线面平行的判定定理和性质定理
线面平行面面平行的性质与判定定理
提问
一、直线与平面有什么样的位置关系?
1.直线在平面内——有无数个公共点;
2.直线与平面相交——有且只有一个公共点;
3.直线与平面平行——没有公共点。
a
a
a
精面外一条直线和这个平面内的一条直 线平行,那么这条直线和这个平面平行。
线//面
面//面
由a //, 通过构造过直线 a 的平面 与平面
相交于直线b,只要证得a // b即可。
精选课件
17
二、两个平面平行具有如下的一些性质:
⑴如果两个平面平行,那么在一个平面内的所 有直线都与另一个平面平行
⑵如果两个平行平面同时和第三个平面相交, 那么它们的交线平行.
⑶如果一条直线和两个平行平面中的一个相交, 那么它也和另一个平面相交
⑷夹在两个平行平面间的所有平行线段相等
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选课件
20
证明:∵α∩γ=a,β∩γ=b ∴aα,bβ ∵α∥β ∴a,b没有公共点, 又因为a,b同在平面γ内, 所以,a∥b
这个结论可做定理用
定理 如果两个平行平面同时和 第三个平面相交,那么它们的交 线平行。
用符号语言表示性质定理:
//=a,=ba//b
想一想:这个定理的作用是什么?
答:可以由平面与平面平 行得出直线与直线平行
小结:一、直线和平面平行的性质定理
如果一条直线和一个平面平行,经过这条直
线的任意平面和这个平面相交,那么这条直线和
交线平行。
a// ,
a
a ,
a // b
b
= b
注意:
1、定理三个条件缺一不可。
线面定理性质
线面、面面平行和垂直的定理性质
一、线面平行
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示:
2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:
二、面面平行
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示:
变形:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示:
(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示:
(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)
变形:垂直于同一条直线的两个平面平行
四、面面垂直
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
(如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直)
其他:两个平面相交,如果它们所成的二面角是直角,则这两个平面互相垂直。
2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
线面平行的性质定理
AB1C,求线段EF的长度
应用巩固
例3、如图所示的一块木料中,棱BC平行于 面A´C´.
(1)要经过面A´C´内的一点P和棱BC将木 料锯开,应怎样画线?
(2)所画的线和平面AC有什么关系?
F
E
课堂小结:
1.直线与平面平行的性质定理
判定定理:找(作) 面内一条直线与已知
2.线线平行 直线平行
性质定理:找(作) 一个过已知直线的平 面,确定其与已知平 面的交线
应用巩固
例1、已知平面外的两条平行直线中的一 条平行于这个平面,求证:另一条也平行于这 个平面.
如图,已知直线a,b,平面 α ,且a//b, a//α, a,b都在平面α外,求证:b//α.
ab
应用巩固
例变式2、:如如图图,,用用平一行个于平四面面去体截A四B面C体D 的一组对 棱ABACBD,,C得D 的到平的面截截面此M四NP面Q体是.平求行证四:边截面 M形N.P求Q证是:平AB行//M四N边形.
若如“果共一面条”直必线平和行一,个换平句面话平说行,,如经果过过该直直线线a的平面
的某个平面与平面相交,则直线a就和这条交
线平和行这.个平面相交,那么这条直线和交线平行.
线面平行的性质定理: 一条直线和一个平面平行,则过这条直线 的任一平面与此平面的交线与该直线平行.
β a
b α
作用:判定直线与直线平行的重要依据. 关键:寻找平面与平面的交线.
*
1. 定义: 直线与平面无公共点.
2. 判定定理: 线线平行 线面平行
若平面外一条直线与此平面内的
一条直线平行,则该直线与此平面
平行.
a
b
a /
b
a
//
线面平行的性质定理和判定定理
线面平行的性质定理和判定定理
面面平行的性质定理:
一、线线平行
1、同位角成正比两直线平行:在同一平面内,两条直线被第三条直线所封盖,如果
内错角成正比,那么这两条直线平行。
2、内错角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果同旁
内角互补,那么这两条直线平行。
3、同旁内角优势互补两直线平行。
二、线面平行
1、利用定义:证明直线与平面并无公共点;
2、利用判定定理:从直线与直线平行得到直线与平面平行;
3、利用面面平行的性质:两个平面平行,则一个平面内的'直线必平行于另一个平面。
平行平面间的距离处处相等。
已知:α∥β,ab⊥α,dc⊥α,且a、d∈α,b、
c∈β求证:ab=cd证明:连接ad、bc由线面垂直的性质定理可知ab∥cd,那么ab和cd
构成了平面abcd∵平面abcd∩α=ad,平面abcd∩β=bc,且α∥β∴ad∥bc(定理2)
∴四边形abcd是平行四边形∴ab=cd。
第八章 §8.3 直线、平面平行的判定与性质
§8.3直线、平面平行的判定与性质考试要求从定义和公理出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⎭⎪⎬⎪⎫l∥aa⊂αl⊄α⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l∥αl⊂βα∩β=b⇒l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a∥βb∥βa∩b=Pa⊂αb⊂α⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=aβ∩γ=b⇒a∥b3.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)若α∥β,a⊂α,则a∥β.微思考1.设m,l表示两条不同的直线,α表示平面,若m⊂α,l∥α,则l与m的位置关系如何?提示平行或异面.2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)题组二教材改编2.下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案 D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面ACE的位置关系为________.答案平行解析连接BD,则AC∩BD=O,连接OE(图略),则OE∥BD1,OE⊂平面ACE,BD1⊄平面ACE,∴BD1∥平面ACE.4.在长方体ABCD-A1B1C1D1中,过直线AC1的平面交直线BB1于点E,交直线DD1于点F,则四边形AEC1F的形状为________.答案平行四边形解析由面面平行的性质定理可得AE∥C1F,AF∥C1E.故四边形AEC1F为平行四边形.题组三易错自纠5.已知直线a,b和平面α,β,若a⊂α,b⊂α,a∥β,b∥β,则α,β的位置关系是________.答案平行或相交6.考查下列两个命题,在“__________”处都缺少同一个条件,补上这个条件使其构成真命题(其中a,b为不同的直线,α,β为不重合的平面),则此条件为____________.①⎭⎪⎬⎪⎫b⊂αa∥b⇒a∥α;②⎭⎪⎬⎪⎫a∥bb∥α⇒a∥α.答案a⊄α解析根据线面平行的判定定理可知,判断线面平行需要三个条件:面内一线,面外一线,线线平行,分析已知中的条件,可知①缺少的条件是“a为平面α外的直线”,②同样缺少平面外直线.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,P A⊥矩形ABCD所在的平面,E,F分别为AB,PD的中点.求证:AF∥平面PCE.证明 方法一 如图,设M 为PC 的中点,连接EM ,MF , ∵E 是AB 的中点, ∴AE ∥CD ,且AE =12CD ,又∵MF ∥CD ,且MF =12CD ,∴AE 綊FM ,∴四边形AEMF 是平行四边形, ∴AF ∥EM ,又∵AF ⊄平面PCE ,EM ⊂平面PCE , ∴AF ∥平面PCE .方法二 如图,设G 为CD 的中点,连接FG ,AG ,∵F ,G 分别为PD ,CD 的中点, ∴FG ∥PC .同理AG ∥EC , 又FG ⊄平面PCE ,AG ⊄平面PCE , PC ⊂平面PCE ,EC ⊂平面PCE , ∴FG ∥平面PCE ,AG ∥平面PCE , 又FG ,AG ⊂平面AFG ,FG ∩AG =G , ∴平面AFG ∥平面PCE ,又AF ⊂平面AFG , ∴AF ∥平面PCE .命题点2 直线与平面平行的性质例2如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM上取一点G,过G和P A作平面交BD于点H.求证:P A∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥OM,又OM⊂平面BMD,P A⊄平面BMD,∴P A∥平面BMD,又平面P AHG∩平面BMD=GH,∴P A∥GH.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面P AD,BC⊄平面P AD,∴BC∥平面P AD.∵平面BCFE∩平面P AD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.题型二平面与平面平行的判定与性质例3 如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綊AB,∴A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EF A1,∴平面EF A1∥平面BCHG.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理.(3)垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练2如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.证明(1)由题设知BB1綊DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1. 又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綊B1C1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l ∥直线BD ,在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l . 题型三 平行关系的综合应用例4 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD .又∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4), ∵EF ∥AB ,FG ∥CD ,∴CF CB =x4,则FG 6=BF BC =BC -CF BC =1-x 4,∴FG =6-32x . ∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝⎛⎭⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练3 如图,在正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为对角线BD ,CD 1上的点,且CQ QD 1=BP PD =23.(1)求证:PQ ∥平面A 1D 1DA ;(2)若R 是AB 上的点,ARAB 的值为多少时,能使平面PQR ∥平面A 1D 1DA ?请给出证明.(1)证明 连接CP 并延长与DA 的延长线交于M 点,如图,连接MD 1,因为四边形ABCD 为正方形, 所以BC ∥AD , 故△PBC ∽△PDM , 所以CP PM =BP PD =23,又因为CQ QD 1=BP PD =23,所以CQ QD 1=CP PM =23,所以PQ ∥MD 1.又MD 1⊂平面A 1D 1DA ,PQ ⊄平面A 1D 1DA , 故PQ ∥平面A 1D 1DA .(2)解 当AR AB 的值为35时,能使平面PQR ∥平面A 1D 1DA .如图,证明:因为AR AB =35,即BR RA =23,故BR RA =BP PD. 所以PR ∥DA .又DA ⊂平面A 1D 1DA ,PR ⊄平面A 1D 1DA , 所以PR ∥平面A 1D 1DA ,又PQ ∥平面A 1D 1DA ,PQ ∩PR =P ,PQ ,PR ⊂平面PQR , 所以平面PQR ∥平面A 1D 1DA .课时精练1.(2020·哈尔滨第九中学模拟)平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α 答案 D解析 对于A ,一条直线与两个平面都平行,两个平面不一定平行.故A 不对; 对于B ,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B 不对; 对于C ,两个平面中的两条直线分别平行于另一个平面,不能保证两个平面平行,故C 不对; 对于D ,两个平面中的两条互相异面的直线分别平行于另一个平面,可以保证两个平面平行,故D 正确.2.(2020·泸州模拟)已知a ,b 是互不重合的直线,α,β是互不重合的平面,下列四个命题中正确的是( )A .若a ∥b ,b ⊂α,则a ∥αB .若a ∥α,a ∥β,α∩β=b ,则a ∥bC .若a ∥α,α∥β,则a ∥βD .若a ∥α,a ∥β,则α∥β 答案 B解析 A 选项,若a ∥b ,b ⊂α,则a ∥α或a ⊂α,所以A 选项错误;B选项,若a∥α,a∥β,α∩β=b,则a∥b,所以B选项正确;C选项,若a∥α,α∥β,则a∥β或a⊂β,所以C选项错误;D选项,若a∥α,a∥β,则α∥β或α∩β=b,所以D选项错误.3.(2020·金华十校联考)已知在三棱柱ABC-A1B1C1中,M,N分别为AC,B1C1的中点,E,F分别为BC,B1B的中点,则直线MN与直线EF、平面ABB1A1的位置关系分别为() A.平行、平行B.异面、平行C.平行、相交D.异面、相交答案 B解析∵在三棱柱ABC-A1B1C1中,M,N分别为AC,B1C1的中点,E,F分别为BC,B1B的中点,∴EF⊂平面BCC1B1,MN∩平面BCC1B1=N,N∉EF,∴由异面直线判定定理得直线MN与直线EF是异面直线.取A1C1的中点P,连接PM,PN,如图,则PN∥B1A1,PM∥A1A,∵AA1∩A1B1=A1,PM∩PN=P,∴平面PMN∥平面ABB1A1,∵MN⊂平面PMN,∴直线MN与平面ABB1A1平行.4.(2020·济南模拟)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能答案 B解析在三棱柱ABC-A1B1C1中,AB∥A1B1.∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC.∵过A1B1的平面与平面ABC交于DE,∴DE∥A1B1,∴DE∥AB.5.如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点.则下列叙述中正确的是()A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案 B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG.6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案 A解析A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB. ∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交;B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB⊄平面MNQ,NQ⊂平面MNQ,∴AB∥平面MNQ.7.如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.答案 2解析根据题意,因为EF∥平面AB1C,EF⊂平面ACD,平面ACD∩平面AB1C=AC,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.8.在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN 平行的是________.答案平面ABC,平面ABD解析如图,连接AM并延长交CD于点E,连接BN并延长交CD于点F,由重心性质可知,E,F重合,且E为CD的中点,∵EMMA=ENBN=12,∴MN∥AB,又AB⊂平面ABD,MN⊄平面ABD,∴MN∥平面ABD,又AB⊂平面ABC,MN⊄平面ABC,∴MN∥平面ABC.9.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________(填序号).答案 ①或③解析 由面面平行的性质定理可知,①正确;当m ∥γ,n ∥β时,n 和m 可能平行或异面,②错误;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以m ∥n ,③正确. 10.(2020·安阳模拟)如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1.一平面截该长方体,所得截面为OPQRST ,其中O ,P 分别为AD ,CD 的中点,B 1S =12,则AT =________.答案 25解析 设AT =x ,则A 1T =1-x ,由面面平行的性质可知PO ∥SR ,TO ∥QR ,TS ∥PQ , ∴△DOP ∽△B 1RS ,∵DP =OD =1,∴B 1S =B 1R =12,∴A 1S =C 1R =32,由△ATO ∽△C 1QR ,可得AO AT =C 1RC 1Q ,即1x =32C 1Q ,故C 1Q =3x2, 由△A 1TS ∽△CQP ,可得CQ CP =A 1T A 1S ,即1-3x 21=1-x 32,解得x =25.11.如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .证明 (1)如图,连接EC ,因为AD ∥BC ,BC =12AD ,所以BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面P AD ,FH ⊄平面P AD , 所以FH ∥平面P AD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面P AD ,OH ⊄平面P AD , 所以OH ∥平面P AD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面P AD . 又因为GH ⊂平面OHF , 所以GH ∥平面P AD .12.(2020·宁夏银川市兴庆区长庆高级中学模拟)如图,在四棱锥S -ABCD 中,∠ADC =∠BCD =90°,AD =DC =SA =12BC =2,点E ,G 分别在线段SA ,AD 上,且SE =AE ,AG =GD ,F为棱BC 上一点,且CF =1.证明:平面SCD∥平面EFG.证明因为点E,G分别在线段SA,AD上,且SE=AE,AG=GD,故EG∥SD,又EG⊄平面SCD,SD⊂平面SCD,故EG∥平面SCD;因为∠ADC=∠BCD=90°,故AD∥BC,因为GD=FC=1,故四边形GDCF为平行四边形,故GF∥CD;又GF⊄平面SCD,CD⊂平面SCD,故GF∥平面SCD,因为GF⊂平面EFG,EG⊂平面EFG,EG∩FG=G,所以平面SCD∥平面EFG.13.如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M在线段FH上(或点M与点H重合)解析连接HN,FH,FN(图略),则FH∥DD1,HN∥BD,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.14.在三棱锥P -ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________. 答案 8解析 如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.15.(2020·合肥第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且P A 1∥平面AMN ,则P A 1的长度范围为( ) A.⎣⎡⎦⎤1,52 B.⎣⎡⎦⎤324,52 C.⎣⎡⎦⎤324,32D.⎣⎡⎦⎤1,32 答案 B解析 取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF ,取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点,∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且P A 1∥平面AMN , ∴点P 的轨迹是线段EF , ∵A 1E =A 1F =12+⎝⎛⎭⎫122=52, EF =1212+12=22, ∴A 1O ⊥EF ,∴当P 与O 重合时,P A 1的长度取最小值A 1O , A 1O =⎝⎛⎭⎫522-⎝⎛⎭⎫242=324,当P 与E (或F )重合时,P A 1的长度取最大值A 1E 或A 1F , A 1E =A 1F =52. ∴P A 1的长度范围为⎣⎡⎦⎤324,52. 16.(2020·宜昌模拟)如图,在四棱锥P -ABCD 中,侧棱P A ⊥平面ABCD ,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,P A =AB =2,AD =3BC =3,E 在棱AD 上,且AE =1,若平面CEF 与棱PD 相交于点F ,且平面CEF ∥平面P AB .(1)求PFFD的值; (2)求点F 到平面PBC 的距离. 解 (1)∵平面CEF ∥平面P AB ,且平面CEF ∩平面P AD =EF ,平面P AB ∩平面P AD =P A , ∴P A ∥EF ,又AE =1=13AD ,∴PF =13PD ,∴PF FD =12.(2)∵F 为PD 的三等分点,∴F 到平面PBC 的距离等于D 到平面PBC 的距离的13,设D 到平面PBC 的距离为h , ∵P A ⊥平面ABCD , ∴P A ⊥BC ,又∵BC ∥AD ,AB ⊥AD ,∴BC ⊥AB , ∵P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴BC ⊥平面P AB ,∴BC ⊥PB , 由等体积法得V D -PBC =V P -BCD , 即13S △PBC ·h =13S △DBC ·P A , ∵P A =AB =2,AD =3BC =3, ∴PB =22,BC =1,∴S △PBC =12PB ·BC =2,S △DBC =12BC ·AB =1,∴h =2,∴F 到平面PBC 的距离等于23.。
面面平行的判定和性质
图形语言
符号语言
l∥a a⊂α
l⊄α
⇒l∥α
___l∥__a___ ___l⊂__β___
_α_∩__β_=__b_
⇒l∥b
2.面面平行的判定定理和性质定理
文字语言
图形语言
一个平面内的两条相交直线 与 判定 另一个平面平行,则这两个平 定理 面平行(简记为“线面平行⇒面
面平行”)
如果两个平行平面同时和第三 性质 个平面相交 ,那么它们的交__线__ 定理
练1
在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变 为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.
证明 如图所示,连接A1C,AC1,交于点M, ∵四边形A1ACC1是平行四边形, ∴M是A1C的中点,连接MD, ∵D为BC的中点,∴A1B∥DM. ∵A1B⊂平面A1BD1,DM⊄平面A1BD1, ∴DM∥平面A1BD1, 又由三棱柱的性质知,D1C1∥BD且D1C1=BD, ∴四边形BDC1D1为平行四边形,∴DC1∥BD1. 又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1, 又DC1∩DM=D,DC1,DM⊂平面AC1D, 因此平面A1BD1∥平面AC1D.
课堂总结: 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α). (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β). (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β). 证明面面平行的方法 (1)面面平行的定义. (2)面面平行的判定定理. (3)垂直于同一条直线的两个平面平行. (4)两个平面同时平行于第三个平面,那么这两个平面平行. (5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.
直线、平面平行的判定与性质讲义
直线、平面平行的判定与性质讲义一、知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⎭⎪⎬⎪⎫l∥aa⊂αl⊄α⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l∥αl⊂βα∩β=b⇒l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a∥βb∥βa∩b=Pa⊂αb⊂α⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=aβ∩γ=b⇒a∥b(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()(6)若α∥β,直线a∥α,则a∥β.()题组二:教材改编2.下列命题中正确的是( )A .若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,则b ∥α3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为________.题组三:易错自纠4.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( ) A .不一定存在与a 平行的直线 B .只有两条与a 平行的直线 C .存在无数条与a 平行的直线 D .存在唯一与a 平行的直线 5.设α,β,γ为三个不同的平面,a ,b 为直线,给出下列条件: ①a ⊂α,b ⊂β,a ∥β,b ∥α;②α∥γ,β∥γ; ③α⊥γ,β⊥γ;④a ⊥α,b ⊥β,a ∥b .其中能推出α∥β的条件是______.(填上所有正确的序号)6.如图是长方体被一平面所截得的几何体,四边形EFGH 为截面,则四边形EFGH 的形状为________.三、典型例题题型一:直线与平面平行的判定与性质 命题点1:直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面P AD.命题点2:直线与平面平行的性质典例如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.思维升华:判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).跟踪训练如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.题型二:平面与平面平行的判定与性质典例如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.引申探究:本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.思维升华:证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练:如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.题型三:平行关系的综合应用典例如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD 上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.思维升华:利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.四、反馈练习1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交2.已知直线a和平面α,那么a∥α的一个充分条件是()A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β3.平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面4.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是()A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合7.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.9.如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)10.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是______.(填序号)11.如图,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=23,且△P AD与△ABD均为正三角形,E为AD的中点,G为△P AD的重心.(1)求证:GF∥平面PDC;(2)求三棱锥G—PCD的体积.12.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,CB=3CG.(1)求证:PC⊥BC;(2)AD边上是否存在一点M,使得P A∥平面MEG?若存在,求出AM的长;若不存在,请说明理由.13.在四面体ABCD中,截面PQMN是正方形,则在下列结论中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°14.过三棱柱ABC—A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N 分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是()16.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH 的面积为________.。
高中数学 线面、面面平行的判定与性质(教师版)
线面、面面平行的判定与性质(教师版)知识回顾1.线面平行的判定(1)直线与平面平行的定义:直线与平面无公共点. (2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 用符号表示为:a ⊄α,b ⊂α,且a ∥b ⇒a ∥α. 2.线面平行的性质直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言描述:⎭⎪⎬⎪⎫a ∥αa ⊂ββ∩α=b ⇒a ∥b . 3. 面面平行的判定(1)平面α与平面β平行的定义:两平面无公共点. (2)直线与平面平行的判定定理:下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m ,n 为直线,α,β为平面),则此条件应为m ,n 相交.⎭⎪⎬⎪⎫m ⊂αn ⊂αm ∥βn ∥β⇒α∥β 4.面面平行的性质平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号表示为:⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . 题型讲解题型一 利用三角形中位线证明线面平行例1、如图,ABCD 是平行四边形,S 是平面ABCD 外一点,M 为SC 的中点.求证:SA∥平面MDB.答案:证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.例2、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,求证:MN∥平面PB1C.答案证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.例3、如图所示,P是▱ABCD所在平面外一点,E、F分别在PA、BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.证明连接AF延长交BC于G,连接PG.在▱ABCD中,易证△BFG∽△DFA.∴GFFA=BFFD=PEEA,∴EF∥PG.而EF⊄平面PBC,PG⊂平面PBC,∴EF∥平面PBC.练习在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______.答案:平行题型二利用平行四边形证明线面平行例1、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.证明:取D1B1的中点O,连接OF,OB.∵OF 12B1C1,BE12B1C1,∴OF BE.∴四边形OFEB是平行四边形,∴EF∥BO.∵EF⊄平面BDD1B1,BO⊂平面BDD1B1,∴EF∥平面BDD1B1.例2、如图所示,已知正方体ABCD-A1B1C1D1中,面对角线AB1、BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD.证明方法一过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连接MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN,∵AB1=BC1,B1E=C1F,∴AE=BF,又∠B1AB=∠C1BC=45°,∴Rt△AME≌Rt△BNF,∴EM=FN.∴四边形MNFE是平行四边形,∴EF∥MN.又MN⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD.方法二过E作EG∥AB交BB1于G,连接GF,∴B1EB1A=B1GB1B,B1E=C1F,B1A=C1B,∴C1FC1B=B1GB1B,∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.又EF⊂平面EFG,∴EF∥平面ABCD.题型三利用面面平行证明线面平行例. 如图,在四棱锥中,是平行四边形,,分别是,的中点.求证:平面.答案:证明:如图,取的中点,连接,,分别是,的中点,,,P ABCDABCD M N AB PCMN//PADCD E NE ME∵M N AB PCNE PD∴//ME AD//可证明平面,平面.又,平面平面,又平面,平面.题型四面面平行的证明例1、如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?解:当Q为CC1的中点时,平面D1BQ∥平面PAO.∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.∵P、O为DD1、DB的中点,∴D1B∥PO.又PO∩PA=P,D1B∩QB=B,D1B∥平面PAO,QB∥平面PAO,∴平面D1BQ∥平面PAO.题型五平行性质NE//PAD ME//PADNE ME E=∴MNE//PADMN⊂MNE∴MN//PAD例1、如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是()A.平行 B.相交C.异面 D.平行和异面答案:A例2、ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.证明如图所示,连接AC交BD于O,连接MO,∵ABCD是平行四边形,∴O是AC中点,又M是PC的中点,∴AP∥OM.根据直线和平面平行的判定定理,则有PA∥平面BMD.∵平面PAHG∩平面BMD=GH,根据直线和平面平行的性质定理,∴AP∥GH.练习、如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.证明 ∵平面AB 1M ∥平面BC 1N , 平面ACC 1A 1∩平面AB 1M =AM , 平面BC 1N∩平面ACC 1A 1=C 1N , ∴C 1N ∥AM ,又AC ∥A 1C 1, ∴四边形ANC 1M 为平行四边形, ∴AN 綊C 1M =12A 1C 1=12AC ,∴N 为AC 的中点.跟踪训练1.如右图所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于直线DE ,则DE 与AB 的位置关系是( )A .异面B .平行C .相交D .以上均有可能 答案:B[解析] ∵A 1B 1∥AB ,AB ⊂平面ABC ,A 1B 1⊄平面ABC , ∴A 1B 1∥平面ABC.又A 1B 1⊂平面A 1B 1ED ,平面A 1B 1ED∩平面ABC =DE ,∴DE ∥A 1B 1. 又AB ∥A 1B 1,∴DE ∥AB.2.已知直线l ,m ,平面α,β,下列命题正确的是( ) A .l ∥β,l ⊂α⇒α∥βB .l ∥β,m ∥β,l ⊂α,m ⊂α⇒α∥βC .l ∥m ,l ⊂α,m ⊂β⇒α∥βD .l ∥β,m ∥β,l ⊂α,m ⊂α,l ∩m =M ⇒α∥β 答案:D3、直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( )A.至少有一条 B.至多有一条C.有且只有一条 D.没有答案:B4、给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个 B.2个 C.3个 D.4个答案:B5.正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案:A6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案:平行四边形[解析]∵平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH的形状是平行四边形.7. 如图所示,在三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点,求证:BC1∥平面CA1D.证明:如图所示,连接AC1交A1C于点O,连接OD,则O是AC1的中点.∵点D是AB的中点,∴OD∥BC1.又∵OD⊂平面CA1D,BC1⊄平面CA1D,∴BC1∥平面CA1D.8.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点.求证:平面EFG∥平面BDD 1B1.证明如图所示,连接SB,SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴直线FG∥平面BDD1B1.同理可证EG∥平面BDD1B1,又∵EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.9.(本小题满分12分)在四棱锥S-ABCD中,底面ABCD是正方形, M、N分别为AB、SC的中点,SA⊥底面ABCD.求证://MN平面SAD;答案.证明(Ⅰ): E 为SD 中点,连接AE ,NE ,因为M 、N 分别为AB 、SC 的中点,所以AM//EN ,AM=EN ,即四边形AMNE 是平行四边形,所以MN//AE ,可得//MN 平面SAD ;10. 一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点).(1)求证:MN ∥平面CDEF ;(2)求多面体A -CDEF 的体积.答案 由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且AB =BC =BF=2,DE =CF=2,∴∠CBF =. (1)证明:取BF 的中点G ,连结MG 、NG ,由M 、N 分别为AF 、BC 的中点可得,NG ∥CF ,MG ∥EF ,∴平面MNG ∥平面CDEF ,又MN ⊂平面MNG ,∴MN ∥平面CDEF .(2)取DE 的中点H .∵AD =AE ,∴AH ⊥DE , 在直三棱柱ADE-BCF 中,平面ADE ⊥平面CDEF ,平面A DE ∩平面CDEF=DE .∴AH ⊥平面CDEF.∴多面体A-CDEF 是以AH 为高,以矩形CDE F 为底面的棱锥,在△ADE 中,AH =. S 矩形CDEF =DE ·EF =4,∴棱锥A-CDEF 的体积为2222V=·S 矩形CDEF ·AH =×4×= 解法2:13218222323A CDEF AED BFC A BFCAED V V V S AB S AB ---=-=⨯-⨯⨯=⨯⨯⨯⨯=△△BFC 11如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB 上是否存在一点F ,使平面C 1CF ∥平面ADD 1A 1?若存在,求点F 的位置;若不存在,请说明理由.答案 存在这样的点F ,使平面C 1CF ∥平面ADD 1A 1,此时点F 为AB的中点,证明如下:∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,∴四边形AFCD 是平行四边形,∴AD ∥CF ,又AD ⊂平面ADD 1A 1,CF ⊄平面ADD 1A 1,∴CF ∥平面ADD 1A 1.又CC 1∥DD 1,CC 1⊄平面ADD 1A 1,DD 1⊂平面ADD 1A 1,∴CC 1∥平面ADD 1A 1,又CC 1、CF ⊂平面C 1CF ,CC 1∩CF =C ,∴平面C 1CF ∥平面ADD 1A 1.12. 如图,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.答案 存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD .设BD ∩AC =O .连接BF ,MF ,BM ,OE .13132283∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD的中点,∴MF ∥EC ,BM ∥OE .∵MF ⊄平面AEC ,CE ⊂平面AEC ,BM ⊄平面AEC ,OE ⊂平面AEC ,∴MF ∥平面AEC ,BM ∥平面AEC .∵MF ∩BM =M ,∴平面BMF ∥平面AEC .又BF ⊂平面BMF ,∴BF ∥平面AEC .13. (北京)如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.答案 (1)证明:因为D ,E 分别为AP ,AC 的中点,所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE ∥平面BCP .(2)证明:因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点所以DE ∥PC ∥FG ,DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG ,所以四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理可证四边形MENG 为矩形,其对象线交点为EG 的中点Q ,且QM =QN =12EG ,所以EG 的中点Q 是满足条件的点.。
线面平行、面面平行的性质和判定定理
如图:已知直线a,b,平面,
且a // b,a//,a,b都在平面外。
b
求证:b//
a
如图:已知直线a,b,平面,
且a // b,a//,a,b都在平面外。 a
求证:b//
证明:过a作面交于c
c
a //
a
a//c
=c
a//b
注意:
b//c
c
b
线//面
线//线
b
b //
转化是立体几何的一种重要的思想方法。
探究新知
探究1. 如果两个平面平行,那么一个平 面内的直线与另一个平面有什么位置关 系?
a
答:如果两个平面平行,那么一个 平面内的直线与另一个平面平行.
探究新知
探究2.如果两个平面平行,两个平面内的直 线有什么位置关系?
借助长方体模型探究 结论:如果两个平面平行,那么两个平面内 的直线要么是异面直线,要么是平行直线.
探究新知
探究3:当第三个平 面和两个平行平面 都相交时,两条交 线有什么关系?为 什么?
β
答:两条交线平行.
α
a
b
下面我们来证明这个结论
结论:当第三个平面和两个平行平面都 相交时,两条交线平行
如图,平面α,β,γ满足α∥β,α∩γ= a,β∩γ=b,求证:a∥b
证明:∵α∩γ=a,β∩γ=b ∴aα,bβ ∵α∥β ∴a,b没有公共点, 又因为a,b同在平面γ内, 所以,a∥b
相交,则这一条交线b就平行于直线a.
a
b
结论:直线和平面平行的性质定理
如果一条直线和一个平面平行,经过这条直
线的任意平面和这个平面相交,那么这条直线和
交线平行。
a// ,
高中数学直线、平面平行的判定与性质
例2 如图所示,正方体ABCD-A1B1C1D1中,M,N分别为A1B1,A1D1 的中点,E,F分别为B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形; (2)求证:平面AMN∥平面EFDB.
解题导引
1 (1)在△B1D1C1中得EF∥B1D1且EF= 2 B1D1 在正方体中得 1 BD������ B1D1 EF∥BD且EF= BD 四边形BDFE为梯形 2
证明 证法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接 MN. ∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD. 又AP=DQ,∴PE=QB, 又PM∥AB∥QN, ∴ = = = ,∴ = , 又AB=DC, ∴PM������ QN,∴四边形PMNQ为平行四边形, ∴PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, ∴PQ∥平面BCE.§8Leabharlann 4直线、平面平行的判定与性质
知识清单
考点 直线、平面平行的判定与性质
1.判定直线与直线平行的方法
(1)平行公理:a∥b,b∥c⇒① a∥c ; (2)线面平行的性质定理:a∥β,a⊂α,α∩β=b⇒② a∥b ;
(3)面面平行的性质定理:α∥β,γ∩α=a,γ∩β=b⇒③ a∥b ;
(4)垂直于同一个平面的两条直线④ 平行 ; (5)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行.
∴ = ,
∴MQ∥AD,又AD∥BC, ∴MQ∥BC,∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,
又PQ⊂平面PMQ,∴PQ∥平面BCE.
方法 2 判定或证明面面平行的方法
1.利用面面平行的定义(此法一般伴随反证法证明). 2.利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于 另一个平面,那么这两个平面平行. 3.证明两个平面都垂直于同一条直线. 4.证明两个平面同时平行于第三个平面.
线面平行、面面平行的性质与判定定理
b
1、定理三个条件缺一不可。 2、简记:线线平行,则线面平行。
3、定理告诉我们: 要证线面平行,得在面内找 一条线,使线线平行。
二:如何判断平面和平面平行? 答:有两种方法,一是用定义法,须 判断两个平面没有公共点;二是用 平面和平面平行的判定定理,须判 断一个平面内有两条相交直线都和 另一个平面平行.
结论:当第三个平面和两个平行平面都 相交时,两条交线平行
如图,平面α ,β ,γ 满足α ∥β ,α ∩γ = a,β ∩γ =b,求证:a∥b 证明:∵α ∩γ =a,β ∩γ =b ∴aα ,bβ ∵α ∥β ∴a,b没有公共点, 又因为a,b同在平面γ 内, 所以,a∥b
Байду номын сангаас
这个结论可做定理用
二、两个平面平行具有如下的一些性质: ⑴如果两个平面平行,那么在一个平面内的所 有直线都与另一个平面平行
⑵如果两个平行平面同时和第三个平面相交, 那么它们的交线平行. ⑶如果一条直线和两个平行平面中的一个相交, 那么它也和另一个平面相交 ⑷夹在两个平行平面间的所有平行线段相等
思考:
1、如果直线与平面平行,会有那些结果呢? 2、如果两个平面平行,会有哪些结论呢?
问题1:命题“若直线a平行于平面α,则直 线a平行于平面α内的一切直线.”对吗?
a c
b
那么直线a会与平面α内的哪些直线平行呢?
问题2: 在上面的论述中,平面α内的直线b 满足什么条件时,可以和直线a平行?
∵ 直线a与平面 α内任何直线都没有公共点, ∴过直线a 的某一个平面 ,若与平面α 相交,则这一条交线b就平行于直线a.
例题:已知
平面外的两条平行直线中的一条平行于这个平面, 求证:另一条也平行于这个平面
第10讲 空间中平行关系的判定与性质
第24讲 空间中平行关系的判定与性质一.基础知识整合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ∥b a αb αa ∥α⎭⎪⎬⎪⎫a β,b βaα,bαa ∩b =Aa ∥β,b ∥β⇒α∥β⎭⎪⎬⎪⎫a ∥αa βα∩β=b ⇒a ∥b题型一:线面平行的判定例1:如图,四边形ABCD ,ADEF 都是正方形,M ∈BD ,N ∈AE ,且BM =AN.求证:MN ∥平面CED .证明:如图,连接AM 并延长交CD 于点G ,连接GE ,因为AB ∥CD ,所以AM MG =BM MD .所以AM MG +AM =BM MD +BM,即AM AG =BM BD .又因为BD =AE且AN =BM ,所以AM AG =ANAE .所以MN ∥GE .又GE 平面CED ,MN平面CED ,所以MN ∥平面CED .变式迁移1:在四棱锥P —ABCD 中,四边形ABCD 是平行四边形,M 、N 分别是AB 、PC 的中点,求证:MN ∥平面PAD.证明:取PD 中点F ,连接AF 、NF 、NM .∵M 、N 分别为AB 、PC 的中点,∴NF 綊12CD ,AM綊12CD ,∴AM 綊NF .∴四边形AMNF 为平行四边形,∴MN ∥AF .又AF ⊂平面P AD ,MN ⊄平面P AD ,∴MN ∥平面P AD . 题型二:面面平行的判定例2::已知四棱锥P —ABCD 中,底面ABCD 为平行四边形.点M 、N 、Q 分别在P A 、BD 、PD 上,且PM ∶MA =BN ∶ND =PQ ∶QD . 求证:平面MNQ ∥平面PBC .证明:∵PM ∶MA =BN ∶ND =PQ ∶QD ,∴MQ ∥AD ,NQ ∥BP .∵BP 平面PBC ,NQ 平面PBC ,∴NQ ∥平面PBC .又底面ABCD 为平行四边形,∴BC ∥AD ,∴MQ ∥BC .∵BC 平面PBC ,MQ 平面PBC ,∴MQ ∥平面PBC .又MQ ∩NQ =Q ,根据平面与平面平行的判定定理,得平面MNQ ∥平面PBC .变式训练2:如图在正方体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点. 求证:平面MNP ∥平面A 1BD .证明:如图所示,连接B 1D 1,∵P 、N 分别是D 1C 1、B 1C 1的中点,∴PN ∥B 1D 1.又B 1D 1∥BD ,∴PN ∥BD ,又PN 平面A 1BD ,BD 平面A 1BD ,∴PN ∥平面A 1BD ,同理可得MN ∥平面A 1BD ,又∵MN ∩PN =N ,∴平面PMN ∥平面A 1BD .题型三:平行关系判定的综合应用例3:如图,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解:Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .证明如下:设Q 为CC 1中点,则PD 綊QC ,连接PQ ,则由PQ 綊DC 綊AB ,可知四边形ABQP 是平行四边形,∴AP ∥BQ .∵AP 平面D 1BQ ,BQ 平面D 1BQ ,∴AP ∥平面D 1BQ .∵O 、P 分别为BD 、DD 1的中点,∴OP ∥BD 1.又OP 平面D 1BQ ,BD 1平面D 1BQ ,∴OP ∥平面D 1BQ .又AP ∩PO =P ,∴平面D 1BQ ∥平面P AO ,∴当点Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .变式训练3:如图,正三棱柱ABC —A 1B 1C 1的底面边长为2,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的点,EC =2FB =2.则当点M 在什么位置时,MB ∥平面AEF ?试给出证明. 解:当M 为AC 中点时,MB ∥平面AEF .证明:如图,当M 为AC 中点时,过M 作MG ∥CE ,交AE 于G ,连接GF .∵M 为AC 中点,∴MG 綊12CE .又FB ∥CE ,EC =2FB ,∴MG 綊FB .∴四边形BFGM为平行四边形,∴GF ∥MB .又GF 平面AEF ,MB 平面AEF ,所以MB ∥平面AEF .题型四:线面平行性质的应用例4:如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH . 证明:如图所示,连接AC ,交BD 于O ,连接MO . ∵四边形ABCD 是平行四边形,∴O 为AC 中点,又∵M 为PC 中点,∴AP ∥OM .又∵AP平面BDM ,OM 平面BDM ,∴AP ∥平面BDM ,又∵AP 平面APGH ,且平面APGH ∩平面BDM =GH ,∴AP ∥GH . 变式训练4:如图所示,已知异面直线AB ,CD 都平行于平面α,且AB ,CD 在α的两侧,若AC ,BD 与α分别交于M ,N 两点,求证:AM MC =BN ND.证明:如图所示,连接AD 交平面α于Q ,连接MQ 、NQ .MQ 、NQ 分别是平面ACD 、平面ABD 与α的交线.∵CD ∥α,AB ∥α,∴CD ∥MQ ,AB ∥NQ .于是AM MC =AQDQ ,DQ AQ =DN NB ,∴AM MC =BN ND . 题型五:面面平行性质的应用例5:已知:平面α∥平面β∥平面γ,两条异面直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 和点D 、E 、F .求证:AB BC =DEEF.