福州大学高等代数历年考研试题
福州大学2009年高等代数考研试题解答
u(x) f (x) v(x)g(x) 1.
将 x M 代入上式,得 u(M ) f (M ) v(M )g(M ) E ,即
u(M )A v(M )B E .
任取 W ,则 AB 0 ,
u(M ) A v(M )B .
取1 v(M )B ,2 u(M ) A .由于 A, B 都是 M 的多项式,故 AB BA ,进而有 Av(M ) v(M ) A,
b11 b22 bnn 0
aii k bii , i 1, 2,, n
aij bij , i j, i, j 1, 2,, n.
于是
n
n
n
aii (k bii ) nk bii nk,
i 1
i 1
i 1
即
从 aii k bii 得
k
1 n
n i 1
aii .
bii
aii
k
aii
1 n
n
a jj .
j 1
取
k
1 n
n i 1
aii ,
bij
aii
1 n
n
a jj , 若i
j 1
j,
aij,若i j,
那么 B (bij )nn 是一个迹为 0 的矩阵,且 A kE B . ■
0
0
n1( d1) .
0 0
因此,当 d1 0 时, A 的 n 个特征值都为 0;当 d1 0 时, A 的特征值为 0( n 1重), d1 (一重). 注意,对于一般的 n 阶矩阵 A (aij )nn 来说,若 A 的特征值为 1, 2 ,, n ,则 1 2 n a11 a22 ann .
2021-2022年部分高校高等代数考研真题
A
=
1 0 2
−1 1 3
−1 0 1
2 0 −1
1 −2 −2 −1
求 A 的包含 ε1 的最小的不变子空间.
3 1 −1 3. 求 A = −1 3 1 的若尔当标准形及有理标准形.
022
二、证明题.
1. 已知向量组 α1, α2, · · · , αr 线性无关, 且可由向量组 β1, β2, · · · , βs 线性表 出, 证明: 存在某个向量 βj (1 ≤ j ≤ s), 使得向量组 βj, α2, · · · , αr 线性无关.
1 2
1 1
c −2 0
112
(1) 若 A 有特征值 4, 1, −2 , 求 a, b, c. (2) 设 α = (1, k, 1)T 是 B−1 的一个特征向量, 求 k .
五、(15 分) 设 A, B 都是 n 阶实对称矩阵, 且 A 正定, 证明: AB 的特征值 都是实数.
六、(15 分) 设 σ 是 n 维线性空间 V 上的一个线性变换, 证明: σ 的秩 +σ 的零度 = n.
1
北京交通大学 2022 年高等代数考研真题
北京交通大学 2022 年高等代数考研真题
一、填空题 (每题 3 分)
1. 2n 级排列 13 · · · (2n − 1)(2n)(2n − 2) · · · 42 的逆序数为
.
