气中加热,然后骤冷到室温,则原来透明 的晶体就出现了颜色。
实验临界切应力比理 论值小的根源
30
2、螺位错的滑移 螺位错的滑移与刃位错的滑移相类似,只是螺位的 滑移方向与晶体所受切应力的方向相垂直。
BC原子 受到向 下的拉 力
螺位 错线 滑移
BC列原子受到右边原子的下拉力,BC原子有向下 位移的趋势,BC原子下移一定的距离; 使BC 变为螺错位。
31
二、螺位错与晶体生长
4
§4.1 晶体缺陷的基本类型
本章主要讨论单晶的缺陷:多晶体是由许多小晶粒 构成,每个晶粒可看成是小单晶。晶粒间界不仅原 子排列混乱,而且是杂质聚集的地方。因此晶粒间 界是一种性质复杂的晶体缺陷。
一、点缺陷
晶体中的填隙原子、空位、俘获电子的空位、杂质 原子等。这些缺陷约占一个原子尺寸,引起晶格周 期性在一到几个原胞范围内发生紊乱。
固体物理缺陷形成机制
固体物理缺陷形成机制引言:固体物理缺陷是指固体材料中的结构缺陷或缺陷性质,对材料的物理性质和力学性能产生重要影响。
固体物理缺陷的形成机制是固体物理学研究的重要内容之一。
本文将从晶体缺陷、晶界缺陷和点缺陷三个方面介绍固体物理缺陷的形成机制。
一、晶体缺陷的形成机制晶体缺陷是指晶体中原子位置偏离理想位置的现象。
晶体缺陷的形成机制主要有以下几种:1.点缺陷形成机制:点缺陷是指晶体中原子或离子的位置偏离其理想位置的现象。
点缺陷的形成机制可以是热激活、辐射损伤、化学反应等。
例如,热激活可以导致晶体中原子跳跃,并形成点缺陷。
2.面缺陷形成机制:面缺陷是指晶体中平面上原子或离子的位置偏离其理想位置的现象。
面缺陷的形成机制可以是晶体生长条件的改变、晶面滑移、应力等。
例如,晶体生长过程中的温度变化可以导致晶面结构的改变,从而形成面缺陷。
3.体缺陷形成机制:体缺陷是指晶体中体积上原子或离子的位置偏离其理想位置的现象。
体缺陷的形成机制可以是晶体生长条件的改变、晶体晶格的不完美等。
例如,晶体生长过程中的溶液浓度变化可以导致晶格的不完美,从而形成体缺陷。
二、晶界缺陷的形成机制晶界缺陷是指晶体中不同晶粒之间的界面上的缺陷。
晶界缺陷的形成机制主要有以下几种:1.晶粒生长过程中的晶界迁移:晶粒生长过程中,晶界可以发生迁移,从而形成晶界缺陷。
晶界迁移可以通过晶体生长条件的改变、晶体内应力等方式发生。
2.晶界的形成:晶体生长过程中,晶粒可以通过晶界的形成融合在一起,从而形成晶界缺陷。
晶界的形成可以通过晶体生长条件的改变、晶体内应力等方式发生。
三、点缺陷的形成机制点缺陷是指晶体中点状的缺陷,例如空位、间隙、杂质等。
点缺陷的形成机制主要有以下几种:1.热激活:晶体中的原子或离子可以在高温下发生跳跃,从而形成点缺陷。
热激活可以通过晶体的热处理、高温下的晶体生长等方式实现。
2.辐射损伤:辐射可以使晶体中的原子或离子发生位移,从而形成点缺陷。
固体物理.6缺陷
扩散参数D0和Q的测量
Q lnD(T ) lnD0 RT Q tg R
lnD
0
1/T
Q Rtg
扩散的微观机制
微观统计分析表明:扩散运动是 粒子的布朗运动,满足 的时间来决定 原子扩散的微观机制: 空位机制:扩散原子通过与周围的空位交换位置 进行扩散
间隙原子机制:扩散原子通过从一个间隙位置跳 到另一个间隙位置进行扩散
1 d2 D 6
:原子在相邻两次跳跃的时间间隔,要由所需等待
易位机制:扩散原子通过与周围几个原子同时交 换位置进行扩散
扩散系数与原胞尺寸关系
以空位机制为例
设d=a(原胞尺寸) 扩散系数的表达式
u1 E1 1 a 2 n1 1 2 D a 0 exp 6 1 N 6 k T B
28.0 710-11
26.2
21.0
15.2
14.0 4.6 10-6
1.6 10-10 3.6 10-10 9.1 10-8
间隙原子机制
