大学物理力学—质点运动学和定律
大学物理质点力学第一章 质点运动学 PPT
方向:
cosa
=
x r
cosβ=
y r
cosγ=
z r
路程:质点所经路径得总长度。
三、速度
描述位置矢量随时间变化快慢得物理量
1、平均速度
在移质为点r由)A,到单B的位过时程间中内(的所平用均时位间移为称为t该,质所点发在生该的过位
程中的平均速度。
v
=
Δ Δ
r t
=
Δx Δt
i
+ΔΔ
y t
j
+
Δ Δ
0
Δx
Δ t —割线斜率(平均速度)
dx —切线斜率(瞬时速度) dt
x~t图
t tt
1
2
2、 v ~ t 图
v ~ t图
割线斜率:
Δv Δt = a
v v2
切线斜率:
dv dt
=a
v1
v ~ t 图线下得面积(位移):
0 t1
t2
x2
dt dx x2 x1 x
t1
x1
t2 t
3、 a ~ t 图
=
dθ
dt
B
Δθ A
θ
0
x
(3)、角加速度
β =ΔΔωt
β
=
lim
Δt
Δω
0Δ t
=ddωt
=ddθt2 2
(4)、匀变速率圆周运动
0
t
1 2
t2
0 t
2
2 0
2
(5)、线量与角量得关系
Δ s = rΔθ
lim Δ s
Δt 0Δ t
=
lim
Δt 0
r
Δθ
大学物理公式大全
第一章 质点运动学和牛顿运动定律平均速度 v =t△△r瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 ;速度随坐标变化公式:v 2-v 02=2a(x-x 0)自由落体运动 竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 抛体运动速度分量⎩⎨⎧-==gt a v v av v y x sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=g av 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2 向心加速度 a=Rv 2#圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==;牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
大学物理所有公式定理
-`第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式总结归纳
第一章 质点运动学和牛顿运动定律平均速度 v =t△△r1.2 瞬时速度 v=lim△t →△t △r =dtdr速度v=dtds==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度(加速度)a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=g av 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。
大学物理——第1章-质点运动学
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C
大学物理公式大全
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 2212022001.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v y x sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理刚体力学总结
大学物理刚体力学总结大学物理刚体力学总结大学物理刚体力学总结篇一:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr|?Δr2. v= a= dt dx d??d?? d2??dt3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at2 ????4. 匀加速直线运动:v= v0+at x= v02 v2-v02=2ax 215. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?tgt2 216. 圆周运动:角速度= dt Rdθ v 角加速度dt dω 加速度 a=an+at 法相加速度an==Rω2 ,指向圆心 Rv2 切向加速度at=Rα ,沿切线方向dt d??7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F=, p=mv dtd?? 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p= ??????=常矢量3. 质心的概念:质心的位矢 rc= ???????? 离散分布) m 或 rc = ??dmm (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。
6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= dtd?? 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。
大学物理学复习资料
大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
(完整版)大学物理所有公式
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学工程物理 第一章质点力学