2. 设 4 阶方阵 A, B 的伴随矩阵为 A∗, B∗, 且它们的秩为 r(A) = 3, r(B) =
1
2x1 3x1
+ 3x2 + 5x2
+ (a + 2)x3 + 4x4 = b + 3 + x3 + (a + 8)x4 = 5
福州大学历年考研真题及答案解析
福州大学历年考研真题及答案解析2018考研已开始,为方便福州大学考研学子更好地复习,聚英考研网特意为大家分享福州大学各学院的专业考研真题等资料,希望更多考生能够在专业课上赢得高分,升入理想的院校。
一、【资料答案解析篇】找不到福州大学历年考研真题及答案解析?不用担心,聚英考研网倾力研发的《福州大学考研专业复习全书》等各专业一系列丛书帮助大家顺利复习。
该全书含该专业的考研知识重难点、考研历年真题,为考生节省大量宝贵的复习时间,是考生从基础到冲刺阶段必备的考研资料。
聚英考研网根据福州大学的每一年考试范围进行更新完善,年年相伴考研。
详情复制以下链接查找该专业课的考研资料和真题!2018福州大学各专业考研资料:/ziliao/all-fzu-0福州大学历年考研真题下:/down/all/fzu-0部分专业资料展示如下:本资料介绍:第一部分历年真题复习注意事项:此部分内容建议在10月份后开始做题,10月份之前主要分析题型。
复习基础阶段根据真题分数比例划分重点做好笔记名校真题部分内容主要在冲刺阶段刷题。
第二部分参考教材每个章节重点笔记、参考教材每个章节课后习题解析、参考教材每个章节典型题或章节真题解析复习注意事项:此部分为本资料的核心内容,考研各阶段均可配合复习,在进入强化阶段的同学可以结合自己的笔记开始章节重点复习及章节题型的强化!第三部分教材课件及相关扩充复习资料复习注意事项:根据本部分的内容拓展扩充知识,教材的重点及各类题型的融会贯通达到答题了然于胸。
二、【考研辅导篇】在考研备考过程中大家难免会产生很多问题,在此,聚英考研网除了提供高参考价值的复习资料外,我们还提供免费的报考咨询、个性化辅导等服务。
尤其是跨专业的、二战的、基础薄弱的同学甚至是在职的朋友有任何考研方面的问题均可以咨询我们。
三、【关于聚英考研网】:聚英考研网创立于2004年,是一家集教育培训、教育产品研发、图书出版发行于一体的综合性教育服务集团机构。
福州大学2008年高等代数考研试题A卷及解答 (1)
福州大学2008年招收硕士研究生入学考试试卷招生学院_______________招生专业________________考试科目________________科目编号________________本卷共十题,每题15分一、填空题(每小题4分,满分20分)1、多项式32()61514f x x x x =-+-的有理根是_________;【答案解析】:22、矩阵012114210A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭的逆矩阵1A -=_________;【答案解析】:124211221232⎛⎫- ⎪⎪ ⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭3、设P 为数域,在线性空间[]n P x 中,多项式()f x 在基1{1,(),...,()}n x a x a ---下的坐标是_________;【答案解析】:(1)()()((),(),,...,)2!(1)!n f a f a f a f a n -'''-4、在欧式空间4R 中,向量1(1,2,2,3)α=,2(3,1,5,1)α=的夹角为________;【答案解析】:455、已知1101A ⎛⎫=⎪⎝⎭,则nA =________;【答案解析】:101n ⎛⎫⎪⎝⎭二、简答题(每小题5分,满分25分)6、求非齐次线性方程组1231234123412344212357375822268x x x x x x x x x x x x x x x -+=-⎧⎪-+++=⎪⎨-+-=-⎪⎪---=-⎩的通解;【考察重点】:求非齐次线性方程组的通解,属于简单计算题,掌握知识点即可。
【答案解析】:解:142011420110245231570555501111371580555500000222680666600000A -------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---⎪ ⎪ ⎪=== ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭可知原方程组与下面方程组同解1342342451x x x x x x --=-⎧⎨-++=⎩令340x x ==,得原方程组的一个特解()5100--且原方程组的两个基础解系为()()123010,1001αα=-=-所以原方程组的通解为()()()12510030101001x k k =--+-+-其中1k ,2k 为任意常数。