E2 E2 1 2 D a 0 exp 2 0 exp 6 k T B kBT 填隙式杂质在晶体中的扩散:通常是间隙原子扩散机制
晶格缺陷的主要类型
点缺陷:偏离晶格周期性的现象仅局限在格点附近一个或 几个晶格常数范围内。其特征是在三维方向上的尺寸都很 小,例如空位、间隙原子、杂质原子等,也可称零维缺陷 线缺陷:是发生在晶格中一条线周围,其特征是在两个方 向上的尺寸很小,而另一个方向上的尺寸很大,晶体中的 线缺陷主要是各种类型的位错,位错还影响着晶体的力、 电、光学等性质,对相变和扩散等过程也有重大的影响。 面缺陷:是发生在晶格二维平面上的缺陷,其特征是在一 个方向上的尺寸很小,而另两个方向上的尺寸很大,也可 称二维缺陷。晶体的面缺陷包括两类:晶体的外表面和晶 体中的内界面,其中内界面又包括了晶界、亚晶界、孪晶 界,相界、堆垛层错等。面缺陷对材料的力学、物理、化 学性能都有影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理中的晶体缺陷学院:化学化工与生物工程学院班级:生物1301学号: 131030114姓名:李丹丹固体物理中的晶体缺陷1.国内外进展及研究意义1.1 国内外对晶体缺陷的研究现状和发展动态19世纪中叶布拉非发展了空间点阵,概括了点阵周期性的特征,1912年劳厄的晶体X 射线衍射实验成功后,证实了晶体中原子作规则排列,从理想晶体结构出发,人们发展了离子晶体的点阵理论和金属的电子理论,成功的计算了离子晶体的结合能,对于金属晶体的原子键能也有了初步了了解,并很好的解释了金属的电学性质。
随后人们又认识到了晶体中原子并非静止排列,它在晶体中的平衡阵点位置作震动,甚至在绝对零度也不是凝固不动的,即还有所谓零点能的作用,从这个理论出发建立了点阵震动理论,从而建立了固体的比热理论。
在20世纪20年代以后人们就发现晶体的许多性质很难用理想晶体结构来解释,提出晶体中有许多原子可能偏离规则排列,即存在有缺陷,并企图用此来解释许多用理想晶体结构无法解释的晶体性质。
W.Schottky为了解释离子晶体的电介电导率问题,提出在晶体中可能由于热起伏而产生填隙离子和空位,而且发现食盐的电介导电率与这些缺陷的数目有关。
随后为了解决晶体屈服强度的实验数据值与理论估计之间的巨大差别,又引进了位错这一晶体缺陷。
今年来人们对晶体中各种缺陷有了更深刻的认识,建立了晶体缺陷理论。
理想晶体在实际中并不存在。
实际晶体或多或少存在各种杂质和缺陷。
国内外学者通过使用显微镜的对物质性能与缺陷的关系研究得相当多,也在一定意义上取得了可喜的进展。
1.2 晶体缺陷的研究意义在晶体的生长及形成过程中,由于温度、压力、介质组分浓度等外界环境中各种复杂因素变化及质点热运动或受应力作用等其他条件的不同程度的影响会使粒子的排列并不完整和规则,可能存在空位、间隙粒子、位错、镶嵌结构等而偏离完整周期性点阵结构,形成偏离理想晶体结构的区域,我们称这样的区域为晶体缺陷,它们可以在晶格内迁移,以至消失,同时也可产生新的晶体缺陷。
本文就晶体中所存在的各类缺陷做了详细说明,并且重点介绍了各类缺陷的成因及其特征。
偏离理想状态的不完整晶体,即有某些缺陷的晶体,在晶体中缺陷并不是静止地、稳定不变地存在着,而是随着各种条件的改变而不断变动的。
它们可以产生、发展、运动和交互要的理论研究意义和实际应用价值。
2.晶体缺陷的主要理论2.1固溶体的概念凡在固态条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一均匀的晶态固体称为固体溶液,简称固溶体。
原组分或含量较高的组分称为溶剂(主晶相,基质),掺杂原子或杂质称为溶质。
混合尺寸为原子尺度相互混合的,不破坏晶格。
