最新锐角三角函数复习教案

合集下载

初中锐角三角函数教案

初中锐角三角函数教案

初中锐角三角函数教案教学目标:1. 了解锐角三角函数的定义和意义。

2. 掌握30°、45°、60°角的正弦、余弦和正切值。

3. 能够运用锐角三角函数解决实际问题。

教学重点:1. 锐角三角函数的定义和意义。

2. 30°、45°、60°角的正弦、余弦和正切值。

教学难点:1. 理解锐角三角函数的概念。

2. 运用锐角三角函数解决实际问题。

教学准备:1. 教师准备PPT课件。

2. 学生准备笔记本和文具。

教学过程:一、导入(5分钟)1. 教师通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。

2. 学生分享对锐角三角函数的理解,教师总结并板书。

二、新课讲解(15分钟)1. 教师讲解锐角三角函数的定义,引导学生理解锐角三角函数的概念。

2. 教师讲解30°、45°、60°角的正弦、余弦和正切值,引导学生掌握锐角三角函数的数值。

3. 教师通过例题讲解,引导学生运用锐角三角函数解决实际问题。

三、课堂练习(10分钟)1. 学生独立完成课堂练习题,巩固所学知识。

2. 教师巡回指导,解答学生疑问。

四、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。

2. 学生分享学习心得,教师给予鼓励和指导。

五、课后作业(课后自主完成)1. 学生根据课堂所学,完成课后作业,巩固知识点。

教学反思:本节课通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。

在讲解过程中,注意引导学生理解锐角三角函数的概念,并通过例题讲解让学生掌握锐角三角函数的数值和运用方法。

在课堂练习环节,学生能够独立完成练习题,巩固所学知识。

总体来说,本节课达到了预期的教学目标。

在今后的教学中,要继续加强对学生的引导和鼓励,提高学生的参与度和积极性。

同时,注重课后作业的布置和批改,及时了解学生掌握情况,为下一步教学提供参考。

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
2.学习特殊(30°、45°、60°)的正弦、余弦、正切值,并能熟练运用这些值进行相关计算。
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。

九年级数学下册 第28章锐角三角函数复习教案 人教新课标版 教案

九年级数学下册 第28章锐角三角函数复习教案 人教新课标版 教案

第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。

三.情感目标:提高学生对几何图形美的认识。

教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数定义。

siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。

4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。

《锐角三角函数复习》教学设计

《锐角三角函数复习》教学设计

《锐角三角函数复习》教学设计教学目标:1.复习正弦函数、余弦函数和正切函数的概念、性质和图像特点。

2.熟练掌握正弦函数、余弦函数和正切函数的基本变换和图像特征的确定。

3.能够解决与锐角三角函数相关的实际问题。

教学重难点:1.正弦函数、余弦函数和正切函数的图像特点的确定。

2.锐角三角函数的基本变换和反函数的确定。

教学准备:1.教师准备PPT、黑板、粉笔、计算器等教学工具。

2.学生预习锐角三角函数的基本概念和性质。

教学过程:Step 1 引入新课 (10分钟)教师通过提问和简短的介绍,引导学生回顾正弦函数、余弦函数和正切函数的概念和性质,并明确本节课的学习目标。

Step 2 复习正弦函数和余弦函数 (30分钟)2.1概念复习教师用简洁明了的语言复习正弦函数和余弦函数的基本概念,要求学生回答问题,例如:正弦函数和余弦函数的定义是什么?它们的定义域和值域分别是什么?2.2图像特点复习教师通过PPT演示和实际画图的方式,复习正弦函数和余弦函数的图像特点。

