重点中学招生数学模拟试卷含答案

合集下载

黑龙江省重点中学2024届中考数学全真模拟试题含解析

黑龙江省重点中学2024届中考数学全真模拟试题含解析

黑龙江省重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78 910 A .14,9B .9,9C .9,8D .8,93.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年5.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.12.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.如图,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,点B′和B 分别对应).若AB =2,反比例函数y =kx(k≠0)的图象恰好经过A′,B ,则k 的值为_____.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .17.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.三、解答题(共7小题,满分69分)18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A 与D为对应点.20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.22.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.23.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.24.(14分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】此题考查的是解直角三角形 如图:AC=4,AC ⊥BC ,∵梯子的倾斜角(梯子与地面的夹角)不能>60°. ∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.2、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.3、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年, 故选B . 【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 5、C 【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1. 故选:C . 【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 6、A 【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【题目详解】∵S 甲2=1.4,S 乙2=2.5, ∴S 甲2<S 乙2,∴甲、乙两名同学成绩更稳定的是甲; 故选A . 【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、C 【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.8、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【题目详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 10、B 【解题分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题(共7小题,每小题3分,满分21分)11、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12、4 3【解题分析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.13、(﹣2,4)【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14、30°【解题分析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15 【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m ), ∵反比例函数k y x=(k≠0)的图象恰好经过点A′,B ,∴12 ,∴,∴故答案为316、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.19、(1)见解析(2)见解析【解题分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF 即为所求.【题目点拨】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、 (1)π, 2π;(2)(n ﹣2)π.【解题分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【题目详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【题目点拨】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.21、(1)证明见解析;(1)2【解题分析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF =∠AFD ,然后根据对顶角相等可得∠BFE =∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC =90°,∴∠1+∠BEF =∠1+∠AFD =90°,∴∠BEF =∠AFD .∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.22、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23、(1)证明见解析;(2)15 2【解题分析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴DF=22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【题目点拨】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.24、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴122m ≤≤212m ≤≤-. (3)∵33M ⎛⎫- ⎪ ⎪⎝⎭、N (0,1), ∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =33OM =, ∴32OQ =∴232Q ⎫⎪⎪⎭. 332n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.。

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。

2025届山东省临沂市某重点中学高三第二次模拟考试数学试卷含解析

2025届山东省临沂市某重点中学高三第二次模拟考试数学试卷含解析

2025届山东省临沂市某重点中学高三第二次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于2的偶数可以表示为两个素数的和”( 注:如果一个大于1的整数除了1和自身外无其他正因数,则称这个整数为素数),在不超过15的素数中,随机选取2个不同的素数a 、b ,则3a b -<的概率是( ) A .15B .415C .13D .252.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( ) A .多1斤B .少1斤C .多13斤 D .少13斤 3.函数()()241xf x x x e =-+⋅的大致图象是( )A .B .C .D .4.已知复数z 1=3+4i,z 2=a+i,且z 12z 是实数,则实数a 等于( ) A .34B .43C .-43D .-345.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( ) A .0B .55C .66D .786.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种 B .36种C .24种D .18种7.81x x ⎛⎫-⎪⎝⎭的二项展开式中,2x 的系数是( ) A .70B .-70C .28D .-28 8.执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A .7B .15C .31D .639.已知函数2()e (2)e xx f x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( )A .1B .12或0 C .1或0 D .2或010.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( ) A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度11.下列函数中,在区间()0,∞+上为减函数的是( )A .1y x =+B .21y x =-C .12xy ⎛⎫= ⎪⎝⎭D .2log y x =12.2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A .18B .14C .16D .12二、填空题:本题共4小题,每小题5分,共20分。

深圳市新安中学重点中学初一数学自主招生试卷模拟试题(5套带答案)

深圳市新安中学重点中学初一数学自主招生试卷模拟试题(5套带答案)