证明:如图,连接DC ,设DC 与平面β相交于点G ,则平面ACD 与平面α、β分别相交于直线AD 、BG .平面DCF 与平面β、γ分别相交于直线GE 、CF . 因为α∥β,β∥γ,所以BG ∥AD ,GE ∥CF .于是在△ADC 内有AB BC =DG GC ,在△DCF 内有DG GC =DEEF.∴AB BC =DE EF.变式训练5:如图所示,设AB ,CD 为夹在两个平行平面α,β之间的线段,且直线AB ,CD 为异面直线,M ,P 分别为AB ,CD 的中点.求证:直线MP ∥平面β.证明:过点A 作AE ∥CD 交平面β于E ,连接DE ,BE ,∵AE ∥CD ,∴AE 、CD 确定一个平面,设为γ,则α∩γ=AC ,β∩γ=DE .由于α∥β,∴AC ∥DE (面面平行的性质定理)取AE 中点N ,连接NP ,MN ,∵M 、P 分别为AB 、CD 的中点,∴NP ∥DE ,MN ∥BE .又NPβ,DE β,MNβ,BE β,∴NP ∥β,MN ∥β.又NP ∩MN =N ,∴平面MNP ∥β.∵MP 平面MNP ,∴MP ∥β.题型六:平行关系性质的综合应用例6:如图,直线CD 、AB 分别平行于平面EFGH ,E 、F 、G 、H 分别在AC 、AD 、BD 、BC 上,且CD =a ,AB =b ,CD ⊥AB . (1)求证:四边形EFGH 是矩形;(2)点E 在AC 上的什么位置时,四边形EFGH 的面积最大? 解:(1)因为CD ∥平面EFGH ,所以CD ∥EF ,CD ∥GH ,所以GH ∥EF . 同理EH ∥GF ,所以四边形EFGH 为平行四边形.又因为AB ⊥CD ,所以HE ⊥EF .所以四边形EFGH 是矩形.(2)设CE =x ,AC =1,因为HE ∥AB ,所以HE AB =CECA ,所以HE =xAB =xb .同理,EF =(1-x )DC =(1-x )a .所以S 矩形EFGH =HE ·EF =x (1-x )ab =[-(x -12)2+14]ab ,当且仅当x =12时,S 矩形EFGH 最大,即当E 为AC中点时,四边形EFGH 的面积最大.变式训练6:如图所示,已知P 是▱ABCD 所在平面外一点,M ,N 分别是AB ,PC 的中点,平面P AD ∩平面PBC =l . (1)求证:l ∥BC ;(2)MN 与平面P AD 是否平行?试证明你的结论.证明:(1)∵AD∥BC,AD平面PBC,BC平面PBC,∴AD∥平面PBC. 又∵平面PBC∩平面P AD=l,∴l∥AD∥BC. (2)平行.证明如下:设Q是CD的中点,连接NQ,MQ,∵M,N分别是AB,PC的中点,∴MQ∥AD,NQ∥PD. 而MQ∩NQ=Q,AD∩PD=D,∴平面MNQ∥平面P AD. ∵MN平面MNQ,∴MN∥平面P AD.三.方法规律总结1.直线与平面平行的性质定理作为线线平行的依据,可以用来证明线线平行.1.直线与平面平行的关键是在已知平面内找一条直线和已知直线平行,即要证直线与平面平行,先证直线与直线平行.即由立体向平面转化,由高维向低维转化.2.证明面面平行时,要按“线线平行”、“线面平行”、“面面平行”的证明顺序进行.当题目中有多个平面平行时,要注意平行平面的传递性.两平面平行的判定定理的条件中直线相交很重要,而且在解题中常常被忽视.4.线线平行、线面平行、面面平行的转化关系四.课后练习作业一、选择题1.下列说法正确的是(B)A.平行于同一个平面的两条直线平行B.同时与两异面直线平行的平面有无数多个C.如果一条直线上有两点在一个平面外,则这条直线与这个平面平行D.直线l不在平面α内,则l∥α【解析】:A选项,若两直线相交且同时与此平面平行也是可以的;B选项,我们将异面直线都平移到空间中的某一点相交,则它们确定一个平面,与此平面平行的平面平行于这两条异面直线,显然这样的平面有无穷多个;C、D选项,若直线与平面相交,则直线有两点在平面外,直线也不在平面内,但l与α不平行.2.若M,N分别是△ABC边AB,AC的中点,MN与过直线BC的平面β的位置关系是(C) A.MN∥βB.MN与β相交或MNβC.MN∥β或MNβD.MN∥β或MN与β相交或MNβ【解析】:当平面β与平面ABC重合时,有MNβ;当平面β与平面ABC不重合时,则β∩平面ABC=BC.∵M,N分别为AB,AC的中点,∴MN∥BC.又MNβ,BCβ,∴MN∥β.综上有MN∥β或MNβ.1.若α∥β,aα,下列三个说法中正确的是(D)①a与β内所有直线平行;②a与β内的无数条直线平行;③a与β无公共点.A.①②B.①③C.①D.②③【解析】a与平面β内的直线可能平行,也可能异面,但与β无公共点,故选B.2.下列说法正确的个数为(B)①两平面平行,夹在两平面间的平行线段相等;②两平面平行,夹在两平面间的相等的线段平行;③如果一条直线和两个平行平面中的一个平行,那么它和另一个平面也平行;④两平行直线被两平行平面截得的线段相等.A.1B.2C.3D.4【解析】易知①④正确,②不正确,③直线可能在平面内,故③不正确.3.如果AB、BC、CD是不在同一平面内的三条线段,则经过它们中点的平面和直线AC的位置关系是(A)A.平行B.相交C.AC在此平面内D.平行或相交【解析】如图:E、F、G分别为AB、BC、CD的中点.∵E、F分别是AB,BC的中点,∴EF∥AC.又EF平面EFG,且AC平面EFG.∴AC∥平面EFG.4.在正方体ABCD-A1B1C1D1中,下列四对截面中彼此平行的一对截面是(A)A.平面A1BC1和平面ACD1 B.平面BDC1和平面B1D1CC.平面B1D1D和平面BDA1D.平面ADC1和平面AD1C【解析】:如图,在截面A 1BC 1和截面AD 1C 中,⎭⎪⎬⎪⎫AC ∥A 1C 1AD 1∥BC1AC ∩AD 1=AA 1C 1∩BC 1=C 1⇒平面A 1BC 1∥平面ACD 1. 3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 是棱A 1D 1上的动点,则直线MD 与平面BCC 1B 1的位置关系是( A )A .平行B .相交C .在平面内D .相交或平行 【解析】⎭⎪⎬⎪⎫平面ADD 1A 1∥平面BCC 1B 1DM 平面ADD 1A 1⇒MD ∥平面BCC 1B 1.4.已知平面α∥β,P 是α、β外一点,过点P 的直线m 与α、β分别交于点A 、C ,过点P 的直线n 与α、β分别交于点B 、D ,且P A =6,AC =9,PD =8,则BD 的长为( B ) A .16 B .24或245C .14D .20【解析】第①种情况,当P 点在α、β的同侧时,设BD =x ,则PB =8-x , ∴P A AC =PB BD .∴BD =245.第②种情况,当P 点在α,β中间时,设PB =x .∴PD PC =PB P A . ∴x =6×83=16,∴BD =24.5.若不在同一直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,则( B ) A .α∥平面ABC B .△ABC 中至少有一边平行于α C .△ABC 中至多有两边平行于α D .△ABC 中只可能有一边与α相交 【解析】若三点在平面α的同侧,则α∥平面ABC ,有三边平行于α.若一点在平面α的一侧,另两点在平面α的另一侧,则有两边与平面α相交,有一边平行于α,故△ABC 中至少有一边平行于α.5.如图,在空间四边形ABCD 中,E 、F 分别为边AB 、AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H 、G 分别为BC 、CD 的中点,则( B ) A .BD ∥平面EFGH ,且四边形EFGH 是矩形 B .EF ∥平面BCD ,且四边形EFGH 是梯形 C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是梯形【解析】:∵AE ∶EB =AF ∶FD =1∶4,∴EF ∥BD 且EF =15BD .又H 、G 分别为BC 、CD 的中点,∴HG 綊12BD .∴EF ∥HG 且EF ≠HG .∴四边形EFGH 为梯形.∵BD 平面BCD 且EF 平面BCD .∴EF ∥平面BCD . 二、填空题6.如图所示,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND ,则MN 与平面BDC的位置关系是________.【解析】:∵AM MB =ANND ,∴MN ∥BD .又∵MN 平面BDC ,BD 平面BDC ,∴MN ∥平面BDC .【答案】 平行7.已知a 、b 、c 为三条不重合的直线,α,β,γ为三个不重合平面,下面三个命题:①a ∥c ,b ∥c ⇒a ∥b ;②γ∥α,β∥α⇒γ∥β;③a ∥γ,α∥γ⇒a ∥α.其中正确命题的序号是________.【解析】由平行公理,知①正确;由平面平行的传递性知②正确;③不正确,因为a 可能在α内.【答案】 ①②8.在空间四边形P ABC 中,A 1、B 1、C 1分别是△PBC 、△PCA 、△P AB 的重心,则平面ABC 与平面A 1B 1C 1的位置关系是________.【解析】如图,连接PC 1,P A 1,并延长分别交AB ,BC 于E 、F 两点,由于C 1、A 1分别为重心.∴E 、F 分别为AB 、BC 的中点,连接EF .又∵PC 1C 1E =P A 1A 1F =2.∴A 1C 1∥EF .又∵EF 为△ABC边AC 上的中位线,∴EF ∥AC ,∴AC ∥A1C 1,又A 1C 1平面ABC ,AC 平面ABC ,∴A 1C 1∥平面ABC ,同理A 1B 1∥平面ABC ,A 1B 1∩A 1C 1=A 1,∴平面A 1B 1C 1∥平面ABC .【答案】 平行7.空间四边形ABCD 中,对角线AC =BD =4,E 是AB 中点,过E 与AC 、BD 都平行的截面EFGH 分别与BC 、CD 、DA 交于F 、G 、H ,则四边形EFGH 的周长为________.【解析】∵AC ∥面EFGH ,AC 面ABC ,面ABC ∩面EFGH =EF ,∴AC ∥EF .∵E 为AB 中点,∴F 为BC 中点,∴EF =12AC =2.同理HG =12AC =2,EH =FG =12BD =2.∴四边形EFGH 的周长为8.【答案】 88.如图,平面α∥平面β,△ABC 与△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′都交于点O ,点O 在α、β之间,若S △ABC =32,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.