教师可以提问学生相关的问题,让学生回答出正弦函数和余弦函数的对称轴、最大值、最小值、周期等。

2.3基本变换复习教师通过PPT演示和实例分析,复习正弦函数和余弦函数的基本变换,例如:平移、伸缩、翻转等。

教师可以为学生提供一些基本的变换函数,让学生求出经过变换后的函数的表达式。

Step 3 复习正切函数 (20分钟)3.1概念复习教师简明扼要地复习正切函数的定义、定义域和值域。

3.2图像特点复习教师通过PPT演示和实际画图的方式,复习正切函数的图像特点。

教师可以通过探究正切函数的增减性和周期性,让学生发现正切函数的特殊图像。

3.3基本变换复习教师通过PPT演示和实例分析,复习正切函数的基本变换,包括平移、伸缩、翻转等。

教师可为学生提供一些基本的变换函数,让学生求出经过变换后的函数的表达式。

Step 4 锐角三角函数的反函数(30分钟)4.1概念介绍教师介绍锐角三角函数的反函数的概念,引导学生理解反函数的定义和性质。

锐角三角函数复习教案

锐角三角函数复习教案

锐角三角函数复习教案(总6页) -本页仅作为预览文档封面,使用时请删除本页-锐角三角函数复习教案锐角三角函数复习教案一、案例实施背景本节课是九年级解直角三角形讲完后的一节复习课二、本章的课标要求:1、通过实例锐角三角函数(sinA、cosA、tanA)2、知道特殊角的三角函数值3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角4、能运用三角函数解决与直角三角形有关的简单实际问题此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。

三、课时安排:1课时四、学情分析:本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力.因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力.五、教学目标:知识与技能目标1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化.2、通过复习培养学生总结归纳的能力和运用知识的能力.过程与方法:1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用.情感、态度、价值观充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展.六、重点难点:1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系.2.难点:知识的深化与运用.七、教学过程:知识回顾一:(1)在Rt△ABC中,C=90,AB=6,AC=3,则BC=_________,sinA=_________,cosA=______,tanA=______,A=_______,B=________.知识回顾二:(2)比较大小:sin50______sin70cos50______cos70tan50______tan70.知识回顾三:(3)若A为锐角,且cos(A+15)=,则A=________.本环节的设计意图:通过三个小题目回顾:1、锐角三角函数的定义:在Rt△ABC中,C=90锐角A的正弦、余弦、和正切统称A的锐角三角函数。

第二十八章锐角三角函数(教案)

第二十八章锐角三角函数(教案)
第二十八章锐角三角函数(教案)
一、教学内容
第二十八章锐角三角函数:本章节主要围绕锐角三角函数的定义、性质及图像展开,教学内容包括:
1.锐角三角函数的定义:正弦、余弦、正切的定义及其在直角三角形中的应用。
2.锐角三角函数的性质:正弦、余弦、正切的取值范围及增减性。
3.锐角三角函数的图像:利用坐标轴绘制正弦、余弦、正切函数的图像,并观察其特点。
首先,我发现学生们对于正弦、余弦、正切这三个函数的定义掌握得还不错,但在具体应用时,有些同学还是会混淆。在今后的教学中,我需要多设计一些实际案例,让学生有更多机会将理论知识运用到解决问题中,提高他们的应用能力。
其次,教学难点部分,如锐角三角函数的增减性和图像特点,学生们理解起来有一定难度。在讲解这部分内容时,我应该更加注重引导学生通过观察和思考,自己总结规律。同时,可以借助一些教具或多媒体工具,以更直观的方式展示函数图像的变化,帮助学生突破这个难点。
-难点三:图像绘制中的精确性和细节处理。在绘制锐角三角函数图像时,学生需要准确地表示角度和对应的函数值,同时注意图像的连续性和平滑性。
举例:在绘制正切函数图像时,如何处理90°处的无穷大和不存在的点,以及如何表示其增减趋势。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量旗杆高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

锐角三角函数复习教案

锐角三角函数复习教案

课题:锐角三角函数(复习课)复习目标(1)知识与技能:1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。