深圳市新安中学重点中学初一数学自主招生试卷模拟试题(5套带答案)初一自主招生数学测试卷一、填空题。

(每题2分,共24分)1、六百零三万七千写作(),981829000省略“万”后面的尾数约是()万。

2、2÷( )=0.25=3:( )=()%=()折3、在61、0.166、16.7%、0.17中,最大的数是( ),最小的数是()。

4、一杯240克的盐水中含盐15克,如果在杯加入10克水,盐水的含盐率是();如果要使这杯盐水含盐率为10%,应该在水杯中加入()克盐。

5、六(1)班有学生48人,昨天有3人请假,到校的人数与请假的人数的最简比是( ),出勤率是( )。

6、20千米比()千米少20%;()吨比5吨多52。

7、一个长方体的玻璃鱼缸,长8dm ,宽5dm ,高6dm ,水深2.8dm 。

如果放入一块棱长为4dm 的正方体铁块,缸里的水上升()dm 。

8、姐姐的年龄比妹妹的年龄大31,妹妹比姐姐小3岁,姐姐( )岁。

9、如果一个三角形三个内角之比为2:7:4,那么这个三角形是()。

10、环形跑道的周长是400米,学校召开运动会,在跑道的周围每隔8米插上一面红旗,然后在相邻两面红旗之间每隔2米插上一面黄旗,应准备红旗( )面,黄旗()面。

11、在边长为a 厘米的正方形上剪下一个最大的圆,那么,这个圆与正方形的周长比是()。

(π取3.14)12、=++++24328122729232( )。

二、选择题。

(每题2分,共10分)1、小华双休日想帮妈妈做下面的事情:用洗衣机洗衣服要用20分钟;扫地要用6分钟;擦家具要用10分钟;晾衣服要用5分钟。

她经过合理安排,做完这些事情至少要花( )分钟。

A 、41B 、25C 、26D 、212、投掷3次硬币,有2次正面朝上,1次反面朝上,那么投掷第4次硬币正面朝上的可能性是( )。

A 、41 B 、21 C 、31 D 、323、甲数是a ,它比乙数的3倍少b ,表示乙数的式子是()。

浙江省杭州市周边重点中学四校2024-2025学年高一上学期10月联考模拟练习数学试题含答案

浙江省杭州市周边重点中学四校2024-2025学年高一上学期10月联考模拟练习数学试题含答案

浙江省四校2024-2025学年高一上学期10月联考模拟练习数学试题(自编供学生使用)(考试时间:120分钟试卷总分:150分)(答案在最后)一、单选题(本大题共8小题,共40分)1.已知集合{2},{1}A x x B x x =>=<∣∣,则()()A B ⋂=R R 痧()A.∅B.{12}xx <<∣C.{}12xx ≤≤∣D.R2.已知集合{|(38)(2)0}A x x x =-+<{|13}B x x =∈-Z ≤≤,则集合A B ⋂中的元素个数为A.2B.3C.4D.53.命题“,sin 0R αα∃∈=”的否定是()A.,sin 0R αα∃∈≠B.,sin 0R αα∀∈≠C.,sin 0R αα∀∈<D.,sin 0R αα∀∈>4.已知,,a b c ∈R ,则下列说法正确的是A.若a b >,则a c b c ->-B.若a b >,则a b c c>C.若ac bc <,则a b<D.若a b >,则22ac bc >5.命题“2,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围为()A.)(222⎡⎤∞⋃-∞⎣⎦,+,B.2⎡⎣-22,C.)2⎡∞⎣,D.(2-∞,6.关于x 的不等式22280x ax a --<的解集为()12,x x ,且2115x x -=,则a 的值为()A.152B.152±C.52D.52±7.已知2(0,0)a b ab a b +=>>,下列说法正确的是()A.ab 的最大值为8B.1212a b +--的最小值为2C.a b +有最小值32D.2224a a b b -+-有最大值48.给定集合A ,若对于任意a 、b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合,给出如下三个结论:①集合{}4,2,0,2,4A =--为闭集合;②集合{}3,A n n k k Z ==∈为闭集合;③若集合1A 、2A 为闭集合,则12A A ⋃为闭集合.其中正确结论的个数是()A.0B.1C.2D.3二、多选题(本大题共3小题,共18分)9.下列命题中为真命题的是()A.若0xy =,则0x y +=B.若a b >,则a c b c +>+C.菱形的对角线互相垂直D.若,a b 是无理数,则a b +是无理数10.根据不等式的有关知识,下列日常生活中的说法正确的是()A.自来水管的横截面制成圆形而不是正方形,原因是:圆的面积大于与它具有相同周长的正方形的面积.B.在b 克盐水中含有a 克盐(0)b a >>,再加入n 克盐,全部溶解,则盐水变咸了.C.某工厂第一年的产量为A ,第二年的增长率为a ,第三年的增长率为b ,则这两年的平均增长率为2a b+.D.购买同一种物品,可以用两种不同的策略.第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.用第二种方式购买一定更实惠.11.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数R 1,Q()0,Q x f x x ∈⎧=⎨∈⎩ð,被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则以下关于狄利克雷函数()f x 的结论中,正确的是()A.函数()f x 满足:()()f x f x -=B.函数()f x 的值域是[]0,1C.对于任意的x ∈R ,都有()()1f f x =D.在()f x 图象上不存在不同的三个点、、A B C ,使得ABC V 为等边三角形三、填空题(本大题共3小题,共15分)12.命题“π0,2x ⎡⎤∀∈⎢⎥⎣⎦,sin 0x ≥”的否定为.13.学校举办秋季运动会时,高一(1)班共有26名同学参加比赛,有12人参加游泳比赛,有9人参加田赛,有13人参加径赛,同时参加游泳比赛和田赛的有3人,同时参加游泳比赛和径赛的有3人,没有人同时参加三项比赛,则只参加游泳比赛的有人;同时参加田赛和径赛的有人.14.