例 题
质点作直线运动,运动方程为( ): 质点作直线运动,运动方程为(SI):
x = 12t − 6t
2
时质点的位置、 求 (1)t=4s时质点的位置、速度和加速度; ) 时质点的位置 速度和加速度; (2)质点通过原点时的速度和加速度; )质点通过原点时的速度和加速度; (3)质点速度为零时所在的位置。 )质点速度为零时所在的位置。 解:(1)由运动方程可得速度及加速度表达式为: )由运动方程可得速度及加速度表达式为: dx υ = = 12 − 12t dt dυ a= = −12 dt 时质点的位置、 在t=4s时质点的位置、速度和加速度分别为: 时质点的位置 速度和加速度分别为: -48m、-36m/s和-12m/s2。 、 和
dr = 2i − 2t j 解: v = dt
t = 0 v0 = 2i
t = 2 v2 = 2i − 4 j
−4 = −63 26′ 2
大小: v2 = 22 + 42 = 4.47m / s 大小: 方向: θ = arctan 方向:
v θ为 2与x轴的夹角
轴作直线运动,其位置坐标 坐标与时间的 例 一质点沿x轴作直线运动,其位置坐标与时间的 题 关系为 x=10+8t-4t2,求: x=10+8t质点在第一秒、第二秒内的平均速度。 (1)质点在第一秒、第二秒内的平均速度。 =0、 秒时的速度。 (2)质点在t=0、1、2秒时的速度。 解:() 时刻 1 t
= ∆xi + ∆yj + ∆zk
注 意 a) b)
位移是矢量, 位移是矢量,有大小和方向
Δr r1 o z A r2
∆ r 与∆r 的区别
为标量, ∆r为标量,∆r 为矢量
大学物理质点运动学总结
大学物理质点运动学总结质点运动学是物理学中的一个重要分支,研究物体在空间中的运动规律,对于理解物体的运动状态和运动规律具有重要意义。
在大学物理课程中,学习质点运动学是必不可少的一部分,下面我们来对大学物理质点运动学进行总结。
首先,我们要了解质点的基本概念。
质点是一个没有大小但有质量的物体,在运动学中,我们将物体视为质点来进行研究。
质点的运动状态可以用位置、速度和加速度来描述,这些是描述质点运动的基本物理量。
其次,我们要了解质点的运动规律。
根据牛顿运动定律,质点的运动状态受到力的影响,力是导致质点运动状态发生改变的原因。
根据牛顿第二定律,质点的加速度与作用在其上的合外力成正比,与质点的质量成反比。
这就是著名的F=ma公式,描述了质点的运动规律。
在质点运动学中,我们还需要了解匀速直线运动和变速直线运动。
在匀速直线运动中,质点在单位时间内位移相等,速度保持恒定;而在变速直线运动中,质点在单位时间内位移不等,速度不断发生变化。
这些运动规律对于我们理解质点的运动状态和运动规律具有重要意义。
此外,我们还需要了解曲线运动。
在曲线运动中,质点沿着曲线路径运动,速度和加速度的方向都会发生变化。
对于曲线运动,我们需要引入切线和法线的概念,以便更好地描述质点在曲线路径上的运动状态。
最后,我们需要了解相对运动。
在相对运动中,质点的运动状态是相对于其他物体或参考系来描述的。
相对运动涉及到相对速度和相对加速度的概念,通过这些概念,我们可以更好地描述质点在不同参考系下的运动状态。
总的来说,大学物理质点运动学是一个重要而复杂的学科,它涉及到质点的基本概念、运动规律、匀速直线运动、变速直线运动、曲线运动和相对运动等内容。
通过学习质点运动学,我们可以更好地理解物体的运动规律,为我们进一步学习和研究物理学奠定坚实的基础。
希望这篇总结对大家有所帮助,谢谢阅读!。
大学物理公式大全
第一章 质点运动学和牛顿运动定律 平均速度 v =t△△r瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dt ds ==→→lim lim△t 0△t △t △r平均加速度a =△t△v瞬时加速度(加速度)a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=gav 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx2202cos 2 向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。
大学物理力学定律知识点归纳总结
大学物理力学定律知识点归纳总结力学是物理学中的基础学科之一,研究物体的运动和受力情况。
在力学的研究中,定律是描述物理现象和规律的重要工具。
本文将对大学物理力学中的一些重要定律进行归纳总结,以帮助读者更好地理解和掌握这些知识点。
一、牛顿定律1. 牛顿第一定律(惯性定律):物体在没有外力作用下,保持静止或匀速直线运动的状态。
2. 牛顿第二定律(运动定律):当作用于物体上的力不平衡时,物体将产生加速度,其大小与施加力成正比,与物体的质量成反比。
即F=ma。
3. 牛顿第三定律(作用与反作用定律):任何两个物体之间的作用力和反作用力大小相等、方向相反、作用在同一直线上。
二、运动学定律1. 平抛运动:当物体以一定初速度从一定高度水平抛出时,其运动轨迹为抛物线。
2. 自由落体运动:在无空气阻力的情况下,物体下落的加速度为重力加速度,大小约为9.8m/s²,竖直向下。
3. 匀加速直线运动:当物体受到恒定的加速度作用时,其位移与时间的关系可由一系列公式表示,如位移公式、速度公式和加速度公式等。
三、动量和能量守恒定律1. 动量守恒定律:在一个封闭系统中,当物体间没有外力作用时,系统总动量保持不变。
2. 动能守恒定律:在一个封闭系统中,当物体间没有外力做功时(即没有能量转化为其他形式),系统总动能保持不变。