2.通过复习牢记特殊角的三角函数值,并能进行有关计算。

3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。

(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。

(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。

复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。

复习难点:解直角三角形的知识应用。

教学方法:讲练结合法课型:复习课教具准备:多媒体课件教学过程一、锐角三角函数的定义在△中,/ C= 90°,/ A,/ B,/ C的对边分别为a, b, c.则人 b 4£2 22 K a 2V 2 cos A - --- ----- ,tan A -- ------ ----c 6 3 b 472 4自己动手:1、在等腰△中,5, 6,求,,2、求适合下列各式的锐角a3tan 3、特殊角的三角函数值30°45° 60°2范例1、在 Rt △ ABC 中,/ C=90 ° , a=2 , sinA= 1,求 cosA 和tanA 的值。

c 解:sin 3A 旦, c c a sin A 根据勾股定理得:1 A2 — 6。

3 c 2 a 2 62 224 2 b例 2 sin 30 cos 45 tan 60求下列各式的值:(11 2sin30 cos30(23ta n30 tan45 2sin60三、 解直角三角形1、 解直角三角形的定义:利用已知元素,求出未知元素的过程。

2、 解直角三角形的性质:① 三边间关系:② 两锐角间关系:③ 边角间关系:3、 解直角三角形条件:已知两边,或已知一边一角。

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;

中考锐角三角函数复习教案

中考锐角三角函数复习教案

中考锐角三角函数复习教案【教案内容】一、教学目标1.知识与技能(1)复习锐角三角函数的定义;(2)掌握常见锐角三角函数的计算方法;2.过程与方法(1)通过讲解、分析和解题等学习方法,帮助学生全面复习锐角三角函数的相关知识;(2)通过练习题,巩固学生的计算能力和应用能力;3.情感态度价值观通过学习锐角三角函数,培养学生的数学思维能力,提高学生的逻辑思维和分析问题的能力,培养学生的合作意识和团队精神。

二、教学重点1.锐角三角函数的定义;2.常见锐角三角函数的计算方法。

三、教学难点1.锐角三角函数的综合运用;2.有关锐角三角函数的实际问题。

四、教学过程1.复习(1)复习锐角三角函数的定义;(2)回顾与锐角三角函数相关的练习题。

2.讲授(1)解析定义法解析定义法是指通过三角形的几何关系来定义锐角三角函数的方法。

其基本定义如下:- 正弦函数sinA:在一个锐角三角形中,对于任意锐角A,a/b就是其正弦函数。

- 余弦函数cosA:在一个锐角三角形中,对于任意锐角A,b/c就是其余弦函数。

- 正切函数tanA:在一个锐角三角形中,对于任意锐角A,a/c就是其正切函数。

(2)练习题演练通过一些具体的练习题,帮助学生巩固解析定义法的运用。

3.拓展(1)锐角三角函数的性质-在锐角三角形中,锐角的对边是锐角三角函数的对边,锐角的邻边是锐角三角函数的邻边。

-在锐角三角形中,正弦函数的值总是小于等于1,余弦函数的值总是小于等于1,正切函数的值没有上界。

(2)常用锐角三角函数的计算- 根据锐角的大小和所在象限,计算sinA、cosA和tanA的值。

- 根据锐角的大小和所在象限,计算cscA、secA和cotA的值。

(3)练习题演练通过一些具体的练习题,帮助学生巩固常用锐角三角函数的计算方法。

4.整合与应用(1)综合运用通过一些综合的锐角三角函数计算题,帮助学生综合应用所学知识解答问题。

(2)实际问题通过一些与现实生活相关的锐角三角函数问题,帮助学生发现锐角三角函数在实际应用中的重要性和作用。

最新中考锐角三角函数复习教案

最新中考锐角三角函数复习教案

锐角三角函数复习教案一、【教材分析】二、【教学流程】运用第2题图3.式子2cos30°-tan45°-(1-tan60°)2的值是 ( )A.2 3-2B.0C.2 3D.24.在△ABC中,若|cos A-12|+(1-tan B)2=0,则∠C的度数是 ( )A.45°B.60°C.75°D.105°【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】教师要有意识引导学生体会锐角三角函数在题目解决中所体现的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.直击1.(威海中考)如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是( )3101110A B C D102310....第1题图2.(重庆中考)计算6tan 45°-2cos 60°的结果是( )A. B.4 C. D.5教师展示问题,学生有针对性独立思考解答,3435三、【板书设计】锐角三角函数复习作 业必做题1.(重庆中考)如图,△ABC 中,AD ⊥BC ,垂足为点D ,若BC =14,AD =12,tan ∠BAD =求sin C 的值.1题图2.(苏州中考)如图,在△ABC ,AB =AC =5,BC =8.若∠BPC = ∠BAC , 则tan ∠BPC = .选做题 2题图 3.的值,求为锐角,若αααααcos sin 34cos sin -=+第一,二题学生课下独立完成,延续课堂.第三题课下交流讨论有选择性完成.以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.34,12锐角三角1、锐角三角函数的定义⑴、正弦⑵、余弦⑶、正切四、【教后反思】。

