固体物理中的晶体缺陷讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理中的晶体缺陷
学院:化学化工与生物工程学院
班级:生物1301
学号: 131030114
姓名:李丹丹
固体物理中的晶体缺陷
1.国内外进展及研究意义
1.1 国内外对晶体缺陷的研究现状和发展动态
19世纪中叶布拉非发展了空间点阵,概括了点阵周期性的特征,1912年劳厄的晶体X 射线衍射实验成功后,证实了晶体中原子作规则排列,从理想晶体结构出发,人们发展了离子晶体的点阵理论和金属的电子理论,成功的计算了离子晶体的结合能,对于金属晶体的原子键能也有了初步了了解,并很好的解释了金属的电学性质。随后人们又认识到了晶体中原子并非静止排列,它在晶体中的平衡阵点位置作震动,甚至在绝对零度也不是凝固不动的,即还有所谓零点能的作用,从这个理论出发建立了点阵震动理论,从而建立了固体的比热理论。在20世纪20年代以后人们就发现晶体的许多性质很难用理想晶体结构来解释,提出晶体中有许多原子可能偏离规则排列,即存在有缺陷,并企图用此来解释许多用理想晶体结构无法解释的晶体性质。W.Schottky为了解释离子晶体的电介电导率问题,提出在晶体中可能由于热起伏而产生填隙离子和空位,而且发现食盐的电介导电率与这些缺陷的数目有关。随后为了解决晶体屈服强度的实验数据值与理论估计之间的巨大差别,又引进了位错这一晶体缺陷。今年来人们对晶体中各种缺陷有了更深刻的认识,建立了晶体缺陷理论。
理想晶体在实际中并不存在。实际晶体或多或少存在各种杂质和缺陷。国内外学者通过使用显微镜的对物质性能与缺陷的关系研究得相当多,也在一定意义上取得了可喜的进展。
1.2 晶体缺陷的研究意义
在晶体的生长及形成过程中,由于温度、压力、介质组分浓度等外界环境中各种复杂因素变化及质点热运动或受应力作用等其他条件的不同程度的影响会使粒子的排列并不完整和规则,可能存在空位、间隙粒子、位错、镶嵌结构等而偏离完整周期性点阵结构,形成偏离理想晶体结构的区域,我们称这样的区域为晶体缺陷,它们可以在晶格内迁移,以至消失,同时也可产生新的晶体缺陷。本文就晶体中所存在的各类缺陷做了详细说明,并且重点介绍了各类缺陷的成因及其特征。
偏离理想状态的不完整晶体,即有某些缺陷的晶体,在晶体中缺陷并不是静止地、稳定不变地存在着,而是随着各种条件的改变而不断变动的。它们可以产生、发展、运动和交互
要的理论研究意义和实际应用价值。
2.晶体缺陷的主要理论
2.1固溶体的概念
凡在固态条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一均匀的晶态固体称为固体溶液,简称固溶体。原组分或含量较高的组分称为溶剂(主晶相,基质),掺杂原子或杂质称为溶质。混合尺寸为原子尺度相互混合的,不破坏晶格。
固溶体、混合物和化合物的区别如下表:
名称相组成混合尺度组成结构
固溶体单相均匀原子尺度有一定范围主晶相结构化合物不同于A和B原子尺度一定比例不同于A和B
A相和B相
颗粒任意颗粒堆积混合物
不均匀
2.1.2固溶体的分类
①按溶质原子在溶剂晶格中的位置划分类
置换型固溶体:进入溶剂晶格中正常格点位置,生成取代(置换)型的固溶体,例如MgO-CaO, PbZrO3-PbTiO3等;
填隙型固溶体:进入溶剂晶格中的间隙位置则生成填隙型固溶体。
②按溶质原子在溶剂晶体中的溶解度分类
连续固溶体:指溶质和溶剂可以按任意比例相互固溶,例如MgO-NiO,Al2O3-Cr2O3, ThO2-WO2,PbZrO3-PbTiO3等;
有限固溶体:表示溶质只能以一定的限量溶入溶剂,超过这一限度即出现第二相,例如MgO-Al2O3,MgO-CaO,ZrO2-CaO等。如在2000℃时,有 3wt% CaO 溶入 MgO 中。
2.1.3固溶体的研究方法
固溶体的生成可以借助相分析和结构分析的方法进行研究,因为不论何种类型的固溶体将引起结构及性质的变化。最本质的方法是用X-射线结构分析测定晶胞常数,并辅以有关物性测试,以此来测定固溶体及其组分,鉴别固溶体的类型等。固溶体的类型主要通过测定晶胞常数并计算出固溶体的密度与实验精确测定的密度数据对比来判断。
2.2晶体缺陷
晶体结构缺陷的种类繁多,有的是晶格畸变,有的是品格中杂质或掺质原子缺陷,有的涉及到品体组成的非化学计量比,有的对应于电磁结构中有序的跃迁等。人们按照晶体结构缺陷在三维空间延伸的线度,晶体缺陷的几何形态以及相对于晶体的尺寸,或其影响范围的大小,把它们分为点、线、面、体等四类结构缺陷。
2.2.1点缺陷
晶体中的一些原子被外界原子所代替,或者留有原子空位等,这些变化破坏了晶体规则的点阵周期性排列,并引起质点间势场的畸变,这样造成的晶体结构不完整性仅仅局限在某些位置,只影响临近的几个原子,在三维空间方向上的尺度远远小于晶体或晶粒的尺度,所以称为点缺陷,点缺陷参与晶体中的质量输运与电荷输运过程, 它对晶体结构敏感性能有时起到决定性的作用。点缺陷包括点阵原子空位、间隙原子、杂质或溶质原子以及它们组成的复杂缺陷—空位团、空位和杂质原子复合体、色心等。
点缺陷是指:缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小,可分为:晶格位置缺陷,组成缺陷,电荷缺陷,色心。
2.2.1.1晶格位置缺陷
晶格位置缺陷一般指空位和间隙原子所造成的点缺陷,主要是内部质点运动偏离其平衡位置所产生的缺陷,由于原子的热运动与温度有关,所以这类缺陷的形成主要受温度影响,也称为热缺陷,属于本征缺陷。
热缺陷有以下两种类型:①肖特基(Schottky) 缺陷:能量较大的原子迁移到晶体表面正常结点位置,在内部留下空位,这种缺陷叫肖特基缺陷。为保持电中性,正、负离子空位是成对产生的,伴随有晶体体积的增加;②弗仑克尔(Frenker)缺陷:热振动中,能量较大的原子离开平衡位置进入晶格空隙形成间隙原子而在原来位置上留下空位,这种缺陷叫弗仑克尔缺陷。间隙原子和空位成对产生,晶体体积不变。对特定材料,缺陷浓度恒定。其对比如下表: