专题07 方程与方程组的解法(解析版)

合集下载

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题07 分式与分式方程(解析版)

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题07  分式与分式方程(解析版)

专题07 分式与分式方程一、单选题1.(2022·丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x =-,则方程中x 表示( ) A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量 【答案】D【解析】 解:由50004000302x x =-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D2.(2022·杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( )A .fv f v -B .f v fv -C .fv v f -D .v f fv- 【答案】C【解析】 解:∵()111v f f u v =+≠, ∴111f u ν=+,即111u f ν=-, ∴1f u f νν-=, ∴f u f νν=-, 故选:C .二、填空题3.(2022·湖州)当a =1时,分式1a a+的值是______. 【答案】2【解析】解:当a =1时,11121a a ++==. 故答案为:2.4.(2022·温州)计算:22x xy xy x xy xy +-+=___________. 【答案】2【解析】 解:2222x xy xy x xy xy xy xy+-+==, 故答案为:2.5.(2022·金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【解析】 解:由题意得:223x =- 去分母:()223x =-去括号:226x =-移项,合并同类项:28x =系数化为1:4x =经检验,x =4是原方程的解,故答案为:4;6.(2022·宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12- 【解析】 解:∵11ba b a ⊗=+, ∴()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x , ∴22121x x x x x++=+, ∴()()()221210x x x x x ++-+=,∴()()2210x x x x +-+=,∴()2210x x +=, ∵21(1)++⊗=x x x x即0x ≠, ∴210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 7.(2022·台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314x x -+-,其中x =解:原式3(4)(4)4x x x x -=⋅-+--34x x =-+-1=-【答案】5【解析】解:依题意得:3114x x -+=--,即3204x x -+=-, 去分母得:3-x +2(x -4)=0,去括号得:3-x +2x -8=0,解得:x =5,经检验,x =5是方程的解,故答案为:5.8.(2022·丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN ,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMNS S 四边形矩形的值是___________. 【答案】 -a b 3+ 【解析】(1)①和②能够重合,③和④能够重合,,AE a DE b ==,PQ a b ∴=-,故答案为:-a b ;(2)2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=--=,0a b ∴-=或0a b -=,即a b =(负舍)或a b =这四个矩形的面积都是5,55,EP EN a b∴==, ()()()()()()()()22555555ABCDPQMN a b a b a b a b S b a ab a b S a b a b a b b a ab ⎛⎫++⋅++⋅⎪+⎝⎭∴===-⎛⎫----⋅ ⎪⎝⎭四边形矩形, 2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+,22()3b b ==+ 三、解答题9.(2022·嘉兴)解方程:3121x x -=-. 【答案】2x =-【解析】 3121x x -=-, 去分母:321,x x 整理得:2,x =-经检验:2x =-是原方程的根, 所以原方程的根为: 2.x =-。

专题07 不等式(组)(专项训练)(解析版)

专题07 不等式(组)(专项训练)(解析版)

专题07 不等式(组)一、单选题1.(2021·沙坪坝区·重庆八中九年级)若数a使关于x的不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,且使关于y的分式方程31222y ay y++--=1有正整数解,则满足条件的a的个数是()A.0个B.1个C.2个D.3个【答案】B【分析】不等式组变形后,根据有且仅有四个整数解确定出a的范围,再表示出分式方程的解,由分式方程有整数解,确定出满足条件a的值.【详解】解:解不等式组3124(2) 53x xx a-≤-⎧⎨-<⎩,解得:435xax≥-⎧⎪+⎨<⎪⎩,∵不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,∵﹣1<35a+≤0,∵﹣8<a≤﹣3.解分式方程31222y ay y++--=1,得y=102a+,∵y=102a+≠2为整数,∵a≠﹣6,∵所有满足条件的只有﹣4,故选:B.【点睛】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.2.(2021·珠海市九洲中学九年级)不等式组2131x xx+≤+⎧⎨>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2x+1≤x+3,得:x≤2,∵不等式组的解集为1<x≤2,故答案选D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2021·重庆北碚·西南大学附中九年级)若关于x的二次函数21y x ax=-+,当2x-≤时,y随着x的增大而减小,且关于x的分式方程11222axx x-=+--有正数解,那么所有满足条件的整数a的值有()A.6个B.5个C.4个D.3个【答案】B【分析】先解分式方程求出22xa=-,关于x的分式方程有正数解满足2﹣a>0利用二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小,求出对称轴x=﹣-2a≥﹣2,求出a的范围﹣4≤a<2,且a≠1即可.【详解】解:∵112 22axx x--= --∵1+1﹣a x=2(2﹣x)∵(2﹣a)x=2∵22xa =-关于x的分式方程有正数解∵22a->0∵2﹣a>0∵a<2但该分式方程当x=2时显然是增根,故当a=1时不符合题意,舍去.∵二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小∵其对称轴x=﹣-2a≥﹣2∵a≥﹣4∵﹣4≤a<2,且a≠1符合条件的整数a的值有﹣4、﹣3、﹣2、﹣1、0,共5个故选B.【点睛】本题考查分式方程的解法,抛物线的增减性,不等式的解法,掌握分式方程的解法,抛物线的性质,会求抛物线的对称轴,会利用分式方程的解为正数构造不等式,结合函数的增减性解决问题.4.(2021·陕西师大附中)已知一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,则k的值可能是()A.﹣1B.0C.1D.2【答案】D【分析】利用一次函数y随x的增大而减小的性质,得3﹣2k<0,通过求解一元一次不等式,即可得到答案.【详解】∵一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,∵3﹣2k<0,解得k>32,∵A、B、C不符合题意,D符合题意故选:D.【点睛】本题考查了一次函数、一元一次不等式的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.5.(2021·山东日照·中考真题)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( ) A .3m >B .3m ≥C .3m ≤D .3m <【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式643x x +<-,得:3x >,x m >且不等式组的解集为3x >,3m ∴, 故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2021·辽宁鞍山·)不等式32x x -的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】 求出不等式的解集,将解集在数轴上表示出来.【详解】解:∵32x x -≤,∵23x x --≤-,∵33x -≤-,解得:1≥x ,∵不等式的解集为:1≥x ,表示在数轴上如图:故选B .【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.7.(2021·辽宁朝阳·中考真题)不等式﹣4x ﹣1≥﹣2x +1的解集,在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】不等式移项,合并,把x 系数化为1,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x ﹣1≥﹣2x +1,移项得:﹣4x +2x ≥1+1,合并得:﹣2x ≥2,解得:x ≤﹣1,数轴表示,如图所示:故选:D .【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键. 8.(2021·山东滨州·中考真题)把不等式组622154x x x x -<⎧⎪+-⎨≥⎪⎩中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D .【答案】B【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【详解】 解:622154x x x x -<⎧⎪⎨+-≥⎪⎩①②,解不等式∵,得:x >-6,解不等式∵,得:x ≤13,故原不等式组的解集是-6<x ≤13,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.9.(2021·贵州遵义·)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( ) A .5×2+2x ≥30B .5×2+2x ≤30C .2×2+2x ≥30D .2×2+5x ≤30【答案】D【分析】设小明还能买x 支签字笔,则小明购物的总数为22+5x ⨯元,再列不等式即可.【详解】解:设小明还能买x 支签字笔,则:22530,x ⨯+≤故选:.D【点睛】本题考查的是一元一次不等式的应用,确定购物的总金额不大于所带钱的数额这个不等关系是解题的关键.10.(2021·湖南湘潭·中考真题)不等式组12480xx+≥⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】先解不等式组,再按照大于向右拐,小于向左拐,有等于号用实心点表示,没有用空心圈表示,画好图即可.【详解】解:12 480 xx+≥⎧⎨-<⎩①②由∵得:1,x≥由∵得:4x<8,解得:x<2,所以不等式组的解集在数轴上表示如下:所以不等式组的解集为:1x≤<2,故选:.D【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,注意实心点与空心圈的使用是解本题的易错点.二、填空题11.(2021·辽宁盘锦·)从不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解中任取一个数,它是偶数的概率是________【答案】2 5【分析】首先求得不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解,然后由概率公式求得答案.【详解】解:∵3(2)42213x xxx--≤⎧⎪⎨+≥-⎪⎩①②,由∵得:x≥1,由∵得:x≤5,∵不等式组的解集为:1≤x≤5,∵整数解有:1,2,3,4,5;∵它是偶数的概率是25.故答案为:25.【点睛】此题考查了概率公式的应用以及不等式组的解集.用到的知识点为:概率=所求情况数与总情况数之比.12.(2021·湖北荆门·)如果关于x的不等式组()31213x axx--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是________.【答案】56a <【分析】求出不等式组的解集,得到其取值范围,再根据不等式组有整数解解答.【详解】解:()31213x axx--<⎧⎪⎨+-⎪⎩①②,由∵得,x>a-3;由∵得,x≤4;∵关于x的不等式组恰有2个整数解,∵整数解为3,4,∵2≤a-3<3;∵56a<.故答案为:56a<【点睛】本题考查了一元一次不等式组的整数解,根据x的取值范围,得出x的整数解,然后解不等式即可解出a 的值.13.(2021·湖南常德·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.【答案】20【分析】设弹珠的总数为x个, 蓝珠有y个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x个, 蓝珠有y个,根据题意得,{16x+14x+8+y=x①x≤50②,由∵得,x=96+12y7,结合∵得,96+12y7≤50解得,y≤2116,又因为总的弹珠数量、红珠数量和绿珠数量都是整数,所以,刘凯的蓝珠最多有20个.故答案为:20.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.14.(2021·辽宁丹东·中考真题)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围_________.【答案】2m≥【分析】先求出每个不等式的解集,再根据已知得出关于m的不等式,求出不等式的解集即可.【详解】解:213 xx m-<⎧⎨>⎩①②解不等式∵得:2x<由∵式知:x m>∵不等式组无解∵2m≥故答案为:2m≥【点睛】本题主要考查了解一元一次不等式组,能够根据不等式的解集和已知得出关于m的不等式是解题的关键.15.(2021·贵州黔东南·中考真题)不等式组()5231131722x xx x⎧+>-⎪⎨-≤-⎪⎩的解集是__________.【答案】54 2x-<≤【分析】分别求出各不等式的解集,再求出其公共解集.【详解】解:解不等式5x+2>3(x﹣1),得:x52>-,解不等式131722x x-≤-,得:4x≤,则不等式组的解集为542x-<≤,故答案为542x-<≤.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题16.(2021·山东济南·中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,由题意得:1200800+=,502x x解得:4x=,经检验4x=是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,由(1)及题意得:()+-≤,m m842001150解得:87.5m≤,∵m为正整数,∵m的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.17.(2021·西宁市教育科学研究院中考真题)城乡学校集团化办学已成为西宁教育的一张名片.“五四”期间,西宁市某集团校计划组织乡村学校初二年级200名师生到集团总校共同举办“十四岁集体生日”.现需租用A,B两种型号的客车共10辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A 型客车x 辆,租车总费用为y 元.(1)请写出y 与x 的函数关系式(不要求写自变量取值范围);(2)据资金预算,本次租车总费用不超过11800元,则A 型客车至少需租几辆?(3)在(2)的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案. 【答案】(1)30012000y x =-+;(2)1辆;(3)租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆;方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆;最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【分析】(1)根据租车总费用=每辆A 型号客车的租金单价×租车辆数+每辆B 型号客车的租金单价×租车辆数,即可得出y 与x 之间的函数解析式,再由全校共200名师生需要坐车及x ≤10可求出x 的取值范围; (2)由租车总费用不超过11800元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案; (3)由题意得出()162210200x x +-≥,求出x 的取值范围,分析得出即可. 【详解】解:(1)()90012001030012000y x x x =+-=-+, ∵30012000y x =-+;(2)根据题意,得:3001200011800x -+≤, 解得23x ≥, ∵x 应为正整数, ∵1≥x∵A 型客车至少需租1辆;(3)根据题意,得()162210200x x +-≥, 解得103x, 结合(2)的条件,21033x , ∵x 应为正整数,∵x 取1,2,3, ∵租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆; 方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆. ∵30012000y x =-+,0k < ∵y 随x 的增大而减小, ∵当3x =时,函数值y 最小,∵最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.18.(2021·广西河池·)在平面直角坐标系中,抛物线()214y x =--+与x 轴交于A ,B 两点(A 在B 的右侧),与y 轴交于点C .(1)求直线CA 的解析式;(2)如图,直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,DG CA ⊥于点G ,若E 为GA 的中点,求m 的值.(3)直线y nx n =+与抛物线交于()11,M x y ,()22,N x y 两点,其中12x x <.若213x x ->且210y y ->,结合函数图象,探究n 的取值范围.【答案】(1)3y x =-+;(2)2m =;(3)01n <<或7n >. 【分析】(1)由()214y x =--+中,得()3,0A ,()1,0B -,()0,3C ,利用待定系数法即可得,直线CA 的解析式为3y x =-+;(2)根据直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,可得()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m ,从而3AF m =-,23DE m m =-+,而EAF △是等腰直角三角形,可得AE =,DEG △是等腰直角三角形,即可列)23m m -+=,解得m =2或m =3(舍去);(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩,∵若31n ->-,即4n <,根据213x x ->且210y y ->,可得()313n --->,且2400n n -+->,即解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,即解得7n >,综合可得结果.【详解】解:(1)在()214y x =--+中, 令0x =得3y =,令0y =得11x =-或23x =, ∵()3,0A ,()1,0B -,()0,3C ,设直线CA 的解析式为y kx b =+,则033k bb =+⎧⎨=⎩,解得13k b =-⎧⎨=⎩,∵直线CA 的解析式为3y x =-+;(2)∵直线x =m 与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F , ∵()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m , ∵3AF m =-,()()221433DE m m m m =--+--+=-+, ∵()3,0A ,()0,3C ,∵45EAF ∠=︒,EAF △是等腰直角三角形,∵AE ==,45DEG AEF ∠=∠=︒, ∵DEG △是等腰直角三角形, ∵DE =, ∵E 为GA 的中点, ∵GE AE ==,∵)23m m -+=,解得2m =或3m =,∵3m =时,D 与A 重合,舍去, ∵2m =;(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩, ∵若31n ->-,即4n <, ∵213x x ->且210y y ->,∵()313n --->,且2400n n -+->, 解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,解得7n >.综上所述,n 的取值范围是01n <<或7n >.【点睛】本题考查二次函数综合应用,涉及待定系数法、等腰三角形性质等知识,用含m 的代数式表示相关点坐标和相关线段的长度及分类讨论思想的应用是解题的关键.19.(2021·广西河池·)为庆祝中国共产党成立100周年,某校组织九年级全体师生前往广西农民运动讲习所旧址列宁岩参加“学党史、感党恩、听党话、跟党走”的主题活动,需要租用甲、乙两种客车共6辆.已知甲、乙两种客车的租金分别为450元/辆和300元/辆,设租用乙种客车x 辆,租车费用为y 元. (1)求y 与x 之间的函数关系式(写出自变量的取值范围);(2)若租用乙种客车的数量少于甲种客车的数量,租用乙种客车多少辆时,租车费用最少?最少费用是多少元?【答案】(1)1502700y x =-+(06)x ≤≤;(2)乙种客车2辆时, 租车费用2400 【分析】(1)根据题意列出函数表达式即可; (2)根据一次函数的性质,求得最值. 【详解】(1)设租用乙种客车x 辆,租车费用为y 元, 甲、乙两种客车共6辆,∴租用甲种客车(6)x -辆,60x -≥,0x ≥,06x ∴≤≤,(6)4503001502700y x x x ∴=-⨯+=-+,∴1502700y x =-+(06)x ≤≤;(2) 租用乙种客车的数量少于甲种客车的数量, 即6x x <-, 解得3x <,x 是正整数,x 最大为2,1502700y x =-+,1500-<,∴y 随x 的增大而减小,当x 取最大值时候,y 取得最小值. ∴当2x =时,租车费用最少为150227002400y =-⨯+=.答:租用乙种客车2辆时,租车费用最少,费用为2400元. 【点睛】本题考查了一次函数的应用,一次函数的性质,掌握一次函数的性质是解题的关键.20.(2021·建昌县教师进修学校九年级)某加工厂甲、乙两人加工机器零件,已知甲每天加工的数量是乙每天加工数量的1.2倍,甲加工900个这种零件比乙加工500个这种零件多用10天. (1)求甲、乙每天各加工多少个机器零件?(2)甲、乙两人每天加工这种机器零件的加工费分别是160元和120元,现有1500个这种零件的加工任务,若工厂要求总加工费用不超过7500元,求乙至少加工多少天(取整数).【答案】(1)甲每天加工30个机器零件,乙每天加工25个机器零件;(2)乙至少加工38天 【分析】(1)设乙每天加工x 个零件,则甲每天加工1.2x 个零件,根据甲加工900个这种零件比乙加工500个这种零件多用10天,列分式方程求解; (2)设乙加工m 天,乙加工了15002530m-天,根据加工费分别是160元和120元,总加工费不超过7500元,列不等式,求解即可. 【详解】解:(1)设乙每天加工x 个机器零件,则 900500101.2x x-=, 解方程得25x =经检验,25x =是原方程的解,这时1.230x =答:甲每天加工30个机器零件,乙每天加工25个机器零件 (2)设乙加工m 天,则 15002512016030mm -+⨯≤7500, 解得m ≥1372∵m 取整数,∵m 最小值为38(或m ≥38) 答:乙至少加工38天 【点睛】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大. 21.(2021·银川市第三中学)解不等式组:()2732131234x x x x ⎧+≥-⎪⎨---<⎪⎩【答案】513x -<≤. 【分析】分别解出两个不等式的解集,再将解集表示在数轴上,找到公共解集即可. 【详解】解不等式组:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩解:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩①② 解不等式∵得13x ≤,解不等式∵得5x >-,将不等式的解集表示在数轴上:所以不等式组的解集为513x -<≤. 【点睛】本题考查解一元一次方程组、将不等式的解集表示在数轴上,是重要考点,掌握相关知识是解题关键. 22.(2021·沙坪坝区·重庆八中九年级)某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价1元.销售量就减少20件. (1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m %,但售价比9月份在(1)的条件下的最高售价减少215m %.结果10月份利润达到3168元,求m 的值. 【答案】(1)售价应不高于15元;(2)60 【分析】(1)设售价应为x 元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可; (2)先求出10月份的进价,再根据等量关系:10月份利润达到3168元,列出方程求解即可. 【详解】解:(1)设售价应为x 元,依题意有 1160﹣20(x ﹣12)≥1100, 解得:x ≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元), 由题意得:1100(1+m %)[15(1﹣215m %)﹣12]=3168,设m%=t,化简得50t2﹣25t﹣3=0,解得:t1=0.6,t2=﹣0.1(舍去),所以m=60.答:m的值为60.【点睛】此题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.23.(2021·重庆实验外国语学校九年级)永川黄瓜山,林场万亩、环境优美,山势雄伟、地貌奇特,现已成为全国面积最大的南方早熟梨基地,品种以黄花梨为主,还有黄冠、圆黄、红梨、鄂梨2号等.永川梨香甜,脆嫩,皮薄,多汁.2020年,永川梨入选第一批全国名特优新农产品名录.(1)某水果经销商第一批购进黄花梨5000千克,黄冠梨2000千克,黄冠梨每千克的进价比黄花梨的进价每千克多2元,经销商所花费的费用不超过60000元,求黄花梨每千克进价最多为多少元?(2)在第(1)问最高进价的基础上,随着梨大量成熟,该水果经销商第二批购进的黄花梨的数量比第一批的数量增加了2a%,第二批购进的黄冠梨的数量不变,黄花梨的进价减少了12a%,黄冠梨的进价减少了2a%,第二批购进梨的总成本与第一批购进梨的总成本相同,求a的值.【答案】(1)8元;(2)50【分析】(1) 设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,由经销商所花费的费用不超过60000元,得出不等式求解即可;(2)根据题意列出方程式15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=求解即可.【详解】解:(1)设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,所以5000x+2000(x+2)≤60000,解得:x≤8,答:黄花梨每千克进价最多为8元;(2)由(1)得:15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=,解得:a=50,(0a=舍去)答:a得值为50.【点睛】本题考查了一元一次不等式得实际应用,一元二次方程得实际应用问题,掌握一元二次方程的实际应用是解题的关键.。

专题07 一元一次方程的应用题重难点题型分类(解析版)—七年级数学上册重难点题型分类必刷题(人教版)

专题07 一元一次方程的应用题重难点题型分类(解析版)—七年级数学上册重难点题型分类必刷题(人教版)

专题07一元一次方程的应用题重难点题型分类(解析版)专题简介:本份资料包含一元一次方程这一章的常考应用题的全部题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:配套问题、古典应用题、利润问题、费用与方案选择问题、分层计费问题、工程问题、路程问题。

适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一配套问题1.某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x 名工人生产螺钉,则可列方程为()A .()22000120022x x ⨯=-B .()21200200022x x ⨯=-C .()12002200022x x =⨯-D .()20002120022x x =⨯-【详解】解:由题意可得,2×1200x=2000(22-x ),故选:B .2.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?【详解】解:设安排x 人加工汤料包,则安排(60-x )人加工配料包,根据题意得:4×100x =200(60-x ),解得x =20,答:安排20人加工汤料包.3.某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?【详解】解:(1)设可设分配x 名工人生产螺栓,(24)x -名工人生产螺母.由题意得:312218(24)x x ⨯=⨯-,解得:12x =,2412x -=(人).答:应该分配12名工人生产螺栓,12名工人生产螺母,才能使每天的产品刚好配套.4.某工厂车间有28个工人,每人每天可生产A 零件18个或B 零件12个(每人每天只能生产一种零件),一个A 零件配两个B 零件,且每天生产的A 零件和B 零件恰好配套.设该工厂有x 名工人生产A 零件:(1)求车间每天生产A 零件和B 零件各多少个?(用含x 的式子表示)(2)求该工厂有多少工人生产A 零件?【详解】解:(1)设该工厂有x 名工人生产A 零件,共生产A 零件18x 个,则有(28-x )名工人生产B 零件,共生产B 零件12(28-x )个;答:每天生产A 零件18x 个,生产B 零件12(28-x )个;(2)根据题意得2×18x =12(28-x ),解得x =7,答:该工厂有7名工人生产A 零件.题型二古典应用题5.我国明代数学读本《算法统宗》中有一道题,其题意为∶客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x 人,则可列方程为()A .7498x x +=-B .7498x x -=+C .4879x x +-=D .4879x x -+=【详解】解:设客人有x 人,根据题意,得7498x x +=-.故选:A .6.我国明代数学家程大位的名著《算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大和尚有x 人,则根据题意可列方程为()A .()31001003x x +-=B .()31001003x x --=C .10031003x x --=D .10031003x x -+=【详解】解:设大和尚有x 人,小和尚(100)x -,由于大和尚1人分3个,小和尚3人分1个正好分完,故可列方程10031003x x -+=,故选:D .7.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗,设清酒有x 斗,那么可列方程为()A .()103530x x +-=B .()310530x x +-=C .305103x x -+=D .305310x x -+=【详解】解:设清酒有x 斗,由题意得,()103530x x +-=,故选A .8.(西雅)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层逐层翻倍增加).根据此诗,可以得出塔的顶层有()A.3盏灯 B.4盏灯 C.5盏灯 D.6盏灯【详解】解:设顶层x 盏灯,可得方程:x+2x+4x+8x+16x+32x+64x =381,得:x =3,故选:A .9.(雅礼)我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x 尺,则求解井深的方程正确的是()A .3(x +4)=4(x +1)B .3x +4=4x +1C .x +4=x +1D .x ﹣4=x ﹣1【详解】解:根据将绳三折测之,绳多四尺,则绳长为:3(x +4),根据绳四折测之,绳多一尺,则绳长为:4(x +1),故3(x +4)=4(x +1).故选:A .题型三利润问题10.一件夹克衫先按成本价提高40%标价,再将标价打8折出售,结果获利56元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是()A .()0.810.456x x +=+B .()0.810.456x x +=-C .()0.810.456x x +=-D .()0.810.456x x +=+【详解】解:设这件夹克衫的成本价是x 元,由题意得,0.8(140%)56x x +-=,即()0.810.456x x +=+.故选:A .11.一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为元.【详解】解:设这件商品的成本价为x 元,由题意知,()130%0.812x x +⋅-=,得300x =,即这件商品的成本价为300元.12.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.【详解】设盈利50%的那件衣服的进价是x 元,根据进价与得润的和等于售价列得方程:50%120x x +=,解得:80x =,设另一件亏损衣服的进价为y 元,它的商品利润是()20%y -元,列方程:()20%120y y +-=,解得:150y =.那么这两件衣服的进价是230x y +=元,而两件衣服的售价为240元.则24023010-=(元).故卖这两件衣服的利润为10元.店买了一个道具,现此商店若按标价打八折销售该道具一件,则可获纯利润300元,其利润率为20%,现如果按同一标价打九折销售该道具一件,那么获得的纯利润为()A.525元B.337.5元C.500元 D.450元【解答】解:设商品的标价是x元,根据题意得80%x-1500=300,解得x=2250,2250×90%-1500=525.获得的纯利润为525元.故答案是:525.,故答案为:A.14.(雅礼)某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000,解得:x=400,购进乙型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.15.列方程解应用题:一商场经销的A、B两种商品,A种商品每件进价40元,售价60元;B种商品每件进价50元,利润率为60%.(1)A种商品每件利润为元,每件B种商品售价为元.(2)若该商场购进A、B两种商品共80件,恰好总进价为3400元,求购进A种商品多少件?【详解】(1)解:A种商品的利润为:60-40=20元;B种商品的利润为:50×60%=30元;∴B种商品的售价为:80元;(2)设购进A种商品x件,则购进B种商品(80-x)件,根据题意得:40x+50(80-x)=3400,解得:x=60,∴购进A种商品60件.16.2021年,平和堂的一家服装店因新冠疫情的再次出现,将某种自创品牌的服装打折销售.如果每件服装按标价的6折出售,可盈利80元;若每件服装按标价的5折出售,则亏损80元.(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价7.5折出售一部分后,将余下服装按标价的5折全部出售,结算时发现共获利5600元,求按7.5折出售的服装有多少件?【详解】(1)解:(1)设每件服装的标价为x元,依题意有0.6x-80=0.5x+80,解得x=1600.答:每件服装的标价为1600元.(2)解:(2)设按7.5折出售的服装有y件,依题意有0.75×1600y+0.5×1600(80-y)-80×(0.5×1600+80)=5600,解得y=30.故按7.5折出售的服装有30件.17.某玩具厂出售一种玩具,其成本价每件28元,现有两种方式销售.方式1:直接由玩具厂的门市部销售,每件产品售价为40元,同时每月还要支出其他费用3600元;方式2:委托某一商场销售,出厂价定为每件35元.(1)若每个月销售x件,则方式1可获得利润为,方式2可获得利润为;(2)若每个月销售量达到2000件时,采用哪种销售方式获得利润较多?(3)请列一元一次方程求解:每个月销售多少件时,两种销售方式所得利润相等?【详解】(1)按方式1销售时的利润是:(40−28)x−3600即12x−3600;x ;7x按方式2销售时的时利润是(35−28)x即7x,故答案为:123600(2)当每月销售达2000件时,方式1出售的利润为:(40-28)×2000-3600=20400(元),方式2销售的利润为:(35-28)×2000=14000(元),∵20400>14000,采用方式1直接由厂家门市部出售的利润较多。

高考数学 专题07 直线与椭圆的解题方法(解析版)

高考数学 专题07 直线与椭圆的解题方法(解析版)

专题07 直线与椭圆的解题方法一.【学习目标】1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.熟练掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归. 3.了解椭圆的实际背景及椭圆的简单应用. 二.【知识要点】 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于____________)的点的轨迹叫做椭圆,这两个定点F 1,F 2叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) ______________ (a >b >0),焦点F 1(-c ,0),F 2(c ,0),其中c =_____________. (2)y 2a 2+x 2b2=1(a >b >0),焦点___________________,其中c =_____________. 3.椭圆的几何性质以x 2a 2+y 2b2=1(a >b >0)为例(1)范围:________________.(2)对称性:对称轴:x 轴,y 轴;对称中心:O (0,0).(3)顶点:长轴端点:A 1(-a ,0),A 2(a ,0),短轴端点:B 1(0,-b ),B 2(0,b );长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,焦距|F 1F 2|=2c .(4)离心率e =_______,0<e <1,e 越大,椭圆越______,e 越_______,椭圆越圆. (5)a ,b ,c 的关系:c 2=a 2-b 2或a 2=c 2+b 2. 三.【方法总结】(一)直线与椭圆关系求离心率 (二)对称问题 (三)椭圆与圆(四)直线与椭圆的中点弦问题 (五)定点问题 (六)定值问题 (七)范围问题 (八)探索性问题 四.【题型归纳】(一)直线与椭圆关系求离心率例1.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13 B .23 C .83D .32或83【答案】A【解析】如图 设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M Q 三点共线,MF QF k k = 0000022y y x a c x c-∴=++-,即00002y y c x x a c =++-,002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A.练习1.已知1F ,2F 为椭圆22221(0)x yC a b a b+=>>:的左右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程为A.22162x y += B.22184x y += C.22182x y += D.2212016x y += 【答案】A【解析】由题意,过原点O 且倾斜角为30o 的直线l 与椭圆C 的一个交点为A , 且12AF AF ⊥,且122F AF S ∆=,则可知OA c =, 设(,)A x y ,则31cos30,sin 302x c y c c ====o o ,即31,)2A c , 代入椭圆的方程可得2222144c c a b+=又由122F AF S ∆=,则211122222S c c c =⨯⨯== ,解答24c =,且222c a b =-, 解得226,2a b ==,所以椭圆的方程为22162x y +=,故选A.方法2,利用焦点三角形面积公式2tan ||||21221θb y F F S A ==(21AF F ∠=θ) 求出坐标31,)2A c ,带入第一个面积公式求c ,利用第二个面积公式2πθ=求b练习2.已知F 1,F 2为椭圆C :()222210x y a b a b+=>>的两个焦点,过点F 1作x 轴的垂线,交椭圆C 于P ,Q 两点.当△F 2PQ 为等腰直角三角形时,椭圆C 的离心率为e 1,当△F 2PQ 为等边三角形时, 椭圆C 的离心率为e 2,则e 1,e 2的大小关系为e 1______e 2 (用“>”,“<”或“=”连接) 【答案】< 【解析】把x c =-代入椭圆方程可得:22221c y a b+=,解得:2by a =± ①当2F PQ ∆为等腰直角三角形时,可得:22b c a=,即222a c ac -=化为:211210e e +-=,101e <<解得:1212e -+== ②当2F PQ ∆为等边三角形时,22b c a=)222a c ac -=22220e +=,201e <<解得:2e =则1e ,2e 的大小关系为:12e e <本题正确结果:<(二)对称问题例2. 在平面直角坐标系xOy 中,点P 为椭圆:C 22221y x a b+=()0a b >>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若,64ππα⎛⎤∈ ⎥⎝⎦,则椭圆C 的离心率的取值范围为( ) A.0,3⎛ ⎝⎦B.0,2⎛ ⎝⎦C.,32⎣⎦D.,33⎣⎦ 【答案】A【解析】OP Q 在y 轴上,且平行四边形中,MN OP P ,∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M 、N 两点关于x 轴对称,而MN OP a ==,可设,2a M x ⎛⎫-⎪⎝⎭,,2a N x ⎛⎫ ⎪⎝⎭,代入椭圆方程得:||x =,得,2a N ⎫⎪⎪⎝⎭, α为直线ON的倾斜角,tan aa ==,,,tan 164a ππα⎛⎤∈<≤ ⎥⎝⎦,1<≤,1a b ∴<≤1b a ≤<22113b a ∴≤<,而221ab ac e -==0e ∴<≤. ∴椭圆C的离心率的取值范围为⎛ ⎝⎦.故选A 项.练习1. 设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,若在直线2a x c =(其中222cb a +=)上存在点P ,使线段1PF 的垂直平分线经过点2F ,则椭圆离心率的取值范围是( )A.0,2⎛ ⎝⎦B.0,3⎛ ⎝⎦ C.3⎫⎪⎪⎣⎭ D.,12⎫⎪⎪⎣⎭【答案】C【解析】由题意得 ()1,0)F c -,2F (),0c ,设点2,a P m c ⎛⎫⎪⎝⎭, 则由中点公式可得线段1PF 的中点221(,22a c K m c - ),∴线段1PF 的斜率与2KF 的斜率之积等于1-,即2221212m m a a c c c c c--⋅=--+-, 22230a a m c c c c ⎛⎫⎛⎫∴=-+⋅-≥ ⎪ ⎪⎝⎭⎝⎭,4224230a a c c ∴--≤,423210e e ∴+-≥,213e ∴≥,或21(e ≤-舍去),e ∴≥. 又椭圆的离心率 01e <<,故13e ≤<, 故选:C .练习2. 设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆C 与x 轴正半轴于点P 、Q ,且85AP PQ =uu u r uu u r, 椭圆C 的离心率为___.【答案】12【解析】:设0(,0)Q x ,由(,0)F c -,(0,)A b 知∵FA AQ ⊥u u u r u u u r ,0FA AQ ⋅=u u u r u u u r ,∴200cx b -=,20b x c= 设11(,)P x y ,由85AP PQ =uu u r uu u r 得21813b x c =,1513y b = 因为点P 在椭圆上,所以222221851313b a c bb +⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝=⎭整理得2b 2=3ac ,即2(a 2-c 2)=3ac ,2e 2+3e -2=0,故椭圆的离心率12e =(三)椭圆与圆例3.如图,1A ,2A 分别是椭圆2214xy +=的左、右顶点,圆1A 的半径为2,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q ,则2PQ QA =_______.【答案】34【解析】连结1PO PA 、,可得1POA n 是边长为2的等边三角形,所以1160PAO POA ∠∠==︒, 可得直线1PA 的斜率1603k tan =︒=PO 的斜率为21203k tan =︒=- 因此,直线1PA 的方程为)32y x =+,直线PO 的方程为3y x =, 设()P m n ,,由)323y x y x⎧=+⎪⎨=⎪⎩解得1m =-, 因为圆1A 与直线2PA 相切于点P ,所以21PA PA ⊥,因此219030PA O PAO ∠∠=︒-=︒, 故直线2PA 的斜率3150k tan =︒=2PA 的方程为)32y x =-,代入椭圆方程2214x y +=,消去y 得271640xx -+=,解得2x =或27x =, 因为直线2PA 交椭圆于()22,0A 与Q 点,设(),Q s t ,可得27s =, 由此可得22213722427Q P A Q x x PQ s m QA x x s +--====---. 故答案为34练习1.祖暅原理:两个等高的几何体,若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.利用祖暅原理可以求旋转体的体积.比如:设半圆方程为222(0,0)x y r y r +=≥>,半圆与x 轴正半轴交于点A ,作直线x r =,y r =交于点P ,连接OP (O 为原点),利用祖暅原理可得:半圆绕y 轴旋转所得半球的体积与OAP ∆绕y 轴旋转一周形成的几何体的体积相等.类比这个方法,可得半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体的体积是_________. 【答案】223ab π 【解析】如图,这是椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体,所以半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体为:椭圆的长半轴为a ,短半轴为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理,得出该几何体的体积是V V V =-圆柱圆锥22212=33b a b a b a πππ-=;答案:223ab π练习2.已知O 是椭圆E 的对称中心,1F ,2F 是E 的焦点,以O 为圆心,1OF 为半径的圆与E 的一个交点为A .若¼1AF 与¼2AF 的长度之比为2:1,则E 的离心率等于______. 【答案】31e =【解析】解法1:如图,设122F F c =,1OF c =,因为¼1AF 与¼2AF 的长度之比为2:1,故1120AOF ∠=o ,260AOF ∠=o ,所以2AOF △为正三角形,故2AF c =.在等腰1AOF △中,求得13AF c =.根据椭圆的定义,可得)12231a AF AF c =+=,故椭圆的离心率231231c c e a a ====+. 解法2:如图,设椭圆的方程为22221(0)x y a b a b+=>>,122F F c =.由题意,易知1120AOF ∠=o,260AOF ∠=o,所以2AOF △为正三角形,故13,22A c c ⎛⎫⎪ ⎪⎝⎭,因为点A 在椭圆上,所以22223144c c a b+=,即()222223144c c a a c +=-,即()22231441e e e +=-, 整理,得()22221344e eee -+=-,即42840e e -+=,解得2423e =+2423e =-31e =.练习3.设p 是椭圆2213632x y +=上一点,M ,N 分别是两圆:()2221x y -+=和()22124x y ++=上的点,则PM PN +的取值范围为______【答案】⎥⎦⎤⎢⎣⎡227221, 【解析】首先将P 点固定于一处,设两圆心分别为12,C C ,则1211,2r r ==,且12,C C 为椭圆的焦点, 根据圆外一点到与圆上的点的距离的范围可得11221111,22PC PM PC PC PN PC -≤≤+-≤≤+, 从而得到12123322PC PC PM PN PC PC +-≤+≤++,根据椭圆的定义可知1212PC PC +=,所以PM PN +的取值范围为2127[,]22, 故答案是:2127[,]22.(四)直线与椭圆的中点弦问题例4.已知椭圆T : 22221(>0)x y a b a b +=>的离心率为2,右焦点为()1,0F ,三角形ABC 的三个顶点都在椭圆T 上,设它的三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别1k 、2k 、3k ,且1k 、2k 、3k 均不为0。

专题07 定点问题(解析版)

专题07 定点问题(解析版)

专题七 定点问题(平民解法,暴力美学)一、考情分析2019全国III 理21中出现,虽然以往全国卷高考题中出现较少,是圆锥曲线部分的小概率考点.但是在2019年出现,所以在2020年备考一定引起重视。

定点问题是比较常见出题形式,题目属于中等偏简单题目。

采取常规平民化解法,计算是暴力美学范畴。

化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.二、经验分享【直线过定点的解题策略】(1)如果题设条件没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,再证明这个点与变量无关.(2)直接推理、计算,找出参数之间的关系,并在计算过程中消去部分参数,将直线方程化为点斜式方程,从而得到定点.(3)若直线方程含多个参数并给出或能求出参数满足的方程,观察直线方程特征与参数方程满足的方程的特征,即可找出直线所过顶点坐标,并带入直线方程进行检验.注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 【重要结论】1.动直线l 过定点问题,设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).2.动曲线C 过定点问题,引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.3.“弦对定点张直角”-圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-. 4.只要任意一个限定AP 与BP 条件(如=•BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点三、题型分析(一)圆锥曲线中直线方程过未知定点例1.【2017新课标Ⅰ】已知椭圆C :22221(0)x y a b a b +=>>,四点1(1,1)P ,2(0,1)P ,3(P =-,4P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(t,.则121k k +==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【变式训练1】.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试数学试题】已知 抛物线()2:20C y px p >=的焦点为F ,直线4y =与y 轴的交点为P ,与抛物线C 的交点为Q ,且2QF PQ =.(1)求p 的值;(2)已知点(),2T t -为C 上一点,M ,N 是C 上异于点T 的两点,且满足直线TM 和直线TN 的斜率之和为83-,证明直线MN 恒过定点,并求出定点的坐标.【答案】(1)4;(2)证明过程见解析,直线MN 恒过定点()1,1--. 【解析】(1)设()0,4Q x ,由抛物线定义知02QF p x =+, 又2QF PQ =,0PQ x =,所以0022p x x =+,解得02p x =, 将点,42p Q ⎛⎫⎪⎝⎭代入抛物线方程,解得4p =. (2)由(1)知,C 的方程为28y x =,所以点T 坐标为1,22⎛⎫- ⎪⎝⎭,设直线MN 的方程为x my n =+,点()11,M x y ,()22,N x y ,由28x my ny x=+⎧⎨=⎩ 得2880y my n --=,264320m n +=>∆.所以128y y m +=,128y y n =-, 所以121222121222221111228282MT NT k k y y y y y y x x +++++=+=+----()()1212121288228+3224y y y y y y y y -=-++--+= 6432881643m n m -==---+,解得1n m =-,所以直线MN 的方程为1(1)x m y +=+,恒过定点()1,1--.【名师点睛】本题考查抛物线的定义,直线与抛物线相交,直线过定点问题,属于中档题. (1)设Q 点坐标,根据抛物线的定义得到Q 点横坐标,然后代入抛物线方程,得到p 的值;(2)()11,M x y ,()22,N x y ,直线和曲线联立,得到1212,y y y y +,然后表示出MT NT k k +,化简整理,得到m 和n 的关系,从而得到直线MN 恒过的定点.【变式训练2】. 【2019全国III 理21】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.由2122y tx xy ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t=±时,S =因此,四边形ADBE的面积为3或(二)圆锥曲线中直线方程过已知定点例2.【2017新课标Ⅱ】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足 为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =.因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l过C 的左焦点F .【变式训练1】.【2016年山东】平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S , 求12S S的最大值及取得最大值时点P 的坐标. 【解析】(Ⅰ) 由离心率是23,有224=b a ,又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a ,所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为2,),(0)2m P m m >(,由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (. 于是23214+14=+m m x x ,232104+12=2+=m m x x x ,又2200222(14)m m y mx m -=-=+, 于是 直线OD 的方程为x m -y 41=.联立方程x m -y 41=与m x =,得M 的坐标为1(,)4M m -. 所以点M 在定直线41=y -上.(ii )在切线l 的方程为2=2m mx -y 中,令0x =,得22m y =-,即点G 的坐标为2(0,)2m G -,又2(,)2m P m ,1(0,)2F ,所以4)1+(=×21=S 21m m GF m ;再由32222(,)412(41)m m D m m -++,得)1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m于是有 222221)1+2()1+)(1+4(2=S S m m m .令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P的坐标为1()24P .【变式训练2】.已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的 直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正 三角形。