福州大学《线性代数》含参考答案
福州大学《线性代数》试卷2014年4月27日一、填空(共30分,每空3分)1. 设1211102,2243x x y t -⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 则t =____________. 2. T (1,2,3),A E A A =-=设则3_______________.3. 313233112103,,3312ij ij D A D a A A A _____.-=-+-=-设表示中元素的代数余子式则.4. ,A B 设都是n 阶方阵,13,2,3______A B A B *-==-=且则.5. 2333231232221131211==a a a a a a a a a M 如果,则=D 111112132121222331313233532532532a a a a a a a a a a a a ----=--__________. 6. 若方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩存在非零解,则.__________=λ7. 设方阵A 的特征值3对应的特征向量为T (1,3,1)-,则T (1,3,1)A-= .8. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛50413102x 可相似对角化,则x 的值为 .9. 二次型222123123121323(,,)3222f x x x x x x x x x x x x =+++++的矩阵表达式为_____________________________________________,可经正交变换=⎪⎪⎪⎭⎫ ⎝⎛321x x x P ⎪⎪⎪⎭⎫ ⎝⎛321y y y 化为标准形 123(,,)f y y y =______________.学院 专业 级 班 姓 名 学 号二、单项选择(每小题2分,共10分) n 1.设,,,A B C ABC E =阶方阵满足则必有( ).(C) (D)CBA E BAC E ACB E === 2. 设A 是n 阶非奇异矩阵.其伴随矩阵为A *,则( ).2112(A) () (B) () (C) () (D)() n n n n A AA AAA A AA A AA ++--********====3. 设A 是s m ⨯矩阵,B 为n s ⨯矩阵,则使0=ABx 与0=Bx 是同解方程组的一个充分条件是( ).(A) (R A m =) (B ) (R A s =) (C )(R B n =) (D) (R B s =) 4.已知3阶方阵A 的特征值是0,1,1-,则下列命题中不正确的是( ). (A) 方阵A 是不可逆的 (B) 方阵A 与对角矩阵相似(C) 1和1-所对应的特征向量正交 (D) 0=Ax 的基础解系由一个向量组成5. 设1234(,,,)A αααα=是4阶方阵,若T (1,0,1,0)是方程0AX =的一个基础解系,则*0A X =的基础解系可为( ).(A)12,αα (B)13,αα (C)123,,ααα (D)234,,ααα三(10分) 1,6,A B A BA A BA -=+设三阶矩阵满足A =且111(,,),234diag 试求矩阵B ..四(10分) 11002131101121210111003200110022A B ,⎛⎫⎛⎫⎪ ⎪-⎪⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭设; (1)B 求;(2)R 求()AB .五(10分)设矩阵A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1129513151133173113311,求矩阵A 的列向量组的一个最大无关组,并把不属该最大无关组的列向量用该最大无关组线性表示.六(10分) 当λ取何值时,线性方程组 ,1)5(4224)5(2122)2(321321321⎪⎩⎪⎨⎧--=-+--=--+=-+-λλλλx x x x x x x x x (1)有唯一解? (2)无解? (3)有无穷多解? 并求其通解.装 订 线 装 订 线 装 订 线11)6(---=∴E A B ).21,31,41(---=diag -------------10分四、解 (1) .40104222312122200230012121312-=⨯-=-⋅-=--=B ----------5分(2) 由(1)知,040≠-=B 所以B 可逆, 从而有 ).()(A R AB R =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1100111011010011A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-−→−1100111011100011r ,0000110011100011⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-−→−r,3)(=∴A R 因此.3)()(==A R AB R ----------10分 法二 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=4100531254122504AB ,0000410001205312⎪⎪⎪⎪⎪⎭⎫⎝⎛-−→−r .3)(=∴AB R 五、解 记),,,,( 54321ααααα=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1129513151133173113311 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-−→−00000210001121013311r⎪⎪⎪⎪⎪⎭⎫⎝⎛-−→−00000210003021080101r ---------6分故一个最大无关组为421,,ααα.且有,2213ααα+=.2384215αααα++-=六、解 对方程组的增广矩阵)(b A B =施行初等行变换:⎪⎪⎪⎭⎫ ⎝⎛---------==154224521222)|(λλλλb A B ⎪⎪⎪⎭⎫⎝⎛---------−→−)4)(1()10)(1(0011101452λλλλλλλλr(或 ⎪⎪⎪⎭⎫⎝⎛-------+-−→−=)4)(1()10)(1(0011101542)|(λλλλλλλλλrb A B )(1) 当 λ ≠ 1且λ ≠ 10时, R (A )=R (B )=3,方程组有唯一解.(2) 当 λ = 10时, R (A )=2, R (B )=3, 方程组无解. ----------6分(3) 当 λ=1时, R (A )=R (B )=1, 方程组有无穷多解.此时,000000001221⎪⎪⎪⎭⎫ ⎝⎛-−→−rB故方程组的一个特解为,)0,0,1(T =η导出组的基础解系为,)1,0,2(,)0,1,2(21T T=-=ξξ故所求方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,) ---------10分解法二 方程组的系数行列式为λλλ-------=542452222||A ,)1)(10(2--=λλ(1) 当 λ ≠ 1且λ ≠ 10时, |A| ≠0, 方程组有唯一解.(2) 当 λ = 10时, ⎪⎪⎪⎭⎫ ⎝⎛------==221121215112)|(b A B ,90000330211⎪⎪⎪⎭⎫ ⎝⎛----−→−λrR (A )=2, R (B )=3, 方程组无解. ----------6分(3) 当 λ=1时, ⎪⎪⎪⎭⎫ ⎝⎛-----==244224421221)|(b A B ,000000001221⎪⎪⎪⎭⎫⎝⎛-−→−rR (A )=R (B )=1, 方程组有无穷多解.得方程组的一个特解为,)0,0,1(T =η导出组的基础解系为,)1,0,2(,)0,1,2(21T T =-=ξξ故所求方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)----------10分七、解(1),000210101000210321622412321),,(21⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛----=r r x x β.221x x --=∴β ----------6分(2) 212121222)2(x x Ax Ax x x A A +-=--=--=β.026⎪⎪⎪⎭⎫ ⎝⎛-= ----------10分八、证明 “充分性”设T ab A =,其中b a ,为非零列向量,则有.1)()(==T b R a R 由Sylverster 不等式有)},(),(min{)(1)()(T T T b R a R ab R b R a R ≤≤-+即有,1)(1≤≤T ab R 故,1)(=T ab R 即.1)(=A R ----------4分“必要性” 设,1)(=A R 则A 的标准形为n m O O O E F ⨯⎪⎪⎭⎫ ⎝⎛=1n m ⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=000000001 所以存在m 阶可逆阵P , n 阶可逆阵Q , 使得,F PAQ =(1) 从而有,11--=FQ P A 记 ),,,,(211m p p p P =-,211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n q q q Q则),,2,1(m i p i =为m 阶非零列向量, ),,2,1(n j q j =为n 阶非零行向量,112121000000001),,,(q p q q q p p p A n n m m =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=∴⨯令,,11q b p a T ==则b a ,均为非零列向量,且有T ab A =. ----------10分(或(2) 推出 11000000001--⎪⎪⎪⎪⎪⎭⎫⎝⎛=Q P A 1111)0,,0,1(001-⨯⨯-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=Q P n m 记11001⨯-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m P a ,11)0,,0,1(-⨯=Q b n T , 则b a ,均为非零列向量,且有T ab A =. -------10分)。
各大学高等代数考研真题
各大学高等代数考研真题高等代数是数学中的一门重要学科,它在各个领域都有广泛的应用。
对于数学专业的学生来说,高等代数是一个重要的考试科目。
而对于那些准备考研的学生来说,高等代数更是必考的科目之一。
在考研中,高等代数的考试题目往往涉及到各个领域的知识,考察学生对于高等代数的理解和应用能力。
下面我们就来看一些高等代数考研真题。
首先,我们来看一道典型的高等代数考研题目。
题目如下:设V是数域K上的n维线性空间,f是V到V的线性变换。
如果对于任意的v∈V,存在非零多项式g(t),使得g(f)(v)=0,则f一定有特征值。
对于这道题目,我们需要运用到高等代数中的一些基本概念和定理。
首先,我们需要知道什么是特征值和特征多项式。
特征值是指线性变换在某个向量上的作用结果与该向量平行的现象,而特征多项式则是用来求解特征值的一种方法。
在这道题目中,我们需要运用到特征多项式的性质,通过特征多项式来证明f一定有特征值。
接下来,我们来看一道关于线性空间的题目。
题目如下:设V是数域K上的线性空间,f是V到V的线性变换。
如果对于任意的v∈V,存在正整数m,使得f^m(v)=0,则f一定有特征值。
这道题目考察了线性变换的零化幂的概念。
零化幂是指对于线性变换f,存在一个正整数m,使得f^m(v)=0。
而这道题目要求我们证明,如果对于任意的v∈V,存在正整数m,使得f^m(v)=0,则f一定有特征值。
这个题目的证明过程比较复杂,需要运用到线性变换的一些性质和定理,以及线性空间的相关知识。
最后,我们来看一道关于矩阵的题目。
题目如下:设A是n阶方阵,如果存在非零矩阵B,使得AB=0,则A一定不可逆。
这道题目考察了矩阵的可逆性和零子式的概念。
可逆矩阵是指存在逆矩阵的矩阵,而零子式是指矩阵中的某个子矩阵的行列式为0。
这道题目要求我们证明,如果存在非零矩阵B,使得AB=0,则A一定不可逆。
证明过程中,我们需要运用到矩阵的一些性质和定理,以及矩阵的相关知识。
最新高等代数全国考研试题精选打印版.doc(PDF版)
《高等代数》试题库一、选择题1.在F[x]里能整除任意多项式的多项式是()。
A.零多项式B.零次多项式C.本原多项式D.不可约多项式2.设g(x)=x+1是f(x)=x-k x+4kx+x-4的一个因式,则k=()。
6242A.1B.2C.3D.43.以下命题不正确的是()。
A.若f(x)|g(x),则f(x)|g(x);B.集合F={a+bi|a,b∈Q}是数域;C.若(f(x),f'(x))=1,则f(x)没有重因式;D.设p(x)是f'(x)的k-1重因式,则p(x)是f(x)的k重因式4.整系数多项式f(x)在Z不可约是f(x)在Q上不可约的( )条件。
A.充分B.充分必要C.必要D.既不充分也不必要5.下列对于多项式的结论不正确的是()。
A.如果f(x)g(x),g(x)f(x),那么f(x)=g(x)B.如果f(x)g(x),f(x)h(x),那么f(x)(g(x)±h(x))C.如果f(x)g(x),那么∀h(x)∈F[x],有f(x)g(x)h(x)D.如果f(x)g(x),g(x)h(x),那么f(x)h(x)6.对于“命题甲:将n(>1)级行列式D的主对角线上元素反号,则行列式变为-D;命题乙:对换行列式中两行的位置,则行列式反号”有( )。
A.甲成立,乙不成立;B.甲不成立,乙成立;C.甲,乙均成立;D.甲,乙均不成立7.下面论述中,错误的是( )。
A.奇数次实系数多项式必有实根;B.代数基本定理适用于复数域;C.任一数域包含Q;D.在P[x]中,f(x)g(x)=f(x)h(x)⇒g(x)=h(x)A 11 A 12 ... A 1n A21...An1 A22...An2 .........A2n...Ann8.设D=aij ,Aij为aij的代数余子式,则=( )。