【解析】根据题意有S △ABC =32.∵AA ′、BB ′相交,∴直线AA ′、BB ′确定一个平面ABA ′B ′,∵平面α∥平面β,∴AB ∥A ′B ′,易得△ABO ∽△A ′B ′O ,①△ABC ∽△A ′B ′C ′,②由①得AB A ′B ′=OA OA ′=32,由②得S △ABCS △A ′B ′C ′=(32)2,∴S △A ′B ′C ′=239.【答案】 239三、解答题9.在三棱柱ABC —A ′B ′C ′中,点E ,D 分别是B ′C ′与BC 的中点.求证:平面A ′EB ∥平面ADC ′.证明:连接DE ,∵E ,D 分别是B ′C ′与BC 的中点,∴DE 綊AA ′,∴AA ′ED 是平行四边形,∴A ′E ∥AD .∵A ′E 平面ADC ′,AD 平面ADC ′.∴A ′E ∥平面ADC ′.又BE ∥DC ′,BE 平面ADC ′,DC ′平面ADC ′,∴BE ∥平面ADC ′,∵A ′E 平面A ′EB ,BE 平面A ′EB ,A ′E ∩BE =E ,∴平面A ′EB ∥平面ADC ′.10.如图,在直四棱柱ABCD -A1B 1C 1D 1中,底面是梯形,AB ∥CD ,CD =2AB ,P 、Q 分别是CC 1、C 1D 1的中点,求证:面AD 1C ∥面BPQ .证明:∵D 1Q =12DC ,AB 綊12CD ,∴D 1Q 綊AB .∴四边形D 1QBA 为平行四边形,∴D 1A 綊QB .∵Q 、P 分别为D 1C 1、C 1C 的中点,∴QP ∥D 1C . ∵D 1C ∩D 1A =D 1,PQ ∩QB =Q .∴面AD 1C ∥面BPQ .11.如图,E ,F ,G ,H 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)GE ∥平面BB 1D 1D ;(2)平面BDF ∥平面B 1D 1H .证明:(1)取B 1D 1中点O ,连接GO ,OB ,易证OG ∥B 1C 1,且OG =12B 1C 1,BE∥B 1C 1,且BE =12B 1C 1,∴OG ∥BE 且OG =BE ,四边形BEGO 为平行四边形,∴OB ∥GE .∵OB平面BDD 1B 1,GE 平面BDD 1B 1,∴GE ∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD ,∵B 1D 1平面BDF ,BD 平面BDF ,∴B 1D 1∥平面BDF ,连接HB ,D 1F ,易证HBFD 1是平行四边形,得HD 1∥BF .∵HD 1平面BDF ,BF 平面BDF ,∴HD1∥平面BDF ,∵B 1D 1∩HD 1=D 1,∴平面BDF ∥平面B 1D 1H .9.如图,棱柱ABC —A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,求A 1D ∶DC 1的值.解:设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线.∵A 1B ∥平面B 1CD ,且A 1B 平面A 1BC 1,∴A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点,即A 1D ∶DC 1=1.10.如图,直四棱柱ABCD —A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AD ⊥DC ,CD =2,DD 1=AB =1,P ,Q 分别是CC 1,C 1D 1的中点. 求证:AC ∥平面BPQ .证明:连接CD 1,AD 1∵P ,Q 分别是CC 1,C 1D 1的中点,∴PQ ∥CD 1,且CD 1平面BPQ ,∴CD 1∥平面BPQ .又D 1Q =AB =1,D 1Q ∥AB ,∴四边形ABQD 1是平行四边形,∴AD 1∥BQ ,又∵AD 1平面BPQ , ∴AD 1∥平面BPQ 又AD 1∩CD 1=D 1.∴平面ACD 1∥平面BPQ . ∵AC 平面ACD 1,∴AC ∥平面BPQ .11.如图,四棱锥S -ABCD 中,底面ABCD 为平行四边形,E 是SA 上一点,试探求点E 的位置,使SC ∥平面EBD ,并证明.解:点E 的位置是棱SA 的中点.证明如下:如题图,取SA 的中点E ,连接EB ,ED ,AC ,设AC 与BD 的交点为O ,连接EO .∵四边形ABCD 是平行四边形,∴点O 是AC 的中点.又E 是SA 的中点,∴OE 是△SAC 的中位线.∴OE ∥SC .∵SC 平面EBD ,OE 平面EBD ,∴SC ∥平面EBD . 则平面MNE ∥平面P AD .又∵MN 平面P AD ,且MN 平面MNE ,∴MN ∥平面P AD .。
立体几何9-4线面、面面平行的判定与性质
则另一条也垂直于这个平面,故选B. 答案:B
15
[例2] (文)在四面体ABCD中,CB=CD, AD⊥BD,且E,F分别是AB,BD的中 点.求证:
为线段CE的中点,所以PN綊12DC.
19
又四边形ABCD是矩形,点M为线段AB的中点,
所以AM綊12DC.所以PN綊AM.
故四边形AMNP是平行四边形.所以 MN∥AP,
而AP⊂平面DAE,MN⊄平面DAE,所以 MN∥DAE.
证法二:取BE中点G,连结GM、GN,
∵GN∥BC,BC∥DA,∴GN∥DA,又
(1)直线EF∥平面ACD; (2)平面EFC⊥平面BCD.
16
解析:(1)在△ABD中,因为E、F分别是AB、 BD的中点,所以EF∥AD.
又AD⊂平面ACD,EF⊄平面ACD, 所以直线EF∥平面ACD. (2)在△ABD中,因为AD⊥BD,EF∥AD,
所以EF⊥BD. 在△BCD中,因为CD=CB,F为BD的中点,
的中点,求证:MN∥平面DAE.
18
证明:(1)因为BC⊥平面ABE,AE⊂平面 ABE,
所以AE⊥BC. 又BF⊥平面ACE,AE⊂平面ACE, 所以AE⊥BF. 又BF∩BC=B, 所以AE⊥平面BCE. 又(2B)证E⊂法平一:面取BDCEE的,中所点P以,A连E结⊥PAB,EP.N,因为点N
1
2
重点难点 重点:线面、面面平行的判定定理与性质定
理及应用 难点:定理的灵活运用
3
知识归纳
一、直线与平面平行
平行的判定与性质
AB C D E FGM O 第12讲 平行的判定与性质1. 线面平行的定义:直线和平面没有公共点,则直线和平面平行.2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号表示为:,,////a b a b a ααα⊄⊂⇒.3.性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 即:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭.【例1】已知P 是平行四边形ABCD 所在平面外一点,E 、F 分别为AB 、PD 的中点,求证:AF ∥平面PEC证明:设PC 的中点为G ,连接EG 、FG .∵ F 为PD 中点, ∴ GF ∥CD 且GF =12CD .∵ AB ∥CD , AB =CD , E 为AB 中点,∴ GF ∥AE , GF =AE , 四边形AEGF 为平行四边形. ∴ EG ∥AF , 又∵ AF ⊄平面PEC , EG ⊂平面PEC , ∴ AF ∥平面PEC .【例2】在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、C 1D 1的中点. 求证:EF ∥平面BB 1D 1D.证明:连接AC 交BD 于O ,连接OE ,则OE ∥DC , OE =12DC .∵ DC ∥D 1C 1, DC =D 1C 1 , F 为D 1C 1的中点,∴ OE ∥D 1F , OE =D 1F , 四边形D 1FEO 为平行四边形. ∴ EF ∥D 1O .又∵ EF ⊄平面BB 1D 1D , D 1O ⊂平面BB 1D 1D , ∴ EF ∥平面BB 1D 1D .【例3】如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG . 证明:如右图,连结DM ,交GF 于O 点,连结OE ,在BCD ∆中,G 、F 分别是BD 、CD 中点, ∴//GF BC ,∵G 为BD 中点, ∴O 为MD 中点,在AMD ∆中,∵E 、O 为AD 、MD 中点, ∴//EO AM , 又∵AM ⊂平面EFG ,EO ⊂平面EFG , ∴AM ∥平面EFG .【例4】如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点(1)求证:MN //平面P AD ;(2)若4MN BC ==,PA =P A 与MN 所成的角的大小. 解:(1)取PD 的中点H ,连接AH ,由N 是PC 的中点,∴ NH //=12DC . 由M 是AB 的中点, ∴ NH //=AM , 即AMNH 为平行四边形.∴ //MN AH .由,MN PAD AH PAD ⊄⊂平面平面, ∴ //MN PAD 平面.(2) 连接A C 并取其中点为O ,连接OM 、ON ,∴ OM //=12BC ,ON //=12P A , 所以ONM ∠就是异面直线P A与MN 所成的角,且MO ⊥NO .由4MN BC ==,PA =得OM =2,ON =所以030ONM ∠=,即异面直线P A 与MN 成30°的角【例5】三角形的三条中线交于一点,该点称为三角形的重心,且到顶点的距离等于到对边中点距离的2倍. 这一结论叫做三角形的重心定理.在四面体ABCD 中,M 、N 分别是面△ACD 、△BCD 的重心,在四面体的四个面中,与MN 平行的是哪几个面?试证明你的结论.解:连结AM 并延长,交CD于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12得MN ∥AB , 因此,MN ∥平面ABC 且MN ∥平面ABD .【例6】经过正方体ABCD -A 1B 1C 1D 1的棱BB 1作一平面交平面AA 1D 1D 于E 1E ,求证:E 1E ∥B 1B 证明:∵ 11111111//,,AA BB AA BEE B BB BEE B ⊄⊂平面平面,∴ 111//AA BEE B 平面. 又 11111111AA ADD A ADD A BEE B EE ⊂=平面,平面平面, ∴ 11//AA EE .则111111//////AA BB BB EE AA EE ⎫⇒⎬⎭. 【例7】如图,//AB α,//AC BD ,C α∈,D α∈,求证:AC BD =. 