部编数学七年级上册专题07一元一次方程实际应用的六种考法(解析版)(人教版)含答案

部编数学七年级上册专题07一元一次方程实际应用的六种考法(解析版)(人教版)含答案

专题07 一元一次方程实际应用的六种考法1. 数字问题例.(1)把100拆分成2个数的和,使得第一个数加3,第二个数减3,得到的结果相等.则拆分成的这两个数分别是 和 ;(2)把100拆分成2个数的和,使得第一个数乘2.第二个数除以2,得到的结果相等.则拆分成的这两个数分别是 和 ;(3)把100拆分成4个数的和,使得第一个数加5,第二个数减5,第三个数乘5,第4个数除以5,得到的的结果都相等,问拆分成的这四个数分别是多少.【答案】(1)47,53;(2)20, 80;(3)809,1709,259,6259.【详解】解:(1)设第一个数为x ,则第二个数是(100﹣x ),由题意得:x +3=100﹣x ﹣3,解得x =47.所以100﹣x =100﹣47=53.答:拆分成的这两个数分别是47和53.故答案为:47,53;(2)设第一个数为y ,则第二个数是(100﹣y ),由题意得:2y =(100﹣y )÷2,解得y =20.所以100﹣y =100﹣20=80.答:拆分成的这两个数分别是20和80;故答案为:20,80;(3)设相等的数为z ,则其余数分别为z ﹣5,z +5,5z ,5z ,由题意得:z ﹣5+z +55z ++5z =100,解得:z 1259=,则z ﹣5809=,z +51709=,2559z =,5z 6259=.故拆分成的这四个数分别是809,1709,259,6259.【变式训练1】将连续的奇数1,3,5,7,9,……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?【答案】(1)见解析(2)方框里中间数是33【解析】(1)解:规律有:①第一列个位数都是1,②每行只有5个奇数,③每行相邻两个数的和是2的倍数,④每列相邻的两个数相差10.(2)解:设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++=9297x =,33x =,则方框里中间数是33.【变式训练2】如图所示的10×5(行×列)的数阵,是由一些连续奇数组成的.(1)形如图框中的四个数,设第一行的第一个数为x ,用含x 的式子表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,它们的和为296?为什么?【答案】(1)x +2,x +8,x +10;(2)45,47,53,55(3)不存在,理由见解析【解析】(1)解:设第一行第一个数为x ,则其余3个数依次为x +2,x +8,x +10;(2)解:根据题意得:x +x +2+x +8+x +10=200,解得:x =45.则这四个数依次为45,47,53,55.答:这四个数依次为45,47,53,55;(3)解:不存在.理由如下:由题意得x +x +2+x +8+x +10=296∴4x +20=296,解得:x =69.∵当x =69时,这个数在第六行最后一个数的位置,不符合题意故不存在这样的四个数,它们的和为296.【变式训练3】将连续的偶数0,2,4,6,8,…排成如图所示的数表.(1)十字形框内的五个数之和是中间数的______;若设十字形框内的五个数中最中间一个数是x ,用代数式表示十字形框内五个数之和为______;(2)若将十字形框上下左右移动,可框住另外五个数,这五个数还有上述规律吗?直接写出答案,不需要证明;(3)十字形框能否框到五个数,使这五个数之和等于2400呢?若能,请写出这五个数,若不能,请说明理由.【答案】(1)5倍,5x ;(2)有;(3)不存在5个数之和为2400【解析】(1)(4+14+24+12+ 16)÷14=5,x +(x - 10)+(x + 10)+(x -2)+(x +2)= 5x(2)符合规律,设中间数字为x ,则上面数字的为x - 10,下面数字为x + 10,左边数字为x - 2,右边数字为x + 2,即[x +(x - 10)+(x + 10)+(x -2)+(x +2)]÷x =5,x +(x - 10)+(x + 10)+(x -2)+(x +2)= 5x ∴仍符合规律;(3)若五个数之和等于2400,则52400x =,解得:480x =,∴十字据中中间的数为480,由数表可知,数字480位于数表的最边上一列,不可能处于十字框中间,所以不存在5个数之和为2400.2.配套问题例.列方程解应用题某啤酒公司的啤酒车间先将散装啤酒灌装成瓶装啤酒,再将瓶装啤酒装箱出车间.该车间有灌装、装箱生产线共21条,每条灌装生产线每小时装350瓶,每条装箱生产线每小时装450瓶.某日,生产前车间内已有未装箱的瓶装啤酒5200瓶,8:00开始,车间内的生产线全部投入生产.(1)若当日到10:00时,该车间内未装箱的瓶装啤酒达到5500瓶.设灌装生产线有x条,当日到10:00时,灌装生产线共装多少瓶啤酒(用含x的代数式表示)?该车间内灌装生产线有多少条?(2)若该日车间工作8小时,灌装生产线设计多少条时?该日车间内的瓶装啤酒恰好全部装箱?【答案】(1)灌装生产线共装(350×2x)瓶啤酒,灌装生产线有12条;(2)灌装生产线设计13条时,该日车间内的瓶装啤酒恰好全部装箱.【解析】(1)解:当日到10:00时,灌装生产线共装(350×2x)瓶啤酒,根据题意,得5200+350×2x=450×2(21-x)+5500,解这个方程,得:x=12答:灌装生产线共装(350×2x)瓶啤酒,灌装生产线有12条;(2)解:设灌装生产线设计y条时,该日车间内的瓶装啤酒恰好全部装箱,根据题意,得5200+350×8y=450×8(21-y),解这个方程,得:y=11.答:灌装生产线设计11条时,该日车间内的瓶装啤酒恰好全部装箱.【变式训练1】小林到某纸箱厂参加社会实践,该厂计划用50张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A,B,两种方法剪裁,其中A种裁法:一张白板纸裁成4个侧面;B种裁法:一张白板纸裁成2个侧面与4个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按A种方法剪裁的有x张白板纸.(1)按B种方法剪裁的有______张白板纸;(用含x的代数式表示)(2)将50张白板纸裁剪完后,可以制作该种型号的长方体纸箱多少个?【答案】(1)()50x -;(2)40个【解析】(1)解:按A 种方法剪裁的有x 张白板纸,则按B 种方法剪裁的有()50x -张白板纸,故答案为:()50x -;(2)解:由四个侧面和两个底面恰好能做成一个纸箱.\ ()()24250=4450x x x ⨯+-⨯-⎡⎤⎡⎤⎣⎦⎣⎦,整理得: 20600x =, 解得:x =30,(30×4+20×2)÷4=40,∴最多可以制作40个纸箱.【变式训练2】某服装厂要生产同一种型号的服装,已知3m 长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m ,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m ,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)【答案】(1)做上衣用布料180m ,则做裤子用布料120m ,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子【解析】(1)设做上衣用布料m x ,则做裤子用布料()300m x -,由题意得,()3300233x x -=,解得:180x =,则300120x -=可以生产21801203⨯=套衣服;答:用180m 布做上衣,120m 布做裤子才能恰好配套,可以生产120套衣服;(2)∵做一件上衣用32m 布,做一条裤子用1m 布, ∴一套服装用2.5m 布,∵227÷2.5=90...2,∴227m 布可以做90套衣服余2m ,∵本着不浪费的原则,∴余下的2m 布可以做2条裤子,答:布料227m ,最多可以生产90套衣服,余料可以做2条裤子.【变式训练3】某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?【答案】(1)工厂每天能配套组成64套GH型电子产品;(2)至少应招聘40名新工人.【解析】(1)解:设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H型装置,根据题意得:84(80)43x x-=,解得:x=32,∴88326444x⨯==.答:按照这样的生产方式,工厂每天能配套组成64套GH型电子产品.(2)解:设招聘a名新工人加工G型装置仍设x名工人加工G型装置,(80-x)名工人加工H型装置,根据题意,()8448043x a x+-=,整理可得,320310ax-=,另外,注意到()4801200315x-,即x≤20,于是3203≤2010a-,解得:a≥40,答:至少应招聘40名新工人.3. 销售利润问题例.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店老板共获利157元.甲、乙两件服装的成本各为多少元?【解答】解:设甲服装的成本是x元,则乙服装的成本是(500﹣x)元,依题意有0.9×(1+50%)x+0.9×(1+40%)(500﹣x)﹣500=157,解得x=300,500﹣x=200.答:甲服装的成本为300元,乙服装的成本为200元.【变式训练1】“虎年大吉,岁岁平安”,为了喜迎新春,某水果店在春节期间推出水果篮和坚果礼盒,每个水果篮的成本为200元,每盒坚果礼盒的成本为150元,每个水果篮的售价比每盒坚果礼盒的售价多100元,售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润相同.(1)求每个水果篮和每盒坚果礼盒的售价;(2)在年末时,该水果店购进水果篮1250个和坚果礼盒1200盒,进行“新春特惠”促销活动.水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒,每个水果篮在售价的基础上打九折后再参与店内“每满100元减m元”的活动,每盒坚果礼盒直接参与店内“每满100元减m元”的活动.售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20%,求m的值.【答案】(1)每个水果篮的售价为300元,每盒坚果礼盒的售价为200元.(2)m的值为10.【解析】(1)设每盒坚果礼盒的售价为x元,则每个水果篮的售价为(x+100)元,依题意得:2(x-150)=x+100-200,解得:x=200,∴x+100=300.答:每个水果篮的售价为300元,每盒坚果礼盒的售价为200元.(2)∵300×0.9=270(元),∴每个水果篮的活动价为(270-2m)元.∵每盒坚果礼盒的售价为200元,∴每盒坚果礼盒的活动价为(200-2m)元.依题意得:(1250-50)(270-2m)+1200(200-2m)-1250×200-1200×150=(1250×200+1200×150)×20%,解得:m=10.答:m的值为10.【变式训练2】某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为300元.(1)A、B两种产品的销售单价分别是多少元?(2)今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高2a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2%3a.求a的值.【答案】(1)A产品的销售单价为200元,B产品的销售单价为100元;(2)50【解析】(1)解:设B产品的销售单价为x元,则A产品的销售单价为(100)x+元,.依题意得:100300x x ++=, 解得:x =100,∴x +100=200. .答:A 产品的销售单价为200元,B 产品的销售单价为100元(2)解:设去年每个车间生产产品的数量为t 件,依题意得:200(1+a %)t +100(1+2a %)(1-a %)t =300(1+2%3a )t 设%a m =,则原方程可化简为2m 2-m =0,解得:112m =,20m =(不合题意,舍去), ∴a =50.答:a 的值为50.【变式训练3】某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【解答】解:(1)设商场购进甲型节能灯x 只,则购进乙型节能灯(1000﹣x )只,由题意,得25x +45(1000﹣x )=37000,解得:x =400购进乙型节能灯1000﹣x =1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a 折,0.1×60a ﹣45=45×20%,解得a =9,答:乙型节能灯需打9折.【变式训练4】武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为 ,乙种服装每件进价为 元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?【解答】解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为800−500500×100%=60%.∵乙种服装商品每件售价1200元,可盈利50%.∴乙种服装每件进价为1200150%=800(元),故答案为:60%,800;(2)设甲种服装进了x 件,则乙种服装进了(40﹣x )件,由题意得,500x +800(40﹣x )=27500,解得:x =15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y 折之后再参加活动.①3200×y 10−2×500=3200﹣3×500+20.解得:y =8.5.②3200×y 10−500=3200−3×500+20,解得y =8(不合题意,舍去).③3200×y 10=3200−3×500+20,解得y =5.9(不合题意,舍去).答:先打八五折再参加活动.4. 工程问题例.某工程队承包德阿公路绵竹市境内一段长为1755米的道路改造工程,由甲、乙两个施工小队分别从南、北两端同时施工.已知甲队比乙队平均每天多施工3米,经过5天施工后,两个小队共完成施工路段135米.(1)求甲、乙两个小队平均每天各施工多少米?(2)为加快进度,通过改进施工技术,在剩余的工程中,甲队平均每天能比原来多施工1米,乙队平均每天能比原来多施工2米,甲、乙同时按此施工,能够比原来提前多少天完成道路改造任务?【答案】(1)甲施工小队平均每天施工15米,乙施工小队平均每天施工12米.(2)能够比原来提前6天完成道路改造任务.【解析】(1)解:设乙施工小队平均每天施工x 米,则甲施工小队平均每天施工()3x +米.根据题意得:55(3)135x x ++=.解得:12x =.所以315x +=.答:甲施工小队平均每天施工15米,乙施工小队平均每天施工12米.(2)解:改进施工技术后,甲施工小队平均每天施工15116+=米;乙施工小队平均每天施工12214+=米.则改进施工技术后,剩余的工程还需:(1755135)(1614)54-¸+=天;按原施工进度,剩余的工程还需:(1755135)(1512)60-¸+=天.所以少用的天数为:60546-=天.答:能够比原来提前6天完成道路改造任务.【变式训练1】某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m 2墙面.每名一级技工比二级技工一天多粉刷12m 2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m 2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?【答案】(1)每个房间需要粉刷的墙面面积为392m (2)一级技工每人每天挣564元,二级技工每人每天挣451元.【解析】(1)设每个房间需要粉刷的墙面面积为x 2m ,由题意得:83010201235x x -+-=,解得:39x =,∴每个房间需要粉刷的墙面面积为392m ;(2)∵每个房间需要粉刷的墙面面积为392m ,∴一名一级技工一天粉刷的面积为830839309433x -⨯-==2m ,一名二级技工一天粉刷的面积为10201039208255x +⨯+==2m ,∴946564⨯=(元),82 5.5451⨯=(元),∴一级技工每人每天挣564(元),二级技工每人每天挣451(元).【变式训练2】湖北荆宜高速公路是“国家高速公路网规划”中的建设工程,该工程预算国拨总投资为24亿元,分土建、路面、设施三个建设项目,路面投资占土建投资的45,设施投资比土建投资少40%、由于物价的上涨,工程建设实际总投资随之增长,路面投资的增长率是土建投资增长率的2.5倍,设施投资的增长率达到路面投资增长率的2倍,(1)三个项目的预算投资分别是多少亿元?(2)由于合理施工,使公路提前半年通车,每月可通行车辆100万辆,每辆车的平均收益为40元.这样,可将提前半年通车收益的70%用于该工程建设的实际投资,减少了国拨投资,使预算国拨总投资减少的百分率与土建投资的增长率相同,该工程的实际总投资是多少亿元?【答案】(1)土建、路面、设施三个项目的预算投资分别是10亿元,8亿元,6亿元(2)该工程的实际总投资是25.2亿元【解析】(1)解:设土建为x 亿元,则路面为45x 亿元,设施为(1﹣40%)x 亿元,∴x +45x +(1﹣40%)x =24,∴x =10,∴485x =,(1﹣40%)x =6.答:土建、路面、设施三个项目的预算投资分别是10亿元,8亿元,6亿元(2)解:设土建投资增长率为x ,则路面投资的增长率是2.5x ,设施投资的增长率是2×2.5x =5x ,预算国拨总投资减少的百分率为x .国拨总投资:24×(1﹣x ),该工程的实际各项投资之和是10×(1+x )+8×(1+2.5x )+6×(1+5x ),∵70%×40×100×6=16800(万元)=1.68亿元,∴24×(1﹣x )+1.68=10×(1+x )+8×(1+2.5x )+6×(1+5x ),解得:x =0.02=2%24×(1﹣x )+1.68=25.2(亿元)答:该工程的实际总投资是25.2亿元.5. 行程问题例.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为(km)s )与甲行驶的时间为(h)t 之间的关系如图所示.(1)以下是点M 、点N 、点P 所代表的实际意义,请将M 、N 、P 填入对应的横线上.①甲到达终点_________.②甲乙两人相遇_________.③乙到达终点_________.(2)AB两地之间的路程为_________千米;(3)求甲、乙各自的速度;(4)如果乙到达A地后立刻原路原速返回到B地,在甲到达B地的过程中,甲出发_________小时,甲乙相距100千米.【答案】(1)①P;②M;③N;(2)240;(3)甲的速度40千米/小时,乙的速度80千米/小时(4)76或3.5或176【解析】(1)解:由图象可得,出发2小时,甲乙在途中相遇;出发3小时乙到达A地;6小时甲到达B地;故答案为:①P;②M;③N;(2)解:由图象可得,AB两地之间路程为240千米;故答案为:240;(3)解:甲的速度为:240÷6=40千米/小时,乙的速度为:240÷2-40=80千米/小时,答:甲的速度40千米/小时,乙的速度80千米/小时;(4)解:令甲出发t小时,甲乙相距100千米,由题意,得相遇前:80t+40t+100=240,解得t=76,相遇后:40t-100=80t-240或80(t-2)+40(t-2)=100,解得t=3.5或t=176,故答案为:76或3.5或176.【变式训练1】为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A 市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是_______km/h ,乙车出发时速度是_______km/h ;(2)求乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km ?请直接写出答案.【答案】(1)100 60;(2)1001200y x =-+;(3)3,6.3,9.1【解析】(1)解:根据图象可得,甲车5h 的路程为500km ,∴甲的速度为:500÷5=100km/h ;乙车5h 的路程为300km ,∴乙的速度为:300÷5=60km/h ;故答案为:100;60;(2)设()0y kx b k =+¹,由图象可得经过点(9,300),(12,0)点,代入得9300120k b k b +=ìí+=î,解得1001200k b =-ìí=î,∴y 与x 的函数解析式为1001200y x =-+;(3)解:设乙出发的时间为t 时,相距120km ,根据图象可得, 当0<t <5时,100t -60t =120,解得:t =3;当5<t <5.5时,根据图象可得不满足条件;当5.5<t <8时,500-100(t -5.5)-300=120,解得:t =6.3;当8<t <9时,100(t -8)=120,解得:t =9.2,不符合题意,舍去;当9<t <12时,100×(9-8)+100(t -9)+100(t -9)=120,解得:t =9.1;综上可得:乙车出发3h 、6.3h 与9.1h 时,两车之间的距离为120km .【变式训练2】随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择,某市有出租车、滴滴快车等网约车,收费标准见下图.出租车起步价:14元里程费:超过3公里的部分2.4元/公里(不足1公里按1公里计)滴滴快车起步价:12元里程费:2.5元/公里时长费:0.4元/分钟(滴滴快车行驶的平均速度为40公里/时)(1)若乘坐这两种网约车的里程数都是9公里,则发现乘坐出租车最节省钱,求乘坐出租车费用为多少元?(2)若从甲地到乙地,乘坐滴滴快车比出租车多用15元,求甲、乙两地间的里程数.【答案】(1)出租车的费用为28.8元.(2)甲地到乙地的路程为14公里.【解析】(1)解:()14+2.49328.8´-=(元), 答:出租车的费用为28.8元.(2)解:设甲地到乙地的路程为x 公里,当3x £时,12+2.5600.41415,40x x +´´=+ 解得:1703,31x => 所以不符合题意舍去,当3x >时,则()14+2.431512 2.5600.4,40x x x -+=++´´ 解得:14,x =答:甲地到乙地的路程为14公里.【变式训练3】A 、B 两地相距480km ,C 地在A 、B 两地之间.一辆轿车以100km /h 的速度从A 地出发匀速行驶,前往B 地.同时,一辆货车以80km /h 的速度从B 地岀发,匀速行驶,前往A 地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km 时,求轿车行驶的时间;(3)若轿车到达B 地后,立刻以120km /h 的速度原路返回,再次经过C 地,两次经过C 地的时间间隔为2.2h ,求C 地距离A 地路程.【解答】解:(1)设两车相遇时,轿车行驶的时间为t 小时,由题意可得100t +80t =480。

专题07分式方程-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

专题07分式方程-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题07分式方程一.选择题(共7小题)1.(2022•德阳)如果关于x 的方程2x+m x−1=1的解是正数,那么m 的取值范围是( )A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围. 【解析】两边同时乘(x ﹣1)得, 2x +m =x ﹣1, 解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1, ∴{x >0x ≠1,即{−1−m >0−1−m ≠1, 解得:{m <−1m ≠−2,∴m 的取值范围为:m <﹣1且m ≠﹣2. 故答案为:D .【点评】本题主要考查了分式方程的解,一元一次不等式,正确求得分式方程的解并考虑产生增根的情形是解题的关键.2.(2022•遂宁)若关于x 的方程2x =m 2x+1无解,则m 的值为( )A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或x =−12=−24−m ,求出m 的值即可. 【解析】2x =m 2x+1,2(2x +1)=mx , 4x +2=mx , (4﹣m )x =﹣2, ∵方程无解,∴4﹣m =0或x =−12=−24−m ,∴m =4或m =0, 故选:D .【点评】本题考查分式方程的解法,熟练掌握分式方程的解法,分式方程无解的条件是解题的关键. 3.(2022•广元)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N 95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N 95口罩花费9600元.已知一次性医用外科口罩的单价比N 95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是( ) A .9600x−10=1600x B .9600x+10=1600xC .9600x=1600x−10D .9600x=1600x+10【分析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x 的分式方程.【解析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元, 依题意得:9600x+10=1600x,故选:B .【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 4.(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( ) A .400x−50=300x B .300x−50=400xC .400x+50=300xD .300x+50=400x【分析】根据实际植树400棵所需时间与原计划植树300棵所需时间相同,可以列出相应的分式方程,本题得以解决. 【解析】由题意可得,400x=300x−50,故选:B .【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.5.(2022•丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x=4000x−30,则方程中x 表示( )A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量【分析】设篮球的数量为x 个,足球的数量是2x 个,列出分式方程解答即可. 【解析】设篮球的数量为x 个,足球的数量是2x 个. 根据题意可得:50002x=4000x−30,故选:D .【点评】此题主要考查了由实际问题抽象出分式方程,得到相应的关系式是解决本题的关键.6.(2022•重庆)关于x 的分式方程3x−ax−3+x+13−x =1的解为正数,且关于y 的不等式组{y +9≤2(y +2)2y−a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出{y ≥5y >a+32,结合题意得出a ≤7,进而得出2<a ≤7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案. 【解析】解分式方程得:x =a ﹣2, ∵x >0且x ≠3, ∴a ﹣2>0且a ﹣2≠3, ∴a >2且a ≠5,解不等式组得:{y ≥5y >a+32,∵不等式组的解集为y ≥5, ∴a+32<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13, 故选:A .【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.7.(2022•重庆)若关于x 的一元一次不等式组{x −1≥4x−13,5x −1<a的解集为x ≤﹣2,且关于y 的分式方程y−1y+1=a y+1−2的解是负整数,则所有满足条件的整数a 的值之和是( )A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出{x ≤−2x <a+15,结合题意得出a >﹣11,解分式方程得出y =a−13,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解析】解不等式组{x −1≥4x−135x −1<a 得:{x ≤−2x <a+15,∵不等式组{x −1≥4x−135x −1<a 的解集为x ≤﹣2,∴a+15>−2,∴a >﹣11, 解分式方程y−1y+1=ay+1−2得:y =a−13, ∵y 是负整数且y ≠﹣1, ∴a−13是负整数且a−13≠−1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13, 故选:D .【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.二.填空题(共6小题)8.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =1a +1b .若(x +1)⊗x =2x+1x,则x 的值为 −12 .【分析】根据新定义列出分式方程,解方程即可得出答案. 【解析】根据题意得:1x+1+1x=2x+1x,化为整式方程得:x +x +1=(2x +1)(x +1), 解得:x =−12,检验:当x =−12时,x (x +1)≠0, ∴原方程的解为:x =−12. 故答案为:−12.【点评】本题考查了解分式方程,新定义,根据新定义列出分式方程是解题的关键.9.(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为160x =140x−10.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解析】设甲每小时采样x 人,则乙每小时采样(x ﹣10)人,根据题意得:160x=140x−10.故答案为:160x=140x−10.【点评】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2022•金华)若分式2x−3的值为2,则x 的值是 4 .【分析】依据题意列出分式方程,解分式方程即可求得结论. 【解析】由题意得:2x−3=2,去分母得:2=2(x ﹣3), 去括号得:2x ﹣6=2, 移项,合并同类项得:2x =8, ∴x =4.经检验,x =4是原方程的根, ∴x =4. 故答案为:4.【点评】本题主要考查了解分式方程,解分式方程需要验根,这是容易丢掉的步骤.11.(2022•泸州)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是 a <﹣1 .【分析】先解分式方程,再将x 代入不等式中即可求解. 【解析】x−3x−2+1=32−x ,x−3x−2+x−2x−2=−3x−2,2x−2x−2=0,解得:x =1, ∵x ﹣2≠0,2﹣x ≠0, ∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得: 2﹣a ﹣3>0, 解得:a <﹣1,∴实数a 的取值范围是a <﹣1, 故答案为:a <﹣1.【点评】本题考查分式方程的解,不等式的解集,解题的关键是正确求出分式方程的解,要注意分母不能为0.12.(2022•成都)分式方程3−x x−4+14−x=1的解为 x =3 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解析】去分母得:3﹣x ﹣1=x ﹣4, 解得:x =3,经检验x =3是分式方程的解, 故答案为:x =3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 13.(2022•邵阳)分式方程5x−2−3x=0的解是 x =﹣3 .【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 【解析】去分母,得:5x ﹣3(x ﹣2)=0, 整理,得:2x +6=0,解得:x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.【点评】本题主要考查解分式方程能力,熟练掌握解分式方程的步骤是关键.三.解答题(共10小题)14.(2022•苏州)解方程:xx+1+3x=1.【分析】先两边同乘以x(x+1)化为整式方程:x2+3(x+1)=x(x+1),解整式方程得x=−32,再检验即可得答案.【解析】方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−3 2,经检验,x=−32是原方程的解,∴原方程的解为x=−3 2.【点评】本题考查解分式方程,解题的关键是掌握解分式方程的一般步骤,特别注意解分式方程必须检验.15.(2022•眉山)解方程:1x−1=32x+1.【分析】按照解分式方程的步骤,进行计算即可解答.【解析】1x−1=32x+1,方程两边同乘(x﹣1)(2x+1)得:2x+1=3(x﹣1),解这个整式方程得:x=4,检验:当x=4时,(x﹣1)(2x+1)≠0,∴x=4是原方程的解.【点评】本题考查了解分式方程,熟记解分式方程的步骤是解题的关键,需要特别注意解分式方程需要检验.16.(2022•嘉兴)(1)计算:(1−√83)0−√4.(2)解方程:x−32x−1=1.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解; (2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根. 【解析】(1)原式=1﹣2=﹣1; (2)去分母得x ﹣3=2x ﹣1, ∴﹣x =3﹣1, ∴x =﹣2,经检验x =﹣2是分式方程的解, ∴原方程的解为:x =﹣2.【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母. 17.(2022•宿迁)解方程:2x x−2=1+1x−2.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【解析】2x x−2=1+1x−2, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点评】此题考查了解分式方程,用到的知识点是解分式方程的步骤:去分母化整式方程,解整式方程,最后要把整式方程的解代入最简公分母进行检验.18.(2022•常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时.某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【分析】设平常的速度是x 千米/小时,根据“到达奶奶家时共用了5小时”列分式方程,求解即可. 【解析】设平常的速度是x 千米/小时, 根据题意,得(1−12)⋅4x x−20+2=5,解得x =60,经检验,x =60是原方程的根, 4×60=240(千米),答:小强家到他奶奶家的距离是240千米.【点评】本题考查了分式方程的应用,理解题意并根据题意建立等量关系是解题的关键.19.(2022•乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办.为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆.已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【分析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时,根据时间=路程÷速度结合骑摩托车的维修工人比乘抢修车的工人多用10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时, 依题意,得:20x−201.5x=1060,解得:x =10,经检验,x =10是原方程的解,且符合题意. 答:摩托车的速度为10千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名? 【分析】设每个小组有学生x 名,由题意得:3603x−3604x=3,解分式方程并检验后即可得出答案.【解析】设每个小组有学生x 名, 由题意得:3603x−3604x=3,解得:x =10, 当x =10时,12x ≠0, ∴x =10是分式方程的根, 答:每个小组有学生10名.【点评】本题考查了分式方程的应用,根据题意列出分式方程是解决问题的关键.21.(2022•达州)某商场进货员预测一种应季T 恤衫能畅销市场,就用4000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T 恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?【分析】(1)设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T 恤衫的标价至少是y 元,根据题意列出不等式解答即可.【解答】(1)解:设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据题意可得: 2×4000x=8800x+4, 解得:x =40,经检验x =40是方程的解, x +4=40+4=44,答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元; (2)解:400040+880044=300(件),设每件T 恤衫的标价至少是y 元,根据题意可得:(300﹣40)y +40×0.7y ≥(4000+8800)×(1+80%), 解得:y ≥80,答:每件T 恤衫的标价至少是80元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 22.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,则原计划每天施工(x ﹣20)米, 由题意可得:5(x ﹣20)+2x =600,解得x =100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m 米,则技术更新后每天修建水渠m (1+20%)=1.2m 米, 由题意可得:360m +900−3601.2m =900100,解得m =90,经检验,m =90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.23.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【分析】根据题意可知:张老师骑车用的时间﹣汽车用的时间=2,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】设张老师骑车的速度为x 千米/小时,则汽车的速度为3x 千米/小时,由题意可得:45x −2=453x, 解得x =15,经检验,x =15是原分式方程的解,答:张老师骑车的速度是15千米/小时.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程.。

专题07二元一次方程及方程组(基础巩固练习) 解析版

专题07二元一次方程及方程组(基础巩固练习) 解析版

2021年中考数学专题07 二元一次方程及方程组(基础巩固练习,共40个小题)【答案】B【解析】把各选项中的x、y值代入原方程,判断左右两边是否相等即可.解:把A选项代入原方程,左边=右边,此项不符合题意;把B选项代入原方程,左边≠右边,此项符合题意;把C选项代入原方程,左边=右边,此项不符合题意;把D选项代入原方程,左边=右边,此项不符合题意;故答案为:B.2.下列方程组中,是二元一次方程组的是( )A.3235x yx y-=⎧⎨+=⎩B.2024x yx y k++=⎧⎨-=⎩C.3010x yxy-+=⎧⎨+=⎩D.2135x yxy+=⎧⎪⎨+=⎪⎩【答案】A【解析】解:根据二元一次方程组的定义逐项判断,是二元一次方程组的是3235x yx y-=⎧⎨+=⎩,故答案为:A.3.已知21xy=⎧⎨=⎩是二元一次方程组71ax byax by+=⎧⎨-=⎩的解,则a-b的值为( )A.-1 B.1 C.2 D.3 【答案】A.【解析】把21xy=⎧⎨=⎩代入71ax byax by+=⎧⎨-=⎩中得到关于a、b的方程组,进而求解即可.解:把21xy=⎧⎨=⎩代入71ax byax by+=⎧⎨-=⎩中,得:2721a ba b+=⎧⎨-=⎩,解得:23ab=⎧⎨=⎩,∴a-b=-1,故答案为:A.4.方程组224x yx y-=⎧⎨+=⎩的解是( )A.12xy=⎧⎨=⎩B.31xy=⎧⎨=⎩C.2xy=⎧⎨=-⎩D.2xy=⎧⎨=⎩【答案】D【分析】可解此方程组,也可把四个选项依次代入原方程组验证.5.(2018•北京市)方程组33814x yx y-=⎧⎨-=⎩的解为( )A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩【答案】D【解答】解:33814x yx y-=⎧⎨-=⎩①②,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为21xy=⎧⎨=-⎩.故选:D.6.(2019•天津市)方程组3276211x yx y+=⎧⎨-=⎩的解是( )A.15xy=-⎧⎨=⎩B.12xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩【答案】D【解答】解:3276211x yx y+=⎧⎨-=⎩①②,①+②得,x=2,把x=2代入①得,6+2y=7,解得12y=,故原方程组的解为:212xy=⎧⎪⎨=⎪⎩.故选:D .7.(2019•广西贺州)已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( )A .2-B .2C .4-D .4【答案】C【解析】两式相减,得32x y +=-,2(3)4x y ∴+=-,即264x y +=-,故选:C . 8.(2019•重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A【解析】设甲的钱数为x ,人数为y ,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x ,y 的二元一次方程组。