A.DB.-DC.D/D.(-1)n D49.行列式31-250a 中,元素a 的代数余子式是()。
福州大学研究生入学考试试题
1999年福州大学研究生入学考试试题(每题10分)一.证明1sin x在(,1)(01)c c <<上一致连续,但在(0,1)上不一致连续。
二.曲线n y x =(n 为正整数)上点(1,1)处的切线交x 轴于点(,0)ξ,求lim ()n y ξ→∞。
三.证明:若00()0,()0,f x f x +-''><则存在0x 的一个邻域,使得在邻域中0()()f x f x ≥。
四.求下列极限:2(1)l i m1s i n x a r c t g x xπ→∞- 201sin (2)limsin x x x x→五.证明不等式 3(0).32x tgx x x π>+<<六.用柯西收敛原理判断下列级数的敛散性1111111112345632313n n n+-++-+++-+--七.证明(,)f x y =在(0,0)点连续,且(0,0),(0,0)x y f f 存在但(0,0)点不可微。
八.证明级数1211(1)n n n x∞-=-+∑关于x 在(,)-∞∞上为一致收敛,对任何x 非绝对收敛。
九.计算d d ,sI xyz x y =⎰⎰其中222:1,0,0S x y z x y ++=≥≥外侧。
十.利用含参变量广义积分的积分顺序交换定理,并从等式222 d ax bxb x y a e e xe y x----=⎰ 出发,计算积分 22d (0)ax bxe e x b a x--+∞->>⎰2001年福州大学研究生入学考试试题(每题10分)一.计算下列两题1.求2d (,)d d x x f x t t x⎰ 2.求42 0cos d x x π⎰二.用定义证明()f x =(0,1)上一致连续。
三.设0x >,证明2ln(1)2x x x +>-。
四.确定常数,a b,使lim )0x ax b →+∞-=五.设()f x 在有限区间(,)a b 中可导,且lim (),x bf x -→'=∞问是否必有lim ()?x bf x -→=∞若是,请予证明;若否,请举例说明。
名校高等代数历年考研试题(1-3章)
第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。
福州大学2007年高等代数考研试题及解答 (1)
1
所以
a1
2a2
3a3
4a4
a1, a2 , a3, a4
2 3
b
4
所以 Ax b 的通解为 x 1, 2,3, 4 k 1, 3, 2, 0 , k R
8、设
A
2 0
1 3
,
B
10 26
4、在线性空间 R3 中,已知向量1 (4, 6, 0),2 (6, 9, 3),3 (6, 3, a) 共面,求 a 。
【考察重点】:考查向量共面和矩阵的关系,这类题型在历年真题中并不常见,但是考生还 是不可忽视其重要性。, 【答案解析】:
解:已知向量1 (4, 6, 0),2 (6, 9, 3),3 (6, 3, a) 共面,则1,2 ,3 线性相关,
3
0
,矩阵
B
的两个解为
1
2,
2
3
且 r(B) 2 ,所以矩阵 A 与 B 相似。
1 2 6
9、求矩阵
A
1
0
3
的最小多项式和若当标准型。
1 1 4
【考察重点】:考查矩阵的最小多项式和若当标准型 【答案解析】:
1 2 6 解:因为 E A 1 3 ( 1)3
个极大线性无关组。 【考察重点】:求向量组的极大无关组,考生掌握其基本方法即可解此题,涉及知识点在第
三章。 【答案解析】:
1 0 3 1
解:
(
f1,
f2,
福州大学数学真题答案解析
福州大学数学真题答案解析一、导言在学习数学的过程中,真题的解析是非常重要的。
通过对历年真题的解析,我们可以更好地理解考试的命题思路,掌握解题技巧,提高数学水平。
本文将以福州大学数学真题为例,对其中的一些典型问题进行解析,帮助读者更好地理解和应用数学知识。
二、选择题解析1. 解析题目给定函数 f(x) = (x-2)(x^2-4) - x^2(x-1),要求函数 f(x) 的极值点。
请选择正确的结论。
A. f(x) 的极大值点是 x=1B. f(x) 的极小值点是 x=2C. f(x) 的极值点是 x=0D. f(x) 在区间 (-∞,∞) 上无极值点2. 解题思路对函数 f(x) 进行因式分解,可以得到 f(x) = -2x^2 + 5x - 8。
我们知道,二次函数的极值点为顶点,顶点的横坐标可以通过公式 x = -b/2a 求得。
比较选项中给出的横坐标与计算得到的结果,可得出正确答案。
3. 答案解析选项 A 错误,因为函数 f(x) 没有极大值点。
选项 B 正确,因为函数 f(x) 的极小值点是 x=2。
选项 C 错误,因为函数 f(x) 的极值点不是 x=0。
选项 D 错误,因为函数 f(x) 存在极值点。