锐角三角函数教案设计

锐角三角函数教案设计

锐角三角函数教案设计锐角三角函数教案设计作为一位杰出的老师,就有可能用到教案,教案有利于教学水平的提高,有助于教研活动的开展。

那么写教案需要注意哪些问题呢?下面是店铺整理的锐角三角函数教案设计,欢迎大家借鉴与参考,希望对大家有所帮助。

锐角三角函数教案设计篇1知识目标:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。

2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。

能力、情感目标:1.经历由情境引出问题,探索掌握数学知识,再运用于实践过程,培养学生学数学、用数学的意识与能力。

2.体会数形结合的数学思想方法。

3.培养学生自主探索的精神,提高合作交流能力。

重点、难点:1.直角三角形锐角三角函数的意义。

2.由直角三角形的边长求锐角三角函数值。

教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。

但有些问题单靠相似与勾股定理是无法解决的。

同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、回答各种方法。

教师加以评论。

总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC 了,但实际上要测量AC是很难的。

因此,我们换个角度,如果可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。

(由一个学生比较熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。

由此导入新课)二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°, C1=90°∠A=∠A1,∠A 的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 (学生探索,引导学生积极思考,利用相似发现比值相等)()若在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探索问题的过程,你发现了什么?(学生讨论)结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。

锐角三角函数全章教案

锐角三角函数全章教案

锐角三角函数全章教案【篇一:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。

锐角三角函数复习教案

锐角三角函数复习教案

第二十八章锐角三角函数(复习)一、教学目标::1、掌握锐角三角函数的概念,利用锐角三角函数的意义及直角三角形的边角关系解决一些数学问题。

2、通过运用勾股定理,直角三角形的边角关系以及锐角三角函数知识,培养学生分析问题、解决问题的能力。

3、渗透数形结合思想,培养学生良好的学习习惯。

二、教学重点:锐角三角函数及直角三角形有关知识的综合运用三、教学难点:实际问题转化成数学模型。

四、教学过程:(一)师生共同复习本章知识结构(1)锐角三角函数及特殊角的三角函数值:①如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.那么∠A的正弦:sin A=∠A的余弦:cos A=∠A的正切:tan A=∠B的正弦:sin A=∠B的余弦:cos B=∠B的正切:tan B=思考:通过边角关系,你发现了什么规律?②特殊角的三角函数值:③三角函数的增减性:当0°< α < 90°时对于sinα与tanα,角度越大,函数值越;对于cosα,角度越大,函数值越 .(2). 解直角三角形①在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:三角关系:边角关系:(3). 三角函数的应用 ①仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. ② 坡度,坡角如图:坡面的铅垂高度(h )和水平长度(l ) 的比叫做坡面坡度.记作i ,即i= h l.坡面与水平面的夹角叫做坡角,记作α,有 i = tan α. 坡度通常写成1∶m 的形式,如i =1∶6.显然,坡度越大,坡角α就越大,坡面就越陡. ③ 方位角:以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角. 如图所示 (二)、双基练习1、若∠A 为锐角,sinA=13,则:cosA=_____,tanA=______2、比较大小:sin530_____ sin540 sin270______ cos7203、(2014·凉山州)在△ABC 中,若|cos A -12|+(1-tan B)2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4、(2015·兰州)如图,△ABC 中,∠B =90°,BC =2AB ,则cos A =( )A .52B .12C .255D .555、如图,在菱形ABCD 中,DE ⊥AB ,cos A =35,BE =2,则tan ∠DBE的值是_ __. (三)、能力提升练习 6、(2015·巴中)计算:|2-3|-(2015-π)0+2sin 60°+(13)-1.7、(2015·丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos ∠α的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC8、(2015·太原)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C .55 D .129、如图在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠BDC=34,则线段AB 的长为( ) A 、 4 B 、5 C 、6 D 、1010、如图,在□ABCD 中,对角线AC ,BD 相交所成的锐角为α,若AC=a ,BD=b ,则:S □ABCD=( )A 、12absinaB 、absinaC 、abcosaD 、 12abcosa11、如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .4512、(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .10 3 海里C .20 2 海里D .30海里13、(2015·曲靖)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则cos D =____. 14、(2015·宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的俯角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__________m (结果保留根号)15、(2015·牡丹江)在△ABC 中,AB =122,AC =13,cos B =22,求BC 的长。