专题07 一元一次方程篇(解析版)

专题07 一元一次方程篇(解析版)

专题07 一元一次方程考点一:一元一次方程之概念1. 方程的概念:含有未知数的等式叫做方程。

2. 一元一次方程的概念:只含有一个未知数,且未知数次数是1的整式方程是一元一次方程。

一般形式为:()00≠=+abax。

必须同时满足三个条件:①只含有一个未知数。

②未知数的次数是1。

③是整式方程。

3. 方程的解与一元一次方程的解:是方程(一元一次方程)左右两边成立的未知数的值叫做方程(一元一次方程)的解。

1.(2022•贵阳)“方程””.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是 x+2y=32 .【分析】认真审题,读懂图中的意思,仿照图写出答案.【解答】解:根据题知:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,一个竖线表示一个,一条横线表示一十,所以该图表示的方程是:x+2y=32.考点二:一元一次方程之等式的性质1. 等式的性质:性质1:等式的左右两边同时加上(减去)同一个数(或式子),等式仍然成立。

即:cb c a b a ±=±=,则性质2:等式的两边同时乘上(或除以)同一个(不为0的)数,等式仍然成立。

即:()()0≠÷=÷==c c b c a bc ac b a ,则。

2.(2022•青海)根据等式的性质,下列各式变形正确的是( )A .若c b c a =则a =bB .若ac =b c ,则a =bC .若a 2=b 2,则a =bD .若﹣31x =6,则x =﹣2【分析】根据等式的性质,进行计算逐一判断即可解答.【解答】解:A 、若=,则a =b ,故A 符合题意;B 、若ac =bc (c ≠0),则a =b ,故B 不符合题意;C 、若a 2=b 2,则a =±b ,故C 不符合题意;D 、﹣x =6,则x =﹣18,故D 不符合题意;故选:A .3.(2022•滨州)在物理学中,导体中的电流I 跟导体两端的电压U 、导体的电阻R 之间有以下关系:I =RU ,去分母得IR =U ,那么其变形的依据是( )A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质2【分析】根据等式的性质,对原式进行分析即可.【解答】解:将等式I =,去分母得IR =U ,实质上是在等式的两边同时乘R ,用到的是等式的基本性质2.故选:B.考点三:一元一次方程之解一元一次方程1. 解一元一次方程的步骤:①去分母——等式左右两边同时乘分母的最小公倍数。

专题07二元一次方程(组)(含解析).docx

专题07二元一次方程(组)(含解析).docx

专题07二元一次方程(组)一、解读考点知识点复习冃标二元一次方程的有关概念1.二元一次方程的概念会识别二元一次方程。

2.二元一次方程的解会识别一组数是不是二元一次方程的解。

3.二元一次方程组理解二元一次方程纟R的概念并会判断。

二元一次方程的解法带入消元加减消元会选择适当的方法解二元一次方程组。

二元一次方程的应用由实际问题抽彖出一元一次方程要列方程,首先耍根据题意找出存在的等量关系.最后要检验结果是不是合理.二、考点归纳归纳1:二元一次方程的有关概念基础知识归纳:1、二元一次方程:含冇两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程.2、二元一次方程的解:使二元一次方程左右两边的值相等的一对耒知数的值,叫做二元一次方程的一个解.3、二元一次方程纟山两个(或两个以上)二元一次方程合在一起,就纽成了一个二元一次方程组.4、二元一次方程组的解使二元一次方程纟R的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程纟R的解.基本方法归纳:判断一个方程是不是二元一次方程关键看未知数的个数和未知项的最高次数;判断方程组的解只需带入方程组组看是不是成立即可.注意问题归纳:判断一个方程是不是二元一次方程特别注意是:未知项的最髙次数而不是未知数的次数. 【例1】方程组卩+yi的解是()I 2x - y = 5【答案】D. 【解析】试题分析:根据方程组的解的意义,将各选项分别代入方程组验算作出选择:丘:不满足2x-y = 5,故它不是方程组的解;3. {X = ;2不满^2x-y = 5,故它不是方程组的解;iy = 3c. 'X = ;不满足X-y = 1,故它不是方程组的解;.V =1|\ = ?D. <、满足x-y=l 和2x-y = 5>故它是方程组的解•i v = —1故选D ・ 考点:方程组的解.归纳2:二元一次方程的解法基础知识归纳:解一元二次方程组的方法(1)代入法(2)加减法基本方法归纳:解一元二次方程组的方法关键是消元。

2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)

2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)

专题07 一元二次方程一.选择题1. 关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A. 13 B. 23 C. 1 D. 13- 【答案】D【解析】【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,设另一根为2x ,则223x x +=, 213x ∴=-, 213xx ∴=-, 故选:D【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2. 方程2430x x ++=的两个根为( )A. 121,3x x ==B. 121,3x x =-=C. 121,3x x ==-D. 121,3x x =-=-【答案】D【解析】【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3. 下列一元二次方程有实数解的是( )A. 2x 2﹣x +1=0B. x 2﹣2x +2=0C. x 2+3x ﹣2=0D. x 2+2=0 【答案】C【解析】【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A. ()213x +=B. ()216x +=C. ()213x -=D. ()216x -= 【答案】C【解析】【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5. 若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A. 36B. 36-C. 9D. 9- 【答案】C【解析】【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∵26410c ∆=-⨯⨯=解得9c =故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根. 6. 已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A. 2022-B. 0C. 2022D. 4044 【答案】B【解析】【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =【答案】B【解析】【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9. 一元二次方程22560x x -+=的根的情况为( )A. 无实数根B. 有两个不等的实数根C. 有两个相等的实数根D. 不能判定【答案】A【解析】【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∴方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10. 已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A. 3-B. 1-C. 3-或3D. 1-或3【答案】A【解析】【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可. 【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤, ∴3m =-,故选:A 【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去). 11. 小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A. ()22001242x +=B. ()22001242x -= C.()20012242x += D. ()20012242x -=【答案】A【解析】【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.12. 关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( )A. 4k >B. 4k <C. 4k <-D. 1k > 【答案】A【解析】【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∴1640k ∆=-<解得:4k >故选:A∵【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13. 临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( )A. 8(12)11.52x +=B. 28(1)11.52x ⨯+=C. 28(1)11.52x +=D. ()28111.52x += 【答案】C【解析】 【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14. 若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( ) A. 14k >- B. 14k ≥- C. 14k <- D. 14k ≤- 【答案】B【解析】 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14, 故选:B .【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键. 15. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A. ()316210x x -=B. ()316210x -=C. ()316210x x -=D. 36210x = 【答案】A【解析】【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16. 一元二次方程210x x +-=的根的情况是( )A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 只有一个实数根【答案】A【解析】【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根, 故选:A.【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键. 18. 若关于x 的一元二次方程2210ax x 有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >- 【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根, ∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.19. 关于x 的方程2320x kx --=实数根的情况,下列判断正确的是( )A. 有两个相等实数根B. 有两个不相等实数根C. 没有实数根D. 有一个实数根 【答案】B【解析】【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x 的方程2320x kx --=,∵()22341(2)980k k ∆=--⨯⨯-=+>,∴此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20. 中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A. 2B. 32C. 12 【答案】A【解析】【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1, ∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0, ∴a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21. 请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一) 【解析】【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a , ∵要使原方程有两个不同的实数根, ∴()2=240a ∆-->, ∴1a <,∴满足题意的常数可以为0, 故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.22. 方程2x 2+1=3x 的解为________. 【答案】1211,2x x == 【解析】【分析】先移项,再利用因式分解法解答,即可求解. 【详解】解:移项得:22310x x -+=, ∵()()2110x x --=, ∵210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23. 若一元二次方程2240x x m -+=有两个相等的实数根,则m =________. 【答案】2 【解析】【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m =240b ac =-=, ∴16420m -⨯⨯=, 解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键. 24. 若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =-据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得66322x ±===±∴==,故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25. 已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______. 【答案】1 【解析】【分析】由一元二次方程根的判别式列方程可得答案. 【详解】解:一元二次方程有两个相等的实数根, 可得判别式0=, ∴440k -=, 解得:1k =. 故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26. 一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1 【解析】【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+=243101x x -++=+2441x x -+=()221x -=∴1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____. 【答案】3 【解析】【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可. 【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∴x 1•x 2=31=3.故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x baa=,.28. 若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____. 【答案】1k ≤ 【解析】【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k 再解不等式可得答案.【详解】解: 关于x 的一元二次方程220x x k -+=有实数根, ∴()22410k ∆=--⨯⨯≥, 即440,k解得:1k ≤ . 故答案为:1k ≤.【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根. 29. 已知实数12,x x 是方程210x x +-=的两根,则12x x =______. 【答案】1- 【解析】【分析】由一元二次方程根与系数的关系直接可得答案. 【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12cx x a=”是解本题的关键.30. 某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示). 【答案】30% 【解析】【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户, 依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去), ∴x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31. 设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10 【解析】【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案. 【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根, ∴122x x +=-,123x x =-,∴2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32. 如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5 【解析】【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm , ∵EG 过圆心,且垂直于AD , ∵G 为AD 的中点, 则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+, 即222(12)6r r =-+, 解方程得r =7.5, 则球的半径为7.5cm .【点睛】本题考查了主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键.33. 已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______. 【答案】1m < 【解析】【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可.【详解】解:根据题意得22410m ∆=-⨯⨯>, 解得1m <,所以实数m 的取值范围是1m <. 故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222a b c +=③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c +-是解题的关键.35. 已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________. 【答案】6 【解析】【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案. 【详解】∵a -b 2=4 ∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥ ∴4a ≥当a=4时,()213a --取得最小值为6 ∴222a a --的最小值为6 ∵22231422a a a b a --=-+- ∴22314a b a -+-的最小值6 故答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.三、解答题36. 解方程:x 2-2x -3=0 【答案】121,3x x =-= 【解析】【分析】利用因式分解法解一元二次方程即可得. 【详解】解:2230x x --=,(1)(3)0x x +-=,10x +=或30x -=, 1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键. 37. 已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤; (2)k =3 【解析】【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可; (2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【小问1详解】解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0, 解得k 174≤∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38. 建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20% (2)18个【解析】【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【小问1详解】解:设该市改造老旧小区投入资金的年平均增长率为x ,根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-,经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%.设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+, 解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区.答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.39. 阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n m m n +的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值. 【答案】(1)32;12- (2)132-(3或【解析】【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可. 【小问1详解】解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. 【小问2详解】∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- 【小问3详解】∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴2t s -=或2t s -=-,当2t s -=时,11212t s s t st --===-当t s -=时,11212t s s t st --===- 综上分析可知,11s t-或. 【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键. 40. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【解析】【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可; (2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【小问1详解】解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨, 由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=,答:4月份再生纸的产量为500吨;【小问2详解】 解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭, 解得:%20%m =或% 3.2m =-(不合题意,舍去)∴20m =,∴m 的值20;【小问3详解】解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41. 已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值.【答案】(1)34k >(2)2【解析】【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【小问1详解】 解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根,∴此方程根的判别式()()2221410k k ∆=+-+>, 解得34k >. 【小问2详解】解:由题意得:21215x x k =+=,解得2k =-或2k =,由(1)已得:34k >, 则k 的值为2.【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42. 已知关于x 的一元二次方程22230x x m --=.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.【答案】(1)见解析 (2)1m =±【解析】【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【小问1详解】()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; 【小问2详解】方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系.43. 阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。

专题07 直线与圆的位置关系(知识梳理+专题过关)(解析版)

专题07 直线与圆的位置关系(知识梳理+专题过关)(解析版)