三、填空题解析1. 解析题目设 A、B、C 为事件,且 A 和 C 相互独立。
已知 P(A) = 0.4,P(B) = 0.3,P(A∩B) = 0.1,P(A∪B∪C) = 0.7,求 P(C)。
2. 解题思路根据事件的独立性,我们可以得到P(A∩C) = P(A) * P(C)。
又由于P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P(B∩C) -P(A∩C) + P(A∩B∩C),可以推算出 P(C) 的值。
3. 答案解析根据公式计算可得 P(C) = 0.2。
四、解答题解析1. 解析题目已知函数 f(x) = x^3 + ax^2 + bx + c 在区间 [-1, 1] 上有两个极值点 x1 和 x2,若 f(-1) = 1,f(1) = 3,求 a、b、c 的值。
福州大学线性代数试卷解答 20130512
福州大学线性代数试卷解答 20130512一、填空题1、 29;2、401030014-⎛⎫⎪- ⎪ ⎪-⎝⎭; 3、1(4)9A E -+; 4、2(`1)3n -; 5、2n m -+;6、12; 7、T T (0,2,4,6)(1,3,5,7)()c c R +∈; 8、1λ=-;9、2; 10、0二、选择题: C B C A D431323334313233343737331078107101110110634333430121112100110013134331321011121111c c M M M M A A A A --++=++-------==---------------------=--=--=-=--------------三、解: 分分分四、解:T :(2-),C C B A E =两边左乘得12|2|0011011C B --=-=--,————4分故T 1122100(2)(2)011,211010210C B A C B A ---⎛⎫⎛⎫ ⎪ ⎪-=-=--=--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭可逆,———10分五、解:123123123412220(,,,)0,10αααααααααα⎛⎫ ⎪- ⎪=-⇒-+=⇒= ⎪ ⎪⎝⎭1210ξ⎛⎫ ⎪- ⎪∴= ⎪ ⎪⎝⎭为0AX =的解,————————3分又432,,ααα线性无关,1234,,,αααα而线性相关所以R (A )=3,故ξ为基础解系,0AX =的通解为ξk x =, ——————————6分又⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=11111111),,,(*43214321ηααααααααβ,为AX β=的特解,所以方程的通解为*()x k k R ξη=+∈.————————10分六、12341132113213260214(,,,)1511000103120002r p p p αααα----⎛⎫⎛⎫ ⎪ ⎪----- ⎪ ⎪=−−→ ⎪ ⎪- ⎪ ⎪+-⎝⎭⎝⎭解:——4分 (1) 当2≠p 时, 向量组线性无关.——————————6分 (2) 当2=p 时, 向量组线性相关. ,3),,,(4321=ααααR 最大无关组为.,,321ααα-————————————————10分 七、解:(1)21211531:361210Ap p a a b b λλλλλ-=-⎛⎫⎛⎫⎛⎫⎧⎪ ⎪⎪ ⎪===---------⎨ ⎪⎪ ⎪⎪ ⎪⎪ ⎪----=⎝⎭⎝⎭⎝⎭⎩由,得,解得分31232122533(1)01,12A E λλλλλλλλ---=--=-+====----(),得312101523011,()2.101000A E R A E A -⎛⎫⎛⎫ ⎪ ⎪+=-→+=∴ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,不能对角化———12分八、证明:设有一组数123,,,k k k 使得++=1122330k k k ααα,用A 左乘该式,得1k ()A +1α2k ()A +2α3k ()A =30α,由于11,A =-αα22,A =αα323A ααα=+,可得:-1k +1α()+23k k +2α3k =30α,联立++=1122330k k k ααα得:12k 1α3-k =20α,由于12,αα是属于不同特征值的特征向量,故线性无关,因此,130==k k ,于是,=220k α而2α为特征向量不为零,从而,=20k 因此,,,123ααα线性无关.——6分(2)依题意,100011,001AP P -⎛⎫⎪= ⎪ ⎪⎝⎭由(1)知,,,123ααα线性无关,从而(,,)P =123ααα可逆,故1100011.001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭————————8分。