九年级数学《锐角三角函数》复习教学设计

九年级数学《锐角三角函数》复习教学设计

教学目标:1.理解锐角三角函数的概念;2.掌握正弦函数、余弦函数和正切函数的定义;3.能够根据特殊角的数值计算三角函数值;4.能够利用三角函数的性质解决实际问题。

教学准备:教材《九年级数学》课本、教学PPT、白板、彩色粉笔、三角函数计算器。

教学过程:一、导入(10分钟)1.引导学生回顾上节课学习的内容,复习什么是锐角以及角的三要素。

2.提问:你们知道什么是三角函数吗?为什么叫三角函数?3.引入本节课的学习目标:学习锐角三角函数的概念和定义,并能够计算特殊角的三角函数值。

二、学习与练习(30分钟)1.讲解正弦函数的定义和性质。

通过示意图和实例计算正弦函数值。

2.讲解余弦函数的定义和性质。

通过示意图和实例计算余弦函数值。

3.讲解正切函数的定义和性质。

通过示意图和实例计算正切函数值。

4.练习:根据特殊角的数值计算三角函数值,并相互验证。

三、拓展应用(30分钟)1.引导学生应用三角函数的性质解决实际问题,如计算身高、建筑物高度等。

2.提供一些经典的应用题,让学生独立解决,并和同伴分享解题思路。

四、归纳总结(15分钟)1.学生进行小组讨论,归纳总结正弦函数、余弦函数和正切函数的定义和性质。

2.学生代表发言,将自己小组的总结写在黑板上,带领全班进行讨论和补充。

五、课堂练习与答疑(15分钟)1.教师布置几道练习题,要求学生独立完成并交卷。

2.教师和学生一起核对答案,解答学生提出的问题,并做相关的应用题。

六、课堂小结(10分钟)1.教师进行全班复习,回顾本节课所学的内容和方法。

2.提醒学生继续巩固复习,预习下一节课的内容。

教学反思:通过本节课的教学,学生能够理解并掌握了锐角三角函数的概念和定义,并利用其性质解决实际问题。

在教学过程中,我注重启发学生的思维,引导他们独立思考和解决问题,培养了他们的数学思维能力。

然而,本节课的时间安排过于紧凑,学生的课堂参与度还需进一步提高,下节课需要更加注重学生的主动参与和互动。

中考锐角三角函数复习教案

中考锐角三角函数复习教案

中考锐角三角函数复习教案一、教学目标:1.理解锐角三角函数的概念和相关性质;2.掌握锐角三角函数的计算方法和计算属性;3.能够应用锐角三角函数解决简单的几何问题;4.培养学生的逻辑思维、分析问题和解决问题的能力。

