七年级几何图形初步单元测试卷附答案
人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)
人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()第 1 页共31 页A.7条B.8条C.9条D.10条5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.66.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()第 2 页共31 页A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二.填空题(共8小题)11.下面的几何体中,属于柱体的有个.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是第 3 页共31 页13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是cm.15.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是.若∠1=28°32′35″,则∠1的补角=.三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)第 4 页共31 页20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有条棱,个面;(2)长方体所有棱长的和;(3)长方体的表面积.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说第 5 页共31 页明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.第 6 页共31 页2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.【解答】解:最接近圆柱的是生日蛋糕.故选:A.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形,当截面平行于圆锥的底面时,截面图形是圆.所以这几个几何体的截面分别是:圆、长方形、三角形、圆,故选:B.3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()第7 页共31 页A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山【解答】解:由图可得,三亚﹣﹣永兴岛两个点之间距离最短,故选:A.4.如图,图中共有线段()A.7条B.8条C.9条D.10条【解答】解:线段由AD,AE,DE,AB,AC,BD,EC,BC,故选:B.5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.6【解答】解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.第8 页共31 页6.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°【解答】解:∵∠AOC+∠COD+∠BOD=180°,∴∠COD=180°﹣∠AOC﹣∠COD=70°,∵OM、ON分别是∠AOC、∠BOD的平分线,∴∠MOC=∠AOC=25°,∠DON=∠BOD=30°,∴∠MON=∠MOC+∠COD+∠DON=125°,故选:C.7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°【解答】解:∵一张长方形纸片沿BC、BD折叠,∴∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠A′BC+∠E′BD=180°×=90°,即∠ABC+∠DBE=90°,∵∠ABC=25°,∴∠DBE=65°.第9 页共31 页8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S3【解答】解:∵矩形的长为a米,宽为b米,小路的宽为x米,∴S1=ab﹣(a+b)x+S4;S2=ab﹣(a+b)x+S5;S3=ab﹣(a+b)x+S6.∵S4=x•x=x2,S5=x•sin60°•x•sin60°=x2,S6=x•sin60°•=x2,∴S2<S1<S3.故选:C.9.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个【解答】解:由题可得,是正方体的平面展开图的有:故选:B.第10 页共31 页10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.二.填空题(共8小题)11.下面的几何体中,属于柱体的有4个.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是中【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第11 页共31 页“我”与“城”是相对面,“北”与“三”是相对面,“爱”与“中”是相对面.故答案为:中.13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是2或8.【解答】解:①如图1所示,∵AB=10,BC=6,∴AC=AB﹣BC=10﹣6=4,∵D是线段AC的中点,∴AD=AC=×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D是线段AC的中点,∴AD=AC=×16=8.故答案为:2或8.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是16 cm.【解答】解:如图所示:所以线段MP与NP和的最小值是16cm,故答案为;1615.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.第12 页共31 页【解答】解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是60°.【解答】解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=56°.【解答】解:由折叠可得出2∠1+∠2=180°,∵∠1=62°,第13 页共31 页∴∠2=180°﹣2×62°=56°,故答案为56°.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是∠AOD.若∠1=28°32′35″,则∠1的补角=151°27′25″.【解答】解:∵∠1=∠2,∴与∠1互补的角是∠AOD,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD;151°27′25″三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)【解答】解:当r=6.96×108时,V=πr3≈×3.14×(6.96×108)3≈1.41×1027m3,答:太阳的体积大约是1.41×1027m3.20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有12条棱,6个面;(2)长方体所有棱长的和;(3)长方体的表面积.【解答】解:(1)长方体有12条棱,6个面;第14 页共31 页故答案为:12,6;(2)(1+1+2)×4=4×4=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2=(1+2+2)×2=5×2=10(cm2).故长方体的表面积是10cm2.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?【解答】解:依题意得:A=﹣2,B=﹣3,C=﹣4.22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.【解答】解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC﹣MP=2x+3x﹣x=0.5x=1.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.第15 页共31 页【解答】解:(1)∠AOD=∠DOE﹣∠AOE=90°﹣32°=58°∠BOD=∠AOB﹣∠AOD=180°﹣58°=122°又OC平分∠BOD所以:∠BOC=∠BOD=×122°=61°(2)因为OC平分∠BOD,OD平分∠AOC 所以∠BOC=∠DOC=∠AOD又∠BOC+∠DOC+∠AOD=180°所以∠AOD=×180°=60°所以∠AOE=∠DOE﹣∠AOD=90°﹣60°=30°24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,第16 页共31 页故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.【解答】解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,第17 页共31 页∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x ﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.第18 页共31 页人教版七年级上册数学第四章几何图形初步单元测试题(含答案)一、选择题1.角是指()A. 由两条线段组成的图形B. 由两条射线组成的图形C. 由两条直线组成的图形D. 有公共端点的两条射线组成的图形2.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°3.下列说法正确的是()A. 经过两点有且只有一条线段B. 经过两点有且只有一条直线C. 经过两点有且只有一条射线D. 经过两点有无数条直线4.如图,四条线段中,最短和最长的一条分别是()A. acB. bdC. adD. bc5.如图,B在线段AC上,且BC=2AB,D,E分别是AB,BC的中点.则下列结论:①AB= AC;②B是AE的中点;③EC=2BD;④DE=AB.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.已知∠α=70°,则∠α的补角为()A. 120°B. 110°C. 70°D. 20°7.下列语句中,正确的是().A. 比直角大的角钝角;B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角8.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()第19 页共31 页A. 55°B. 56°C. 58°D. 62°9.如图,下列关系式中与图不符合的式子是()A. AD-CD=AB+BCB. AC-BC=AD-BDC. AC-BC=AC+BDD. AD-AC=BD-BC10.如图是一个正方体的平面展开图,当把它拆成一个正方体,与空白面相对的字应该是()A. 北B. 京C. 欢D. 迎二、填空题11.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=________.12.若∠α=32°22′,则∠α的余角的度数为________.13.已知一个角的补角等于155°,则这个角的余角等于________14.八棱柱有________个顶点,________条棱,________个面.15.和互补,且-=50°,求和的度数. ________、 ________16.34.42°=________(用度、分、秒表示).17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________ °.18.用一个平面去截长方体,截面________是平行四边形(填“可能”或“不可能”).19.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC=________ .20.已知线段AB=1996,P、Q是线段AB上的两个点,线段AQ=1200,线段BP=1050,则线段PQ=________.三、解答题21.已知∠BOC=120°,∠AOB=70°,求∠AOC的大小。
七年级数学上学期第四单元几何图形初步测试卷5套带答案
第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
人教版数学七年级第4章《几何图形初步单元测试卷》参考答案与试题解析
人教版数学七年级第4章《几何图形初步单元测试卷》参考答案与试题解析一.选择题(共10小题,每小题2分,满分20分)1.雨滴滴下来形成雨丝属于下列哪个选项的实际应用()A.点动成线B.线动成面C.面动成体D.以上都不对解:雨滴滴下来形成雨丝属于点动成线,故选:A.2.下列图形中,是棱柱的是()解:A、是三棱锥,故A错误;B、是圆柱,故B错误;C、是圆锥,故C错误;D、是三棱柱,故D正确;故选:D.3.把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°解:10°36″用度表示为10.01°,故选:C.4.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm解:A.直线BA与直线AB是同一条直线,故本选项正确;B.延长线段AB,故本选项错误;C.射线BA与射线AB不是同一条射线,故本选项错误;D.线段AB的长为2cm,故本选项错误;故选:A.5.钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°解:根据题意得:钟表在1点30分时,它的时针和分针所成的角度是135°,故选:A.6.已知∠A与∠B的和是90°,∠C与∠B互为补角,则∠C比∠A大()A.45°B.90°C.135°D.180°解:∵∠A+∠B=90°,∠B+∠C=180°,∴∠C﹣∠A=90°,即∠C比∠A大90°,故选:B.7.“在山区建设公路时,时常要打通一条隧道,就能缩短路程“,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间,线段最短D.垂线段最短解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:C.8.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.9.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:C.10.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.二.填空题(共6小题,每小题3分,满分18分)11.如图,OA的方向是北偏东15°,若∠AOC=∠AOB,则OB的方向是北偏东70°.解:∵OA的方向是北偏东15°,OC的方向是北偏西40°,∴∠AOC=15°+40°=55°,∵∠AOC=∠AOB,∴∠AOB=55°,15°+55°=70°,故OB的方向是北偏东70°.故答案为:北偏东70°.12.一个长方形的长为3,宽为2,以这个长方形的长所在的直线为旋转轴,将长方形旋转1周,得到的几何体的体积为12π(用含π的代数式表示).解:根据题意知将长方形绕长所在的直线旋转1周,得到的几何体是底面半径为2、高为3的圆柱体,∴此圆柱体的体积为π•22×3=12π,故答案为:12π.13.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=cm.解:∵AP=AC+CP,CP=1cm,∴AP=3+1=4cm,∵P为AB的中点,∴AB=2AP=8cm,∵CB=AB﹣AC,AC=3cm,∴CB=5cm,∵N为CB的中点,∴CN=BC=cm,∴PN=CN﹣CP=cm.故答案为:.14.同一条直线上有若干个点,若构成的射线共有10条,则构成的线段共有10条.解:∵同一直线上有若干个点,若构成的射线共有10条,∴这条直线上共有5个点,∴构成的线段条数:=10,故答案为:10.15.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是2或8.解:①如图1所示,∵AB=10,BC=6,∴AC=AB﹣BC=10﹣6=4,∵D是线段AC的中点,∴AD=AC=×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D是线段AC的中点,∴AD=AC=×16=8.故答案为:2或8.16.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为30°或110°.解:当OC在∠AOB内时,如图1所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=30°;当OC在∠AOB外时,如图2所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=110°.故答案为:30°或110°.三.解答题(共7小题,满分62分)17.(6分)根据下列要求画图(1)连结线段OB;(2)画射线AO,射线AB;(3)用圆规在射线AB上截取AC=OB,过点O,点C画出直线OC.解:(1)连接线段OB,如图所示;(2)画射线AO,射线AB,如图所示;(3)用圆规在射线AB上截取AC=OB,过点O、点C画直线OC,如图所示.18.(8分)两种规格的长方体纸盒,尺寸如下(单位:厘米)长宽高小纸盒a b20大纸盒 1.5a2b30(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?解:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.19.(8分)如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P是MN的中点,且MN=18cm,求PC的长.解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC﹣MP=2x+3x﹣x=0.5x=1.20.(9分)已知∠α,线段a、b.请按下列步骤完成作图.(不需要写作法,保留作图痕迹)(1)作∠PAQ=∠α.(2)在边AP上截取AB=a,在边AQ上截取AC=b.(3)连接BC.解:如图,△ABC即为所求;21.(9分)如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,求OC的方向;(2)OD是OB的反向延长线,求OD的方向;(3)∠BOD可看作是OB绕点O顺时针方向旋转至OD,作∠BOD的平分线OE,求OE的方向.解:(1)∵OB的方向是西偏北50°,∴∠BOF=90°﹣50°=40°,∴∠AOB=40°+15°=55°,∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°;(2)∵OB的方向是西偏北50°,∴∠DOH=50°,∴OD的方向是东偏南50°;(3)∵OE是∠BOD的平分线,∴∠DOE=90°,∵∠DOH=50°,∴∠HOE=40°,∴OE的方向是东偏北40°.22.(10分)已知:如图,OM是∠AOC的角平分线,ON是∠BOC的角平分线,(1)当∠AOB=90°,∠BOC=40°时,求∠MON的度数.(2)若∠AOB的度数不变,∠BOC的度数为α时,求∠MON的度数.解:(1)(第一种方法)∵∠AOB=90°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=90°+40°=130°,∵OM是∠AOC的角平分线,∴∠COM=∠AOC=65°,∵ON是∠BOC的角平分线,∴∠CON=∠BOC=20°,∴∠MON=∠COM﹣∠CON=65°﹣20°=45°;第二种方法:∵∠AOB=90°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=90°+40°=130°,∵OM是∠AOC的角平分线,∴∠AOM=∠AOC=65°,∵∠AOB=90°,∴∠BOM=∠AOB﹣∠AOM=90°﹣65°=25°,又∵ON是∠BOC的角平分线,∠BOC=40°,∴∠BON=∠BOC=20°,∴∠MON=∠BOM+∠BON=25°+20°=45°;(2)(第一种方法)∵OM是∠AOC的角平分线,∴∠COM=∠AOC,∵ON是∠BOC的角平分线,∴∠CON=∠BOC,∴∠MON=∠COM﹣∠CON=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=45°;(第二种方法)∵∠AOB=90°,∠BOC=α,∴∠AOC=∠AOB+∠BOC=90°+α,∵OM是∠AOC的角平分线,∴∠COM=∠AOC=(90°+α),∵ON是∠BOC的角平分线,∠BOC=α,∴∠CON=∠BOC=α,∴∠MON=∠COM﹣∠CON=(90°+α)﹣α=45°.23.(12分)如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.解:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.。
第四章 几何图形初步单元练习题(含答案)
人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)一、单选题1.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.2.如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.4.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.5.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C. D.6.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短D.两点确定一条直线7.下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个8.下列说法中正确的有( ). (1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠. A .1个B .2个C .3个D .4个9.如果一个角的度数比它的补角的度数2倍多30°,那么这个角的度数是( ) A .50°B .70°C .130°D .160°10.圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( ) A .2:3B .4:5C .2:1D .2:911.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是( ) A .笔尖在纸上移动划过的痕迹 B .长方形绕一边旋转一周形成的几何体 C .流星划过夜空留下的尾巴 D .汽车雨刷的转动扫过的区域12.己知点M 是线段AB 上一点,若14AM AB =,点N 是直线AB 上的一动点,且AN BN MN -=,则MNAB 的( ) A .34B .12C .1或12D .34或2二、填空题13.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色14.将两个三角尺的直角顶点重合为如图所示的位置,若108AOD ∠=︒,则COB ∠=_________.15.如图是用一副七巧板拼成的正方形,边长是10cm.图中小正方形(涂色部分)的面积是( )2cm.16.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.17.圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.18.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.三、解答题19.如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长。
人教版七年级数学几何图形初步单元试卷含答案
第四章幾何圖形初步單元測試卷第五章(時間:45分鐘,滿分:100分)一、選擇題(每小題4分,共32分)1.下列立體圖形中,側面展開圖是扇形的是()2.下列圖形中,∠1和∠2互為餘角的是()3.如圖,點A位於點O的方向上.()A.南偏東35°B.北偏西65°C.南偏東65°D.南偏西65°4.如圖,一個斜插吸管的盒裝飲料從正面看到的圖形是()5.下列現象中,可用基本事實“兩點之間,線段最短”來解釋的現象是()A.用兩個釘子就可以把木條固定在牆上B.把彎曲的公路改直,就能縮短路程C.利用圓規可以比較兩條線段的大小關係D.植樹時,只要定出兩棵樹的位置,就能確定同一行樹所在的直線6.一塊手錶如圖,早上8時的時針、分針的位置如圖所示,那麼分針與時針所成的角的度數是()A.60°B.80°C.120°D.150°7.將一長方形紙片,按下圖的方式折疊,BC,BD為折痕,則∠CBD的度數為()A.60°B.75°C.90°D.95°8.一個正方體的每個面都寫有一個漢字,其平面展開圖如圖所示,則在該正方體中,和“崇”相對的面上寫的漢字是()A.低B.碳C.生D.活二、填空題(每小題4分,共16分)9.已知∠A與∠B互補,若∠A=70°,則∠B的度數為.10.已知一個角的補角等於它的餘角的6倍,則這個角的大小為.11.(1)13°30'=°;(2)0.5°='=″.12.平面上有四個點,過每兩個點畫一條直線,一共可以畫條直線.三、解答題(共52分)13.(每小題5分,共10分)計算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.14.(10分)在一張城市地圖上,如圖,有學校、醫院、圖書館三地,圖書館被墨水污染,具體位置看不清,但知道圖書館在學校的東北方向,在醫院的南偏東60°方向,你能確定圖書館的位置嗎?15.(10分)已知C為線段AB的中點,D在線段BC上,且AD=7,BD=5.求線段CD的長度.16.(10分)如圖,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度數.17.(12分)如圖,把一副三角尺的直角頂點O重疊在一起.(1)如圖①,當OB平分∠COD時,則∠AOD和∠BOC的和是多少度?(2)如圖②,當OB不平分∠COD時,則∠AOD和∠BOC的和是多少度?參考答案一、選擇題1.B2.D3.B4.A5.B6.C7.C本題考查角平分線和平角的概念.由圖的折疊可知BC,BD分別是∠ABA',∠E'BE的角平分線,而∠ABE是一個平角,所以∠CBD=90°.8.A二、填空題9.110°10.72°設這個角的大小為x°,列方程得180°-x°=6(90°-x°),解得x°=72°.11.(1)13.5(2)30 1 80012.1或4或6本題沒指明這四個點的位置關係,所以應予以討論,不要遺漏.(1)當A,B,C,D四點在同一條直線上時,可畫1條直線,如圖①;(2)當三點(如A,B,C)在同一直線上,而另一個點D 在該直線外時,可畫出4條直線,如圖②;(3)當上述四點沒有任何三點在同一直線上時,可畫出6條直線,如圖③.三、解答題13.解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=39°159'-32°5'31″=41°38'60″-32°5'31″=9°33'29″.14.解:如圖,點P就是圖書館所在的位置.15.解:因為AD=7,BD=5,所以AB=AD+BD=12.又因為C為線段AB的中點,所以AC=AB=6.所以CD=AD-AC=7-6=1.16.解:因為∠AOD=∠AOC-∠DOC=60°-∠DOC,∠BOC=∠BOD-∠DOC=90°-∠DOC,所以∠AOB=∠AOD+∠COD+∠BOC=60°-∠DOC+∠COD+90°-∠DOC=150°-∠DOC.所以150°-∠DOC=3∠DOC.所以∠DOC=37.5°.所以∠AOB=3×37.5°=112.5°.17.解:(1)∵∠AOB=∠COD=90°,當OB平分∠COD時,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.。
人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)
人教版七年级数学上册《第四章几何图形初步》单元测试卷一、选择题(共8小题,4*8=32)1.下列能用∠C表示∠1的是()2.A,B两点间的距离是()A.连结两点间的直线B.连结两点的线段C.连结两点间的直线的长度D.连结两点的线段的长度3.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.44.已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cmC.10cm或5cm D.7.5cm5.α与∠β的度数分别是(2m-67)°和(68-m)°,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cmC.7cm或3cm D.7cm7.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,则∠BOC=()A.10°B.40°C.40°或70°D.10°或70°8.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=50°,∠COD =100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°二、填空题(共6小题,4*6=24)9.如图,AB+BC>AC,其理由是____.10.如图,在横线上填上适当的角:∠AOB=-∠COB=∠AOD-.11.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_____倍.12.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.13.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=________.14.归纳与猜想:(1)观察下图填空:图1中有个角;图2有个角;图3中有个角;(2)根据(1)猜想:在一个角内引n-2条射线可组成个角.三、解答题(共5小题,44分)15.(6分)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.16.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?AB,点E是17.(8分)如图,已知A,B,C三点在同一直线上,AB=24cm,BC=38 AC的中点,点D是AB的中点,求DE的长.18.(10分)如图,已知∠AOB=12∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.19.(12分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD 的中点E,F之间的距离是10cm,求AB,CD的长.参考答案1-4CDBC5-8CBDC9.两点之间线段最短10.∠AOC ,∠DOB11.312.155°13.2cm 或8cm14.3,6,10;n (n -1)215.解:如图所示。
人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)
第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。
七年级几何图形初步单元质量检测试卷含答案
D CB AB A第1题图会社谐和设建C BAβββααα第3题图 七年级数学单元质量检测 第四章 几何图形初步(问卷)第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分)1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个1乙甲N M PD C B A B ()D C AD CBA第9题图BA 第19题D C BA O 第20题CB A8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( ) A. 3cm B. 4cm C. 5cm D. 6cm9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( ) A. 91°20/24// B. 91°34/ C. 91°20/4// D. 91°3/4//11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图), 两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题(每小题3分,共24分)13.下列各图形中, 不是正方体的展开图(填序号).14.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6cm ,则AB = cm.15.已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,若BD =3cm ,则AC 的长为 cm.16.若时针由2点30分走到2点55分,则时针转过 度,分针转过 度.17.一个角的补角是这个角的余角的4倍,则这个角的度数是 .D CB A ODCBAba O DCBA18.如图,已知点O 是直线AD 上的点,∠AOB 、∠BOC 、∠COD 三个角从小到大依次相差25°,则这三个角的度数分别为.19.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB = .20.如图所示,一艘船从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东 15°方向行至点C ,则∠ABC = 度.三、解答题:(本大题共52分)21.(每小题3分,共6分)根据下列语句,画出图形. ⑴已知四点A 、B 、C 、D.① 画直线AB ;② 连接AC 、BD ,相交于点O ; ③ 画射线AD 、BC ,交于点P.⑵如图,已知线段a 、b ,画一条线段,使它等于2a -b.(不要求写画法)22.计算题:(每小题5分,共20分)⑴ (180°-91°32/24//)×3⑵ 34°25/×3+35°42/⑶ 一个角的余角比它的补角的31还少20°,求这个角.⑷ 如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,求∠AOC 的度数.23.(本大题9分)如图,是由7块正方体木块堆成的物体,请说出图⑴、图⑵、图⑶分别是从哪一个方向看得到的?⑴⑵ ⑶D CB A ba DCBA第24题图3x -2A1-2x 3第25题图E A /DC B A24.(本大题7分)如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面与右面标注的式子相等. ⑴ 求x 的值. ⑵ 求正方体的上面和底面的数字和.25.(本大题10分)探究题:如图,将书页一角斜折过去,使角的顶点A 落在A /处,BC 为折痕,BD 平分∠A /BE ,求∠CBD 的度数.三、解答题(共52分)21.(每小题3分,共6分)根据下列语句,画出图形. ⑴已知四点A 、B 、C 、D.① 画直线AB ;② 连接AC 、BD ,相交于点O ;③ 画射线AD 、BC ,交于点P 。
人教版七年级数学上册《第4章 几何图形初步》单元测试题(有答案)
人教版七年级数学上册《第4章几何图形初步》单元测试题一.选择题(共10小题,每小题3分,共30分)1.按柱、锥、球分类,下列几何体中与其余三个不属于同一类几何体的是()A.B.C.D.2.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.103.经过A、B两点可以确定几条直线()A.1条B.2条C.3条D.无数条4.下列4个生产、生活现象中,可用“两点之间线段最短”来解释的是()A.用两根钉子就可以把木条固定在墙上B.植树时,只要选出两棵树的位置,就能确定同一行树所在的直线C.把弯曲的公路改直,就能缩短路程D.砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线5.将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.6.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.7.将左面的平面图形绕轴旋转一周,得到的立体图形是()A.B.C.D.8.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°9.下列说法错误的是()A.把一条线段分成相等两段的点是这条线段的中点B.如果点M到线段AB的两个端点的距离相等,即MA=MB,那么点M一定是线段AB 的中点C.如果线段AB=5cm,线段AC=BC=2.5cm,那么点C一定是线段AB的中点D.如果点C在线段AB上,且AB=2AC,那么点C一定是线段AB的中点10.如果乙船在甲船的南偏东30°方向,那么甲船在乙船的()方向.A.北偏东30°B.北偏西30°C.北偏东60°D.北偏西60°二.填空题(共8小题,每小题3分,共24分)11.一个角的余角是54°38′,则这个角是.12.如图,是一个长方体形状包装盒的表面展开图,折叠制作完成后得到长方体的容积是(包装材料厚度不计,写出正确的代数式即可).13.如果∠AOB=55°,过O点有一条射线OC,使∠AOC=15°,那么∠BOC的度数是.14.如图,∠AOB=90°,若射线OA的方向为北偏东55°,则射线OB的方向为.15.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.16.已知:点A、B、C、D在同一直线上,AB=4cm,C为线段AB的中点,CD=3cm,则A、D两点的距离为.17.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是.18.已知线段AB=16,AM=BM,点P、Q分别是AM、AB的中点,当点M在直线AB 上时,则PQ的长为.三.解答题(共8小题,共66分)19.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.20.如图,已知∠AOC和∠BOD都是直角,∠COD=40°.(1)求∠BOC和∠AOB的度数;(2)画射线OM,若∠DOM=4∠BOM,求∠AOM的度数.21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,AB=10cm,线段BD=4cm,线段AC=7cm,E是线段BC的中点,FD=2AF,求EF的长.23.如图,在A、B两地间修一条笔直的公路,从A地测得公路的走向为北偏东60°,如果A、B两地同时开工,那么∠α为多少度时,才能使公路准确接通?24.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.25.如图,已知线段AB=4,延长AB到点C,使得AB=2BC,反向延长AB到点D,使AC =2AD.(1)求线段CD的长;(2)若Q为AB的中点,P为线段CD上一点,且BP=BC,求线段PQ的长.26.生活中的易拉罐、电池、圆形的笔筒等都是一种叫做圆柱体的立体图形(如图1所示),当把它的上底面、下底面和侧面展开后发现上底面和下底面是两个大小相同的圆,侧面是一个长方形(如图2所示(1)一个圆柱体的铝制易拉罐上、下两个底面的半径都是4cm,侧面高为15cm,制作这样一个易拉罐需要面积多大的铝材?(不计接缝).(2)如果一个圆柱体的铝制装饰品的高是5cm,而且侧面的面积等于上、下两个底面面积之和,那么底面的半径是cm.(3)一张正方形的铝材边长是40cm,可单独用于制作(2)题中铝制装饰品的侧面或单独用于制作底面,若要使制成的侧面和底面正好能成为一套完整的装饰品,那么制作侧面的铝材张数与制作底面的铝材张数之比为.参考答案与试题解析一.选择题(共10小题)1.解:正方体,圆柱和四棱柱都是柱体,只有C选项是锥体.故选:C.2.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.3.解:经过A、B两点可以确定1条直线.故选:A.4.解:A、用两根钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;B、植树时,只要选出两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;C、把弯曲的公路改直,就能缩短路程,可用“两点之间线段最短”来解释,符合题意;D、砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线,利用的是两点确定一条直线,故此选项不合题意;故选:C.5.解:选项D中,∠α、∠β都与中间的锐角互余,根据同角的余角相等可得∠α=∠β,故选:D.6.解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.7.解:梯形绕上底边旋转是圆柱减圆锥,故C正确;故选:C.8.解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=∠AOC=×75°=30°,故选:B.9.解:A、把一条线段分成相等两段的点是这条线段的中点,原说法正确,故此选项不符合题意;B、如果点M到线段AB的两个端点的距离相等,即MA=MB,那么点M不一定是线段AB的中点,因为点M不一定在线段AB上,所以原说法错误,故此选项符合题意;C、如果线段AB=5cm,线段AC=BC=2.5cm,那么点C一定是线段AB的中点,原说法正确,故此选项不符合题意;D、如果点C在线段AB上,且AB=2AC,那么点C一定是线段AB的中点,原说法正确,故此选项不符合题意.故选:B.10.解:如图:∵从甲船看乙船,乙船在甲船的南偏东30°方向,∴从乙船看甲船,甲船在乙船的北偏西30°方向.故选:B.二.填空题(共8小题)11.解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′.故答案为:35°22′12.解:根据图形可知:长方体的容积是:40×70×80;故答案为40×70×80.13.解:当OC在∠AOB的内部时,如图1,∠BOC=∠AOB﹣∠AOC=55°﹣15°=40°;当OC在∠AOB的外部时,如图2,∠BOC=∠AOB+∠AOC=55°+15°=70°;故答案为:40°或70°.14.解:如图,所示:∵OA是北偏东55°方向的一条射线,∠AOB=90°,∴∠1=90°﹣55°=35°,∴OB的方向角是南偏东35°.故答案是:南偏东35°.15.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.16.解:如图所示:①点D在线段AB的延长线上时,如图1,∵C为线段AB的中点,AB=4cm∴AC=BC=AB,又∵AB=4cm,∴BC==2cm,又∵BD=CD﹣BC,∴BD=3﹣2=1cm,又∵AD=AB+BD,∴AD=4+1=5cm;②点D在线段AB的r反向延长线上时,如图2,同理可得:∴AC==2cm,又∵CD=AC+AD,∴AD=3﹣2=1cm,综合所述:A、D两点的距离为1cm或5cm,故答案为1cm或5cm.17.解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故答案为:圆柱.18.解:①点M在线段AB上时,如图1所示:∵AB=AM+MB,AM=BM,AB=16,∴AM=4,BM=12,又∵Q是AB的中点,∴AQ=BQ===8,又∵MQ=BM﹣BQ,∴MQ=12﹣8=4,又∵点P是AM的中点,∴AP=PM===2,又∵PQ=PM+MQ,∴PQ=2+4=6;②点M在线段AB的反向延长线上时,如图2所示:同理可得:AQ===8,又∵AM=BM,∴AM===8,又∵点P是AM的中点,∴AP==8=4,又∵PQ=PA+AQ,∴PQ=4+8=12,综合所述PQ的长为6或12.三.解答题(共8小题)19.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.20.(1)∵∠COD=40°,∴∠BOC=90°﹣∠COD=90°﹣40°=50°,∴∠AOB=∠AOC+∠BOC=50°+90°=140°.(2)当射线OM在∠BOD内部时,如图1,∵∠DOM=4∠BOM,∠DOB=90°,∴4∠BOM+∠BOM=90°,∴∠BOM=18°,∴∠AOM=∠AOB﹣∠BOM=140°﹣18°=122°,当射线OM在∠BOD外部时,如图2,∵∠DOM=4∠BOM,∴∠DOB=3∠BOM.∵∠DOB=90°,∴∠BOM=30°,∴∠AOM=∠AOB+∠BOM=140°+30°=170°.21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:∵AB=10cm,线段BD=4cm,线段AC=7cm,∴CD=AC+BD﹣AB=4+7﹣10=1(cm),∴AD=AC﹣CD=6(cm),∵FD=2AF,∴DF=AD=×6=4(cm),∵E是线段BC的中点,BC=BD﹣CD=4﹣1=3(cm),∴CE=BC=(cm),∴EF=DF+CD+CE=(cm).23.解:过A、B分别作AC∥BD,则∠CAB+α=180°,则α=180°﹣60°=120°,即∠α为120度时,才能使公路准确接通.24.解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∴∠EBD=∠CBD,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.25.解:(1)∵AB=4,AB=2BC,∴BC=2,∴AC=AB+BC=6,∵AC=2AD,∴AD=3,∴CD=AC+AD=6+3=9;(2)∵Q为AB中点,∴BQ=AB=2,∵BP=BC,∴BP=1,当点P在B、C之间时,PQ=BP+BQ=2+1=3;当点P在A、B之间时,PQ=BQ﹣BP=2﹣1=1.即PQ的长为1或3.26.解:侧面积+底面积×2得,2π×4×15+π×42×2=152π(cm2),答:制作这样一个易拉罐需要面积为152π平方厘米的铝材;(2)设半径为rcm,由题意得,2πr×5=2πr2,解得,r=5,故答案为:5.(3)用边长是40cm正方形上,单独作半径为5cm的底面圆时,一张可以做16个圆形,8套,用边长是40cm正方形上,单独作底面半径为5cm,高为5cm圆柱的侧面时,一张可以做9个侧面(8个横的,1个竖的),因此做侧面与底面张数的比为8:9.故答案为:8:9.。
数学七年级上册《几何图形初步》单元综合测试题(附答案)
人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,把正确选项的代号填在题后的括号内).1.下列说法中错误的有( )(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角.A.1个B.2个C.3个D.4个2.下列图中角的表示方法正确的个数有( )A.1个B.2个C.3个D.4个3.下面左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图是( )A. B. C. D.(第3题)4.经过同一平面内任意三点中的两点共可以画出( )A.一条直线B.两条直线C.一条或三条直线D.三条直线5.若∠A=20 o 18′, ∠B=20 o 15′30〞, ∠C=20.25 o,则 ( )A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C >∠BD.∠C >∠A >∠B6.如左图所示的正方体沿某些棱展开后,能得到的图形是( )(第6题)7.如图下列说法错误的是( )A.OA方向是北偏东40°B.OB方向是北偏西15 °C.OC方向是南偏西30°D.OD方向是东南方向.(第7题)8.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )二、填空题(本大题共7小题,每小题3分,共21分)9.要在墙上钉一根木条,至少要用两颗钉子,这是因为: .10.如图所示,小于平角的角有个.11.一个角余角是23°13′6″,则这个角的度数是 .12.如图将一副直角三角板叠在一起,使直角顶点重合于点O, 则∠AOB+∠DOC=°.13.在时刻8:30,时钟上的时针和分针的夹角是.14.如果某时刻灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的方向.15.天天宾馆在重新装修后,准备在大厅的主楼道上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼道宽2米,其侧面如图所示.问购买这种地毯至少需要 元.三、(本大题共3小题,第16题6分,第17,18题各5分,共16分)16.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图:(1)画直线AB ;(2)作射线BC ;(3) 连接AD ,作线段AD 的反向延长线AE ;(4) 在平面内找一点F ,使点F 到A 、B 、C 、D 四点距离和最短. 17.如图,已知线段a 、b ,画一条线段,使它等于2a -b .(保留作图痕迹,不写画法).18.计算:50°24′×3+98°12′25″÷5四、(本大题共2小题,每小题7分,共14分)19.已知C 为线段AB 的中点,AB =10cm ,D 是AB 上一点,若CD =2cm ,求BD 的长.20.一个角的余角比它的补角的31还少20°,求这个角.五、(本大题共3小题,第21,22小题各8分,第23小题9分,共25分)21.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面 与右面标注的式子相等.⑴ 求x 的值.⑵ 求正方体的上面和底面的数字和.22.如图,从O 点引四条射线OA 、OB 、OC 、OD ,若∠AOB ,∠BOC ,∠COD ,∠DOA 度数之比为1∶2∶3∶4.(1)求∠BOC 的度数.36m(第10题) (第12题) (第15题)(第21题)(2)若OE平分∠BOC,OF、OG三等分∠COD,求∠EOG.(第22题)23.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.⑴求线段MN的长;⑵若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由.-=cm,M、N分别为AC、BC的中点,你能猜想MN ⑶若C在线段AB的延长线上,且满足AC CB b的长度吗?请画出图形,写出你的结论,并说明理由.⑷你能用一句简洁的话,描述你发现的结论吗?参考答案一、选择题:1.C2.B3.D4.C5.A6.B7.A8.C二、填空题:9.两点确定一条直线; 10.9 ; 11. 66°46′54″; 12.180; 13.75;14. 南偏西40 ; 15.540.三、16.略. 17.略. 18.170°50′29″四、19.解:(1)当D 在AC 上时,BD =7cm ;(2)当D 在CB 上时,BD =3cm.20.解:设这个角为x °,则可得:1(90)(180)203x x -=--,解得:x =75. 答:略.五、21.解:(1)32x x =-,解得:1x =.(2)1+3=4.22.解:(1)∠BOC =72°;(2)∠EOG =108°.23.解:(1) MN =7;(2)MN =12a ,11()22MN AC CB a =+=; (3)MN =12b ,11()22MN AC CB b =-=;画图略. (4)C 在线段AB 上,12MN AB =; C 在线段AB 延长(反向延长)线上,12MN AC BC =-.。
人教版2024新版七年级数学上册《第6章 几何图形初步》单元测试及答案
…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:120分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是( ) A.三角形、圆、球、圆锥 B.长方体、正方体、圆柱、球 C.长方形、三角形、正方形、圆 D.扇形、长方形、三棱柱、圆锥2.如图所示的正六棱柱的主视图是( )A.B.C.D.3.下列说法中,正确的是( )A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC ,则点B 为AC 的中点 4.与30︒的角互为余角的角的度数是( )A.30︒B.60︒C.70︒D.90︒ 5.如图,点A 在点B 的( )A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30° 6.已知线段AB =15cm ,点C 是直线AB 上一点,BC =5cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A.10cmB.5cmC.10cm 或5cmD.7.5cm7.已知∠1=2824'︒,∠2=28.24︒,∠3=28.4︒,则下列说法中,正确的是( ) A.∠1=∠2<∠3 B.∠1=∠3>∠2 C.∠1<∠2=∠3 D.∠1=∠2>∠3 8.钟表在8:25时,时针与分针夹角的度数是( ) A.101.5︒ B.102.5︒ C.120︒ D.125︒9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是( )A.大B.伟C.国D.的10.如图,,C D 在线段BE 上,下列说法:直线CD 上以,,,B C D E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100︒,∠DAC=40︒,则以A 为顶点的所有小于平角的角的度数和为360︒;④若BC =2,CD DE ==3,点F 是线段BE 上任意一点,则点F 到点,,,B C D E 的距离之和的最大值为15,最小值为11.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题(每题3分,共30分)……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…1l.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是____________.12.一个角的余角比这个角的补角的一半小40︒,则这个角为________.13.三条直线两两相交,最少有_______个交点,最多有_______个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了________.(从点线、面的角度作答)15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点,,A O B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有,,A B O三个小岛,在小岛O处观测到小岛A在其北偏东62︒的方向上,观测到小岛B在其南偏东3812'︒的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有_______种不同的票价,需准备________种车票.19.小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.20.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把露在外面的面涂上颜色,那么涂颜色的面的面积之和是_______2cm.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)324548212514''''''︒+︒;(2)1123363'''︒⨯.22.点,,,A B C D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接DB,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________23.如图,已知线段AB =4.8cm ,点M 为AB 的中点,点P 在MB 上,N 为PB 的中点,且NB =0.8cm ,求AP 的长.24.如图,射线OA 的方向是北偏东15︒,射线OB 的方向是北偏西40°,∠AOB=∠AOC ,射线OD 是OB 的反向延长线. (1)射线OC 的方向是_______;(2)若射线OE 平分∠COD ,求∠AOE 的度数.25.如图是某工件从正面、左面、上面看到的图形,判断该工件的形状,并求此工件的体积.(结果保留π)26.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC=60︒时,∠MON 的度数是多少? (2)如图②,当∠AOB=α,∠BOC=60︒时,猜想∠MON 与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0︒<αβ+<180︒)时,猜想∠MON 与,αβ的数量关系,并说明理由.参考答案一、1.答案:C 2.答案:B 3.答案:A 4.答案:B 5.答案:C 6.答案:D 7.答案:B 8.答案:B 9.答案:D 10.答案:B 解析:以,,,B C D E 为端点的线段有,,,,,BC BD BE CE CD ED 共6条,故①正确;图中互补的角就是分别以,C D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;根据图形,由∠BAE=100︒,∠CAD=40︒,可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100︒+100︒+100︒+40︒=340︒,故③错误;当点F 在线段CD 上时,点F 到点,,,B C D E 的距离之和最小,为FB FE FD FC +++=2+3+3+3=11,当点F和点E重合时,点F 到点,,,B C D E的距离之和最大,为803617FB FE FD FC +++=+++=,故④错误.故选B.……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…二、11.答案:两点确定一条直线 12.答案:80︒ 13.答案:1;3 14.答案:点动成线;线动成面 15.答案:4 16.答案:155︒ 17.答案:10012'︒ 18.答案:21;42 19.答案:45︒ 20.答案:30 三、21.答案:见解析解析:(1)324548212514''''''︒+︒=53706254112''''''︒=︒. (2)1123363'''︒⨯=3369108'''︒=341048'''︒. 22.答案:见解析 解析:如图.23.答案:见解析解析:解法一:因为N 为PB 的中点,所以2PB NB =.又知NB =0.8cm ,所以PB =2×0.8=1.6(cm ).所以 4.8 1.6 3.2AP AB PB =-=-=(cm ). 解法二:因为N是PB的中点,所以2PB NB=.而NB=0.8cm ,所以PB =2×0.8=1.6(cm ).因为M 为AB 的中点,所以12AM MB AB ==. 而AB =4.8cm ,所以AM BM ==2.4cm.又因为MP MB PB =-=2.4-1.6=0.8(cm ),所以AP AM MP =+=2.4+0.8=3.2(cm ).点拨:(1)把一条线段分成两条相等线段的点,叫做这条线段的中点. (2)线段中点的表达形式有三种,若点C 是线段AB 的中点,则①AC =BC ;②AB =2AC =2BC ;③12AC BC AB ==.熟悉它的表达形式对以后学习几何的推理论证有帮助. 24.