专题07直线与圆的位置关系【知识梳理】1、直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2、直线与圆的位置关系的判定:(1)代数法:判断直线l 与圆C 的方程组成的方程组是否有解.如果有解,直线l 与圆C 有公共点.有两组实数解时,直线l 与圆C 相交;有一组实数解时,直线l 与圆C 相切;无实数解时,直线l 与圆C 相离.(2)几何法:由圆C 的圆心到直线l 的距离d 与圆的半径r 的关系判断:当d r <时,直线l 与圆C 相交;当d r =时,直线l 与圆C 相切;当d r >时,直线l 与圆C 相离.3、圆的切线方程的求法(1)点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1OM l k k ⋅=-.法二:圆心O 到直线l 的距离等于半径r .(2)点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.4、求直线被圆截得的弦长的方法(1)应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.(2)利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.(3)利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12||l x x =-.【专题过关】【考点目录】考点1:直线与圆的位置关系考点2:直线与圆相交的性质——韦达定理及应用考点3:切线问题考点4:切点弦问题考点5:弦长问题考点6:面积问题考点7:直线与圆中的定点定值问题【典型例题】考点1:直线与圆的位置关系1.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B2.(2020·四川·泸州老窖天府中学高二期中(理))已知点(,)P a b 在圆221x y +=上,则直线10ax by +-=与圆的位置关系是()A .相交B .相切C .相离D .无法判断【答案】B【解析】由题意得221a b +=,又1d r ===,即直线与圆相切故选:B3.(2021·黑龙江·牡丹江一中高二期中)直线:(1)(1)20()l a x a y a a R ++-+=∈与圆222270C x y x y +-+-=:的位置关系是()A .相切B .相交C .相离D .相交或相切【答案】B【解析】圆222270x y x y +-+-=,即22(1)(1)9x y -++=,表示以(1,1)-为圆心、半径等于3的圆.圆心到直线的距离d =再根据2222248474799221a a a a d a a ++-+-=-=++,而27470a a -+=的判别式∆161961800=-=-<,故有29d >,即3d <,故直线和圆相交,故选:B .4.(2022·上海市控江中学高二期中)若直线:3(1)l y k x -=-与曲线:C y =恰有两个不同公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】直线:3(1)l y k x -=-过定点(1,3),曲线:C y 为以(0,0)为圆心,1为半径,且位于y 轴上半部分的半圆,如图所示当直线l 过点(1,0)-时,直线l 与曲线有两个不同的交点,此时03k k =-+-,解得32k =.当直线l 和曲线C 相切时,直线和半圆有一个交点,圆心(0,0)到直线:3(1)l y k x -=-的距离1d ==,解得43k =结合图像可知,当4332k <≤时,直线l 和曲线C 恰有两个交点故选:B5.(2021·浙江台州·高二期中)直线0x m +=与圆221x y +=有两个不同的交点,则实数m 的取值范围是()A .22m -≤≤B .22m -<<C .2m <-或2m >D .2m ≤-或2m ≥【答案】B【解析】因为直线0x m +=与圆221x y +=有两个不同的交点所以圆心到直线的距离小于圆的半径圆心为()0,0,半径1r =1<,整理得:2m <解得:22m -<<故选:B .6.(多选题)(2022·广东·汕头市潮南区陈店实验学校高二期中)已知直线:0l x y +=与圆22:(1)(1)4C x y -++=,则()A .直线l 与圆C 相离B .直线l 与圆C 相交C .圆C 上到直线l 的距离为1的点共有2个D .圆C 上到直线l 的距离为1的点共有3个【答案】BD【解析】由圆22:(1)(1)4C x y -++=,可知其圆心坐标为(1,1)-,半径为2,圆心(1,1)-到直线:0l x y +=的距离1d ==,所以可知选项B ,D 正确,选项A ,C 错误.故选:BD7.(2021·四川眉山·高二期中)圆222440x y x y +-+-=与直线2140()tx y t t R ---=∈的位置关系为__________.【答案】相交【解析】由2140()tx y t t R ---=∈得(24)10()x t y t R ---=∈,令240,10,2, 1.x y x y -=--=∴==-所以直线过定点(2,1)P -.把(2,1)P -的坐标代入圆的方程的左边得到414440+---<,所以点(2,1)P -在圆内,所以直线和圆相交.故答案为:相交8.(2021·辽宁实验中学高二期中)已知圆22:4C x y +=上至少存在两点......到直线0x y b +-=的距离为1,则实数b 的取值范围是___________.【答案】(-【解析】根据题意得圆C 的圆心为()0,0,半径为2r =,因为圆22:4C x y +=上至少存在两点......到直线0x y b +-=的距离为1,1r <+3<,解得b -<<所以实数b 的取值范围是(-故答案为:(-9.(2022·全国·高二课时练习)已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是______.【答案】()13,13-【解析】由圆的方程知其圆心为()0,0,半径2r =,设圆心到直线1250x y c -+=的距离为d ,则13c d =;圆上有且仅有四个点到直线1250x y c -+=的距离为1,则1cd =<,解得:1313c -<<,所以实数c 的取值范围是()13,13-.故答案为:()13,13-.考点2:直线与圆相交的性质——韦达定理及应用10.(2021·安徽·马鞍山二中高二期中)已知一个动点P 在圆220432x y y -+=+上移动,它与定点(6,0)Q 所连线段的中点为M .(1)求点M 的轨迹方程;(2)是否存在过定点(0,3)-的直线l 与点M 的轨迹方程交于不同的两点()11,A x y ,()22,B x y ,且满足12212x x x x +=,若存在,求直线l 的方程;若不存在,说明理由.【解析】(1)设(,)M x y ,因M 是线段PQ 的中点,而点(6,0)Q ,则有点(26,2)P x y -,因P 在圆:22(2)36x y ++=上,于是得:22(26)(22)36x y -++=,化简得:22(3)(1)9x y -++=,所以点M 的轨迹方程是:22(3)(1)9x y -++=.(2)假定存在符合条件的直线l ,当l 斜率不存在时,直线:0l x =与圆M 相切,不符合题意,当直线l 斜率存在时,设直线l 方程为:3y kx =-,由223(3)(1)9y kx x y =-⎧⎨-++=⎩消去y 并整理得:22(1(64))40k x k x +-++=,则()22(64)1610k k ∆=+-+>,解得512k >-,122641kx x k ++=+,12241x x k =+,由2121212212()4x x x x x x x x +=⇔+=,得2226416()11k k k +=++,解得512k =-,与512k >-矛盾,所以不存在过定点(0,3)-的直线l 与点M 的轨迹方程交于不同的两点()11,A x y ,()22,B x y ,且满足12212x x x x +=.11.(2021·云南大理·高二期中)已知圆C 的圆心C 在直线40x y +-=上,且圆C 经过()2,0M ,()0,2N 两点.(1)求圆C 的方程;(2)已知点()0,P m ,过原点的直线l 与圆C 交于A ,B 两点,且PA PB ⊥.若13m <<,求直线l 的斜率k 的取值范围.【解析】(1)设(),C a b ,则222240(2)(2)a b a b a b +-=⎧⎨-+=+-⎩,解得2a =,2b =.从而圆C 的半径2r ==,故圆C 的方程为22(2)(2)4x y -+-=(或224440x y x y +--+=).(2)设直线l :y kx =,()11,A x y ,()22,B x y .联立224440y kx x y x y =⎧⎨+--+=⎩,整理得()2214(1)40k x k x +-++=,则1224(1)1k x x k ++=+,12241x x k =+.因为A ,B 两点在直线l 上,所以11y kx =,22y kx =,所以212241ky y k =+,1224(1)1k k y y k ++=+.因为PA PB ⊥,所以1PA PB k k ⋅=-,所以12121y m y mx x --⋅=-,即()21212120x x y y m y y m +-++=,则22222444(1)0111k mk k m k k k ++-+=+++,即24(1)41k k m k m+=++.因为()1,3m ∈,所以[)44,5m m+∈,所以24(1)451k k k +≤<+,解得1k ³.12.(2021·浙江省象山县第二中学高二期中)已知圆G 过点()1,3M -,()6,4N 且圆心G 在x 轴.(1)求圆G 的标准方程;(2)圆G 与x 轴的负半轴的交点为A ,过点A 作两条直线分别交圆于B ,C 两点,且5AB AC k k ⋅=-,求证:直线BC 恒过定点.【解析】(1)由题意设圆心为(,0)G a=3a =,5r ==,所以圆G 方程为22(3)25x y -+=;(2)在圆方程中令0y =得2x =-或8x =,所以(2,0)A -,BC 斜率存在时,设BC 方程为y kx m =+,设1122(,),(,)B x y C x y ,由()22x 325y kx m y =+⎧⎪⎨-+=⎪⎩得222(1)2(3)160k x km x m ++-+-=,2224(3)4(1)(16)0km k m ∆=--+->,即22166250k m lm --+>(*),1222(3)1km x x k -+=-+,2122161m x x k -=+,12121212()()22(2)(2)AB ACy y kx m kx m k k x x x x ++=⨯=++++2212121212()52()4k x x km x x m x x x x +++==-+++,22222222(16)2(3)5(16)20(3)201111k m km km m km m k k k k ------+=+-++++,化简得223720m km k -+=,(2)(3)0m k m k --=,所以2m k =或3k m =,都满足(*)式.2m k =时,方程为2y kx k =+,过定点(2,0)-,舍去,3k m =时,方程为3y mx m =+,过定点1(,0)3-,BC 斜率不存在时,1111(,),(,)B x y C x y -,21152AB ACy k k x ⎛⎫=-=- ⎪+⎝⎭,22115(2)y x =+,又2211(3)25x y -+=,12x ≠-,解得113x =-,因此BC 也过点1(,0)3-.综上,直线过定点1(,0)3-.13.(2021·广东外语外贸大学实验中学高二期中)已知过点(0,2)A 且斜率为k 的直线l 与圆22:(2)(3)1C x y -+-=交于M ,N 两点.(1)求k 的取值范围;(2)若12OM ON ⋅=,其中O 为坐标原点,求||MN .【解析】(1)圆22:(2)(3)1C x y -+-=,圆心(2,3),半径1r =设直线l 的方程为2y kx =+,即20kx y -+=因为直线l 与圆C 1<,解得403k <<.所以k 的取值范围为40,3⎛⎫ ⎪⎝⎭.(2)设()11,M x y ,()22,N x y .联立()()222231y kx x y =+⎧⎪⎨-+-=⎪⎩,整理得()()2212440k x k x +-++=,所以122241k x x k ++=+,12241x x k =+,所以()()()21212121224212481k k OM ON x x y y k x x k x x k +⋅=+=++++=++uuu r uuu r .由题设得()2428121k k k ++=+,解得12k =,所以直线l 的方程为122y x =+,所以圆心(2,3)C 在直线l 上,所以2MN =.14.(2021·广东·广州市第七十五中学高二期中)已知圆C 经过两点A (2,2),B (3,3),且圆心C 在直线x -y +1=0上.(1)求圆C 的标准方程;(2)设直线l :y =kx +1与圆C 相交于M ,N 两点,O 为坐标原点,若645OM ON ⋅=,求|MN |的值.【解析】(1)设所求圆C 的标准方程为()222()()0x a y b r r -+->=,由题意,有222222(2)(2)(3)(3)10a b r a b r a b ⎧-+-=⎪-+-=⎨⎪-+=⎩,解得231a b r =⎧⎪=⎨⎪=⎩,所以圆C 的标准方程为22(2)(3)1x y -+-=;(2)设1(M x ,1)y ,2(N x ,2)y ,将1y kx =+代入22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=,所以1224(1)1k x x k ++=+,12271x x k =+,0∆>,所以21212121224(1)64(1)()1851k k OM ON x x y y k x x k x x k+⋅=+=++++=+=+,解得2k =或3k =,检验3k =时,∆<0不合题意,所以2k =,所以12125x x +=,1275x x =,所以||MN 考点3:切线问题15.(2021·安徽·合肥市第六中学高二期中(理))圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上(1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.【解析】(1)因圆心C 在直线:20l x y --=上,则设(,2)C a a -,由||||CA CB =得:,解得0a =,因此,圆心(0,2)C -,半径||5r CA ==,所以圆C 的方程为:22(2)25x y ++=.(2)设过点(5,8)P 的圆C 的切线方程为:(5)(8)0m x n y -+-=,220m n +≠,5=,整理得:2430mn n +=,解得0n =或34m n =-,当0n =时,切线方程为:50x -=,当34m n =-时,切线方程为:34170x y -+=,所以过点(5,8)P 的圆C 的切线方程为50x -=或34170x y -+=.16.(多选题)(2021·湖北·高二期中)设有一组圆()()()22:4k C x k y k k R -+-=∈,下列命题正确的是()A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点()3,0C .存在定直线与圆k C 都相切D .经过点()2,2的圆k C 有且只有一个【答案】AC【解析】根据题意,圆22:()()4()k C x k y k k R -+-=∈,其圆心为(,)k k ,半径为2;依次分析选项:对于A ,圆心为(,)k k ,其圆心在直线y x =上,A 正确;对于B ,圆22:()()4k C x k y k -+-=,将(3,0)代入圆的方程可得22(3)(0)4k k -+-=,化简得22650k k -+=,364040=-=-<,方程无解,B 错误;对于C ,存在直线y x =±0x y -+=或0x y --=,圆心(,)k k 到直线0x y -+=或0x y --=的距离2d =,这两条直线始终与圆k C 相切,C 正确,对于D ,将(2,2)代入圆的方程可得22(2)()42k k -+=-,解得2k =D 错误;故选:AC .17.(2021·安徽滁州·高二期中)过圆22:4O x y +=上一点(P -作圆O 的切线l ,则直线l 的方程是()A .40x -=B .20x +-=C .20x +=D .40x +=【答案】D【解析】由题意点(P -为切点,所以1OP l k k ⋅=-,又OP k =l k =因此直线l 的方程为40x +=.故选:D18.(2021·天津市咸水沽第二中学高二期中)过点(3,1)M 作圆222620x y x y +--+=的切线l ,则l 的方程为()A .40x y +-=B .40x y +-=或3x =C .20x y --=D .20x y +-=或3x =【答案】C【解析】根据题意,设圆x 2+y 2﹣2x ﹣6y +2=0的圆心为C ,圆x 2+y 2﹣2x ﹣6y +2=0,即()()22138-+-=x y ,其圆心为(1,3),又由点M 的坐标为(3,1),有()()2231138-+-=,即点M 在圆上,则13131-==--MC k ,则切线的斜率k =1,则切线的方程为y ﹣1=(x ﹣3),即x ﹣y ﹣2=0;故选:C .19.(2021·山东济宁·高二期中)过点()2,3P -的直线l 与圆222230x y x y ++--=相切,则直线l 的方程是()A .2x =-或280x y -+=B .280x y -+=C .2x =-或210x y ++=D .210x y ++=【答案】B【解析】把圆222230x y x y ++--=化为标准方程得:()()22115x y ++-=.因为()2,3P -在圆上,所以过P 的切线有且只有一条.显然过点()2,3P -且斜率不存在的直线:2x =-与圆相交,所以过P 的切线的斜率为k .因为切线与过切点的半径垂直,所以()13112k -=----,解得:12k =,所以切线方程为:()1322y x -=+,即280x y -+=.故选:B20.(2022·四川·泸县五中高二期中(文))已知直线()10ax y a R -+=∈是圆()()22:124C x y -+-=的一条对称轴,过点()2,A a --向圆C 作切线,切点为B ,则AB =()AB C D .【答案】C【解析】由圆()()22:124C x y -+-=,可知该圆的圆心坐标为()1,2C ,半径为2,因为直线10ax y -+=是圆()()22:124C x y -+-=的一条对称轴,所以圆心()1,2在直线10ax y -+=上,所以有2101a a -+=⇒=,因为过点()2,1A --向圆C 作切线,切点为B ,所以AC ==所以AB ==故选:C21.(2022·甘肃·临泽县第一中学高二期中(理))直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【解析】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ ==,故选:B .22.(2022·上海·华东师范大学附属东昌中学高二期中)经过圆22:25C x y +=上一点()4,3A -且与圆相切的直线的一般式方程为__________.【答案】43250x y --=【解析】由题意,圆22:25C x y +=,可得圆心坐标为(0,0)C ,因为()4,3A -,则303404CA k --==--,则过点()4,3A -且与圆相切的直线的斜率为43k =,根据直线的点斜式方程,可得直线的方程为4(3)(4)3y x --=-,即43250x y --=,即点()4,3A -且与圆相切的直线的一般式方程为43250x y --=.故答案为:43250x y --=23.(2021·湖南·常德市第二中学高二期中)已知圆C :x 2+y 2=20,则过点P (4,2)的圆的切线方程是________.【答案】2100x y +-=【解析】由224220+=知P 在圆C 上,而(0,0)C ,2142PC k ==,所以所求切线斜率为2k =-,方程为22(4)y x -=--,即2100x y +-=.故答案为:2100x y +-=.24.(2022·上海理工大学附属中学高二期中)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ===,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=25.(2021·四川省叙永第一中学校高二期中(文))过直线34140x y ++=上的动点P 作圆22(1)(2)4x y -+-=的切线,切点为A ,则切线长PA 的最小值为____________.【解析】根据题意,圆的方程为22(1)(2)4x y -+-=,其圆心(1,2),半径2r =;设圆心为C ,即(1,2)C ;则有2222||||||||4PA PC AC PC =-=-,当||PC 取得最小值时,切线长||PA 最小,因为||PC 5=,则||PA=26.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)已知圆224470x y x y +-++=与直线20x ay --=相切,则=a ___________.【答案】33【解析】()()22224470221x y x y x y +-++=⇒-++=,圆的圆心为(2,-2),半径r =1,()()2222311a a a -⋅--=⇒=+-故答案为:33±.考点4:切点弦问题27.(2021·福建宁德·高二期中)过圆221x y +=外一点(2,1)P -引圆的两条切线,则经过两切点的直线方程是________.【答案】210x y --=【解析】设切点分别为()()1122,,,A x y B x y ,因为点,A B 在圆221x y +=上,所以以,A B 为切点的切线方程分别为:11221,1x x y y x x y y +=+=,而点()2,1P -在两条切线上,所以112221,21x y x y -=-=,即点P 满足直线21210x y x y -=⇒--=.故答案为:210x y --=.28.(2021·广东·广州市第六十五中学高二期中)过点()5,3P 作圆229x y +=的两条切线,设两切点分别为A 、B ,则直线AB 的方程为_________.【答案】5390x y +-=【解析】根据题意,过点(5,3)P 作圆229x y +=的两条切线,设两切点分别为A 、B ,则2||||95PA PO =-,则以P 为圆心,PA 为半径为圆为22(5)(3)25x y -+-=,即圆2210690x y x y +--+=,AB 为两圆的公共弦所在的直线,则有2222910690x y x y x y ⎧+=⎨+--+=⎩,变形可得:5390x y +-=;即直线AB 的方程为5390x y +-=,故答案为:5390x y +-=29.(2021·安徽·合肥一中高二期中)已知圆22:4O x y +=,过动点(),4P a a +分别做直线PM 、PN 与圆O 相切,切点为M 、N ,设经过M 、N 两点的直线为l ,则动直线l 恒过的定点坐标为__________.【答案】()1,1-【解析】设点()00,Q x y 为圆O 上一点,当OQ 的斜率存在且不为零时,直线OQ 的斜率为0y x ,此时,圆O 在点()00,Q x y 处的切线方程为()0000x y y x x y -=--,即2200004x x y y x y +=+=,当OQ 与x 轴重合时,00y =,204x =,此时切线方程为0x x =,满足004x x y y +=,当OQ 与y 轴重合时,00x =,204y =,此时切线方程为0y y =,满足004x x y y +=.综上所述,圆O 在其上一点()00,Q x y 处的切线方程为004x x y y +=.设点()11,M x y 、()22,N x y ,则直线PM 的方程为114x x y y +=,直线PN 的方程为224x x y y +=,由题意可得()()11224444ax a y ax a y ⎧++=⎪⎨++=⎪⎩,所以,点M 、N 的坐标满足方程()440ax a y ++-=,故直线MN 的方程为()440ax a y ++-=,即()()440a x y y ++-=,由0440x y y +=⎧⎨-=⎩,解得11x y =-⎧⎨=⎩,因此,直线l 恒过的定点坐标为()1,1-.故答案为:()1,1-.30.(2021·安徽·屯溪一中高二期中)已知直线:10()l x ay a +-=∈R 是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的两条切线,切点分别为B 、D ,则直线BD 的方程为()A .350x y +-=B .250x y +-=C .350x y -+=D .250x y +-=【答案】A【解析】根据题意,圆C 的标准方程为()()22214x y -+-=,即圆心为C (2,1),半径为2.∴点(2,1)在直线10x ay +-=上,即2101a a +-=∴=-∴点A 的坐标为(-4,-1)AC ∴==∴过点A 作圆C 的切线所得切线长为6=∴以点A 为圆心,6为半径的圆A 的方程为()()224136x y +++=圆A 与圆C 的方程作差得350x y +-=,即直线BD 的方程为350x y +-=故选:A .31.(2021·四川省绵阳第一中学高二期中)过点()1,1P 作圆C :224470x y x y +--+=的两条切线,切点分别为A ,B ,则直线AB 的方程为()A .30x y +-=B .10x y --=C .10x y -+=D .10x y +-=【答案】A【解析】224470x y x y +--+=,即()()22221x y -+-=,圆心为()2,2,半径1r =.当斜率不存在时,直线1x =与圆相切,切点为()1,2;当斜率为0时,直线1y =与圆相切,切点为()2,1.故直线方程为斜率21112k -==--,直线方程为()12y x =--+,即30x y +-=.故选:A .32.(2020·安徽·六安市城南中学高二期中(理))过原点 O 作圆2268200x y x y +--+=的两条切线,设切点分别为P 、 Q ,则线段PQ 的长为()A .3B .4C .5D .6【答案】B【解析】由题意,2268200x y x y +--+=可化为22(3)(4)5x y -+-=,∴圆心(3,4)C ,半径r =,则有5OC =,故切线段长l ==若线段PQ 的长为x ,则2xOC l r ⋅=⋅,得4x =.故选:B .考点5:弦长问题33.(2021·广东·化州市第三中学高二期中)过点M (2,2)的直线l 与圆x 2+y 2﹣2x ﹣8=0相交于A ,B 两点,则|AB |的最小值为_____;此时直线l 的方程为_______.【答案】4260x y +-=【解析】∵圆x 2+y 2﹣2x ﹣8=0,即(x ﹣1)2+y 2=9,圆心C (1,0),半径为3,点M (2,2)在圆内,20221MC k -==-,要使|AB |的值最小,则MC ⊥AB ,此时|MC |=|AB |=4=;直线l 的斜率为12-,则直线l 的方程为y ﹣2=12-(x ﹣2),即x +2y ﹣6=0.故答案为:4;260x y +-=.34.(2021·湖北黄冈·高二期中)已知直线x y t +=与圆()2222x y t t t R +=-∈有公共点,则t 的取值范围为______,所有的弦中,最长的弦的长度为______.【答案】403t <≤【解析】由于直线x y t +=与圆()2222x y t t t R +=-∈有公共点,所以220403t t t ⎧->⇒<≤≤;又弦长==23t =时,有最大值,其最大值为故答案为:403t <≤35.(2021·广东·潮州市湘桥区南春中学高二期中)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=,(1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.【解析】(1)设圆C 的方程为:220x y Dx Ey F ++++=,由题意得:24031002280D F DEF D E F ++=⎧⎪+++=⎨⎪+++=⎩,消去F 得:362D E D E -=⎧⎨-+=-⎩,解得:02D E =⎧⎨=-⎩,∴F =-4,∴圆C 的方程为:22240x y y +--=.(2)由(1)知:圆C 的标准方程为:22(1)5x y +-=,圆心(0,1)C,半径r =;点(0,1)C 到直线l的距离2d r ==<,故直线l 与圆C 相交,故直线l 被圆C截得的弦长为=36.(2021·广东·新会陈经纶中学高二期中)已知圆22:240C x y y +--=,直线()10l mx y m m -+-∈R :=.(1)写出圆C 的圆心坐标和半径,并判断直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A 、B 两点,若直线l 的倾斜角为120°,求弦AB 的长.【解析】(1)由题设知圆C :()2215x y +-=,∴圆C 的圆心坐标为C ()0,1,半径为r 又直线l 可变形为:()11y m x -=-,则直线恒过定点()1,1M ,∵()2211115+-=<,∴点M 在圆C 内,故直线l 必定与圆相交.(2)由题意知0m ≠,∴直线l 的斜率k m =tan120=︒=,∴圆心C ()0,1到直线l 10y +=的距离d ==,∴||AB ===.37.(2022·山东·济南外国语学校高二期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求线段AB 的垂直平分线方程;(2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且MN =,求直线l 的方程.【解析】(1)设AB 的中点为D ,则(0,1)D .由圆的性质,得CD AB ⊥,所以1CD AB k k ⨯=-,得1CD k =-.所以线段AB 的垂直平分线的方程是1y x =-+.(2)设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为()0r r >,由(1)得直线CD 的方程为1y x =-+,由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =,所以圆心()1,0C ,||2r CA ==,所以圆C 的标准方程为22(1)4x y -+=.(3)由(1)设F 为MN 中点,则CF l ⊥,得||||FM FN ==圆心C 到直线l的距离||1d CF ==,当直线l 的斜率不存在时,l 的方程0x =,此时||1CF =,符合题意;当直线l 的斜率存在时,设l 的方程2y kx =+,即20kx y -+=,由题意得d =34k =-;故直线l 的方程为324y x =-+,即3480x y +-=;综上直线l 的方程为0x =或3480x y +-=.38.(2021·湖北宜昌·高二期中)已知圆M 过点(1,2),(1,4),(3,2)A B C -.(1)求圆M 的方程;(2)若直线:340l x y b +-=与圆M相交所得的弦长为b 的值.【解析】(1)设圆M 的方程为220x y Dx Ey F ++++=,因为圆M 过(1,2),(1,4),(3,2)A B C -三点,则1420,11640,94320,D E F D E F D E F +-++=⎧⎪++++=⎨⎪++++=⎩解得2,4,1D E F =-=-=,所以圆M 的方程为222410x y x y +--+=,即22(1)(2)4x y -+-=;(2)由题意,得圆心(1,2)到直线l的距离1d =,1=,即|11|5b -=,解得6b =或16.故所求b 的值为6或16.39.(2022·上海·华东师范大学附属东昌中学高二期中)直线10x y +-=被圆()()229114x y -+-=所截得的弦长为__________【解析】圆()()229114x y -+-=的圆心为()1,1,半径为32圆心()1,1到直线10x y +-=2=则直线10x y +-=被圆()()229112x y -+-=所截得的弦长为40.(2021·福建·晋江市第一中学高二期中)已知()3,0M 是圆228280x y x y +--+=内一点,则过点M 最短的弦长为()A .B C .6D .8【答案】A【解析】圆228280x y x y +--+=,即()()22419x y -+-=,则该圆的半径为3,圆心为()4,1,M∴过点M 最短的弦长为.故选:A41.(2022·全国·高二期中)若直线20x y --=与圆()224x a y -+=所截得的弦长为则实数a 为().A .1-B .1或3C .3或6D .0或4【答案】D【解析】圆()224x a y -+=的圆心坐标为(,0)a ,半径为2,圆心(,0)a 到直线20x y --=的距离为d =,又直线20x y --=被圆()224x a y -+=所截的弦长为故,即2(2)4a -=,解得0a =或4a =.故选:D .42.(2022·江苏·淮阴中学高二期中)已知直线0x y m -+=与圆22:40C x y y ++=相交于A 、B 两点,若CA CB ⊥,则实数m 的值为()A .4-或0B .4-或4C .0或4D .4-或2【答案】A【解析】圆C 的标准方程为()2224x y ++=,圆心为()0,2C -,半径为2r =,因为CA CB ⊥且2CA CB ==,故ABC 为等腰直角三角形,且AB ==则圆心C 到直线AB 的距离为12d AB ==由点到直线的距离公式可为d ==4m =-或0.故选:A .43.(2022·广东·仲元中学高二期中)已知直线l :y kx =与圆22:20C x y y +--=相交于M ,N两点,若MN =k 的值为()AB .2CD .3【答案】C【解析】圆22:20C x y y +--=,可化为(()2214x y -+-=,∴圆心C的坐标),半径为21=,又圆心到直线的距离d =1=,解得0k =(舍去)或k 故选:C考点6:面积问题44.(2021·广东·汕头市潮阳区棉城中学高二期中)过直线:2l y x =-上任意点P 作圆22:1C x y +=的两条切线,切点分别为,A B ,当切线长最小时,切线长为_________;同时PAB △的面积为_______.【答案】112【解析】依据题意,作出图形,如下图:因为直线l 过点P 且与圆221x y +=相切于点A ,所以PA OA ⊥,所以PA ==要使得PA 最小,则OP 要最小,由题可得:OP 的最小值就是点O 到直线:2l y x =-的距离d ==此时,min 1PA =,所以4OPA π∠=由切线的对称性可得:,12BPA PB π∠==所以PAB △的面积为111122PABS =⨯⨯=,故答案为:1;12.45.(2021·广西·防城港市防城中学高二期中)已知点()3,2A ,点()3,6B ,直线l 过定点()1,0.(1)求以线段AB 为直径的圆的标准方程;(2)记(1)中求得的圆的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,PQ 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【解析】(1)依题可知线段AB 的中点为()3,4是圆心,半径122r AB ===.∴所求圆的标准方程为:()()22344x y -+-=;(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离2d =,解得:34k =,∴l :3430x y --=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于P ,Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离d ==,∵()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦△(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.46.(2020·四川省成都高新实验中学高二期中)已知直线:250l x y --=与圆22:50C x y +=相交于A ,B 两点,求:(1)交点A ,B 的坐标(2)AOB 的面积.【解析】(1)直线:250l x y --=与圆22:50C x y +=的交点,由2225050x y x y --=⎧⎨+=⎩,可得55x y =-⎧⎨=-⎩,71x y =⎧⎨=⎩所以交点A ,B 的坐标为()5,5--,()7,1(2)设直线:250l x y --=与x 轴的交点为E ,则()5,0E 所以AOBAOEEOBSSS=+11||22A B y OE y OE =+‖()1||2A B y y OE =+1652=⨯⨯15=47.(2020·湖北·高二期中)直线:1l y x =+与圆22:430C x y y +-+=交于A 、B 两点,则ABC 的面积是_________.【答案】12【解析】圆()22:21C x y +-=,()0,2C 到直线l 的距离021222d -+=,∴22122AB ⎛⎫=-= ⎪ ⎪⎝⎭∴111222ABC S AB d =⋅==△故答案为:1248.(2021·广东·佛山一中高二期中)已知圆的方程为222440x y x y +---=,设该圆过点()2,3M 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 面积为()A .6B .C .D .【答案】C【解析】圆的标准方程为()()22129x y -+-=,圆心为()1,2E ,半径为3r =,()()2221329-+-<,故点M 在圆()()22129x y -+-=内,如下图所示:则ME 过点M 的弦过圆心时,弦长取最大值,即26AC r ==,当过M 的弦与ME 垂直时,弦长取最小值,即BD =此时AC BD ⊥,此时,四边形ABCD 的面积为11622S AC BD =⋅=⨯⨯=故选:C .49.(2021·福建龙岩·高二期中)设直线20ax y ++=与圆()22:24C x y +-=相交于A 、B 两点,且ABC 的面积为2,则=a ()A .B .C .D .【答案】D【解析】由三角形的面积公式可得212sin 22ABC S ACB =⨯⨯∠=△,可得sin 1ACB ∠=,0ACB π<∠<,故2ACB π∠=,则ABC 为等腰直角三角形,所以,圆心C 到直线20ax y ++=的距离为2sin4d π==由点到直线的距离公式可得d=,解得a=故选:D.50.(2021·江西南昌·高二期中(理))已知圆的方程为222440x y x y+---=,设该圆过点()1,3M的最长弦和最短弦分别为AC和BD,则四边形ABCD面积为()AB.C.8D.13【答案】B【解析】圆的方程为222440x y x y+---=,化为标准方程:()()22129x y-+-=,圆心为()1,2N,半径为3r=,当过点()1,3M的直线与NM垂直时,弦长最短,且AC==当过点()1,3M的直线且过圆心时,弦长最长,且26BD r==,此时,AC BD⊥,所以四边形ABCD面积为11622S AC BD=⋅=⨯=故选:B考点7:直线与圆中的定点定值问题51.(2021·山东潍坊·高二期中)已知圆M的圆心与点()1,4N-关于直线10x y-+=对称,且圆M与y轴相切于原点O.(1)求圆M的方程;(2)过原点O的两条直线与圆M分别交于,A B两点,直线,OA OB的斜率之积为12-,,OD AB D⊥为垂足,是否存在定点P,使得DP为定值,若存在,求出P点坐标;若不存在,说明理由.【解析】(1)(1)设M(a,b).则411141022baa b-⎧=-⎪⎪+⎨-+⎪-+=⎪⎩.解得3ab=⎧⎨=⎩.所以该圆的半径为3,.所以圆M的方程为()2239x y-+=;(2)设OA所在直线方程为()0y kx k=≠,联立()2239x y y kx ⎧-+=⎪⎨=⎪⎩得226611A Ak x y k k =⋅=++,同理把k 换做-12k ,可得222412,1414B Bk kx y k k-==++所以AB 所在直线方程为222636(1121k k y x k k k -=-+-+).当0y =时,可得4x =,故直线AB 过定点C (4,0).由于OC 为定值,且△ODC 为直角三角形,OC 为斜边,所以OC 中点P 满足22OC DP ==为定值,由于O (0,0),C (4,0),故由中点坐标公式可得P (2,0),故存在点P (2,0),使得|DP |为定值.52.(2021·全国·高二期中)已知圆C经过点(0,,(及()3,0.经过坐标原点O 的斜率为k 的直线l 与圆C 交于M ,N 两点.(1)求圆C 的标准方程;(2)若点()3,0P -,分别记直线PM 、直线PN 的斜率为1k 、2k ,求12k k +的值.【解析】(1)设圆C 的方程为:220x y Dx Ey F ++++=,由圆C过(0,,(及()3,0.∴23030330F F D F ⎧+=⎪⎪++=⎨⎪++=⎪⎩可得203D E F =-⎧⎪=⎨⎪=-⎩,∴圆C 的方程为:22230x y x +--=,其标准方程为()2214x y -+=;(2)设()11,M x y ,()22,N x y ,直线l 为y kx =,与圆C :()2214x y -+=联立得:()221230k x x +--=,∴()22443112160k k ∆=+⨯⨯+=+>,则12221x x k +=+,12231x x k =-+,∴12121212123333y y kx kx k k x x x x +=+=+++++()()()1212122333k x x x x x x ++⎡⎤⎣⎦=++()()22126611033k k k x x -⎛⎫+ ⎪++⎝⎭==++.53.(2020·浙江温州·高二期中)已知圆C :2280x x y ++=,直线l :20mx y m ++=.(1)当直线l 与圆C 相交于A ,B两点,且AB =l 的方程.(2)已知点P 是圆C 上任意一点,在x 轴上是否存在两个定点M ,N ,使得12PM PN=?若存在,求出点M ,N 的坐标;若不存在,说明理由.【解析】(1)由已知可得圆心()4,0C -,4r =.圆心C 到直线l的距离d =因此AB ===.22421m m =+,解得1m =±,直线l 的方程为2y x =+或2y x =--.(2)设(),P x y ,()1,0M x ,()2,0N x 由已知可得228x y x +=-12=,化简得211222821824x x x x x x x x -+-=-+-.即()()221221241240x x x x x -++-=恒成立所以122221412040x x x x -+=⎧⎨-=⎩,解得12612x x =-⎧⎨=-⎩,或1224x x =-⎧⎨=⎩所以满足题意的定点M ,N 存在,其坐标为()6,0M -,()12,0N -或()2,0M -,()4,0N .54.(2020·辽宁·大连八中高二期中)已知圆22:1O x y +=与x 轴的正半轴交于点P ,直线:30l kx y k --+=与圆O 交于不同的两点A ,B .(1)求实数k 的取值范围;(2)设直线PA ,PB 的斜率分别是12,k k ,试问12k k +是否为定值?若是定值,求出该定值;若不是定值,请说明理由;【解析】∵圆221O x y +=:与x 轴的正半轴交于点P ,∴圆心00O (,),半径1r =,()10,P .(1)∵直线30l kx y k --+=:与圆O 交于不同的两点,A B ,∴圆心O 到直线l 的距离1d =<,即3k -43k >.(2)设11(,)A x y ,22(,)B x y 联立22301kx y k x y --+=⎧⎨+=⎩,可得2222(1)(26)680k x k k x k k +--+-+=,∴2122261k k x x k -+=+,2122681k k x x k-+=+,∴121212121212(1)3(1)3332111111y y k x k x k k k x x x x x x -+-++=+=+=++------221222212123(2)3[262(1)]22()168(26)1x x k k k k k x x x x k k k k k +---+=+=+-++-+--++1862293k k --=+=-为定值.∴12k k +是定值,定值为23-.55.(2021·吉林·长春外国语学校高二期中)已知圆1O过点P ,且与圆2222:(2)(2)(0)O x y r r ++-=>关于直线20x y -+=对称.(1)求圆1O 、圆2O 的方程;(2)过点Q 向圆1O 和圆2O 各引一条切线,切点分别为C ,D ,且2QD QC =,则是否存在一定点M ,使得Q 到M 的距离为定值λ?若存在,求出M 的坐标,并求出λ的值;若不存在,请说明理由.【解析】(1)设圆1O 的圆心1(,)O a b ,因为圆1O 与圆2222:(2)(2)O x y r ++-=关于直线20x y -+=对称,可得2112222022b a a b -⎧⋅=-⎪⎪+⎨-+⎪-+=⎪⎩,解得0,0a b ==,设圆1O 的方程为222x y r +=,将点P ,代入可得2r =,所以圆1O 的方程为224x y +=,圆2O 的方程为22(2)(2)4x y ++-=.(2)由2QD QC ==设()00,Q x y ,则()()()2222000022444x y x y ++--=+-,化简得22002268339x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,所以存在定点22,33M ⎛⎫- ⎪⎝⎭使得Q 到M.56.(2021·湖南·怀化五中高二期中)已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)直线n 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线n 过一个定点,并求出该定点坐标.(3)直线m 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之和为0,求证:直线m 的斜率是定值,并求出该定值.【解析】(1)依题意,圆C 的半径22||345CA =+,所以圆C 的标准方程是:()22325x y -+=.(2)当直线n 的斜率不存在时,设(,),(,)M a b N a b -,由直线AM ,AN 的斜率之积为2,得442b b a a ---⋅=,即22162b a =-,又由点M ,N 在圆C 上得()22325a b -+=,消去b 得:260a a +=,而0a ≠,则6a =-,此时20b <,因此,无解,当直线n 的斜率存在时,设其方程为y kx t =+,由22(3)25y kx t x y =+⎧⎨-+=⎩消去y 并整理得:222(1)2(3)160k x kt x t ++-+-=,设1122(,),(,)M x y N x y ,则1222(3)1kt x x k --+=+,2122161t x x k -=+,直线AM 斜率114AM y k x -=,直线AN 斜率224AN y k x -=,则()()221212121212444·4AM ANt kx t kx t x xk k k k t x x x x x x -+-+-+==+-⋅+2222222226(1)(4)(4)26(1)(4)(4)16164kt k t k t k t k k t k k t t t t -++-+-+++-=+-⋅+=--+6424k t t +-==+,整理得612t k =-,此时直线n :(6)12y k x =+-过定点()6,12--,所以直线n 过一个定点,该定点坐标是()6,12--.(3)设直线AM 方程为:4y rx =+,由224(3)25y rx x y =+⎧⎨-+=⎩消去y 并整理得:22(1)2(43)0 r x r x++-=,则有点22268464(,)11r r rMr r--++++,而直线AN:4y rx=-+,同理22268464(,)11r r rNr r+--+++,于是得直线MN的斜率2222224644643116868411MNr r r rr rk r rr r-++--+-++==--+-++,所以直线m的斜率是定值,该定值为3 4-.。