二、教学重难点:1.锐角三角函数的相关性质及其应用;2.解决几何问题时的思路和方法;3.解决复杂问题的能力。

三、教学内容:1.锐角三角函数的概念和计算方法(1)正弦函数sin:在直角三角形中,对于一个锐角A,正弦函数sinA定义为A的对边与斜边之比。

(2)余弦函数cos:在直角三角形中,对于一个锐角A,余弦函数cosA定义为A的邻边与斜边之比。

(3)正切函数tan:在直角三角形中,对于一个锐角A,正切函数tanA定义为A的对边与邻边之比。

2.锐角三角函数的性质和应用(1)三角函数的周期性:sin(x+360°) = sinx, cos(x+360°) = cosx, tan(x+180°) = tanx。

(2)三角函数的基本关系:sin^2x + cos^2x = 1, 1 + tan^2x = sec^2x = 1/cos^2x, 1 + cot^2x = csc^2x = 1/sin^2x。

(3)三角函数的图像变换:y = A*sin(Bx+C)+D, y =A*cos(Bx+C)+D, y = A*tan(Bx+C)+D。

(4)三角函数的应用:利用三角函数解决几何问题,求解三角形的边长、角度、面积等。

四、教学方法:1.演绎法:通过展示和推导,让学生理解锐角三角函数的定义和性质。

2.实例法:通过解决具体的几何问题,让学生掌握锐角三角函数的应用方法。

3.练习法:组织学生进行大量的练习,巩固和提高锐角三角函数的计算能力和问题求解能力。

五、教学过程:1.引入:通过展示一道几何问题引起学生的兴趣,然后引出锐角三角函数的概念和应用。

2.讲解:依次介绍正弦函数、余弦函数和正切函数的定义和计算方法,并讲解三角函数的相关性质和应用。

锐角三角函数复习教案

锐角三角函数复习教案

锐角三角函数复习教案教学目标1通过复习,使学生系统地掌握本章知识。

熟练应用三角函数进行计算。

2了解仰角、俯角、方位角等相关慨念。

掌握直角三角形的边与边,角与角,边与角的关系,能应用这些关系解决相关的问题,进一步培养学生应用知识解决问题的能力。

3通过解直角三角形的复习,体会数学在解决实际问题中的作用。

教学重难点重点:解直角三角形及其应用难点:解直角三角形及其应用教学过程一、本章知识结构梳理二本章专题讲解、专题一:锐角三角函数强化练习1、在△ABC 中,∠C =90°,则sinA+cosA 的值( )A.等于1B.大于1C.小于1D.不一定2、若 1 / 无意义,则锐角为 ( )A.30°B.45°C.60°D.75°3.将cos15°、sin25°、tan45°、cos78°用“<”连接起来__________ 例题精讲例1如图,在Rt △ABC 中,∠C =90°,点D 在BC 边上,已知∠ADC=45°,DC=6,sinB=3/5,试求tan ∠BAD.4.如图,圆O 是△ABC的外接圆,连接OA 、OC 。