答案:见解析解析:(1)北偏东70︒(2)因为∠AOB=40︒+15︒=55︒,∠AOB=∠AOC ,所以∠BOC=110︒.又因为射线OD 是OB 的反向延长线,所以∠BOD=180︒. 所以∠COD=180︒-110︒=70︒.又因为OE 平分∠COD ,所以∠COE=35︒. 又因为∠AOC=55︒, 所以∠AOE=55︒+35︒=90︒. 25.答案:见解析解析:由题意得该工件的形状为圆锥,圆锥的底面直径为6cm ,高为4cm ,所以圆锥的体积为()231(62)412cm 3ππ⨯÷⨯=.故此工件的体积为312cm π. 26.答案:见解析解析:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC )=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12AOC-∠BOC )=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=111()222αββα+-=.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:100分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每小题3分,共30分)1.已知1∠和2∠互为余角,且2∠与3∠互补,160∠=︒,则3∠为( ) A.120︒ B.60︒ C.30︒ D.150︒2.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( ) A.过一点有且只有一条直线 B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线3.如图所示,点B 在点O 的北偏东60︒,射线OB 与射线OC 所成的角是110︒,则射线OC 的方向是( )A.北偏西30︒B.北偏西40︒C.北偏西50︒D.西偏北50︒ 4.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B. C. D.5.11点40分,时钟的时针与分针的夹角为( )A.140︒B.130︒C.120︒D.110︒ 6.如图为一个正方体纸盒的展开图,若在其中的三个正方形,,A B C 内分别填入适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形,,A B C 内的三个数依次为( )A.1,2,0-B.0,2,1-C.2,0,1-D.2,1,0 7.如图,将一副直角三角尺叠放在一起,使直角顶点重合于点O ,若28DOC ∠=︒,则AOB ∠的度数为()A.62︒B.152︒C.118︒D.无法确定8.某正方体的平面展开图如图所示,这个正方体可能是下面四个选项中的( )……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…A. B. C. D.9.已知160,3AOB AOC AOB ∠=︒∠=∠,射线OD 平分BOC ∠,则COD ∠的度数为()A.20︒B.40︒C.20︒或30︒D.20︒或40︒ 10.如图,C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A.4B.6或8C.6D.8 二、填空题(每小题3分,满分24分)11.为全面实施乡村电气化提升工程,改造升级农村电网,今从A 地到B 地架设电线,为了节省成本,工人师傅总是尽可能的沿着线段AB 架设,这样做的理由是__________.12.我国“神舟”十号载人飞船的成功发射,标志着我国航空航天事业已步入世界的领先水平,如图是“神舟”十号顺利变轨后的飞行示意图,用数学的观点解释图中飞船飞行后留下的弧形彩带现象:__________.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是________.14.如图为某几何体的展开图,该几何体的名称是_________.15.一副三角尺按如图方式摆放,且1∠的度数比2∠的度数大50︒,则2∠的大小为________度.16.如图所示,,,A O B三点在同一条直线上,AOC ∠与AOD ∠互余,已知110BOC ∠=︒,则AOD ∠=________°.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________17.如图是由几个大小相同的小立方块搭成的几何体,搭成这个几何体需要10个小立方块,在保持从正面看和从左面看到的形状图不变的情况下,最多可以拿掉_______个小立方块.18.2021年是中国共产党成立100周年,小花打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“一百周年党庆”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是_________.三、解答题(共46分)19.(8分)如图,已知四点,,,A B C D .请用尺规作图完成(保留痕迹). (1)画直线AB ; (2)画射线AC ;(3)连接BC 并反向延长BC 到E ,使得2CB CE =; (4)画点P ,使PA PB PC PD +++的值最小.20.(6分)如果一个锐角的补角比这个角的余角的2倍还多40︒,那么这个角的余角是多少度?21.(8分)计算: (1)131********︒'-︒'''; (2)583827474240︒'''+︒'''; (3)342533542︒'⨯+︒'; (4)22533107455︒'⨯+︒'÷.22.(8分)如图,已知O 为直线AD 上一点,AOC ∠与AOB ∠互补,,OM ON 分别是,AOC AOB ∠∠的平分线,72MOC ∠=︒.(1)COD ∠与AOB ∠相等吗?请说明理由; (2)求AON ∠的度数.23.(8分)将一张长方形纸片按如图所示的方式折叠,EF 为折痕,点A 落在点G 处,EH 平分FEB ∠.(1)如图1,若EG 与EH 重合,求FEH ∠的度数; (2)如图2,若34FEG ∠=︒,求GEH ∠的度数;(3)如图3,若()FEG 6090αα∠=︒<<︒,求GEH ∠的度数(用α的式子表示).……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…24.(8分)(2021・广东期中)如图,P是线段AB上任一点,12AB=厘米,,C D 两点分别从,P B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若8AP=厘米.①运动1秒后,求CD的长;②当D在线段PB上运动时,试说明2AC CD=;(2)如果2t=秒时,1CD=厘米,直接写出AP的值是_____厘米.参考答案1.答案:D2.答案:D3.答案:C4.答案:D5.答案:D6.答案:A7.答案:B8.答案:A9.答案:D 10.答案:B 11.答案:两点之间,线段最短12.答案:点动成线13.答案:圆锥14.答案:五棱柱15.答案:20 16.答案:20 17.答案:118.答案:党19.答案:见解析解析:(1)如图,直线AB即为所求.(2)如图,射线AC即为所求.(3)如图,线段CE即为所求,(4)如图,点P即为所求.20.答案:见解析解析:设这个角为x︒,则其余角为(90)x-︒,补角为(180)x-︒,所以1802(90)40x x-=-+,所以40x=,所以9050x-=.答:这个角的余角是50度.21.答案:见解析解析:(1)13128513215795545︒'-︒'''=︒''';(2)583827474240106217︒'''+︒'''=︒''';(3)342533542103153542︒'⨯+︒'=︒'+︒'13857=︒';(4)2253310745568392133︒'⨯+︒'÷=︒'+︒'9012=︒'.22.答案:见解析解析:(1)COD AOB∠=∠.理由如下:因为点O在直线AD上,所以180AOC COD∠+∠=︒,又因为AOC∠与AOB∠互补,所以180AOC AOB∠+∠=︒,所以COD AOB∠=∠;(2)因为,OM ON分别是,AOC AOB∠∠的平分线,…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________所以12,2AOC COM AON AOB ∠=∠∠=∠,因为72MOC ∠=︒,所以2144AOC COM ∠=∠=︒, 所以18036AOB COD AOC ∠=∠=︒-∠=︒, 所以136182AON ∠=⨯︒=︒.23.答案:见解析解析:(1)由折叠可知AEF FEH ∠=∠,因为EH 平分FEB ∠,所以FEH BEH ∠=∠, 所以AEF FEH BEH ∠=∠=∠, 因为180AEF FEH BEH ∠+∠+∠=︒, 所以60FEH ∠=︒;(2)由折叠可知AEF FEG ∠=∠, 因为34FEG ∠=︒,所以34,18034146AEF FEB ∠=︒∠=︒-︒=︒, 因为EH 平分FEB ∠,所以1732FEH BEH FEB ∠=∠=∠=︒,所以733439GEH FEH FEG ∠=∠-∠=︒-︒=︒; (3)由折叠可知AEF FEG ∠=∠,因为FEG α∠=, 所以,180AEF FEB αα∠=∠=︒-,因为EH 平分FEB ∠,所以119022FEH BEH FEB α∠=∠=∠=︒-,所以13909022GEH FEG FEH ααα⎛⎫∠=∠-∠=-︒-=-︒⎪⎝⎭. 24.答案:见解析 解析:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=,因为8cm,12cm AP AB ==, 所以4(cm)PB AB AP =-=,所以2433(cm)CD CP PB DB =+-=+-=, ②因为8,12AP AB ==,所以4,82BP AC t ==-, 所以43DP t =-,所以4324CD DP CP t t t =+=-+=-, 所以2AC CD =;(2)当2t =时,224(cm)CP =⨯=,326(cm)DB =⨯=, 当点D 在C 的右边时,如图所示: 由于1cm CD =,所以CB CD DB 7(cm)=+=, 所以5(cm)AC AB CB =-=, 所以9(cm)AP AC CP =+=,当点D 在C 的左边时,如图所示:所以6(cm)AD AB DB =-=, 所以11(cm)AP AD CD CP =++=, 综上所述,9AP =或11.答案为9或11.。
七年级数学上册《几何图形初步》单元测试卷(含答案解析)
七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。
人教版七年级上册数学第四章 几何图形初步单元测试卷附解析
人教版七年级上册数学第四章几何图形初步单元测试卷附解析一、单选题(共10题;共30分)1.(3分)下列图形沿着某一直线旋转180°后,一定能形成圆锥的是()A.直角三角形B.等腰三角形C.矩形D.扇形2.(3分)以下哪个图形经过折叠可以得到正方体()A.B.C.D.3.(3分)下列各图中直线的表示法正确的是().A.B.C.D.4.(3分)下列说法正确的是()A.射线PA与射线AP是同一条射线B.射线OA的长度是12cmC.直线ab,cd相交于点MD.两点确定一条直线5.(3分)已知点A、B、C都是直线m上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm或6cm C.8cm或2cm D.4cm6.(3分)下列角中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C .D .7.(3分)下列图中的 ∠1 也可以用 ∠O 表示的是( )A .B .C .D .8.(3分)某测绘兴趣小组用测绘装置对一建筑的位置进行测量,测量前指针指向北偏东38°,测量后指针顺时针旋转了14周,则此时指针指向为( )A .北偏西52°B .南偏东52°C .西偏南42°D .东偏北42°9.(3分)已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为( )A .120°B .60°C .30°D .150°10.(3分)如图,从点O 出发的5条射线,可以组成的锐角的个数是( )A .8B .9C .10D .11二、填空题(共5题;共15分)11.(3分)如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为 cm .12.(3分)已知线段AB=6cm ,点C 为直线AB 上一点,且BC=2cm ,则线段AC 的长是cm.13.(3分)将19.36°用度分秒表示为.14.(3分)钟表上显示8:30,时针与分针的夹角为。
人教版七年级上册数学《第四章 几何图形初步》章节检测试卷及答案(共五套)
人教版七年级上册数学《第四章几何图形初步》章节检测试卷《第四章几何图形初步》单元检测试卷(一)考试时间:60分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法正确的是( ).A.直线的一半是射线B.直线上两点间的部分叫做线段C.线段AB的长度就是A,B两点间的距离D.若点P使PA=AB,则P是AB的中点2.钟表在5点半时,它的时针和分针所成的锐角是( ).A.15° B.70° C.75° D.90°3.从点A看B的方向是北偏东35°,那么从B看A的方向是( ).A.南偏东55° B.南偏西55°C.南偏东35° D.南偏西35°4.如图是一正方体展开图,则“有”“志”“者”三面的对面分别是( ).A.事竟成B.事成竟C.成竟事D.竟成事5.下图中的三棱柱从正面、左面、上面看到的图形是( ).A.三个三角形B .两个长方形和一个三角形C .三个长方形D .两个长方形,且长方形内有一条连接对边的点的线段和一个三角形6.如图所示,点P ,Q ,C 都在直线AB 上,且P 是AC 的中点,Q 是BC 的中点,若AC =m ,BC =n ,则线段PQ 的长为( ).A .B . C.D . 7.如图所示的四个图形,可以折叠成棱柱的是( ).8.线段AB =5厘米,BC =4厘米,那么A ,C 两点间的距离是( ).A .1厘米B .9厘米C .1厘米或9厘米D .以上结果都不对9.已知一个角的余角的补角是这个角补角的,则这个角的余角度数是( ). A .90° B .60° C .30° D .10°10.轮船从A 地出发向北偏东70°方向行驶了4海里到达B 地,又从B 地出发向南偏西20°方向行驶了5海里到达C 地,则∠ABC 等于( ).A .90°B .50°C .110°D .70°二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.植树时只要先确定两个树坑的位置,就能确定一行树所在的位置,其根据是__________.12.已知线段AB =9厘米,在直线AB 上画线段BC ,使它等于3厘米,则线段AC =__________.13.若∠AOB =40°,∠BOC =60°,则∠AOC =__________.14.53°40′30″×2-75°57′28″÷2=__________.15.