固溶体、混合物和化合物的区别如下表:名称相组成混合尺度组成结构固溶体单相均匀原子尺度有一定范围主晶相结构化合物不同于A和B原子尺度一定比例不同于A和BA相和B相颗粒任意颗粒堆积混合物不均匀2.1.2固溶体的分类①按溶质原子在溶剂晶格中的位置划分类置换型固溶体:进入溶剂晶格中正常格点位置,生成取代(置换)型的固溶体,例如MgO-CaO, PbZrO3-PbTiO3等;填隙型固溶体:进入溶剂晶格中的间隙位置则生成填隙型固溶体。
②按溶质原子在溶剂晶体中的溶解度分类连续固溶体:指溶质和溶剂可以按任意比例相互固溶,例如MgO-NiO,Al2O3-Cr2O3, ThO2-WO2,PbZrO3-PbTiO3等;有限固溶体:表示溶质只能以一定的限量溶入溶剂,超过这一限度即出现第二相,例如MgO-Al2O3,MgO-CaO,ZrO2-CaO等。
如在2000℃时,有 3wt% CaO 溶入 MgO 中。
2.1.3固溶体的研究方法固溶体的生成可以借助相分析和结构分析的方法进行研究,因为不论何种类型的固溶体将引起结构及性质的变化。
最本质的方法是用X-射线结构分析测定晶胞常数,并辅以有关物性测试,以此来测定固溶体及其组分,鉴别固溶体的类型等。
固溶体的类型主要通过测定晶胞常数并计算出固溶体的密度与实验精确测定的密度数据对比来判断。
2.2晶体缺陷晶体结构缺陷的种类繁多,有的是晶格畸变,有的是品格中杂质或掺质原子缺陷,有的涉及到品体组成的非化学计量比,有的对应于电磁结构中有序的跃迁等。
人们按照晶体结构缺陷在三维空间延伸的线度,晶体缺陷的几何形态以及相对于晶体的尺寸,或其影响范围的大小,把它们分为点、线、面、体等四类结构缺陷。
2.2.1点缺陷晶体中的一些原子被外界原子所代替,或者留有原子空位等,这些变化破坏了晶体规则的点阵周期性排列,并引起质点间势场的畸变,这样造成的晶体结构不完整性仅仅局限在某些位置,只影响临近的几个原子,在三维空间方向上的尺度远远小于晶体或晶粒的尺度,所以称为点缺陷,点缺陷参与晶体中的质量输运与电荷输运过程, 它对晶体结构敏感性能有时起到决定性的作用。
点缺陷包括点阵原子空位、间隙原子、杂质或溶质原子以及它们组成的复杂缺陷—空位团、空位和杂质原子复合体、色心等。
点缺陷是指:缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小,可分为:晶格位置缺陷,组成缺陷,电荷缺陷,色心。
2.2.1.1晶格位置缺陷晶格位置缺陷一般指空位和间隙原子所造成的点缺陷,主要是内部质点运动偏离其平衡位置所产生的缺陷,由于原子的热运动与温度有关,所以这类缺陷的形成主要受温度影响,也称为热缺陷,属于本征缺陷。
热缺陷有以下两种类型:①肖特基(Schottky) 缺陷:能量较大的原子迁移到晶体表面正常结点位置,在内部留下空位,这种缺陷叫肖特基缺陷。
为保持电中性,正、负离子空位是成对产生的,伴随有晶体体积的增加;②弗仑克尔(Frenker)缺陷:热振动中,能量较大的原子离开平衡位置进入晶格空隙形成间隙原子而在原来位置上留下空位,这种缺陷叫弗仑克尔缺陷。
间隙原子和空位成对产生,晶体体积不变。
对特定材料,缺陷浓度恒定。
其对比如下表:点缺陷使得原子偏离正常的平衡位置,发生微量位移,破坏了原子排列的规律性,造成晶格畸变,使电子在传导时散射增加,从而增加了电阻,空位的存在还使晶体密度下降,体积增大,高温下大量空位存在与运动使晶体发生蠕变。
高温快速冷却保留的或经辐照处理后的大量空位还可能形成空位片,或者与其他晶体缺陷发生交互作用,提高材料的强度,但相对的韧性下降。
空位和间隙原子的运动是晶体内原子扩散的内部原因,而扩散又是烧结等加工工艺过程的基础2.2.1.2 组成缺陷组成缺陷主要是指杂质原子进入晶体所产生的一类晶体缺陷,这类缺陷不仅破坏了晶体的规则空间点阵结构排列,还会引起杂质原子周围的周期势场的变化。
杂质原子主要分为置换(替代)杂质原子和间隙杂质原子两种,杂质缺陷的浓度与温度无关,主要取决于溶解度和掺杂量,属于非本征缺陷。