专题07 二元一次方程组(归纳与讲解)(原卷版)

专题07 二元一次方程组(归纳与讲解)(原卷版)

专题07 二元一次方程组【专题目录】技巧1:二元一次方程组的五种特殊解法技巧2:二元一次方程组中六种类型数学思想的应用 技巧3:二元一次方程(组)的解的五种常见应用 【题型】一、二元一次方程组的有关概念 【题型】二、用代入法解二元一次方程组 【题型】三、用加减法解二元一次方程组 【题型】四、用整体消元法解二元一次方程组 【题型】五、同解方程组 【题型】六、列二元一次方程组 【考纲要求】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

【考点总结】一、二元一次方程组(1)概念:具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.【注意】1.解二元一次方程组的步骤(1)代入消元法① 变:将其一个方程化为y=ax+b或者为x=ay+b的形式① 代:将y=ax+b或者为x=ay+b代入另一个方程① 解:解消元后的一元一次方程① 求:将求得的未知数值代入y=ax+b或x=ay+b,求另一个未知数的值① 答:写出答案(2)加减消元法① 化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式,① 加减:将变形后的方程组通过加减消去一个未知数① 解:解消元后的一元一次方程① 求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值2.解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法;(2)当方程组中某一个方程的常数项为0时,选用代入消元法;(3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法(4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法 【技巧归纳】技巧1:二元一次方程组的五种特殊解法 【类型】一、引入参数法解二元一次方程组 1.用代入法解方程组: ⎩⎪⎨⎪⎧x 5+y 6=0,①3(x -y )-4(3y +x )=85.①【类型】二、特殊消元法解二元一次方程组 题型1:方程组中两未知数系数之差的绝对值相等2.解方程组:⎩⎪⎨⎪⎧2 015x +2 016y =2 017,①2 016x +2 017y =2 018.①题型2:方程组中两未知数系数之和的绝对值相等3.解方程组:⎩⎪⎨⎪⎧13x +14y =40,①14x +13y =41.②【类型】三、利用换元法解二元一次方程组 4.解方程组⎩⎪⎨⎪⎧3(x +y )+4(x -y )=20,x +y 4-x -y 2=0.【类型】四、同解交换法解二元一次方程组5.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax -by =4,3x -y =5与方程组⎩⎪⎨⎪⎧ax +by =16,4x -7y =1的解相同,求(a -b)2 018的值. 【类型】五、运用主元法解二元一次方程组6.已知⎩⎪⎨⎪⎧4x -3y -3z =0,x -3y -z =0(x ,y ,z 均不为0),求xy +2yzx 2+y 2-z 2的值.技巧2:二元一次方程组中六种类型数学思想的应用 【类型】一、整体思想 1.先阅读,然后解方程组.解方程组⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5②时,由①,得x -y =1,③然后再将③代入②,得4×1-y =5,解得y =-1,从而进一步求得x =0.所以方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.这种方法被称为“整体代入法”.请用这样的方法解下面的方程组:⎩⎪⎨⎪⎧2x -3y -2=0,2x -3y +57+2y =9. 2.若x +2y +3z =10,4x +3y +2z =15,求x +y +z 的值. 【类型】二、化繁为简思想3.阅读下面解方程组的方法,然后解决问题:解方程组⎩⎪⎨⎪⎧19x +18y =17,①17x +16y =15②时,我们如果直接考虑消元,会很繁琐,而采用下面的解法则是轻而易举的.解:①-②,得2x +2y =2,所以x +y =1.③ ③×16,得16x +16y =16,④②-④,得x =-1,将x =-1代入③,得y =2.所以原方程组的解是⎩⎪⎨⎪⎧x =-1,y =2.请用上述方法解方程组⎩⎪⎨⎪⎧2 018x +2 017y =2 016,2 016x +2 015y =2 014.【类型】三、方程思想4.已知(5x -2y -3)2+|2x -3y +1|=0,求x +y 的值. 5.若3x 2m+5n +9+4y 4m-2n -7=2是二元一次方程,求(n +1)m+2 018的值.【类型】四、换元思想6.解方程组⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2.【类型】五、数形结合思想7.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒共需多少元?【类型】六、分类组合思想8.若方程组⎩⎪⎨⎪⎧4x -y =5,ax +by =-1与⎩⎪⎨⎪⎧3x +y =9,3ax -4by =18有公共解,求a ,b 的值.技巧3:二元一次方程(组)的解的五种常见应用 【类型】一、已知方程(组)的解求字母的值1.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =2,y =1,则|m -n|的值为( ) A .1 B .3 C .5 D .22.已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-4,y =2是关于x ,y 的二元一次方程2ax -by =2的两组解,求a ,b 的值.【类型】二、已知二元一次方程组与二元一次方程同解求字母的值3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m ,x -y =9m 的解也是方程3x +2y =17的解,求m 的值.【类型】三、已知二元一次方程组的解满足某一关系求字母的值4.已知m ,n 互为相反数,关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =60,3x -y =8的解也互为相反数,求m ,n 的值.【类型】四、已知两个二元一次方程组共解求字母的值5.关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,ax -by =-4与⎩⎪⎨⎪⎧3x -5y =16,bx +ay =-8有相同的解,求(2a +b)2 018的值.【类型】五、已知二元一次方程组的误解求字母的值6.在解方程组⎩⎪⎨⎪⎧2ax +y =5,2x -by =13时,由于粗心,甲看错了方程组中的a ,得解为⎩⎪⎨⎪⎧x =72,y =-2;乙看错了方程组中的b ,得解为⎩⎪⎨⎪⎧x =3,y =-7.(1)甲把a 错看成了什么?乙把b 错看成了什么? (2)求出原方程组的正解. 【题型讲解】【题型】一、二元一次方程组的有关概念例1、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( )A .3B .3,-3CD【题型】二、用代入法解二元一次方程组例2、二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩【题型】三、用加减法解二元一次方程组例3、由方程组+=43x my m⎧⎨-=⎩可得出x与y之间的关系是().A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7【题型】四、用整体消元法解二元一次方程组例4、若方程组237351m nm n-=⎧⎨+=⎩的解是21mn=⎧⎨=-⎩,则方程组()()()()2132731521x yx y⎧+--=⎪⎨++-=⎪⎩的解是()A.11xy=⎧⎨=⎩B.11xy=⎧⎨=-⎩C.31xy=⎧⎨=⎩D.33xy=⎧⎨=-⎩【题型】五、同解方程组例5、已知关于x①y的方程组2342x yax by-=⎧⎨+=⎩,与3564x ybx ay-=⎧⎨+=-⎩,有相同的解,则a①b的值为① ①A.21ab=-⎧⎨=⎩B.12ab=⎧⎨=-⎩C.12ab=⎧⎨=⎩D.12ab=-⎧⎨=-⎩【题型】六、列二元一次方程组例6、《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩二元一次方程组(达标训练)一、单选题1.(2022·广东·深圳外国语学校模拟预测)“绿水青山就是金山银山”,某地准备购买一些松树和柏树绿化荒山,已知购买2棵松树和3棵柏树需要120元,购买2棵松树比1棵柏树多20元,设每棵松树x 元,每棵柏树y 元,则列出的方程组正确的是( )A .23120220x y x y +=⎧⎨-=⎩B .23120220x y x y +=⎧⎨+=⎩C .23120220x y y x +=⎧⎨-=⎩D .32120220x y x y +=⎧⎨+=⎩2.(2022·天津河北·一模)方程组282x y x y+=⎧⎨=⎩的解是( )A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .24x y =⎧⎨=⎩3.(2022·天津红桥·三模)方程组21230x y y x +=-⎧⎨+=⎩的解是( ).A .11x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .23x y =⎧⎨=-⎩4.(2022·上海杨浦·二模)下列方程中,二元一次方程的是( ) A .1xy =B .210x -=C .1x y -=D .11x y+= 5.(2022·山东威海·一模)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b-的值是( ) A .2- B .2C .3D .3-二、填空题6.(2022·湖南娄底·二模)我国明代数学读本《算法统宗》一书中有这样道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长与竿子长之和为______尺.7.(2022·江苏无锡·二模)已知方程组26221x y x y +=⎧⎨+=⎩,则x y +的值为______.三、解答题8.(2022·广东·广州市第一二三中学模拟预测)阅读材料:善于思考的小军在解方程组()1045x y x y y --=⎧⎪⎨--=⎪⎩①②时,采用了一种“整体代入”的解法: 解:由①得x ﹣y =1①将①代入①得:4×1﹣y =5,即y =﹣1把y=﹣1代入①得x=0,①方程组的解为1 xy=⎧⎨=-⎩请你模仿小军的“整体代入”法解方程组,解方程232235297x yx yy-=⎧⎪-+⎨+=⎪⎩.二元一次方程组(提升测评)一、单选题1.(2022·广东·江门市新会东方红中学模拟预测)若最简二次根式3a则a、b的值分别是()A.2和1B.1和2C.2和2D.1和12.(2022·福建·平潭翰英中学一模)已知12xy=⎧⎨=⎩是二元一次方程组{mx−ny=8nx+my=1的解,则43m n+的立方根为()A.±1BC.±D.1-3.(2022··二模)我们知道二元一次方程组233345x yx y-=⎧⎨-=⎩的解是31xy=⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x yx y+--=⎧⎨+--=⎩,它的解是()A.123xy=-⎧⎪⎨=⎪⎩B.123xy=-⎧⎪⎨=-⎪⎩C.123xy=⎧⎪⎨=⎪⎩D.123xy=⎧⎪⎨=-⎪⎩4.(2022·福建宁德·二模)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y人,根据题意,列方程组是()A.2932y xy x=+⎧⎨=-⎩B.293(2)y xy x=+⎧⎨=-⎩C.2932y xy x=-⎧⎨=-⎩D.()2932y xy x=-⎧⎨=-⎩5.(2022·广东·揭阳市实验中学模拟预测)如果关于x,y的方程组436626x yx my-=⎧⎨+=⎩的解是整数,那么整数m的值为()A .4,4-,5-,13B .4,4-,5-,13-C .4,4-,5,13D .4-,5,5-,13二、填空题6.(2022·江苏南通·二模)我国古代数学名著《孙子算经》中记载了一道题,原文:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?注释:(娟)纺织品的统称;(人得)每人分得;(匹)量词,用于纺织品等,(盈):剩下.若设贼有x 人,库绢有y 匹,则可列方程组为______.三、解答题7.(2022·广东·华南师大附中三模)解下列方程组: (1)1223334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩;(2)6234()5()2x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩; (3)0.10.3 1.3123x y x y+=⎧⎪⎨-=⎪⎩; (4)23433x y x y ⎧=⎪⎨⎪-=⎩. 8.(2022·浙江温州·二模)为促进学生体育活动,学校计划采购一批球类器材,当每班购进5个排球和6个篮球时花费360元;购进10个排球和2个篮球时花费270元. (1)求排球和篮球的单价.(2)为扩充器材室储备,现还需购买120个排球和篮球,其中排球的数量不少于篮球数量的23,如何购买总费用最少.(3)经调查,为满足不同学生的需要,学校准备新增购进进价为每个60元的足球,篮球和排球的仍按需购进,进价不变,排球是篮球的4倍,共花费9000元,则学校至少可以购进多少个球类器材?。

部编数学八年级上册专题07因式分解的六种方法大全(解析版)(人教版)含答案

部编数学八年级上册专题07因式分解的六种方法大全(解析版)(人教版)含答案

专题07 因式分解的六种方法大全题型一、提取公因式法与公式法综合例.分解因式:32214a ab ab -+=______.【答案】21()2a ab -【详解】解:32214a a b ab -+=221()4a a ab b -+=21()2a ab -.故答案是:21()2a ab -.【变式训练1】因式分解:322882x x y xy -+=________________.【答案】22(2)x x y -【详解】解:原式=2x (4x 2−4xy +y 2)=2x (2x −y )2故答案为:2x (2x −y )2.【变式训练2】因式分解:21222a b ab b -+=_________.【答案】21(2)2b a -【详解】22211122(44)(2)222a b ab b b a a b a -+=-+=-故答案为:21(2)2b a -.【变式训练3】分解因式:a 4﹣3a 2﹣4=_____.【答案】(a 2+1)(a +2)(a ﹣2)【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故答案为:(a 2+1)(a +2)(a ﹣2).【变式训练4】小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.现将()()2222ac x y bc x y ---因式分解,结果呈现的密码信息可能是( )A .抗疫胜利B .抗疫必胜C .我必胜利D .我必抗疫【答案】B【详解】解:原式=()()22x y ac bc --()()()c a b x y x y =-+-Q x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.x y \-对应抗,x y +对应疫,c 对应必,-a b 对应胜故结果呈现的密码信息可能是为:抗疫必胜故选:B题型二、十字相乘法例.将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-【答案】B【详解】解:()211a a --+=2211a a a -+-+=232a a -+=()()12a a --.故选B .【变式训练1】多项式239514x x +-可因式分解成(3)()x a bx c ++,其中a 、b 、c 均为整数,求2a c +之值为何?( )A .12-B .3-C .3D .12【答案】A【详解】解:利用十字相乘法,把239514x x +-多项式因式分解,可得,239514(32)(137)x x x x +-=+-∵多项式239514x x +-可因式分解成(3x +a )(bx +c )∴ 2a =,13b =,7c =-∴222(7)12a c +=+´-=-故选:A .【变式训练2】分解因式:321024a a a +-=____.【答案】()()122a a a +-【详解】解:()()()32210241024122a a a a a a a a a +-=+-=+-.故答案为:()()122a a a +-【变式训练3】因为()()22331x x x x +-=+-,这说明多项式223x x +-有一个因式为1x -,我们把1x =代入此多项式发现1x =能使多项式223x x +-的值为0.利用上述阅读材料求解:(1)若()3x +是多项式212x kx ++的一个因式,求k 的值;(2)若()3x -和()4x -是多项式3212x mx x n +++的两个因式,试求m ,n 的值.(3)在(2)的条件下,把多项式3212x mx x n +++因式分解.【答案】(1)7k =;(2)7m =-,0n =;(3)(3)(4)x x x --【解析】(1)解:Q 3x +是多项式212x kx ++的一个因式,\当3x =-时,21293120x kx k ++=-+=,解得7k =;(2)Q (3)x -和(4)x -是多项式3212x mx x n +++的两个因式,\3232331230441240m n m n ì+´+´+=í+´+´+=î,解得70m n =-ìí=î.\7m =-,0n =.(3)解:由(2)得3212x mx x n +++即为32712x x x -+,\32712x x x-+2(712)x x x =-+(3)(4)x x x =--.题型四、分组法例.分解因式:4322221x x x x ++++【答案】22(1)(1)x x ++【详解】解:4322221x x x x ++++423(21)(22)x x x x =++++,222(1)2(1)x x x ++=+,22(1)(1)2x x x +=++22(1)(1)x x =++【变式训练1】已知221m a b =+-,4614n a b =--,则m 与n 的大小关系是()A .m n ³B .m >nC .m n £D .m <n【答案】A【详解】解:∵221m a b =+-,4614n a b =--,∴()()2214614b a m b n a -=---+-2246114b b a a =+--++()()224469a a b b =-++++()()2223a b =-++0³m n \³,故选A【变式训练2】分解因式:224b 12c 9c -++.【答案】()()23c b 23c b +++-【详解】解:224b 12c 9c -++=()22412c 9c b ++-=()2223c b +-=()()23c b 23c b +++-【变式训练3】分解因式:2244x y y -+-=__________.【答案】(2)(2)x y x y +--+【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【变式训练4】阅读理解:把多项式am an bm bn +++分解因式.解法:()()am an bm bn am an bm bn +++=+++()()a m nb m n =+++()()m n a b =++观察上述因式分解的过程,回答下列问题:(1)分解因式:222mb mc b bc -+-.(2)ABC V 三边a 、b 、c 满足2440a bc ac ab -+-=,判断ABC V 的形状.【答案】(1)(2)()b c m b -+;(2)等腰三角形【解析】(1)解:222mb mc b bc-+-()2(2)2mb mc b bc =-+-(2)(2)m b c b b c =-+- (2)()b c m b =-+(2)解:∵2440a bc ac ab -+-=,∴2440a ab ac bc -+-=,∴()()40a a b c a b -+-=,∴()()40a b a c -+=,∵40a c +>,∴0a b -=,∴a b =,∴ABC V C 的形状是等腰三角形.题型四、添项、拆项法例.分解因式;.x 3﹣3x 2﹣6x +8=_______.【答案】(x ﹣4)(x ﹣1)(x +2)【详解】解:x 3﹣3x 2﹣6x +8=3232268x x x x x -+--+=()()323288x x x x -+--=()()()1281x x x x ----=()()128x x x ---éùëû=()()2128x x x ---=(x ﹣4)(x ﹣1)(x +2),故答案为:(x ﹣4)(x ﹣1)(x +2).【变式训练1】把多项式分解因式:x 3﹣2x 2+1=_________________.【答案】(x ﹣1)(x 2﹣x ﹣1)【详解】解:原式=x 3﹣x 2﹣x 2+1=x 2(x ﹣1)﹣(x +1)(x ﹣1)=(x ﹣1)(x 2﹣x ﹣1)故答案为:(x ﹣1)(x 2﹣x ﹣1)【变式训练2】因式分解:a a a 32+3+3+2【答案】()()a a a 2=+2++1【详解】原式()a a a 32=+3+3+1+1()a 33=+1+1()()()a a a 2éù=+1+1+1-+1+1ëû()()a a a 2=+2++1.故答案为:()()a a a 2=+2++1【变式训练3】添项、拆项是因式分解中常用的方法,比如分解多项式21a -可以用如下方法分解因式:①()()()()22111111a a a a a a a a a -=-+-=-+-=-+;又比如多项式31a -可以这样分解:②()()()()()3322221111111a a a a a a a a a a a a a a -=-+-+-=-+-+-=-++;仿照以上方法,分解多项式51a -的结果是______.【答案】()()43211a a a a a -++++【详解】解:51a -54433221a a a a a a a a a =-+-+-+-+-()()()()43211111a a a a a a a a a =-+-+-+-+-()()43211a a a a a =-++++,故答案为:()()43211a a a a a -++++题型五、换元法(整体思想)例.因式分解:()()()()222222261516121x x x x x x ++++++++【答案】()()229411x x x +++【解析】解:()()()()222222261516121x x x x x x ++++++++()()2222212216122x x x x x x =++++++++()()2294121x x x x =++++()()229411x x x =+++【变式训练1】分解因式:()()()222241211y x y x y +--+-【答案】()2221x y x y -++【详解】()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y éù+--ëû=()2221x y x y -++【变式训练2】因式分解:(x 2+4x )2﹣(x 2+4x )﹣20.【答案】2(5)(1)(2)x x x +-+【详解】解:原式=(x 2+4x ﹣5)(x 2+4x +4)=(x +5)(x ﹣1)(x +2)2.【变式训练3】因式分解:(1)2223238x x x x +-+-()() (2)421x x x --+【答案】(1)()()()()1241x x x x +++-;(2)()()3211x x x -+-.【详解】解:(1)原式=()()223234x x x x +++-=()()()()1241x x x x +++-;(2)原式=()()2211xx x ---=()()()2111x x x x +---=()()2111x x x éù-+-ëû=()()3211x x x -+-.题型六、主元法例.分解因式:2222372x y z xy yz xz --+++.【答案】(2)(3)x y z x y z =+--+【详解】解:2222372x y z xy yz xz--+++222(2)(273)x y z x y yz z =++--+=2(2)(2)(3)x y z x y z y z ++---∴原式(2)(3)x y z x y z =+--+.【变式训练1】因式分解:(1)a b c ab ac bc abc1+++++++(2)()()a a b b b 6+11+4+3-1-2(3)()()()y y x x y y 22+1+1+2+2+1【答案】(1)()()()a b c =+1+1+1;(2)()()b b 3+2-1;(3)()()yx y yx x y =++1++【详解】(1)把a 视为未知数,其它视为参数.原式a ab ac abc b c bc =++++1+++()()a b c bc b c bc =1++++1+++()()a b c bc =+11+++()()()a b c =+1+1+1;(2)原式=()a b a b b 226+11+4+3--2,b b 23--2=()()b b 3+2-1,再次运用十字相乘法可知原式()()a b a b =2+3+23+-1;(3)选x 为主元,原式()()yx y yx x y =++1++.【变式训练2】因式分解:(1)a b ab bc ac222--++2(2)()x a b x a ab b 222+2+-3+10-3【答案】(1)()()a b b c 2+-+;(2)()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3【详解】(1)首先将原式按a 的降幂排列,写成关于a 的二次三项式()a c b a bc b 222+2-+-,此时的“常数bc b 2-”提取公因式b 即可分解成()b c b -,再运用十字相乘法便可很快将原式分解成()()a b a b c 2+-+;(2)这是x 的二次式,“常数项”可分解为()()a ab b a b a b 22-3+10-3=-3--3再对整个式子运用十字相乘()()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3.【变式训练3】因式分解:a b ab a c ac abc b c bc 222222-+--3++【答案】()()a b c ab ac bc =--+-【详解】原式()()()b c a b c bc a b c bc 22222=+-++3++()()()b c a b c bc a bc b c 222=+-++3++[()][()]a b c b c a bc =-++-()()a b c ab ac bc =--+-.课后作业1.如果2240m m +-=,那么20182019202032m m m --的值为( )A .2018m B .2018m -C .1D .-1【答案】B【详解】解:∵2m 2+m -4=0,∴-2m 2-m =-4,∴3m 2018-m 2019-2m 2020=m 2018×(3-m -2m 2)=m 2018×(3-4)=m 2018×(-1)=-m 2018,故选:B .2.如图,有一张边长为b 的正方形纸板,在它的四角各剪去边长为a 的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M 表示其底面积与侧面积的差,则M 可因式分解为( )A .()()62b a b a --B .()()32b a b a --C .()()5b a b a --D .()22b a -【详解】解:底面积为(b ﹣2a )2,侧面积为a •(b ﹣2a )•4=4a •(b ﹣2a ),∴M =(b ﹣2a )2﹣4a •(b ﹣2a ),提取公式(b ﹣2a ),M =(b ﹣2a )•(b ﹣2a ﹣4a ),=(b ﹣6a )(b ﹣2a )故选:A .3.已知250x y -+=,则224201x y y -+-=______.【答案】24【详解】解:250x y -+=Q ,25x y \-=-,224201x y y \-+-()()22201x y x y y =+-+-()52201x y y =-++-5101x y =-+-()521x y =--- 251=-24=,故答案为:24.4.分解因式:2232x y xy y -+=____________.【答案】2()y x y -【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -5.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.22216x xy y -+-()216x y =--()()44x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+;(3)△ABC 三边a 、b 、c 满足2222220a c b ab bc ++--=,判断△ABC 的形状并说明理由.【答案】(1)()()3535a b a b ---+;(2)()()222x y x y -+-;(3)△ABC 是等边三角形,理由见解析【解析】(1)解:226925a ab b -+-()2325a b =--()()3535a b a b =---+;(2)解:22424x y x y--+()()()2222x y x y x y =-+--()()222x y x y =-+-;(3)解:△ABC 是等边三角形,理由如下:∵2222220a c b ab bc ++--=,∴()()2222220a ab b c bc b -+-++=,∴()()220a b b c -+-=,∵()20a b -³,()20b c -³,∴a -b =0,且b -c =0,∴a =b ,且b =c ,∴a =b =c ,∴△ABC 是等边三角形.6.把下列各式因式分解:(1)2416x -;(2)23216164a b a ab --.【答案】(1)4(2)(2)x x +-(2)24(2)a a b --【解析】(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b éù=--+ëû24(2)a a b =--.7.(1)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.(2)已知ABC V 的三边长为a ,b ,c ,且满足220a b ac bc --+=,请判断ABC V 的形状.【答案】(1)答案见解析(2)ABC V 是等腰三角形【详解】(1)拼接如图:拼接成的长方形的面积还可以表示为一个正方形和三个长方形的面积之和:22212132x x x x x +++´=++g g ;拼接成的长方形的面积:长´宽()()21x x =++;∴据此可得到因式分解的式子为:()()23221++=++x x x x .故答案为:()()23221++=++x x x x .(2)∵220a b ac bc --+=,∴()()()0a b a b c a b +---=,∴()()0a b a b c -+-=.∵ABC V 的三边长为a ,b ,c ,∴a b c +>,∴0a b c +->,∴0a b -=,∴a b =,V是等腰三角形.∴ABCV是等腰三角形.故答案为:ABC。