证明:连结CD , ∵//AC BD ,∴直线AC 和BD 可以确定一个平面,记为β,∵,C D α∈,,C D β∈,∴CD αβ=,∵//AB α,AB β⊂,CD αβ=∴//AB CD , 又∵//AC BD , ∴ 四边形ACDB 为平行四边形, ∴AC BD =.【例8】如右图,平行四边形EFGH 的分别在空间四边形ABCD 各边上,求证:BD //平面EFGH .证明:∵ //EH FG ,EH ⊄平面BCD ,FG ⊂平面BCD ,∴ //EH BCD 平面. 又 ∵ EH ABD ⊂平面,BCD ABD BD =平面平面,∴ //EH BD . 又 ∵ EH EFGH ⊂平面,BD EFGH ⊄平面,∴ //BD EFGH 平面.【例9】已知直线a ∥平面α,直线a ∥平面β,平面α平面β=b ,求证//a b . 证明:经过a 作两个平面γ和δ,与平面α和β分别相交于直线c 和d , ∵ a ∥平面α,a ∥平面β,∴a ∥c ,a ∥d , ∴c ∥d , 又 ∵d ⊂平面β,c ⊄平面β, ∴c ∥平面β, 又 c ⊂平面α,平面α∩平面β=b , ∴ c ∥b ,∵a ∥c , ∴ a ∥b .【例10】如下图,在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=12AB ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1、B 、M 三点的平面A 1BMN 交C 1D 1于点N .(1)求证:EM ∥平面A 1B 1C 1D 1; (2)设截面A 1BMN 把该正四棱柱截成两个几何体的体积分别为V 1、V 2(V 1<V 2),求V 1∶V 2的值.解:(1)证明:设A 1B 1的中点为F ,连结EF 、FC 1.∵E 为A 1B 的中点,∴EF //12B 1B . 又C 1M //12B 1B ,∴EF //MC 1. ∴四边形EMC 1F 为平行四边形.∴EM ∥FC 1.∵EM ⊄平面A 1B 1C 1D 1,FC 1⊂平面A 1B 1C 1D 1, ∴EM ∥平面A 1B 1C 1D 1.(2)延长A 1N 与B 1C 1交于P ,则P ∈平面A 1BMN ,且P ∈平面BB 1C 1C . 又∵平面A 1BMN ∩平面BB 1C 1C =BM , ∴P ∈BM ,即直线A 1N 、B 1C 1、BM 交于一点P .又∵平面MNC 1∥平面BA 1B 1, ∴几何体MNC 1—BA 1B 1为棱台.∵S =12·2a ·a =a 2, S =12·a ·12a =14a 2,棱台MNC 1—BA 1B 1的高为B 1C 1=2a ,V 1=13·2a ·(a 214a 2)=76a 3,∴V 2=2a ·2a ·a -76a 3=176a 3. ∴12V V =717.δγβα_b _acd1A1.面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.用符号表示为:,,////,//a b a b P a b βββααα⊂⊂=⎫⇒⎬⎭.2. 面面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 用符号语言表示为://,,//a b a b αβγαγβ==⇒.3. 其它性质:①//,//l l αβαβ⊂⇒; ②//,l l αβαβ⊥⇒⊥;③夹在平行平面间的平行线段相等. 【例1】如右图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面MNP ∥平面A 1BD .证明:连结B 1D 1,∵P 、N 分别是D 1C 1、B 1C 1的中点,∴ PN ∥B 1D 1. 又B 1D 1∥BD ,∴PN ∥BD .又PN 不在平面A 1BD 上,∴PN ∥平面A 1BD .同理,MN ∥平面A 1BD . 又PN ∩MN =N , ∴平面PMN ∥平面A 1BD . 【例2】正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B //=DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , 又BD ⊄平面B 1D 1C ,B 1D 1⊂平面B 1D 1C ,∴BD ∥平面B 1D 1C . 同理A 1D ∥平面B 1D 1C .而A 1D ∩BD =D ,∴平面A 1BD ∥平面B 1CD . (2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.取BB 1中点G ,∴AE ∥B 1G . 从而得B 1E ∥AG ,同理GF ∥AD .∴AG ∥DF .∴B 1E ∥DF . ∴DF ∥平面EB 1D 1.∴平面EB 1D 1∥平面FBD .【例3】已知四棱锥P-ABCD 中, 底面ABCD 为平行四边形. 点M 、N 、Q 分别在P A 、BD 、PD 上, 且PM :MA =BN :ND =PQ :QD .求证:平面MNQ ∥平面PBC .证明: PM :MA =BN :N D=PQ :QD .∴ MQ //AD ,NQ //BP , 而BP ⊂平面PBC ,NQ ⊄平面PBC , ∴ NQ //平面PBC .又ABCD 为平行四边形,BC //AD , ∴ MQ //BC ,而BC ⊂平面PBC ,MQ ⊄平面PBC , ∴ MQ //平面PBC . 由MQ NQ =Q ,根据平面与平面平行的判定定理, ∴ 平面MNQ ∥平面PBC .【例4】P 是ABC ∆所在平面外一点,'''A B C 、、分别是PBC PCA PAB ∆∆∆、、的重心,(1)求证:平面'''A B C ABC //平面; (2)求''':ABC A B C S S ∆∆. 证明:分别连P A ’,PB ’,PC ’并延长分别交BC ,AC ,AB 于D ,E ,F .则D ,E ,F 分别是BC ,CA ,AB 的中点. ∴ '2'3PA PC PD PF==, ∴ A ’C ’//FD . 同理''//A B DE , ∴ 平面'''A B C ABC //平面.(2) ∵ ''//A B DE , ∴ '''23A B PA DE PD ==, 又DE =12AB .∴ ''13A B AB =, 易证'''A B C ∆∽ABC ∆. ∴ ''':ABC A B C S S ∆∆=1:9.【例5】如图,设平面α∥平面β,AB 、CD 是两异面直线,M 、N 分别是AB 、CD 的中点,且A 、C ∈α,B 、D ∈β. 求证:MN ∥α.证明:连接BC ,取BC 的中点E ,分别连接ME 、NE ,则ME ∥AC ,∴ ME ∥平面α,又 NE ∥BD , ∴ NE ∥β,又M E ∩NE =E ,∴平面MEN ∥平面α, ∵ MN ⊂平面MEN ,∴MN ∥α.【例6】如图,A ,B ,C ,D 四点都在平面α,β外,它们在α内的射影A 1,B 1,C 1,D 1是平行四边形的四个顶点,在β内的射影A 2,B 2,C 2,D 2在一条直线上,求证:ABCD 是平行四边形.A 1βαE NM DBCA证明:∵ A ,B ,C ,D 四点在β内的射影A 2,B 2,C 2,D 2在一条直线上, ∴A ,B ,C ,D 四点共面.又A ,B ,C ,D 四点在α内的射影A 1,B 1,C 1,D 1是平行四边形的四个顶点, ∴平面ABB 1A 1∥平面CDD 1C 1.∴AB ,CD 是平面ABCD 与平面ABB 1A 1,平面CDD 1C 1的交线.∴AB ∥CD . 同理AD ∥BC . ∴四边形ABCD 是平行四边形.【例7】如图,在正三棱柱ABC —A 1B 1C 1中,E 、F 、G 是侧面对角线上的点,且BE CF AG ==,求证:平面EFG ∥平面ABC .证明:作1EP BB ⊥于P ,连接PF . 在正三棱柱ABC —A 1B 1C 1的侧面11ABB A 中,易知111A B BB ⊥,又1EP BB ⊥,所以11////EP A B AB . ∴ 11BE BPBA BB =,//EP 平面ABC . 又∵ BE CF =,11BA CB =, ∴ 11CF BPCB BB =,∴ //PF BC ,则//PF 平面ABC . ∵ EP PF P =,∴ 平面PEF //平面ABC .∵ EF ⊂平面PEF , ∴ EF //平面ABC . 同理,GF //平面ABC . ∵ EF GF F =,∴ 平面EFG //平面ABC .【例8】如图,已知正方体1111ABCD A B C D -中,面对角线1AB ,1BC 上分别有两点E 、F ,且11B E C F =. 求证:EF ∥平面ABCD .证明:过E 、F 分别作AB 、BC 的垂线,EM 、FN 分别交AB 、BC 于M 、N ,连接MN . ∵ BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC ,∴ EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN ,∵ AB 1=BC 1,B 1E =C 1F ,∴AE =BF , 又∠B 1AB =∠C 1BC =45°,∴ Rt △AME ≌Rt △BNF ,∴EM =FN .∴ 四边形MNFE 是平行四边形,∴EF ∥MN . 又MN ⊂平面ABCD ,∴EF ∥平面ABCD . 证法二:过E 作EG ∥AB 交BB 1于G ,连接GF ,∴1111B E B G B A B B =,11B E C F =,11B A C B =,∴1111C F B G C B B B=, ∴FG ∥B 1C 1∥BC . 又∵EG FG =G ,AB BC =B ,∴平面EFG ∥平面ABCD . b 又EF ⊂平面EFG ,∴EF ∥平面ABCD .【例9】如图甲,在透明塑料制成的长方体ABCD —A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱A 1D 1始终与水面EFGH 平行;④当容器倾斜如图乙时,EF ·BF 是定值. 其中正确说法的序号是_____________.解:对于命题①,由于BC 固定,所以在倾斜的过程中,始终有AD ∥EH ∥FG ∥BC ,且平面AEFB ∥平面DHGC ,故水的部分始终呈棱柱状(四棱柱或三棱柱、五棱柱),且BC 为棱柱的一条侧棱,命题①正确.对于命题②,当水是四棱柱或五棱柱时,水面面积与上下底面面积相等;当水是三棱柱时,则水面面积可能变大,也可能变小,故②不正确.③是正确的(请给出证明).