3. 势能和功:物体在受力作用下发生位移时,力所做的功等于力对物体的位移的积。
而势能是物体由于位置或形状的变化而具有的能量。
四、静力学定律1. 牛顿第一定律的应用:当物体处于平衡状态时,所有受力之和等于零。
2. 牛顿第二定律和牛顿第三定律的应用:用于解决静力学问题,求解物体所受的支持力、摩擦力等。
五、万有引力定律1. 万有引力定律:两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
即 F=G(m1*m2/r²)。
2. 地球上物体的重力:地球对物体施加向地心的引力,被称为物体的重力,大小等于物体的质量乘以重力加速度。
大学物理所有公式 理工科 必备 总结
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r 1.2 瞬时速度 v=lim 0△t →△t △r =dt dr 1. 3速度v=dtds ==→→lim lim 0△t 0△t △t △r 1.6 平均加速度a =△t△v 1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt r d 1.11匀速直线运动质点坐标x=x 0+vt1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0)1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gt v 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v a v v yx sin cos 00 1.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x 1.19射程 X=ga v 2sin 20 1.20射高Y=ga v 22sin 20 1.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dt φωd = 1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理第一章 质点运动学
§1 §2 §3 §4 §5 §6 质点运动学(kinematics) 质点动力学(dynamics) 功和能(work and energy) 动量守恒定律 (momentum conservation) 刚体的定轴转动(rotation) 流体力学(fluid mechanics)
v
t
g b
(1 e bt )
t
x vdt
0
g b
t
g b2
(1 e bt )
例题6、质点在流体中下落,a=-kv2,k=0.4m-1, t=0时,v=v0,求:从原点以上10m处开始下落, 速度减小到v0/10时到原点的距离。
解: d v dv dx a kv2 d t dx dt
r xi h j v0 vx dr dt dx v vx r dr x dt
2 h 2 v0
dx
dt dx dt
2
i r x ( h)
2 2 2 2
dt v vx i dv dt
h x x
v0
a
x
3
i
二、当v或a为已知时,求位置矢量
当v或a为时间函数时,直接根据定义积分,并代入 初始条件,可求出位矢; 当v或a为位置参量函数时,可做变量替换后,用分 离变量法积分,并代入初始条件,再求出位矢; 例如:已知 v=v(x) dx dx
物体定位,必须有参照物,我们称之为参照系。
2、 坐标系 利用坐标系,能在 点与数组之间建立 一个对应,从而在 几何图形与方程之 间建立一个对应的 关系.
三、 位置矢量
1. 位置矢量 质点在任一时刻的 空间位置,用位置 矢量来表示。
大学物理 第一章 质点运动学
是否等于瞬时速率? t 时刻位矢
瞬时速度的大小是否
r
等于瞬时速率?
A
r
r1
B t 时间内位移
x
t +t 时刻位矢
平面直角坐标系中的瞬时速度(简称速度)
v lim r dr
t0 t
dt
r(t) x(t)i y(t) j
v d r
dx
i
d
y
j
y
vy
v
dt dt dt
vx
vxi vy j
力 学
§1-1 参照系 &坐标系 质点 §1-2 位移、速度和加速度 §1-3 圆周运动 §1-5 牛顿运动定律 §1-6 牛顿运动定律的应用举例
1. 运动的绝对性 绝对静止的物体是没有的
地球自转 太阳表面的运动
太阳随银河系运动
为了确定一个物体的位置和描述一个物体的机
械运动,必须另选一个物体或内部无相对运动的物
3. 坐标系 为了定量地描述物体相对于参考系的 运动情况,要在参考系上选择一个固定的坐标系
坐标系选定后,运动物体A 中任一点 P 的位置
就可以用它在此坐标系中的坐标来描述
运动物体
运动参考系
y
A P(x,y,z)
运动物体
O
z 参考系
x
地面参考系
常用坐标系: 平面直角坐标系和自然坐标系
一、质点 一般情况下,运动物体的形状和大小都可能变化
y
y z koj
r
i
x
*P
x
方向的单位矢量.
z
位矢r 的值为
r
xi
yj
zk
r r x2 y2 z2
位矢 r 的方向余弦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
adv42aco2sti42bsi2ntj
dt
42r
说明加速度方向总是负位矢方向,指向椭圆中心
例2 在距水面高为h 的岸边上,有人用绳子 拉船靠岸。船距离岸边x ,人以恒定 速度v0收绳时,求船的速度及加速度。
解:在如图坐标系中
r xi hj
v dx i dt
dr v0 dt
dx v x dt