一般杂质原子的含量都小于1%,但此含量界限不是必然的,不同晶体和掺入杂质均有所区别。
某些杂质进入主晶格,能在很大的组成范围内“互溶”而不出现新的结构,这样的现象特别称为固溶体,固溶体是一种特殊的杂质缺陷结构,同时也是类质同像所形成的的混晶结构的反映,类质同像混合晶体可以看成具有极近似晶胞结构和晶胞化学的一系列晶胞整齐元序的堆垛。
如橄榄石(Mg,Fe)2[SiO4],可以看成Mg2[SiO4]和 Fe2[SiO4] 晶胞按一定比例整齐无序的堆垛。
由于替代与被替代的质点(原子、离子、络阴离子或分子)具有极为近似的化学性质,质点的替代可在一定范围进行,这种替代不会引起化学键性和晶体结构形式发生质的变化。
自然界矿物中结晶时,其晶体结构中广泛存在离子或离子团之间的置换,即一种位置被两种或两种以上的不同元素(或基团)置换,从而形成一种混晶的矿物结构,称为替位式固溶体,这种替位式固溶体成为点缺陷中组成缺陷里的特殊情况,只是替代量往往大于1%。
2.2.1.3 电荷缺陷电荷缺陷也称为非化学计量结构缺陷,存在于非化学计量化合物中,由于热能和其他能量传递激发电子跃迁,产生空穴和电子形成附加电场引起周期势场的畸变,造成晶体的不完整性。
非化学计量结构缺陷的形成需要在化合物中或掺入或有多价态元素组分,如过渡金属氧化物。
当环境中的气氛和分压改变时,引起化合物的组成偏离化学计量关系,形成电荷缺陷。
如在还原气氛中形成的TiO2-x,晶体机构中缺少氧离子,只有部分钛离子从四价变成三价才可保持电中性。
当高价或低价的杂质原子代替晶体中空间点阵中固有的原子,不仅形成了组成缺陷,而且也造成电荷缺陷。
例如,纯硅中掺入磷和硼,从能量理论分析,磷比硅多了一个电子,因此磷在禁带中产生施价带主能,易使导带中产生电子缺陷。
在半导体氧化物晶体中,非化学计量结构缺陷使晶体的导带中出现电子或价带中出现空穴,生成n型半导体和p型半导体。
电荷缺陷的形成不同于点缺陷和组成缺陷的形成,他需要气氛和压力偏离热力学平衡状态。
2.2.1.4色心色心,由透明晶体中点缺陷、点缺陷对或点缺陷群捕获电子或空穴而构成的一种缺陷,主要有捕获电子负离子空位形成的F色心和正离子空位缺陷捕获空位形成的V色心,通常产生于碱金属卤化物、碱土金属氟化物和部分金属氧化物中,如电气石、天河石、方钠石、石英等晶体颜色产生机理都可以用色心理论加以解释。
2.2.1.5点缺陷的表示方法凡从理论上定性定量地把材料中的点缺陷看成化学实物,并用化学热力学的原理来研究缺陷的产生、平衡及其浓度等问题的一门学科称为缺陷化学。
研究对象主要是晶体缺陷中的点缺陷,由于点缺陷之间会发生一系列的缺陷化学反应,类似于化学反应,因而,点缺陷规定的一套化学符号也类似于化学元素符号。
以简要介绍克罗格—明克(Krŏger-vink)符号:主符号:缺陷种类;上角标:缺陷所带有效电荷(+—·;- -—′;0—ⅹ);下角标:缺陷所在位置。
以MX离子晶体为例(二价):空位Vacancy :VM,Vx,VM″,Vx··VM″=VM+2e′ Vx··=Vx+2 h·;填隙原子: Mi,Xi;错放位置:Mx表示M原子被错放在X位置上;溶质原子:LM,L溶质处在M位置上(取代或添隙);自由电子及空穴:e′,h·;所有类型点缺陷的存在都破坏了原有原子间作用力的平衡,造成临近原子偏离其平衡位置而发生晶格畸变,使晶格内能升高。
和其它缺陷不同,点缺陷是一种热力学平衡缺陷,其热平衡浓度可用热力学公式ΔG=ΔH-TΔS 进行计算。
所以一般情形下,点缺陷主要影响晶体的物理性质,如比容、热容、电阻率等,而对金属力学性能的影响较小。
2.2.2线缺陷2.2.2.1位错的基本概念线缺陷指二维尺度很小而第三为尺度很大的缺陷,其特点是两个方向上的尺寸很小而另外一个方向延伸较长,也称一维缺陷,可被电镜观察到,当今研究最多的是位错。