初中数学方程组的解法及应用

初中数学方程组的解法及应用

第7讲方程组的解法及应用◆考点链接1.理解二元一次方程(组)的定义;二元一次方程(组)的解的定义.2.能灵活地运用代入消元法、加减消元法解二元一次方程组.3.会解简单的三元一次方程组.*4.会解简单的二元二次方程组.5.能利用方程组解应用题.注:标有“*”号的是选讲内容.◆典例精析【例题1】已知的解,求a,b的值.解题思路:根据解的定义可得到关于a,b的方程组.答案:a=2,b=-3【例题2】解方程组:(1)解题思路:(1)题可先将方程组中的各方程化简,再用代入法或加减法解二元一次方程组.也可设x+y=a,x-y=b用换元法解.(2)题应首先由一次方程得x=2y再代入二次方程消去x.答案:(1)【例题3】求使方程组的解x、y都是正数m的取值范围.解:由原方程组得,解得<m<7.评析:这是一道方程与不等式的综合试题,需求出方程组的解,才能建立满足条件的不等式组.◆探究实践【问题1】(重庆)某出租车公司有出租车100辆,•平均每天每车消耗的汽油为80元.为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4 000元.公司第一次改装了部分车辆后核算:•已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费的,公司第二次再改造同样多的车辆后,所有改造后的车辆每天的燃料费占剩下未改装车辆每天燃料费的.问:(1)公司共改装了多少辆出租车?•改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节约的燃料费中收回成本?解题思路:抓住改装后的车辆每天的燃料费占未改装车辆每天燃料费的分率,建立方程组是解此题的关键.解:设公司第一次改装了y辆出租车,•改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降的百分数为x.答:公司第一次改装了20辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%.(2)设公司一次性将全部出租车改装,m天后就可以从节约的燃料费中收回成本.则100×80×40%×m=4000×100,解得m=125.答:125天后,就可以从节省的燃料费中收回成本.【问题2】(枣庄)某水果批发市场香蕉的价格如下表:购买香蕉数(kg)不超过20kg20kg以上但不超过40kg40kg以上每千克价格6元5元4元张强两次共购买香蕉50kg(第二次多于第一次),共付款264元,•请问张强第一次、第二次各购买香蕉多少千克?解:设张强第一次购买香蕉x(kg),第二次购买香蕉y(kg),由题意,得0<x<25.由0<x≤20,y≤40时,由题意,得(2)当0<x≤20,y>40时,由题意,得(不合题意,舍去)(3)当20<x<25时,25<y<30,此时张强用去的款项为5x+5y=5(x+y)=5•×50=•250<264(不合题意,舍去).综合(1)(2)(3)可知,张强第一次购买香蕉14kg,第二次购买香蕉36kg.评析:充分利用表中信息,分段讨论及解答是解此类题的关键.◆中考演练一、选择题1.下列各方程中,是二元一次方程的为().A.x2+2y=9 B.x+=2 C.xy-1=0 D.+y=42.若是方程kx-y=3的解,那么k值是().A.2 B.-2 C.1 D.-13.(济南)如图,是在同一坐标系内作出的一次函数y1,y2的图象,设y1=k1x+b1,y2=k2x+b2,则方程组的解是().A.二、填空题1.已知关于x、y的方程xm-2-4yn-3=0是二元一次方程,则2m+n=________.2.已知方程3x+6y=8,则用含x的代数式表示y,则y=_______.3.若一个二元一次方程的解为,则这个方程可以是______(只要求写出一个).三、解答题1.解方程组:(1)2.(恩施)某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,•小的每间可住5人,该校198个住宿生恰好住满这30间宿舍,问大、小宿舍各有多少间?◆实战模拟一、选择题1.已知方程组有相同的解,则a、b的值为().A.2.若方程组的解x,y满足0<x+y<1,则k的取值范围是().A.2<k<3 B.-1<k<0 C.-3<k<1 D.1<k<23.《九章算术》是我国东汉初年编订的一部数学经典著作,在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x、y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2•所示的算筹图我们可以表述为().(1) (2)A.二、填空题1.已知方程组的解x与y的和是2,则a=_______.2.已知代数式kx+my+z中,当x=-1,y=3,z=4时,它的值等于0;当x=-1,y=-2,z=1时,它的值等于4,则k=_____,m=_____.3.关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k•的值是________.三、解答题:1.解下列各题:(1)在某校举办的足球赛中规定:胜一场得3分,平一场得1分,负一场得0分.九年级三班足球队参加了12场比赛,共得22分,已知这个球队只输了2场,那么这支足球队胜了几场?平几场?(2)如图,在3×3的方程中,填写了一些代数式和数.①在图3中各行,各列及对角线上三个数之和都相等,请你求出x,y的值;②把满足(1)的其他6个数填入图4中的方格内.(3) (4)2.(盐城)某校书法兴趣准备到文具店购买A,B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20支时,按零售价销售;超过20支时,•超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B型毛笔不超过15支时,•按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.(1)如果全组共有20名同学,若每人各买1支A型毛笔和2支B型毛笔,共支付145元;若每人各买2支A型毛笔和1支B型毛笔,共支付129元.这家文具店的A,B•两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对A型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的A型毛笔的零售价)的90%出售,现要购买A型毛笔a支(a>40),在新的销售方法和原销售方法中,•应选择哪种方法购买花钱较少?并说明理由.答案:中考演练一、1.D 2.A 3.B二、1.10 2.y= 3.x+2y=0三、1.(1)2.学校大的宿舍有16间,小的宿舍有14间实战模拟一、1.D 2.C 3.A二、1.5 2.-,-3.三、1.(1)胜6场,平4场(2)①x=-1,y=1 ②略2.(1)A型毛笔每支2元,B型毛笔每支3元(2)如果按原来的销售方法购买a支A型毛笔共需m元则m=20×2+(a-20)×(2-0.4)=1.6a+8如果按新的销售方法购买a支A型毛笔共需n元,则n=a×2×90%=1.8a,于是n-m=1.8a-(1.6a+8)=0.2a-8,∵a>40,∴0.2a>8,∴n-m>0可见,当a>40时,用新的方法购买得的A型毛笔花钱多,故用原来的方法购买花钱少.。

部编数学七年级上册专题07一元一次方程的应用(12大考点)专题讲练(解析版)含答案

部编数学七年级上册专题07一元一次方程的应用(12大考点)专题讲练(解析版)含答案

专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。

1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题¾¾¾®分析抽象方程¾¾¾®求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。

在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。

长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。

我们称这类关系为约定型数量关系。

3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。

我么把这类数量关系称为基本数量关系。

单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。

3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。

初升高数学 专题 方程与方程组的解法(解析版)

初升高数学 专题 方程与方程组的解法(解析版)

专题07 方程与方程组的解法一、知识点精讲 一元一次方程⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

⑶关于方程ax b =解的讨论 ①当0a ≠时,方程有唯一解b x a=; ②当0a =,0b ≠时,方程无解③当0a =,0b =时,方程有无数解;此时任一实数都是方程的解。

二元一次方程在一个方程中,含有两个未知数,并且未知数的指数是1,这样的方程叫二元一次方程。

二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。

(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

(4)解二元一次方程组的方法:①代入消元法,②加减消元法③整体消元法,。

二、典例精析 ①一元高次方程的解法 思想:降次方法:换元、因式分解等 【典例1】解方程. (1)4213360x x -+= (2)63980x x -+= 【答案】见解析 【解析】(1)422213360(4)(9)02 3.x x x x x x -+=⇔--=⇔=±=±或(2)6333980(1)(8)1 2.x x x x x x -+=⇔--⇔==或【典例2】解方程.(1)32+340x x x -= (2)3210x x -+= 【答案】见解析 【解析】(1)322+340(34)0(4)(1)04 1.x x x x x x x x x x x -=⇔+-=⇔+-⇔==-=或或(2)33221010(1)(1)1x x x x x x x x x x -+=⇔--+=⇔-+-⇔==或 ②方程组的解法 解方程组的思想:消元解方程组的方法:①代入消元法,②加减消元法,③整体消元法等。

【典例3】解方程组.347(1)295978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩ 3(2)45x y y z z x +=⎧⎪+=⎨⎪+=⎩【答案】见解析 【解析】53471(1)29359782x x z x y z y x y z z =⎧+=⎧⎪⎪⎪++=⇒=⎨⎨⎪⎪-+=⎩⎪=-⎩3(2)45x y y z z x +=⎧⎪+=⎨⎪+=⎩213x y z =⎧⎪⇒=⎨⎪=⎩【典例4】解方程组222104310x y x y x y --=⎧⎨-++-=⎩【答案】见解析 【解析】222104310x y x y x y --=⎧⎨-++-=⎩81151115x x y y ⎧=⎪=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩或 【典例5】解方程组.7(1)10x y xy +=⎧⎨=⎩225(2)2x y xy ⎧+=⎨=⎩【答案】见解析 【解析】7(1)10x y xy +=⎧⎨=⎩2552x x y y ==⎧⎧⇒⎨⎨==⎩⎩或225(2)2x y xy ⎧+=⎨=⎩12-1-221-2-1x x x x y y y y ====⎧⎧⎧⎧⇒⎨⎨⎨⎨====⎩⎩⎩⎩或或或【典例6】解方程组. 2210(1)341xy x y x y --+=⎧⎨+=⎩222234340(2)25x xy y x y x y ⎧---+=⎪⎨+=⎪⎩【答案】见解析 【解析】2210(1)341xy x y x y --+=⎧⎨+=⎩由①得11x ==或y 分别带入②式可得没有这样的,x y 满足条件,∴该方程组无解。