圆O 的半径为2,sinB=求弦AC 的长? 方法小巧门:在图中如果没有直角三角形,可适当地构造直 角三角形,从而创设运用锐角三角函数解题的问题情景。

专题二:解直角三角形 锐角三角函数1锐角三角函数的定义 ⑴、正弦; ⑵、余弦; ⑶、正切。

2、30°、45°、60°特殊角的三角函数值。

3、各锐角三角函数间关系 ⑴、定义; ⑵、直角三角形的依据 ⑶、解直角三角形的应用。

①、三边间关系; ②、锐角间关系; ③、边角间关系。

3-4con a 2 AC D B43专题概述:解直角三角形的知识在解决实际问题中有广泛的应用。

因此要掌握直角三角形的一般解法,即已知一边一角和已知两边的两种情况,有时要与方程、不等式、相似三角形及圆等知识结合在一起,要注意各种方法的灵活运用。

锐角三角函数第二课时教案

锐角三角函数第二课时教案

锐角三角函数第二课时教案一、教学目标1、知识与技能目标(1)理解正弦、余弦和正切的概念,能够根据直角三角形的边长求锐角的正弦、余弦和正切值。

(2)掌握锐角三角函数之间的关系,能够运用三角函数解决与直角三角形相关的简单实际问题。

2、过程与方法目标(1)通过对锐角三角函数的学习,培养学生的观察、分析和解决问题的能力。

(2)在探究三角函数的过程中,体会从特殊到一般、数形结合的数学思想方法。

3、情感态度与价值观目标(1)通过实际问题的解决,让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。

(2)在合作学习中,培养学生的团队合作精神和交流能力。

二、教学重难点1、教学重点(1)锐角正弦、余弦和正切的概念及计算。

(2)锐角三角函数之间的关系。

2、教学难点(1)理解锐角三角函数的概念。

(2)运用锐角三角函数解决实际问题。

三、教学方法讲授法、讨论法、练习法四、教学过程1、复习导入(1)回顾上节课所学的直角三角形的相关知识,如直角三角形的边、角关系。

(2)提问:在直角三角形中,如果已知一个锐角和一条边,能否求出其他的边和角?2、新课讲授(1)引入正弦概念在直角三角形 ABC 中,∠C = 90°,∠A 为锐角,对边为 a,斜边为 c。

则∠A 的正弦值为:sin A = a / c 。

通过实例,让学生理解正弦的概念。

例如,给出一个直角三角形,已知一个锐角和斜边的长度,求对边的长度。

(2)引入余弦概念同样在直角三角形 ABC 中,∠C = 90°,∠A 的邻边为 b,斜边为c。

则∠A 的余弦值为:cos A = b / c 。

通过具体例子,让学生掌握余弦的计算方法。

(3)引入正切概念在直角三角形 ABC 中,∠C = 90°,∠A 的对边为 a,邻边为 b。

则∠A 的正切值为:tan A = a / b 。

举例说明正切的应用。

(4)锐角三角函数之间的关系引导学生发现:sin² A + cos² A = 1 ,tan A = sin A / cos A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:锐角三角函数
(复习课)
复习目标
(1)知识与技能:
1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。

2.通过复习牢记特殊角的三角函数值,并能进行有关计算。

3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。

(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。

(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。

复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。

复习难点:解直角三角形的知识应用。

教学方法:讲练结合法
课型:复习课
教具准备:多媒体课件
教学过程
一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,
c .则
∠A 的正弦:sin A=_______________ ∠A 的余弦:cos A =________ ∠A 的正切:tan A =_______________
、在Rt △ABC 中,∠C=90°,a =2,
B
自己动手:
1、在等腰△ABC 中,AB=AC=5,BC=6,求sinB ,cosB ,tanB.
2、求适合下列各式的锐角α
3=α3tan
二、特殊角的三角函数值
60
-

sin
22⋅
45
30
cos
tan
练习检测:
求下列各式的值:
2
1
1)

sin


30
-30
cos
30
tan
tan

45
2)
3


+
2
-
︒60
sin
三、解直角三角形
1、解直角三角形的定义:利用已知元素,求出未知元素的过程。

2、解直角三角形的性质:
①三边间关系:
②两锐角间关系:
③边角间关系:
3、解直角三角形条件:已知两边,或已知一边一角。

自己动手:在Rt△ABC中,∠C=90°,a、b、c分别为
∠A 、∠B、∠C的对边.根据已知条件,
解直角三角形.c=8,∠A =60°
四、拓展升华:锐角三角函数间的关系
1、从定义可以看出sin A与cos B有什么关系?sin B与cos A呢?满足这种关系的A
∠与B
∠又是什么关系呢?
2、利用定义及勾股定理你还能发现sin A与cos A的关系吗?
3、再试试看tan A与sin A和cos A存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系:
(1)若90
A B
∠+∠=那么sin A=cos B或sin B=cos A
(2)22
sin cos1
A A
+=(3)
sin
cos
A A
A =
4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢?
通过一番讨论后得出:
(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);
(2)锐角的余弦值随角度的增加(或减小)而减小(或增加);
(3)锐角的正切值随角度的增加(或减小)而增加(或减小)。

作业:《课时练》89页——“节末综合训练”1—10小题必做,11、12小题选作
板书设计
锐角三角函数(复习课)
1、锐角三角函数意义
2、特殊角的三角函数值
3、解直角三角形。

相关文档
最新文档