利用折返点 v=0 条件, v 2 t t2 0 t 2
s2(22123)8(m) 33
例4、质点做直线运动,a=3+4x,初始条件为: x0=0,v0=0,求:质点的速度。
解:利用
advdvdxvdv dt dx dt dx
vdv(34x)dx
v26x4x2c
代入初始条件:x0=0时,v0=0,得c=0
r 2 x2 (h)22
x
v0
v vxi
a
dv dt
h
2
v
2 0
x3
i
二、当v或a为已知时,求位置矢量
当v或a为时间函数时,直接根据定义积分,并代入 初始条件,可求出位矢;
当v或a为位置参量函数时,可做变量替换后,用分 离变量法积分,并代入初始条件,再求出位矢;
v 6x4x2
例5、一石子从空中由静止下落,a=g-bv,
求:石子的速度及运动方程。
解:由 advgbv dv dt
v
dt
gbv
g/b
lng (b)v b tc
v g (1ebt)
t
b
x0t vdtbgtbg2(1eb)t
例如:已知 v=v(x)
dx v(x) dx dt
dt
v(x)
x dx
t t0 x0 v(x)
例3、质点做直线运动,a=2-2t,初始条件为: t=0时,x0=0,v0=0,
求:1、质点在第1s末的速度; 解 :由 adv 22t dv(22t)dt
dt
积分得: v2tt2C
代入初始条件:v0=0 ,得C=0, v=2t-t2
t
v y ( t ) v y ( t 0 ) a y ( t ) dt
t0
§2 质点运动学的基本问题
一、当r = r(t)已知时,求速度和加速度 利用定义,对位置矢量求导数即可。
二、当v或a矢量为已知时,求位置矢量
例1 已知 位置矢量为
r (t) a c2 o tis b s2 in tj
O
y
x
c o s x
co s y
x2y2 z2
x2y2 z2
2、位移和路程
位置矢量的增量称为位移
四、运动方程
运动方程是反映位置随时间变化的方程 式 ,其直角坐标表达式为:
r (t) x (t)i y (t)j z(t)k
•描述质点运动轨迹的函数称为轨道方程,
•运动方程消去时间t就得到轨道方程。
3. 速率:速度的大小
就是速率,它是一个
非负的标量。
vdr (dx)2(dy)2(dz)2 dt dt dt dt
关于速度应当注意以下几点
速度是矢量 速度矢量的表达式
vvxivyjvzk
vx
dx dt
;
vy
dy dt
;
vz
dz dt
速度与位移的关系
由
drv(t)dt
积分得
t
r ( t ) r ( t 0 ) v ( t ) dt
关于位移应当注意以下几点
位移是矢量; r ( x 2 x 1 ) i ( y 2 y 1 ) j ( z 2 z 1 ) k
与位置矢量不同,位移与参照系的选择无关; 位移与路径是完全不同的两个概念;
五、 速度 速率
1. 平均速度: v r
t
2. 瞬时速度:
vlimrdr t0 t dt
物体定位,必须有参照物,我们称之为参照系。
2、 坐标系
利用坐标系,能在 点与数组之间建立 一个对应,从而在 几何图形与方程之 间建立一个对应的 关系.
三、 位置矢量
1. 位置矢量 质点在任一时刻的 空间位置,用位置 矢量来表示。
rxiyjzk
位置矢量表示方法
rxiyjzk
z
P
(x,y,z)
r
r x2y2z2
第1s末的速度:
vi
2、质点的运动方程;
由
dx2 tt2 dx(2 tt2)dt dt x(t)t2 1t3 c
3
代入初始条件:
x(t) t2 1t3 3
3、质点在前3s内所经历的路程;
由速度和位置函数关系可以看出:开始质点沿x 轴正向运动,速度增加,后速度减小至0,沿x轴 负向运动,t=3s时返回原点。
大学物理力学 —质点运动学和定律
§1 质点运动学(kinematics) §2 质点动力学(dynamics) §3 功和能(work and energy) §4 动量守恒定律 (momentum conservation) §5 刚体的定轴转动(rotation) §6 流体力学(fluid mechanics)
求:(1)质点的运动轨迹; (2)质点的运动速度及加速度;
(1)运动轨迹可由运动方程消去时间参数t得到
x(t)aco2st y(t)bsin2t
(x)2(y)2 1 ab
(2)根据速度的定义
v(t)dr2asi2 nti2bco2stj
dt
v vx2vy2 2 a2si2n2tb2co22st
求加速度
t0
t
x ( t ) x ( t 0 ) v x ( t ) dt
t0
t
y ( t ) y ( t 0 ) v y ( t ) dt
t0
注意:
由于 r r
所以 vdr dt
vd x2y2z2 dt
六、加速度
平均加速度:
av2 v1 v t t
瞬时加速度:
a lt im 0 vt ddvt dd2tr2
A v1
B v2 Δv M
N
关于加速度应当注意以下几点
加速度是矢量
aaxiayjazk
加速度矢量的直角坐标分量表达式
axd d v tx
ayd d v ty
azd d v tz
加速度与速度的关系
由 dva(t)dt
积分得
t
v ( t ) v ( t 0 ) a ( t ) dt
t0
t
v x ( t ) v x ( t 0 ) a x ( t ) dt t0
§1 质点运动的描述
经典力学研究的是宏观物体在力场 中的低速运动行为。
运动学主要是研究物体位移、速度、 加速度之间的相互关系。而不涉及 产生运动的原因。
一、质点
质点是一个没有大小和内部结构的 理想实体;是一个有质量的点。 成立条件: 1) l<<r;
2) 运动状态与形状无关 二、参照系和坐标系 1. 参照系