已知线段AB =3厘米,延长AB 到C ,使BC =2AB ,若D 为AB 中点,则线段3m 2n 2m n +2m n -45DC 的长为__________.16.8°44′24″用度表示为__________,110.32°用度、分、秒表示为__________.17.如图是一套三角尺组成的图形,则∠AFD =____________,∠AEB =__________,∠BED =____________.18.∠α与∠β互补,若∠α=47°37′,则∠β=__________.19.将线段AB 延长到C ,使BC=,延长BC 到D ,使CD =,延长CD到E ,使DE =,若AE =80厘米,则AB =__________. 20.在圆柱的展开图中,圆柱的侧面展开图为__________,棱柱的侧面展开图为三、解答题(本大题共5小题,共40分)21.(6分)如图所示的一张纸:(1)将其折叠能叠成什么几何体?(2)要把这个几何体重新展开,最少需要剪开几条棱?22.(7分)如图所示,点E ,F 分别是线段AC ,BC 的中点,若EF =3厘米,求线段AB 的长.23.(8分)如图所示,直线AB ,CD ,EF 都经过点O ,且AB ⊥CD ,OG 二等分∠BOE ,如果∠EOG =∠AOE ,求∠EOG ,∠DOF 和∠AOE 的度数.13AB 13BC 13CD 2524.(9分)如图所示,设相邻两个角∠AOB ,∠BOC 的平分线分别为OE ,OF ,且∠EOF 是直角,你能说明OA ,OC 为什么成一条直线吗?试试看吧!25.(10分)某校七年级学生李刚在周六下午六点多钟外出买东西时,看手表上的时针和分针的夹角是110°,下午近七点回家时,发现时针和分针的夹角又是110°,你能知道李刚同学外出用了多长时间吗?你是怎么知道的呢?参考答案1答案:C2答案:A 点拨:由于5点半时,时针在5和6之间,分针在6上,所以它们之间的夹角是半个大格,即×30°=15°. 3答案:D4答案:A5答案:D6答案:C 点拨:PQ =PC +CQ =. 7答案:C 点拨:由于棱柱的上底与下底分别在两边,所以A ,B ,D 都不对. 8答案:D 点拨:C 点可能在线段AB 内,亦可能在线段AB 的延长线上,还可能在直线AB 外.9答案:B 点拨:设这个角为∠α,则180°-(90°-∠α)=, ∴∠α=30°.∴90°-∠α=90°-30°=60°.10答案:B11答案:两点确定一条直线12答案:6厘米或12厘米 点拨:由于点C 的位置不确定,所以要分情况讨论:当C 在线段AB 上时,AC =AB -BC =9-3=6(厘米);当C 在AB的延长线上时,1211222m n AC BC ++=4(180)5a ︒-∠AC =AB +BC =9+3=12(厘米).13答案:100°或20°14答案:69°22′16″15答案:7.5厘米16答案:8.74° 110°19′12″17答案:135° 30° 60°18答案:132°23′19答案:54厘米 点拨:设DE =x 厘米,则CD =3x 厘米,BC =9x 厘米,AB =27x 厘米,∴AE =x +3x +9x +27x =80,解得x =2,∴AB =54厘米. __________,圆锥的侧面展开图为__________.20答案:长方形 长方形 扇形21解:(1)三棱柱.(2)最少剪开5条棱.22解:∵E ,F 分别是AC ,BC 的中点,∴EC =,FC =, ∴EF =EC -FC =-===3(厘米), ∴AB =6厘米.23解:∵∠EOG =,OG 平分∠BOE , ∴∠BOE =. ∵∠AOE +∠BOE ==180°, ∴∠AOE =100°,∠BOE ==×100°=80°,∴∠EOG =40°. ∵AB ⊥CD ,∠EOF =180°,∴∠DOF =180°-∠BOE -∠BOD =180°-80°-90°=10°.24解:根据题意可得:∠AOE =∠BOE ,∠COF =∠BOF ,∠EOF =90°, ∴(∠AOE +∠EOB )+(∠COF +∠BOF )=2×90°=180°,即∠AOB +∠BOC =180°,∴∠AOC =180°,12AC 12BC 12AC 12BC 1()2AC BC -12AB 25AOE ∠45AOE ∠95AOE ∠45AOE ∠45∴AO ,OC 成一直线(即A ,O ,C 三点共线).25解:设时针从李刚外出到回家走了x °,则分针走了(2×110°+x °), 由题意,得,解得x =20, 因时针每小时走30°,则小时,即李刚外出用了40分钟时间.《第四章 几何图形初步》单元检测试卷(二)姓名:________班级:_____得分:_________一 选择题:1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A.5B.6C.7D.82.如图,把一个正方形三次对折后沿虚线剪下则得到的图形是 ( )3.下列四个图中能用,,三种方法表示同一个角的是( )A. B. C. D.22036030x x ︒+︒︒=︒︒202303︒=︒4.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A. B. C. D.5.下列说法中,正确的有( )①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,垂线最短;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个6.下列命题中是真命题是()A.锐角大于它的余角B.锐角大于它的补角C.钝角大于他的补角D.锐角与钝角之和等于平角7.下列举反例说明“一个角的余角大于这个角”是假命题的四个选项中,错误的是( )A.设这个角是45°,它的余角是40°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°8.把两条线段AB和CD放在同一条直线上比较长短时,下列说法错误的是()A.如果线段AB的两个端点均落在线段CD的内部,那么AB<CDB.如果A,C重合,B落在线段CD的内部,那么AB<CDC.如果线段AB的一个端点在线段CD的内部,另一个端点在线段CD的外部,那么AB〉CDD.如果B,D重合,A,C位于点B的同侧,且落在线段CD的外部,则AB〉CD9.下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从地到地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④如果AB=BC则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线⑥直线经过点A,那么点A在直线上.A.2个B.3个C.4个D.5个11.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5cmB.1cmC.5或1 cmD.无法确定12.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为()A.8.1cmB.9.1cmC.10.8cmD.7.4cm13.经过同一平面内A、B、C三点可连结直线的条数为( )A.只能一条B.只能三条C.三条或一条D.不能确定14.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ等于()A.1B.2C.3D.415.如图∠AOB是平角,过点O作射线OE,OC,OD.把∠BOE用图中的角表示成两个角或三个角和的形式,能有几种不同的表示方法()A.2种 B.3种 C.4种 D.5种16.如图,甲从 A 点出发向北偏东 70°方向走到点 B,乙从点 A 出发向南偏西15°方向走到点 C,则∠BAC 的度数是()A.85° B.160° C.125°D.105°17.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为( )A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°18.如图,∠AOB=∠COD,若∠AOD=110º,∠BOC=70º,则以下结论正确的个数为()①∠AOC=∠BOD=90º②∠AOB=20º③∠AOB=∠AOD-∠AOC ④A.1个B.2个C.3个D.4个19.一个角比它的余角大18°22′46″,则这个角的补角的度数为( )A.35°48′37″B.144°11′23″C.125°48′37″D.36°11′23″20.如图所示, 两人沿着边长为90m的正方形, 按A→B→C→D→A……的方向行走. 甲从A点以65m/min的速度、乙从B点以72m/min的速度行走, 当乙第一次追上甲时, 将在正方形的()(A)AB边上(B)DA边上(C)BC边上(D)CD边上二填空题:21.如图,点C是的边OA上一点,D、E是边OB上两点,则图中共有条线段,条射线,个小于平角的角。
人教版七年级上册数学第四章 几何图形初步 单元测试卷(含答案解析)
人教版七年级上册数学第四章几何图形初步单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.如图是一个几何体的侧面展开图,这个几何体可以是( ).A.圆锥B.圆柱C.棱锥D.棱柱2.如图,含有曲面的几何体的编号为( )A.①②B.①③C.②③D.②④3.如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是( )A.①B.②C.③D.④4.钟表上8时30分时,时针与分针的夹角为( )A.15︒B.30︒C.75︒D.60︒5.如图4-3-3-5,OA是北偏东30︒的一条射线,若90∠=︒,则射线OB的方向角是( )AOBA.北偏西60︒B.北偏西30︒C.东偏北60︒D.东偏北30︒6.圆柱是由长方形绕着它的一边所在直线旋转一周得到的,那么图是以下四个图形中的哪一个绕着直线旋转一周得到的( )A. B. C. D.7.下列图形中,正方体展开图错误的是( )A. B.C. D.8.如图,将一根绳子对折以后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60 cm ,若23AP PB =,则这条绳子的原长为( )A.100 cmB.150 cmC.100 cm 或150 cmD.120 cm 或150 cm9.如图所示,OB ,OC 是AOD ∠内的任意两条射线,OM 平分AOB ∠,ON 平分COD ∠,若MON α∠=,BOC β∠=,则表示AOD ∠的代数式是( )A.2αβ- B.αβ- C.αβ+ D.以上都不正确10.如图,C为线段AD上一点,点B为CD的中点,且9AD=,2BD=.若点E在直线AD 上,且1EA=,则BE的长为( )A.4B.6或8C.6D.8二、填空题(每小题4分,共20分)11.下列几何体属于柱体的有__________个.12.如图,C,D为线段AB上两点,6AC BD+=,且75AC BC AB+=,则CD等于__________.13.如图,OC是AOB∠的平分线,OD是AOC∠的平分线,且25COD∠=︒,则BOD∠等于_______.14.点A,B,C在直线l上,4cmAB=,6cmBC=,E是AB的中点,F是BC的中点,EF=___________.15.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是_____(填编号).。
人教版七年级上册数学《几何图形初步》单元综合测试题含答案
人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题(每小题3分,共30分)1. 下列说法正确的是( )A. 射线比直线短B. 两点确定一条直线C. 经过三点只能作一条直线D. 两点间的长度叫两点间的距离2. 下面等式成立的是( )A. 83.5°=83°50′B. 37°12′36″=37.48°C. 24°24′24″=24.44°D. 41.25°=41°15′3. 下图是由六个相同的小正方体搭成的几何体,这个几何体从正面看到的图形是( )学%科%网...学%科%网...A. AB. BC. CD. D4. 在15°,65°,75°,135°的角中,能用一副三角尺画出来的角度有( )A. 1个B. 2个C. 3个D. 4个5. 一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“界”字相对的字是( )A. 美B. 好C. 呀D. 世6. 已知线段AB,延长AB至点C,使AC=2BC,反向延长AB至点D,使AD=BC,那么线段AD是线段AC的( )A. B. C. D.7. 如图,∠AOB=∠COD=90°,OE平分∠BOD,若∠AOD∶∠BOC=5∶1,则∠COE的度数为( )A. 30°B. 40°C. 50°D. 60°8. 钟表上12时15分时,时针与分针的夹角为( )A. 90°B. 82.5°C. 67.5°D. 60°9. 在直线m上取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为( )A. 3cmB. 7cmC. 3cm或7cmD. 5cm或2cm10. A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A. 在A的左侧B. 在AB之间C. 在BC之间D. B处二、填空题(每小题4分,共24分)11. 如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=____.12. 如图所示,射线OA表示____方向,射线OB表示____方向.13. 一个角的余角比这个角的补角的一半小40°,则这个角为____.14. 已知线段AB=1 996,P,Q是线段AB上的两个点,线段AQ=1 200,线段BP=1 050,则线段PQ=____.15. 如图,点C是∠AOB的边OA上的一点,D,E是OB上的两点,则图中共有____条线段,____条射线,____个小于平角的角.16. 如图,OE平分∠AOC,OF平分∠BOC,∠AOE=25°,∠COF=40°,则∠AOB=____.三、解答题(共66分)17. (1)把34.37°化成度、分、秒的形式;(2)把26°17′42″化成度的形式.18. 已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.19. 一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.20. 如图,射线OA表示的方向是北偏东15°,射线OB表示的方向是北偏西40°.(1)若∠AOC=∠AOB,则射线OC表示的方向是____;(2)若射线OD是射线OB的反向延长线,则射线OD表示的方向是____;(3)∠BOD可以看作是由OB绕点O逆时针方向旋转至OD形成的角,作∠BOD的平分线OE;(4)在(1),(2),(3)的条件下,求∠COE的度数.21. 如图,线段AB被点C,D分成了3∶4∶5三部分,且AC的中点M和DB的中点N之间的距离是40 cm,求AB的长.22. 如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.23. 