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

专题07 数列专题(数学文化)一、单选题1.(2022·全国·高三专题练习)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)( ). A .一尺五寸 B .二尺五寸C .三尺五寸D .四尺五寸【答案】B【分析】十二个节气日影长构成一个等差数列{}n a ,利用等差数列通项公式、前n 项和公式列出方程组,求出首项和公差,由此能求出芒种日影长. 【详解】由题意知:∴从冬至日起,依次小寒、大寒等十二个节气日影长构成一个等差数列{}n a ,设公差为d ,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,∴147191393159898552a a a a d S a d ++=+=⎧⎪⎨⨯=+=⎪⎩,解得1135a =,10d =−, ∴芒种日影长为12111135111025a a d =+=−⨯=(寸)2=尺5寸.故选:B2.(2022秋·陕西咸阳·高二武功县普集高级中学校考阶段练习)河南洛阳龙门石窟是中国石刻艺术宝库,现为世界非物质文化遗产之一.某洞窟的浮雕共7层,它们构成一幅优美的图案.若从下往上计算,从第二层开始,每层浮雕像的个数依次是下层个数的2倍,且第三层与第二层浮雕像个数的差是16,则该洞窟的浮雕像的总个数为( ) A .1016 B .512 C .128 D .1024【答案】A【分析】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,分析可知数列{}n a 为等比数列,且公比为2,根据已知条件求出1a 的值,利用等比数列求和公式可求得结果.【详解】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,由题意可知,数列{}n a 为等比数列,且该数列的公比为2,由已知可得3222216a a a a −=−=,可得216a =,故2182a a ==, 因此,该洞窟的浮雕像的总个数为()78128127101612−=⨯=−.故选:A.3.(2022秋·广东广州·高二华南师大附中校考阶段练习)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的13是较小的两份之和,则最小的一份为( ) A .5 B .10 C .15 D .30【答案】B【分析】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >),则由总和为100可求得20a =,再由较大的三份之和的13是较小的两份之和,可得123d a =,从而可求出d ,进而可求出2a d −【详解】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >), 则有()()()()225100a d a d a a d a d a −+−+++++==, ∴20a =,由()232a a d a d a d a d ++++=−+−,得()33323a d a d +=−; ∴123d a =, ∴5d =.∴最少的一份为2201010a d −=−=. 故选:B4.(2022·河北邯郸·统考模拟预测)位于丛台公园内的武灵丛台已经成为邯郸这座三千年古城的地标建筑,丛台上层建有据胜亭,其顶部结构的一个侧面中,自上而下第一层有2块筒瓦,以下每一层均比上一层多2块筒瓦,如果侧面共有11层筒瓦且顶部4个侧面结构完全相同,顶部结构共有多少块筒瓦?( )A .440B .484C .528D .572【答案】C【分析】由题意知每层筒瓦数构成等差数列{}n a,由等差数列求和公式可求得每一面的筒瓦总数,由此可得四个侧面筒瓦总数.【详解】一个侧面中,第一层筒瓦数记为2,自上而下,由于下面每一层比上一层多2块筒瓦,∴每层筒瓦数构成等差数列{}n a,其中12a=,2d=.一个侧面中共有11层筒瓦,∴一个侧面筒瓦总数是()1111111221322⨯−⨯+⨯=,∴顶层四个侧面筒瓦数总和为1324528⨯=.故选:C.5.(2023·全国·高三专题练习)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,2n放置在n行n列()3n≥的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()图1 图2A.91B.169C.175D.180【答案】C【分析】根据“幻和”的定义,将自然数1至2n 累加除以n 即可得结果. 【详解】由题意,7阶幻方各行列和,即“幻和”为12 (49)1757+++=.故选:C6.(2022·全国·高三专题练习)斐波那契数列,又称黄金分割数列,该数列在现代物理、准晶体结构、化学等领域有着非常广泛的应用,在数学上,斐波那契数列是用如下递推方法定义的:121a a ==,()*123,.n n n a a a n n N −−=+≥∈ 已知2222123mma a a a a ++++是该数列的第100项,则m =( )A .98B .99C .100D .101【答案】B【分析】根据题意推出2121a a a =,222321a a a a a =−,L ,211m m m m m a a a a a +−=−, 利用累加法可得211mi m m i a a a +==∑,即可求出m 的值.【详解】由题意得,2121a a a =,因为12n n n a a a −−=−,得222312321()a a a a a a a a =−=−,233423432()a a a a a a a a =−=−,L ,21111()m m m m m m m m a a a a a a a a +−+−=−=−,累加,得222121m m m a a a a a ++++=,因为22212m ma a a a +++是该数列的第100项,即1m a +是该数列的第100项,所以99m =. 故选:B.7.(2022春·河南南阳·高二校联考阶段练习)南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第50层球的个数为( )A .1255B .1265C .1275D .1285【答案】C【分析】根据题中给出的图形,结合题意找到各层球的个数与层数的关系,得到(1)2n n n a +=,进而求解结论.【详解】解:设各层球的个数构成数列{}n a ,由题意可知,11a =,21212a a =+=+,323123a a =+=++,⋯,1123n n a a n n −=+=+++⋯+, 故(1)1232n n n a n +=+++⋯+=, 50505112752a ⨯∴==, 故选:C .8.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成三段,去掉中间的一段,剩下两个闭区间1[0,]3和2[,1]3;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:1[0,]9,21[,]93,27[,]39,8[,1]9;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是( ).A .7B .8C .9D .10【答案】A【分析】根据三分康托集的构造过程可知:经历第n 步,每个去掉的开区间以及留下的闭区间的区间长度都是13n⎛⎫⎪⎝⎭,根据规律即可求出20212022属于1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,进而根据不等式可求解.【详解】20212022不属于剩下的闭区间,20212022属于去掉的开区间经历第1步,剩下的最后一个区间为2[,1]3,经历第2步,剩下的最后一个区间为8,19⎡⎤⎢⎥⎣⎦,……,经历第n步,剩下的最后一个区间为1113n⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦,,去掉的最后开区间为1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭由120111121320223n n⎛⎫⎛⎫−⨯<<−⎪ ⎪⎝⎭⎝⎭化简得4044320223nn⎧>⎨<⎩,解得7n=故选:A9.(2022春·江苏南通·高二统考期末)“埃拉托塞尼筛法”是保证能够挑选全部素数的一种古老的方法.这种方法是依次写出2和2以上的自然数,留下头一个2不动,剔除掉所有2的倍数;接着,在剩余的数中2后面的一个数3不动,剔除掉所有3的倍数;接下来,再在剩余的数中对3后面的一个数5作同样处理;……,依次进行同样的剔除.剔除到最后,剩下的便全是素数.在利用“埃拉托塞尼筛法”挑选2到30的全部素数过程中剔除的所有数的和为()A.333B.335C.337D.341【答案】B【分析】根据给定条件,求出230的全部整数和,再求出2到30的全部素数和即可计算作答.【详解】2到30的全部整数和123029464 2S+=⨯=,2到30的全部素数和22357111317192329129S=+++++++++=,所以剔除的所有数的和为464129335−=.故选:B10.(2022·全国·高三专题练习)谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).则下列埃及分数113⨯、135⨯、157⨯、L、120212023⨯的和是()A.20222023B.20232022C.10112023D.20231011【答案】C【分析】利用裂项相消法可求得结果.【详解】当N n *∈时,()()1111212122121n n n n ⎛⎫=− ⎪−+−+⎝⎭,因此,11111111111111335572021202323355720212023⎛⎫++++=−+−+−++− ⎪⨯⨯⨯⨯⎝⎭1110111220232023⎛⎫=−=⎪⎝⎭. 故选:C.11.(2022春·四川资阳·高一统考期末)《算法统宗》是中国古代数学名著,书中有这样一个问题:九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.意为:996斤棉花,分别赠送给8个子女做旅费,从第二个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝顺子女的美德外传.据此,前五个孩子共分得的棉花斤数为( ) A .362 B .430 C .495 D .645【答案】C【分析】设这八个孩子分得棉花的斤数构成等差数列{}n a ,由题设求得其首项与公差,即可求得结果. 【详解】解:设这八个孩子分得棉花的斤数构成等差数列{}n a , 由题意知:公差17d =, 又12381878179962a a a a a ⨯+++⋯+=+⨯=,解得165a =, 故412351545455651749522a a a a a d a ⨯⨯++=+=⨯⨯=+++. 故选:C .12.(2022秋·江苏淮安·高三校考阶段练习)天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,2022年是壬寅年,请问:在100年后的2122年为( ) A .壬午年 B .辛丑年C .己亥年D .戊戌年【答案】A【分析】将天干和地支分别看作等差数列,结合1001010÷=,1001284÷=,分别求出100年后天干为壬,地支为午,得到答案.【详解】由题意得:天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于1001010÷=,余数为0,故100年后天干为壬,由于1001284÷=,余数为4,故100年后地支为午,综上:100年后的2122年为壬午年.故选:A13.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所以论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”,现有高阶等差数列,其前6项分别为1,5,11,21,37,61,……则该数列的第8项为()A.99B.131C.139D.141【答案】D【分析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为x,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:根据规律补全:由图可得341295yx y−=⎧⎨−=⎩,则14146xy=⎧⎨=⎩.故选:D14.(2023春·广西柳州·高三统考阶段练习)《九章算术》中有一题:今有牛、马、羊、猪食人苗,苗主责之粟9斗,猪主曰:“我猪食半羊.”羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?其意是:今有牛、马、羊、猪吃了别人的禾苗,禾苗主人要求赔偿9斗粟,猪主人说:“我猪所吃的禾苗只有羊的一半.”羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比率偿还,牛、马、羊、猪的主人各应赔偿多少粟?在这个问题中,马主人比猪主人多赔偿了()斗.A .35B .95C .3D .215【答案】B【分析】转化为等比数列进行求解,设出未知数,列出方程,求出马主人比猪主人多赔偿了斗数. 【详解】由题意得:猪、羊、马、牛的主人赔偿的粟斗数成等比数列,公比为2, 设猪的主人赔偿的粟斗数为x , 则2489x x x x +++=,解得:35x =,故马主人赔偿的粟斗数为1245x =, 所以马主人比猪主人多赔偿了斗数为1239555−=. 故选:B15.(2021秋·河南商丘·高二校联考期中)《莉拉沃蒂》是古印度数学家婆什迦罗的数学名著,书中有下面的表述:某王为夺得敌人的大象,第一天行军2由旬(由旬为古印度长度单位),以后每天均比前一天多行相同的路程,七天一共行军80由旬到达地方城市.下列说法正确的是( ) A .前四天共行1877由旬 B .最后三天共行53由旬C .从第二天起,每天比前一天多行的路程为237由旬 D .第三天行了587由旬 【答案】D【分析】由题意,每天行军的路程{}n a 为等差数列,且12a =,780S =,利用基本量1,a d 表示可得227d =,依次分析,即得解 【详解】由题意,不妨设每天行军的路程为数列{}n a ,则12a =又以后每天均比前一天多行相同的路程,故{}n a 构成一个等差数列,不妨设公差为d 七天一共行军80由旬,即780S = 故71767802S a d ⨯=+=,解得227d =4143188427S a d ⨯=+=,A 错误;567741883728077a a a S S ++=−=−=,B 错误; 由于227d =,故从第二天起,每天比前一天多行的路程为227由旬,C 错误;31225822277a a d =+=+⨯=,D 正确 故选:D16.(2022·全国·高三专题练习)“垛积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫− ⎪⎝⎭万元,则n 的值为( )A .9B .10C .11D .12【答案】B【分析】先依次求出各层货物总价,再利用裂项抵消法进行求解. 【详解】由题意,得第一层货物总价为1万元,第二层货物总价为9210⨯万元, 第三层货物总价为293()10⨯万元,……,第n 层货物总价为19()10n n −⨯万元.设这堆货物总价为y 万元, 则21999123()()101010n y n −=+⨯+⨯+⋅⋅⋅+⨯ 23999992()3()()1010101010n y n =+⨯+⨯+⋅⋅⋅+⨯, 两式相减,得2311999991+()()()()101010101010n n y n −=+++⋅⋅⋅+−⨯,即91()199910()1010()()910101010110nn n n y n n −=−⋅=−⨯−⋅−,则999100100()10()=100(10010)()101010n n ny n n =−⨯−⋅−+⨯,令99100(10010)()=100200()1010n ny n =−+⨯−⨯,得10n =. 故选:B.17.(2021秋·吉林松原·高二长岭县第三中学校考阶段练习)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,则当42m =时,则使1n a =需要的雹程步数为( ) A .7 B .8 C .9 D .10【答案】B1n a =使得需要多少步雹程.【详解】解:根据题意,当42m =,根据上述运算法则得出42→21→64→32→16→8→4→2→1, 所以共需经过8个步骤变成1,故使1n a =需要的雹程步数为8. 故选:B18.(2022·全国·高三专题练习)意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足11a =,21a =,()*123,n n n a a a n n −−=+≥∈N .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则其中不正确结论的是( )A .2111n n n n S a a a +++=+⋅ B .12321n n a a a a a +++++=−C .1352121n n a a a a a −++++=−D .()121)4(3n n n n c c a n a π−−+−≥=⋅【答案】C【分析】A 选项由前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形即可判断;B 选项由()*123,n n n a a a n n −−=+≥∈N 结合累加法即可判断;C 选项通过特殊值检验即可;D 选项表示出221111,44n n n n c a c a ππ−−==,作差即可判断. 【详解】由题意知:前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形,其面积为()211111n n n n n n n S a a a a a a +++++=+=+,A 正确;32143221,,,n n n a a a a a a a a a ++=+=+=+,以上各式相加得,()34223112()n n n a a a a a a a a a +++++=+++++++,化简得2212n n a a a a a +−=+++,即1221n n a a a a ++++=−,B 正确;12345613561,2,3,5,8,817a a a a a a a a a a ======∴++=≠−=,C 错误;易知221111,44n n n n c a c a ππ−−==,()()()221111214()(3)n n n n n n n n n n c c a a a a a a a a n πππ−−−−−+∴−=−=−+=≥,D 正确.故选:C.19.(2023·全国·高三专题练习)如图是美丽的“勾股树”,将一个直角三角形分别以它的每一条边向外作正方形而得到如图①的第1代“勾股树”,重复图①的作法,得到如图②的第2代“勾股树”,…,以此类推,记第n 代“勾股树”中所有正方形的个数为n a ,数列{}n a 的前n 项和为n S ,若不等式2022n S >恒成立,则n 的最小值为( )A .7B .8C .9D .10【答案】C【分析】根据第1代“勾股树”,第2代“勾股树”中,正方形的个数,以此类推,得到第n 代“勾股树”中所有正方形的个数,即n a ,从而得到n S 求解.【详解】解:第1代“勾股树”中,正方形的个数为11321+=−,第2代“勾股树”中,正方形的个数为21721+=−,…, 以此类推,第n 代“勾股树”中所有正方形的个数为121n +−,即121n n a +=−,所以()24122412n n n S n n +−=−=−−−,因为0n a >,所以数列{}n S 为递增数列, 又810122022S =<,920352022S =>, 所以n 的最小值为9. 故选:C .20.(2022·海南省直辖县级单位·“贾宪三角”,后被南宋数学家杨辉引用、n 维空间中的几何元素与之有巧妙联系、例如,1维最简几何图形线段它有2个0维的端点、1个1维的线段:2维最简几何图形三角形它有3个0维的端点,3个1维的线段,1个2维的三角形区域;……如下表所示.从1维到6维最简几何图形中,所有1维线段数的和是( )A .56B .70C .84D .28【答案】A【分析】根据题意可得1n n a a n −−=,可求得()12n a n n +=,即可求解. 【详解】设从1维到n 维最简几何图形的1维线段数构成数列{}n a , 由题意可得21312a a −=−=,32633a a −=−=,431064a a −=−=,…, 以此类推,可得1n n a a n −−=, 所以()()()121321n n n a a a a a a a a −=+−+−++−()11232n n n +=++++=,所以12345613610152156a a a a a a +++++=+++++=. 故选:A.21.(2023·全国·高三专题练习)大衍数列,来源于中国古代著作《乾坤普》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50,通项公式为221,2,2n n n a n n ⎧−⎪⎪=⎨⎪⎪⎩为奇数为偶数,若把这个数列{}n a 排成下侧形状,并记),A m n 表示第m 行中从左向右第n 个数,则()9,5A 的值为( )A .2520B .2312C .2450D .2380【答案】D【分析】确定()9,5A 在数列{}n a 中的项数,结合数列{}n a 的通项公式可求得结果.【详解】由题可知,设数阵第n 行的项数为n b ,则数列{}n b 是以1为首项,公差为2的等差数列, 数列{}n b的前8项和为87182642⨯⨯+⨯=,所以,()9,5A 是数列{}n a 的第64569+=项,因此,()26919,523802A −==.故选:D.22.(2022·全国·高三专题练习)在归国包机上,孟晚舟写下《月是故乡明,心安是归途》,其中写道“过去的1028天,左右踟躇,千头万绪难抉择;过去的1028天,日夜徘徊,纵有万语难言说;过去的1028天,山重水复,不知归途在何处.”“感谢亲爱的祖国,感谢党和政府,正是那一抹绚丽的中国红,燃起我心中的信念之火,照亮我人生的至暗时刻,引领我回家的漫长路途.”下列数列{}()N n a n *∈中,其前n 项和不可能为1028的数列是( ) (参考公式:2222(1)(21)1236n n n n ++++++=)A .1028n a n =+B .2744125n a n n =−+C .127(1)45n n a n +=−−D .1122n n a −=+【答案】A【分析】利用等差数列、等比数列的前n 项和公式以及参考公式求数列{}n a 前n 项和n S ,令1028n S =,看是否有正整数解即可判定选项A 、B 、D 的正确性;通过分类讨论分别求出2k S 和21k S −,然后可得到20k S <,令211028k S −=,看是否有正整数解即可选项C 的正确性. 【详解】设数列{}n a 的前n 项和为n S , 对于A :由等差数列的前n 项和公式,得: 1()(533)10282n n n a a S n n +==+=, 因为方程无正整数解,即选项A 错误;对于B :不妨令24n b n =,74125n c n =−+, 数列{}n b 和{}n c 的前n 项和分别为n T 和n Q , 则n n n a b c =+,n n n S T Q =+,由参考公式和等差数列的前n 项和公式,得: 22(1)(21)4(123)3n n n n T n ++=++++=,21()44625n n n c C Q n n +==−+, 所以22(1)(21)446102835n n n n n n S T Q n n ++=+=−+=,解得*10N n =∈,即选项B 正确; 对于C :①当*N )2(n k k =∈时, 222222271234(21)(2)245n k S S k k k ==−+−++−−−⨯ 14(3741)045kk =−+++−−<,故此时1028n S ≠; ②当()*21N n k k =−∈时, 22222222171234(23)(22)(21)(21)45n k S S k k k k −==−+−++−−−+−−− 27(3745)(21)(21)45k k k =−++⋅⋅⋅+−+−−− 2(1)(345)7(21)(21)245k k k k −+−=−+−−−27232(21)45k k k =−+−− 令27232(21)102845k k k −+−−=,解得23k =, 即223145n =⨯−=时,1028n S =, 即选项C 正确;对于D :由等比数列的前n 项和公式可知,1(12)112110281222n n n S n n ⨯−=+=+−=−,解得*10N n =∈,即选项D 故选:A .23.(2023·全国·高三专题练习)大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50,则此数列的第21项是( ) A .200 B .210C .220D .242【答案】C【分析】由数列奇数项的前几项可归纳出奇数项上的通项公式,从而得到答案.【详解】根据题意,数列的前10项依次是0、2、4、8、12、18、24、32、40、50,其中奇数项为0、4、12、24、40,有22221357113151710,4,12,24,2222a a a a −−−−========⋯故其奇数项上的通项公式为21,2n n a −=故221211=2202a −=, 故选:C24.(2022春·云南红河·高二弥勒市一中校考阶段练习)斐波那契数列(Fibonacci Sequence )又称黄金分割数列,因数学家列昂纳多,斐波那契(Leonardo Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波纳契数列被以下递推的方法定义:数列{}n a 满足:12211,n n n a a a a a ++===+,现从数列的前2022项中随机抽取1项,能被3整除的概率是( ) A .5052022B .2522022C .5042022 D .14【答案】A【分析】依次写出数列各项除以3所得余数,寻找后可得结论.【详解】根据斐波那契数列的定义,数列各项除以3所得余数依次为1,1,2,0,2,2,1,0,1,1,2,…,余数数列是周期数列,周期为8,202225286=⨯+,所以数列的前2022项中能被3整除的项有25221505⨯+=,所求概率为5052022P =, 故选A .25.(2022·高二课时练习)分形几何学是一门以不规则几何形态为研究对象的几何学,它的研究对象普遍存在于自然界中,因此又被称为“大自然的几何学”.按照如图1所示的分形规律,可得如图2所示的一个树形图.若记图2中第n n a ,则6a =( )A .55B .58C .60D .62【答案】A【分析】n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,由题意可得112,n n n n n n a a b b a b ++=+=+,根据初始值,由此递推,不难得出所求.【详解】已知n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,则由于每个白圈产生下一行的一白一黑两个圈,一个黑圈产生下一行的一个白圈2个黑圈,∴112,n n n n n n a a b b a b ++=+=+, 又∵110,1a b ==; 221,1a b ==;332113112a b =⨯+==+=,; 442328,325a b =⨯+==+=;5528521,8513a b =⨯+==+=; 62211355a =⨯+=,故选:A.26.(2022·全国·高三专题练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (n x ',n y '),则200n nn y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .1000【答案】C【分析】求出n n y y '、 ,用错位相减法求和即可.【详解】由条件可得()2020011920011.11 1.12 1.120 1.121 1.1n n nn n y y n =='=+=⨯+⨯++⨯+⨯∑∑①,所以2012202101.11 1.12 1.120 1.121 1.1n nn y y ='⨯=⨯+⨯++⨯+⨯∑②,-②得:2120120212101 1.10.1 1.1 1.1 1.121 1.121 1.11 1.1=−'−⨯=+++−⨯=−⨯−∑n nn y y ,2121221 1.10.121 1.11 1.118.1491.40.10.10.1−+⨯⨯++====−−−−,所以20914n nn y y ='=∑. 故选:C.27.(2022秋·陕西渭南·高二校考期中)图1是中国古代建筑中的举架结构,AA ',BB ',CC ',DD '是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中1DD ,1CC ,1BB ,1AA 是举,1OD ,1DC ,1CB ,1BA 是相等的步,相邻桁的举步之比分别为110.5DD OD =,111CC k DC =,121BBk CB =,131AA k BA =,已知1k ,2k ,3k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则2k =( )A .0.75B .0.8C .0.85D .0.9【答案】B【分析】设1111OD DC CB BA ===,则可得关于2k 的方程,求出其解后可得正确的选项 【详解】设11111OD DC CB BA ====,则10.5,DD =111213,,CC k BB k AA k ===, 依题意,有21230.1,0.1k k k k −=+=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以20.530.7254k +=,故20.8k =, 故选:B28.(2022秋·陕西咸阳·高二校考阶段练习)《张邱建算经》记载了这样一个问题:“今有马行转迟,次日减半,疾七日,行七百里”,意思是“有一匹马行走的速度逐渐变慢,每天走的路程是前一天的一半,连续走了7天,共走了700里”.在上述问题中,此马第二天所走的路程大约为( ) A .170里 B .180里C .185里D .176里【答案】D【分析】根据题意,可知此马每天走的路程形成等比数列,利用等比数列的前n 项和公式求得基本量,从而得解.【详解】由题意得,设这匹马的第n 天走的路程为n a ,则有112n n a a +=,7700S =, 所以数列{}n a 是12q =的等比数列, 故71112700112a ⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦=−,解得1350128127a ⨯=,所以21175128176.4127a a q =⨯=≈. 故选:D.29.(2022秋·广东广州·高三校联考阶段练习)如图所示的三角形叫“莱布尼兹调和三角形”,它们是由整数的倒数组成,第n 行有n 个数且两端的数均为()12n n≥,每个数是它下一行左右相邻的两数的和,如111111111,,1222363412=+=+=+⋅⋅⋅⋅⋅⋅,则第8行第4个数(从左往右数)为( )A .1280B .1168C .1140D .1105【答案】A【分析】利用“莱布尼兹调和三角形”的性质,依次运算即可. 【详解】设第n 行第m 个数为(),a n m ,则()15,15a =,()16,16a =,()17,17a =,()18,18a =,故()()()16,25,16,130a a a =−=,()()()17,26,17,142a a a =−=,()()()18,27,18,156a a a =−=,()()()17,36,27,2105a a a =−=,()()()18,37,28,2168a a a =−=,()()()18,47,38,3280a a a =−=, 故选:A.二、多选题30.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)朱世杰是历史上伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天比前一天多派7人,官府向修筑堤坝的每人每天发放大米3升.”则下列结论正确的有( ) A .将这1864人派谴完需要16天 B .第十天派往筑堤的人数为134 C .官府前6天共发放1467升大米D .官府前6天比后6天少发放1260升大米 【答案】ACD【分析】记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,依题意可得{}n a 是以64为首项,7为公差的等差数列,{}n b 是以192为首项,21为公差的等差数列,再根据等差数列的通项公式及前n 项和公式计算可得;【详解】解:记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,则{}n a 是以64为首项,7为公差的等差数列,即757n a n =+,{}n b 是以192为首项,21为公差的等差数列,即21171n b n =+,所以106479127a =+⨯=,B 不正确.设第k 天派遣完这1864人,则()716418642k k k −+=,解得16k =(负值舍去),A 正确; 官府前6天共发放6519262114672⨯⨯+⨯=升大米,C 正确, 官府前6天比后6天少发放211061260⨯⨯=升大米,D 正确. 故选:ACD31.(2022秋·山西太原·高二太原师范学院附属中学校考阶段练习)若正整数m .n 只有1为公约数,则称m ,n 互质,对于正整数k ,ϕ(k )是不大于k 的正整数中与k 互质的数的个数,函数ϕ(k )以其首名研究者欧拉命名,称为欧拉函数,例如:()21ϕ=,(3)2ϕ=,(6)2ϕ=,(8)4ϕ=.已知欧拉函数是积性函数,即如果m ,n 互质,那么()()()mn m n ϕϕϕ=,例如:(6)(2)(3)ϕϕϕ=,则( ) A .(5)(8)ϕϕ=B .数列(){}2n ϕ是等比数列 C .数列(){}6nϕ不是递增数列D .数列()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于35【答案】ABD【分析】根据欧拉函数定义及运算性质,结合数列的性质与求和公式,依次判断各选项即可得出结果. 【详解】(5)4,(8)4,(5)(8)ϕϕϕϕ==∴=,A 对;∵2为质数,∴在不超过2n 的正整数中,所有偶数的个数为12n −, ∴()11222=2ϕ−−−=nnn n 为等比数列,B 对;∵与3n 互质的数为1,2,4,5,7,8,10,11,,32,3 1.−−n n共有11(31)323n n −−−⋅=⋅个,∴1(3)23,ϕ−=⋅n n又∵()6=(2)(3)ϕϕϕn n n =126−⋅n ,∴()6ϕn一定是单调增数列,C 错;()1626nn ϕ−=⋅,()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为 111263131156516nn n S ⎡⎤⎛⎫−⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==−<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦−,D 对. 故选:ABD .32.(2022·全国·高三专题练习)我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马和驽马发长安至齐,良马初日行一百九十三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,九日后二马相逢.”其大意为今有良马和驽马从长安出发到齐国,良马第一天走193里,以后每天比前一天多走13里;驽马第一天走970.5里.良马先到齐国,再返回迎接驽马,9天后两马相遇.下列结论正确的是( ) A .长安与齐国两地相距1530里 B .3天后,两马之间的距离为328.5里 C .良马从第6天开始返回迎接驽马 D .8天后,两马之间的距离为377.5里 【答案】AB【分析】A, 设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,求出良马和驽马各自走的路程即得A 正确;B ,计算得到3天后,两马之间的距离为328.5里,即可判断B 正确; C,计算得到良马前6天共行走了1353里1530<里,故C 不正确;D ,计算得到8天后,两马之间的距离为390里,故D 不正确.【详解】解:设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题07 方程与方程组的解法
一、知识点精讲 一元一次方程
⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

⑶关于方程ax b =解的讨论 ①当0a ≠时,方程有唯一解b x a
=; ②当0a =,0b ≠时,方程无解
③当0a =,0b =时,方程有无数解;此时任一实数都是方程的解。

二元一次方程
在一个方程中,含有两个未知数,并且未知数的指数是1,这样的方程叫二元一次方程。

二元一次方程组:
(1)两个二元一次方程组成的方程组叫做二元一次方程组。

(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

(4)解二元一次方程组的方法:①代入消元法,②加减消元法③整体消元法,。

二、典例精析 ①一元高次方程的解法 思想:降次
方法:换元、因式分解等 【典例1】解方程. (1)4213360x x -+= (2)63980x x -+= 【答案】见解析 【解析】
(1)4222
13360(4)(9)02 3.x x x x x x -+=⇔--=⇔=±=±或
(2)6333
980(1)(8)1 2.x x x x x x -+=⇔--⇔==或
【典例2】解方程.
(1)32+340x x x -= (2)3210x x -+= 【答案】见解析 【解析】
(1)322
+340(34)0(4)(1)04 1.x x x x x x x x x x x -=⇔+-=⇔+-⇔==-=或或
(2
)33221010(1)(1)1x x x x x x x x x x -+=⇔--+=⇔-+-⇔==或 ②方程组的解法 解方程组的思想:消元
解方程组的方法:①代入消元法,②加减消元法,③整体消元法等。

【典例3】解方程组.
347(1)295978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩ 3(2)45x y y z z x +=⎧⎪
+=⎨⎪+=⎩
【答案】见解析 【解析】
5
3471(1)29359782x x z x y z y x y z z =⎧+=⎧⎪⎪⎪
++=⇒=⎨⎨⎪⎪
-+=⎩⎪=-⎩
3(2)45x y y z z x +=⎧⎪+=⎨⎪+=⎩213x y z =⎧⎪
⇒=⎨⎪=⎩
【典例4】解方程组22
210
4310x y x y x y --=⎧⎨-++-=⎩
【答案】见解析 【解析】
22
2104310x y x y x y --=⎧⎨-++-=⎩8115
1115x x y y ⎧
=
⎪=⎧⎪⇒⎨⎨=⎩⎪=
⎪⎩
或 【典例5】解方程组.
7(1)10x y xy +=⎧⎨=⎩
225(2)2x y xy ⎧+=⎨=⎩
【答案】见解析 【解析】
7(1)10x y xy +=⎧⎨=⎩2552x x y y ==⎧⎧⇒⎨⎨==⎩⎩

225(2)2x y xy ⎧+=⎨=⎩
12-1-2
21-2-1x x x x y y y y ====⎧⎧⎧⎧⇒⎨⎨⎨⎨====⎩⎩⎩⎩或或或
【典例6】解方程组. 22
10
(1)341xy x y x y --+=⎧⎨+=⎩
2222
34340(2)25x xy y x y x y ⎧---+=⎪⎨+=⎪⎩
【答案】见解析 【解析】
22
10(1)341xy x y x y --+=⎧⎨+=⎩
由①得11x ==或y 分别带入②式可得没有这样的,x y 满足条件,∴该方程组无解。

2222
34340(2)25x xy y x y x y ⎧---+=⎪⎨+=⎪⎩
44433334x x x x y y y y ==-==-⎧⎧⎧⎧⇒⎨⎨⎨⎨==-=-=⎩⎩⎩⎩或或或 【典例7】解方程组. 2222
315(1)331545x xy y x xy y ⎧++=⎪
⎨-+=-⎪⎩
22
22
4
41(2),(0,0)1611a b a b a b ⎧+=⎪⎪>>⎨⎪+=⎪⎩
【答案】见解析 【解析】
2222
315(1)331545x xy y x xy y ⎧++=⎪⎨-+=-⎪⎩
11223311x x x x y y y y ==-==-⎧⎧⎧⎧⇒⎨⎨⎨⎨==-==-⎩⎩⎩⎩或或或 22
224
41(2),(0,0)1611a b a b a
b ⎧+=⎪⎪>>⎨⎪+=⎪
⎩a b ⎧=⎪⇒⎨=⎪⎩
【典例8】已知二次函数2y ax bx c =++的图像经过(1,3),(2,7),(3,13)A B C 三点,求该二次函数的表达式.
【答案】见解析 【解析】
由题意得2
31
4271193131a b c a a b c b y x x a b c c ++==⎧⎧⎪⎪++=⇒=⇒=++⎨⎨⎪⎪++==⎩⎩
三.对点精练
1.已知二次函数的图像的对称轴为1x =且过(1,2),(2,4)A B ,求该二次函数的表达式. 【答案】见解析
【解析】由题意得2
122242444244
b
a a a
b
c b y x x a b c c ⎧-=⎪=⎧⎪⎪++=⇒=-⇒=-+⎨⎨⎪⎪++==⎩⎪

2.解方程
(1)3520x x --= (2)323460x x x +--= 【答案】见解析 【解析】
(1
)332520420(2)(21)021x x x x x x x x x x --=⇔---=⇔+--=⇔=-=±或(2

3232222
3460(246)0.(1)2(1)(3)0(1)(26)011x x x x x x x x x x x x x x x x +--=⇔++--=⇔+++-=⇔++-=⇔=-=-±或
3.解方程组.
15(1)239540x y z x y z x y z ++=⎧⎪+-=⎨⎪--=⎩
(2)34524x y z x y z ⎧==⎪⎨⎪++=⎩
【答案】见解析 【解析】
15(1)239540x y z x y z x y z ++=⎧⎪+-=⎨⎪--=⎩438x y z =⎧⎪
⇒=⎨⎪=⎩ (2)345
24x y z
x y z ⎧==
⎪⎨⎪++=⎩6810x y z =⎧⎪⇒=⎨⎪=⎩
4.解方程组.
2
1(1)21x y y x x -=⎧⎨=+-⎩ 2
21
(2)142
y x x y =+⎧⎪⎨+=⎪
⎩ 【答案】见解析 【解析】
2
1(1)21x y y x x -=⎧⎨=+-⎩
01
12x x y y ==-⎧⎧⇒⎨⎨=-=-⎩⎩或 221(2)142y x x y
=+⎧⎪⎨+=⎪
⎩x x y y ⎧⎧==⎪⎪
⎪⎪⇒⎨⎨⎪⎪==⎪⎪⎩⎩
或 5. 解方程组.
22330(1)143xy x y x y +++=⎧⎪⎨+=⎪⎩ 22220(2)122
x y x y x y ⎧-++=⎪⎨-=⎪⎩
【答案】见解析 【解析】
22330(1)143xy x y x y
+++=⎧⎪⎨+=⎪⎩113322x x y y =-=-⎧⎧⎪⎪⇒⎨⎨==-⎪⎪⎩⎩或 22220(2)122x y x y x y ⎧-++=⎪⎨-=⎪
⎩3212
x y ⎧=-⎪⎪⇒⎨⎪=-⎪⎩
6. 解方程组
.11
a b a b c ⎧
⎪=⎪⎪
+==⎨⎪=
【答案】见解析 【解析】据题意0b ≥
111(11221
1111a a a b a b a b a b c a a c a a c b b c c ⎧⎧⎧==⎧⎧⎪⎪⎪⎪⎪⎪⎪==-=⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪+==⇔+==+-==⇔=-=⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=⎪⎪====⎪⎪⎪⎪⎩⎩
或)。

相关文档
最新文档