④是正确的,由水的体积的不变性可证得.综上所述,正确命题的序号是①③④.GNM FEE CD B A D 1C 1B 1A1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线面平行的判定定理和性质定理教学目的:1. 掌握空间直线和平面的位置关系;2. 直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定掌握理实现“线线”“线面”平行的转化教学重点:线面平行的判定定理和性质定理的证明及运用教学难点:线面平行的判定定理和性质定理的证明及运用授课类型:新授课课时安排: 1 课时教具:多媒体、实物投影仪内容分析:本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础前面3 节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点教学过程:一、复习引入:1 空间两直线的位置关系( 1 )相交;( 2 )平行;( 3)异面2. 公理 4 :平行于同一条直线的两条直线互相平行推理模式: a // b,b // ca // c .3. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等4. 等角定理的推论 : 如果两条相交直线和另两条相交直线分别平行 ,那么这两条直线所成的锐角 (或直角 )相等 . 5. 空间两条异面直线的画法a b bD 1 C 1baaA 1B 1D CAB6. .异面直线定理: 连结平面内一点与平面外一点的直线, 和这个平面内不经过此点的直线是异面直线 推理模式: A, B ,l , B l AB 与 l 是异面直线7. .异面直线所成的角:已知两条异面直线a, b ,经过空间任一点Oab ′ 作直线 a // a, b // b , a , b 所成的角的大小与点O 的选择无关,把bOa ,b 所成的锐角 (或直角) 叫异面直线 a, b 所成的角 (或夹角).为了简便,点O 通常取在异面直线的一条上异面直线所成的角的范围:(0, ]28. .异面直线垂直: 如果两条异面直线所成的角是直角, 则叫两条异面直线垂直. 两条异面直线a,b 垂直,记作 a b.9. .求异面直线所成的角的方法:(1 )通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2 )找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求10 .两条异面直线的公垂线、距离和两条异面直线都垂直.相.交..的直线,我们称之为异面直线D1C1 A1 B1D C的公垂线在这两条异面直线间的线段(公垂线段)的长度, AB叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条二、讲解新课:1..直线和平面的位置关系(1 )直线在平面内(无数个公共点);(2 )直线和平面相交(有且只有一个公共点);(3 )直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为 a ,a A ,a // .aaa A2..线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:l, m ,l // m l // .证明:假设直线l 不平行与平面,∵l ,∴l P ,若P m,则和l // m 矛盾,若P m,则l 和m 成异面直线,也和l // m 矛盾,∴l // .3.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式:l // ,l , m l // m .l证明:∵ l //,∴l 和没有公共点,m又∵m ,∴l 和m 没有公共点;l 和m 都在内,且没有公共点,∴l // m .三、讲解范例:例1 已知:空间四边形ABCD 中,E, F 分别是AB, AD 的A 中点,求证:EF // 平面BCD . E FB D证明:连结BD ,在ABD 中,∵E , F 分别是AB, AD 的中点,C ∴EF // BD ,EF 平面BCD ,BD 平面BCD ,∴EF // 平面BCD .例 2 求证:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.已知:l // , P , P m, m // l ,求证:m .证明:设l 与P 确定平面为,且m ,∵l // ,∴l// m ;mPm又∵l // m ,m, m 都经过点P ,∴m, m 重合,∴m .例3 已知直线a∥直线b,直线a∥平面α,b α,βb a求证:b∥平面αcα证明:过 a 作平面β交平面α于直线 c∵a ∥αa∴∥c 又∵a ∥b ∴b ∥c ,∴b∥c∵b α, c α,∴b ∥α.例4.已知直线 a ∥平面,直线 a ∥平面,平面平面= b ,求证 a // b .分析:利用公理4,寻求一条直线分别与a,b 均平行,从而达到a∥b 的目的.可借用已知条件中的a∥α及a∥β来实现.证明:经过 a 作两个平面和,与平面和分别相交于直线 c 和d ,∵a ∥平面,a ∥平面,∴a ∥c,a ∥d,∴c ∥d,又∵d 平面,c 平面,bc a d∴c ∥平面,又c 平面,平面∩平面= b ,∴c ∥b ,又∵ a ∥c ,所以,a ∥b .四、课堂练习:1..选择题(1 )以下命题(其中a,b 表示直线,表示平面)①若a∥b,b ,则a∥②若a∥,b∥,则a∥b③若a∥b,b∥,则a∥④若a∥,b ,则a∥b其中正确命题的个数是()(A)0 个(B)1 个(C)2 个(D)3 个(2 )已知a∥,b∥,则直线a,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()(A)2 个(B)3 个(C)4 个(D)5 个(3 )如果平面外有两点A、B,它们到平面的距离都是a,则直线AB 和平面的位置关系一定是()(A)平行(B)相交(C)平行或相交(D)AB(4 )已知m,n 为异面直线,m∥平面,n∥平面,∩=l,则l ()(A)与m,n 都相交(B)与m,n 中至少一条相交(C)与m,n 都不相交(D)与m,n 中一条相交答案:(1) A (2) D (3) C (4)C2..判断下列命题的真假(1 )过直线外一点只能引一条直线与这条直线平行. ()(2 )过平面外一点只能引一条直线与这个平面平行. ()(3 )若两条直线都和第三条直线垂直,则这两条直线平行. ()(4 )若两条直线都和第三条直线平行,则这两条直线平行. ()答案:(1) 真(2) 假(3) 假(4) 真3..选择题(1 )直线与平面平行的充要条件是()(A)直线与平面内的一条直线平行(B)直线与平面内的两条直线平行(C)直线与平面内的任意一条直线平行(D)直线与平面内的无数条直线平行(2 )直线a∥平面,点A∈,则过点 A 且平行于直线 a 的直线()(A)只有一条,但不一定在平面内(B)只有一条,且在平面内(C)有无数条,但都不在平面内(D)有无数条,且都在平面内(3 )若 a ,b ,a∥,条件甲是“a∥b”,条件乙是“b∥”,则条件甲是条件乙的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件(4 )A、B 是直线l 外的两点,过A、B 且和l 平行的平面的个数是()(A)0 个(B)1 个(C)无数个(D)以上都有可能答案:(1)D(2 )B(3)A(4)D4..平面与⊿ABC 的两边AB、AC 分别交于D、E,且AD ∶DB =AE ∶EC ,求证:BC∥平面B略证:AD∶DB =AE ∶EC CBC // DE BCDEE D BC // A5..空间四边形A BCD,E、F 分别是AB、BC 的中点,A 求证:EF∥平面ACD . E略证:E、F 分别是AB、BC 的中点 DBEF // EF AC ACACD ABCF C EF //6..经过正方体A BCD -A1 B1C 1D 1的棱BB 1 作一平面交平面AA1D 1D 于E1 E,求证:E1E∥B1 B略证:AA1AA1BB1// BB1BEE1 B1BEE1 B1AA1 // BEE1 B1D1 C11AAA1 //AA1BEE 1B1ADD 1 A1AA1 //1 B1EE1 D CEADD 1A1BEE1 B1EE1A BAA1 // BB1BB1// EE1AA1 // EE17..选择题(1 )直线a,b 是异面直线,直线 a 和平面平行,则直线 b 和平面的位置关系是()(A)b (B)b∥(C)b 与相交(D)以上都有可能(2 )如果点M 是两条异面直线外的一点,则过点M 且与a,b 都平行的平面(A)只有一个(B)恰有两个(C)或没有,或只有一个(D)有无数个答案:(1)D (2)A8..判断下列命题的真假.(1 )若直线l ,则l 不可能与平面内无数条直线都相交. ()(2 )若直线l 与平面不平行,则l 与内任何一条直线都不平行()答案:(1)假(2) 假9..如图,已知P 是平行四边形A BCD 所在平面外一点,M 、N 分别是AB、PC 的中点E(1)求证:PMN // 平面PAD ;H N(2)若MN BC 4 ,PA 4 3D C求异面直线PA 与MN 所成的角的大小略证(1)取PD 的中点H,连接AH ,A M BNH // NH // DC , NHAM , NH1DC2AM AMNH 为平行四边形MN // AH , MN PAD, AH PAD MN // PAD解(2): 连接AC 并取其中点为O,连接OM 、ON ,则OM 平行且等于BC 的一半,ON 平行且等于PA 的一半,所以ONM 就是异面直线PA 与MN 所成的角,由MN BC 4 ,PA 4 3 得,OM=2 ,ON= 2 3所以ONM 30 0 ,即异面直线PA 与MN 成30 0 的角C10 .如图,正方形ABCD与ABEF 不在同一平面内, M 、NT分别在AC 、BF 上,且AM FN 求证:MN// 平面CBE MD略证:作MT //AB, NH // AB 分别交BC 、BE 于T、H 点B H E AM FN CMT ≌BNH MT NHN从而有MNHT 为平行四边形MN // TH MN // CBEA F五、小结:“线线”与“线面”平行关系:一条直线和已知平面平行,当且仅当这条直线平行于经过这条直线的平面和已知平面的交线.,六、课后作业:七、板书设计(略)八、课后记:Welcome To Download !!!欢迎您的下载,资料仅供参考!。