如图,B是线段AD上一动点,沿A→D→A的路线以2 cm/s的速度往返运动1次,C是线段BD的中点,AD=10 cm,设点B的运动时间为t s(0≤t≤10).(1)当t=2时,求线段AB和线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.参考答案一、选择题(每小题3分,共30分)1. 下列说法正确的是( )A. 射线比直线短B. 两点确定一条直线C. 经过三点只能作一条直线D. 两点间的长度叫两点间的距离【答案】B【解析】【分析】根据直线、射线、线段的定义进行分析即可.【详解】A、射线,直线都是可以无限延长的,无法测量长度,错误;B、两点确定一条直线,是公理,正确;C、经过不在一条直线的三点能作三条直线,错误;D、两点间线段的长度叫两点间的距离,错误;故选B.故选:B【点睛】本题主要考查对直线,射线,线段的概念的理解到位和熟练应用.2. 下面等式成立的是( )A. 83.5°=83°50′B. 37°12′36″=37.48°C. 24°24′24″=24.44°D. 41.25°=41°15′【答案】D【解析】试题分析:进行度、分、秒的加法、减法计算,注意以60为进制.解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.考点:度分秒的换算.3. 下图是由六个相同的小正方体搭成的几何体,这个几何体从正面看到的图形是( )学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...A. AB. BC. CD. D【答案】B【解析】【分析】主视图就是从正面看到的视图.【详解】从正面看,一层三个正方形,左侧由三层正方形.故选:B【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4. 在15°,65°,75°,135°的角中,能用一副三角尺画出来的角度有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据三角尺角度,利用和、差关系解答即可.【详解】15°=45°-30°,65°不能画出,75°=30°+45°,135°=90°+45°,所以能用一副三角尺画出来的有15°、75°、135°共3个.故选:C【点睛】本题考查了角的计算,熟记三角尺的角度,利用和、差关系求解,比较简单.5. 一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“界”字相对的字是( )A. 美B. 好C. 呀D. 世【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.方法比较灵活可让“真”字面不动,分别把各个面围绕该面折成正方体,这需要空间想象能力,如果想象不出就动手操作,或者拿手边的正方体展成该形状观察.【详解】这是一个正方体的平面展开图,共有六个面,其中面“真”与面“好”相对,面“世”与面“美”相对,面“界”与面“呀”相对.故选:C【点睛】本题考核知识点:正方体的平面展开图.解题关键点:把各个面围绕该面折成正方体.6. 已知线段AB,延长AB至点C,使AC=2BC,反向延长AB至点D,使AD=BC,那么线段AD是线段AC的( )A. B. C. D.【答案】D【解析】【分析】设BC=a,则AC,AD的长度都可以利用a表示出来,从而求解.【详解】设BC=a,则AC=2a,AD=a,则==,故选:D【点睛】本题考查了线段的长短的计算,正确作出图形是关键.7. 如图,∠AOB=∠COD=90°,OE平分∠BOD,若∠AOD∶∠BOC=5∶1,则∠COE的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】【分析】由周角的定义可得∠AOD+∠BOC=360-90-90=180,由∠AOD∶∠BOC=5∶1,得∠BOC=180×=30,所以,∠BOD=∠BOC+∠DOC=90+30=120,由OE平分∠BOD,所以,∠BOE=∠BOD=60,所以,∠COE=∠BOE-∠BOC.【详解】由周角的定义可得∠AOD+∠BOC=360-90-90=180,因为,∠AOD∶∠BOC=5∶1,所以,∠BOC=180×=30,所以,∠BOD=∠BOC+∠DOC=90+30=120,因为,OE平分∠BOD,所以,∠BOE=∠BOD=60,所以,∠COE=∠BOE-∠BOC=60-30=30.故选:A【点睛】本题考核知识点:角平分线. 解题关键点:理解角的和差关系.8. 钟表上12时15分时,时针与分针的夹角为( )A. 90°B. 82.5°C. 67.5°D. 60°【答案】B【解析】试题分析:时针每过1分钟旋转0.5°,分针每过一分钟旋转6°,则6×15-0.5×15=90-7.5=82.5°.考点:角度的计算9. 在直线m上取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为( )A. 3cmB. 7cmC. 3cm或7cmD. 5cm或2cm【答案】C【解析】分析:由已知条件可知,AC=10+4=14,又因为点O是线段AC的中点,可求得AO的值,最后根据题意结合图形,则OB=AB﹣AO可求.详解:如图所示,AC=10+4=14cm,∵点O是线段AC的中点,∴AO=AC=7cm,∴OB=AB﹣AO=3cm.故选A.点睛:首先注意根据题意正确画出图形,这里是顺次取A,B,C三点,所以不用考虑多种情况.能够根据中点的概念,熟练写出需要的表达式,还要结合图形进行线段的和差计算.10. A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A. 在A的左侧B. 在AB之间C. 在BC之间D. B处【答案】D【解析】【分析】设P、B的距离为xkm,根据线段的和差,可得加油站到三个车站的距离和为(AC+x)km,那么x为0,有最小距离和,依此即可求解.【详解】设P、B的距离为xkm,如图1:路程之和为PA+PC+PB=(AC+x)km;如图2:路程之和为PA+PC+PB=(AC+x)km;综上所述:路程之和为=(AC+x)km,当x=0时,路程之和为AC的长度,则加油站应建在B处.故选:D【点睛】本题考查了直线、射线、线段,两点间的距离,读懂题意,找到所求量的等量关系是解决本题的关键.二、填空题(每小题4分,共24分)11. 如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=____.【答案】50°【解析】根据对顶角相等,易得∠BOC=50°12. 如图所示,射线OA表示____方向,射线OB表示____方向.【答案】(1). 北偏东45°(东北)(2). 南偏东30°【解析】【分析】根据方向角的定义回答即可.【详解】90-60=30,所以,射线OA表示北偏东45°(东北)方向,射线OB表示南偏东30°方向.故答案为:(1). 北偏东45°(东北)(2). 南偏东30°【点睛】本题主要考查的是方向角、角的和差,掌握方向角的定义是解题的关键.13. 一个角的余角比这个角的补角的一半小40°,则这个角为____.【答案】80°【解析】试题解析:设这个角为x,则它的余角为补角为由题意得,解得故答案为:80.14. 已知线段AB=1 996,P,Q是线段AB上的两个点,线段AQ=1 200,线段BP=1 050,则线段PQ=____.【答案】254【解析】如图:,由题意得:AQ+BP=AB+PQ=1200+1050=2250,即PQ=2250-1996=254.故答案为:254.15. 如图,点C是∠AOB的边OA上的一点,D,E是OB上的两点,则图中共有____条线段,____条射线,____个小于平角的角.【答案】(1). 6(2). 5(3). 10【解析】【分析】根据射线,线段,角的定义逐个分析.【详解】由已知可得,线段有:OC,OD,OE,DE,DC,CE共6条;射线有:OC,CA,OB,CB,EB共5条;小于平角的角有∠O,∠OCD,∠OCE,∠ACE,∠DCE, ∠ACD,∠ODC,∠CDE,∠OEC,∠CEB共10个.故答案为:(1). 6(2). 5(3). 10【点睛】本题考核知识点:射线,线段,角的定义.解题关键点:理解射线,线段,角的定义.16. 如图,OE平分∠AOC,OF平分∠BOC,∠AOE=25°,∠COF=40°,则∠AOB=____.【答案】130°【解析】试题分析:根据角平分线的性质可得:∠AOC=2∠AOE=50°,∠BOC=2∠COF=80°,则∠AOB=∠AOC+∠BOC=130°.考点:角平分线的性质.三、解答题(共66分)17. (1)把34.37°化成度、分、秒的形式;(2)把26°17′42″化成度的形式.【答案】(1)34°22′12″(2)26.295°【解析】【分析】根据1°=60′,1′=60″,按要求进行分析即可.【详解】解:0.37°=0.37×60′=22.2′,0.2′=0.2×60″=12″,34.37°=34°22′12″;42″=42′÷60=0.7′,17.7′=17.7°÷60=0.295°,26°17′42″=26.295.°故答案为:(1)34°22′12″(2)26.295°【点睛】本题考核知识点:角的转化.解题关键点:熟记角度的转化进率.18. 已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′(2)131°14′30″【解析】【分析】(1)根据互为余角的两个角的和为90度可得∠β的余角=90°-∠β,将∠β=41°31′代入计算即可;(2)将∠α=76°,∠β=41°31′代入2∠α-∠β,然后计算即可.【详解】(1)解:∠β的余角=90°﹣∠β=90°﹣41°31′=48°29′;(2)解:∵∠α=76°,∠β=41°31′,∴2∠α﹣∠β=2×76°×41°31′,=152°﹣20°45′30″,=131°14′30″ .【点睛】本题考查了余角和补角, 度分秒的换算.根据题意列出相关版式并正确计算是解题的关键.19. 一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【答案】这个角的度数是40°【解析】【分析】根据补角和余角的定义,设这个角的度数为x,则:180°-x=2(90°-x)+40【详解】解:设这个角的度数为x,则:180°-x=2(90°-x)+40,x=40°故答案为:40°【点睛】本题考核知识点:补角与余角.解题关键点:理解补角与余角的定义.20. 如图,射线OA表示的方向是北偏东15°,射线OB表示的方向是北偏西40°.(1)若∠AOC=∠AOB,则射线OC表示的方向是____;(2)若射线OD是射线OB的反向延长线,则射线OD表示的方向是____;(3)∠BOD可以看作是由OB绕点O逆时针方向旋转至OD形成的角,作∠BOD的平分线OE;(4)在(1),(2),(3)的条件下,求∠COE的度数.【答案】(1)北偏东70° (2)南偏东40° (3)见解析(4)160°【解析】【分析】(1)先求出∠AOB=55°,再求得∠AOC的度数,即可确定OC的方向;(2)由对顶角性质得∠FOD=40,可得射线OD表示的方向;(3)通过作线段垂直平分线可得;(4)根据射线OE平分∠BOD,即可求出∠DOE=90°再利用∠DOC=180-2×55°,求出答案即可.【详解】(1)∵OB的方向是北偏西40°,OA的方向是北偏东15°,∴∠NOB=40°,∠NOA=15°,∴∠AOB=∠NOB+∠NOA=55°,∵∠AOB=∠AOC,∴∠AOC=55°,∴∠NOC=∠NOA+∠AOC=70°,∴OC的方向是北偏东70°;(2) 由对顶角性质得∠FOD=∠NOB=40,可得射线OD表示的方向是:南偏东40°.(3)如图(4)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.又∵射线OD是OB的反向延长线,∴∠BOD=180°.∴∠COD=180°-110°=70°.∵射线OE平分∠BOD,∴∠DOE=90°.∴∠COE=∠DOE+∠COD=90°+70°=160°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.21. 如图,线段AB被点C,D分成了3∶4∶5三部分,且AC的中点M和DB的中点N之间的距离是40 cm,求AB的长.【答案】AB=60 cm【解析】【分析】先设AB的长为x,再根据题意线段AB被点C、D分成了3:4:5三部分,且AC的中点M和DB的中点N 之间的距离是40cm,结合图得出MC=AC,DN=DB,再由MC+CD+DN=40,解得x的值即可.【详解】解:设AB的长为xcm,∵线段AB被点C、D分成了3:4:5三部分,∴AC=x,CD=x,DB=x,又∵AC的中点M和DB的中点N之间的距离是40cm,∴MC=x,DN=x,∴x+x+x=40,解得x=60,∴AB的长60cm.【点睛】本题考查了比较线段的长短,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22. 如图,O为直线AB上一点,∠AOC=50°,OD平分∠A OC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)图中小于平角的角共有9个(2)∠BOD=155°;(3)OE平分∠BOC【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.23. 如图,B是线段AD上一动点,沿A→D→A的路线以2 cm/s的速度往返运动1次,C是线段BD的中点,AD=10 cm,设点B的运动时间为t s(0≤t≤10).(1)当t=2时,求线段AB和线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.【答案】(1)AB=4cm CD=3cm(2)AB=(3)不变,EC=5cm【解析】试题分析:(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)根据AB=2t即可得出结论;(3)直接根据中点公式即可得出结论.试题解析:(1)当t=2时,①AB= 4 cm.②解:∵又∵,∴∵点C是线段BD的中点∴(2)①当时,此时点B从A向D移动:②当时,此时点B从D向A移动:(3)①当时,此时点B从A向D移动:∵点E是AB的中点,∴∵,∴∵点C是BD的中点∴又∵∴②当时,此时点B从D向A移动:∵点E是AB的中点,∴∵,∴∵点C是BD的中点∴又∵∴综上所述:在运动过程中EC的长保持不变,恒等于5.点睛:本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
人教版七年级数学上册《第4章几何图形初步》单元测试含答案解析
《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= °.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′B D=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。
人教版数学七年级上册《几何图形初步》单元检测卷附答案
故选D.
【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4.与红砖、足球类似的图形是( )
A.长方形、圆B.长方体、圆
C.长方体、球D.长方形、球
16.天上一颗颗闪烁的星星给我们以“_____”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“_____”的形象;宾馆里旋转的大门给我们以“_____”的形象.
17.定义:两个直角三角形,若一个三角形的两条直角边分别与另一个三角形的两条直角边相等,我们就说这两个直角三角形是“同胞直角三角形”.如图,在边长为10的正方形中有两个直角三角形,当直角三角形①和直角三角形②是同胞直角三角形时,a的值是_____.
9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是( )
A.1cmB.9cmC.1cm或9cmD. 以上答案都不对
二、填空题
10.如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么∠2=_____________°.
11.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=_____.
(1)数一下每一个多面体具有的顶点数 、棱数 和面数 .并且把结果记入表中.
多面体
顶点数
面数
棱数
正四面体
4
4
6
正方体
正八面体
正十二面体
正ห้องสมุดไป่ตู้十面体
12
20
30
(2)观察表中数据,猜想多面体的顶点数 、棱数 和面数 之间的关系.
人教版七年级上第四章《几何图形初步》单元测试(含答案解析)
人教版七年级上册《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD 的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∵∠AOD=90°,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 2.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=________°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.【答案】(1)40(2)解:∵∴∴(3)解:存在.理由如下:∵设∴∵∴∴∴∴【解析】【解答】⑴∴∵OF平分∠AOE,∴∴∴故答案为:40。
【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠AOB−∠AOE=120°−80°=40°.(2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠A OE=120°−∠BOE=2(60°−∠COF) , 整理得∠BOE=2∠COF;(3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF.3.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若,,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.【答案】(1)解:∵BD平分∠ABC,∴∠CBD= ∠ABC= ×75°=37.5°,∵CD平分△ABC的外角,∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.(2)解:猜想:∠ D = ( ∠ M + ∠ N − 180 ° ).∵∠M+∠N+∠CBM+∠NCB=360°,∴∠D=180°- ∠CBM-∠NCB- ∠NCE.=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.= ∠M+ ∠N- ∠NCB- ∠NCE= ,或写成【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;(2)由四边形内角和与角平分线性质即可求解.4.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.5.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.6.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)解:设运动t秒时,BC=8单位长度,①当点B在点C的左边时,由题意得:6t+8+2t=24解得:t=2(秒);②当点B在点C的右边时,由题意得:6t﹣8+2t=24解得:t=4(秒)(2)解:4或16(3)解:存在关系式 =3.设运动时间为t秒,1)当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即 =3;2)当3<t<时,点C在点A和点B之间,0<PC<2,①点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即 =3;点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,当PC= 时,有BD=AP+3PC,即 =3;3°当t= 时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC= 时,有BD=AP+3PC,即 =3;4°当<t 时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC= 时,有BD=AP+3PC,即 =3.∵P在C点左侧或右侧,∴PD的长有3种可能,即5或3.5【解析】【解答】解:(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.【分析】(1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.7.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .(1)求证:∠EFC=∠FEC;(2)①若∠B=30°,∠CAD=50°,则=________,=________;②试探究与的关系,并说明理由;(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,∴∠EFC=∠FEC.(2)35°;70°;解:② , 理由如下: 由(1)可知:, 又∵ , ∴ . ∴ .(3)解:图形如下:∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,∴ .又∵,∴在△CEF中有:∠ECF+2∠CEF=180°,即 ..∵2∠EAC=∠DAC, ,∴ .∴即 .∴ .【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.故答案为:35°,70°.【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.8.如图1,△ABC中,D、E、F三点分别在AB,AC,BC三边上,过点D的直线与线段EF 的交点为点H,∠1+∠2=180°,∠3=∠C.(1)求证:DE∥BC;(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F 应该满足的位置条件,在图2中画出符合条件的图形并说明理由.(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小________.【答案】(1)证明:如图1.∵∠1是△DEH的外角,∴∠1=∠3+∠4.又∵∠1+∠2=180°,∴∠3+∠4+∠2=180°.∵∠3=∠C,∴∠C+∠4+∠2=180°,即∠DEC+∠C=180°,∴DE∥BC(2)解:如图2.∵∠1是△DEH的外角,∴∠1=∠3+∠DEF,①∵∠BFE是△CEF的外角,∴∠BFH=∠2+∠C.当∠1=∠BFH时,∠1=∠2+∠C,②由①②得:∠3+∠DEF=∠2+∠C.∵∠3=∠C,∴∠DEF=∠2,即EF平分∠DEC,∴点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.(3)90°+【解析】【解答】(3)∵EF平分∠DEC,∴∠DEF=∠2.∵DE∥BC,∴∠DEC+∠C=180°,∴2∠2+α=180°,∴∠2= = .∵∠BFH=∠2+∠C= = .【分析】(1)欲证明DE∥BC,只需推知∠DEC+∠C=180°即可,因此先根据外角性质,将∠1转化为∠3+∠4,再根据∠1与∠2互补,得到∠3+∠4+∠2=180°,最后将∠3=∠C代入即可得出结论;(2)点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.(3)根据平行线的性质和角平分线的定义,得出∠2的度数,再由三角形外角的性质即可得出结论.9.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)解:由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的处(2)解:如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ= AB,∴(3)解:② 的值不变.理由:如图,当点C停止运动时,有CD= AB,∴CM= AB,∴PM=CM-CP= AB-5,∵PD= AB-10,∴PN= AB-10)= AB-5,∴MN=PN-PM= AB,当点C停止运动,D点继续运动时,MN的值不变,所以【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有CD= AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM= AB.10.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点是外一点,连接、,求的度数.天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.又∵,∴ .解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,,求的度数.(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.【答案】(1)∠EAB;∠DAC(2)解:过C作CF∥AB,∵AB∥DE,∴CF∥DE∥AB,∴∠D=∠FCD,∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)解:如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°.【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.11.如图,直线,点E、F分别是AB、CD上的动点(点E在点F的右侧);点M 为线段EF上的一点,点N为射线FD上的一点,连接MN;(1)如图1,若,,则 ________;(2)作的角平分线MQ,且,求与之间的数量关系;(3)在(2)的条件下,连接EN,且EN恰好平分,;求的度数.【答案】(1)60°(2)解:如图,∵,∴∠EMQ=∠AEF,∵,AB∥CD,∴MQ∥CD,∴∠NMQ=∠MNF,∵MQ平分∠EMN,∴∠EMQ=∠NMQ,∴ = ;(3)解:设∠ENM=x,则∠MNF=2x,∴∠ENF=3x,∵AB∥MQ,∴∠BEN=∠ENF=3x,∵EN平分∠BEF,∴∠BEF=2∠BEN=6x,∵∠AEF=∠MNF=2x,∠AEF+∠BEF=180°,∴2x+6x=180°,解得x=22.5°,∴,∠EFN=∠AEF=∠MNF=45°,∴∠EMN=∠EFN+∠MNF=90°.【解析】【解答】解:(1)∵AB∥CD,∴∠BEF+∠EFD=180°,∵ ,∴∠EFD=30°,∵,∴∠NMF=90°,∴∠MNF=180°-∠NMF-∠EFD=60°,故答案为:60°;【分析】(1)根据AB∥CD得到∠BEF+∠EFD=180°,由求出∠EFD=30°,根据得到∠NMF=90°,再利用三角形的内角和定理得到∠MNF=180°-∠NMF-∠EFD=60°;(2)根据得到∠EMQ=∠AEF,由,AB∥CD推出MQ∥CD,证得∠NMQ=∠MNF,根据角平分线的性质得到∠EMQ=∠NMQ,即可得到 =;(3)设∠ENM=x,则∠MNF=2x,根据AB∥MQ得到∠BEN=∠ENF=3x,由EN平分∠BEF,证得∠BEF=2∠BEN=6x,再根据∠AEF=∠MNF=2x,∠AEF+∠BEF=180°,列式求出x=22.5°,即可求出∠EMN=∠EFN+∠MNF=90°.12.已知直线AB和CD交于点O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=19°48′,求∠EOC与∠FOD的度数.(2)当x=60°,射线OE、OF分别以10°/s,4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.【答案】(1)解:∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°-19°48′=89°60°-19°48′=70°12′,∠AOD=180°-19°48′=160°12′,∵OF平分∠AOD,∴∠FOD= ∠AOD= ×160°12′=80°6′;(2)解:当x=60°,∠EOF=90°+60°=150°设当射线OE与射线OF重合时至少需要t秒,10t-4t=360-150,t=35,答:当射线OE与射线OF重合时至少需要35秒(3)解:设射线OE转动的时间为t秒,分三种情况:①OE不经过OF时,得10t+90+4t=360-150,解得,t= ;②OE经过OF,但OF在OB的下方时,得10t-(360-150)+4t=90解得,t= ;③OF在OB的上方时,得:360-10t=4t-120解得,t= .所以,射线OE转动的时间为t= 或或 .【解析】【分析】(1)利用互余和互补的定义可得:∠EOC与∠FOD的度数;(2)先根据x=60°,求∠EOF=150°,则射线OE、OF第一次重合时,则OE运动的度数-OF 运动的度数=360-150,列方程解出即可;(3)分三种情况:①OE不经过OF时,②OE经过OF,但OF在OB的下方时;③OF在OB的上方时;根据其夹角列方程可得时间.。