甲、乙两地相距240km,汽车从甲地以速度v (km/h)匀速行驶到乙地.已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为160元,可变成本为16400v 3元.为使全程运输成本最小,汽车应以km/h 的速度行驶.四、解答题(本大题共5小题,共77分)15.用一段长为16m 的篱笆,围成一个一边靠墙的矩形菜地(墙的长度大于16m ),矩形的长宽各为多少时,菜地的面积最大?并求出这个最大值?16.已知2:280p x x --≤,()22:200q x mx m m +-≤>,.(1)当1m =时,若命题“p q ∧”为真命题,求实数x 的取值范围;(2)若p 是q 的充分而不必要条件,求实数m 的取值范围.17.某人准备在一块占地面积为1800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为S 平方米,其中:1:2a b =.(1)试用x 表示S ,并标明x 的取值范围;(2)求S 的最大值,并求出S 取最大值时x 的值.18.已知函数()f x =的定义域为集合A ,{}B xx a =<∣.(1)求集合A ;(2)若全集{|4}U x x =≤,1a =-,求()U A B ð;(3)若A B A = ,求a 的取值范围.19.已知函数()2f x ax bx c =++(a ,b ,c ∈R )有最小值4-,且()0f x <的解集为{}13x x -<<.(1)求函数()f x 的解析式;(2)若对于任意的()1,x ∈+∞,不等式()6f x mx m >--恒成立,求实数m 的取值范围.参考答案:题号12345678910答案C CBABDBBBCABD题号11答案AC1.C【分析】求出集合,A B 的补集,根据集合的交集运算,即可得答案.【详解】由于{2},{1}A x x B x x =>=<∣∣,故{|2},{|1}A x x B x x =≤=≥R R 痧,所以()()A B ⋂=R R 痧{}12xx ≤≤∣,故选:C 2.C【详解】依题意,()(){}8|3820|23A x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭,{|13}B x Z x =∈-≤≤{}1,0,1,2,3=-,A B ⋂{}1,0,1,2=-,有4个元素,故选C.3.B【分析】原命题为存在性量词命题,按规则可写出其否定.【详解】根据命题否定的定义可得结果为:R α∀∈,sin 0α≠,故选:B.4.A【分析】由不等式的性质可判断A;取特值0c =,可判断BD;取0c <,结合不等式的性质判断C.【详解】对于A,利用不等式的性质可判断A 正确;对于BD,取0c =时,可知B 和D 均错误;对于C,当0c <时,若ac bc <,则a b >,故C 错误.故选:A 5.B【解析】特称命题为假命题,等价于其否定为真命题,利用判别式,即可确定实数a 的取值范围.【详解】“2,2390x R x ax ∃∈-+<”为假命题,等价于“2,2390x R x ax ∀∈-+≥”为真命题,所以()2=3890a ∆-⨯≤所以a ⎡∈⎣,则实数a 的取值范围为⎡⎣.故选:B.6.D【分析】根据22112122(())4x x x x x x -=+-以及韦达定理即可求解.【详解】因为关于x 的不等式22280x ax a --<的解集为()12,,x x 12,x x ∴是方程22280x ax a --=的两个不同的实数根,且224320a a ∆=+>,212122,8x x a x x a ∴+==-,2115x x -= ,()22221212154432x x x x a a ∴=+-=+,221536a =,解得52a =±故选:D.7.B【分析】根据基本不等式运用的三个条件“一正、二定、三相等”,可知8ab ≥,所以A 错误;将原式化成()()122a b --=,即可得()12112121a ab a +=+-≥---,即B 正确;不等式变形可得211ba+=,利用基本不等式中“1”的妙用可知3a b +≥+,C 错误;将式子配方可得222224(1)(2)5a a b b a b -+-=-+--,再利用基本不等式可得其有最小值1-,无最大值,D 错误.【详解】对于A 选项,2ab a b =+≥≥8ab ≥,当且仅当2,4a b ==时等号成立,故ab 的最小值为8,A 错误;对于B 选项,原式化为()()2122,01a ab b a --==>-,故10a ->;02ba b =>-,故20b ->;所以()12112121a ab a +=+-≥---,当且仅当2,4a b ==时等号成立,B 正确;对于C 选项,原式化为211ba +=,故()212123a a b a b b a ba b ⎛⎫+=++=+++≥+ ⎪⎝⎭当且仅当1,2a b =+=+C 错误;对于D 选项,()()222224(1)(2)521251a a b b a b a b -+-=-+--≥---=-,当且仅当12a b ==+1-,D 错误.故选:B 8.B【解析】取2a =,4b =-,利用闭集合的定义可判断①的正误;利用闭集合的定义可判断②的正误;取{}13,A n n k k Z ==∈,{}22,A m m t t Z ==∈,利用特殊值法可判断③的正误.由此可得出合适的选项.【详解】对于命题①,取2a =,4b =-,则6a b A -=∉,则集合{}4,2,0,2,4A =--不是闭集合,①错误;对于命题②,任取1n 、2n A ∈,则存在1k 、2k Z ∈,使得113n k =,223n k =,且12k k Z +∈,12k k Z -∈,所以,()12123n n k k A +=+∈,()12123n n k k A -=-∈,所以,集合{}3,A n n k k Z ==∈为闭集合,②正确;对于命题③,若集合1A 、2A 为闭集合,取{}13,A n n k k Z ==∈,{}22,A m m t t Z ==∈,则{123A A x x k ⋃==或}2,x k k Z =∈,取13A ∈,22A ∈,则()12325A A +=∉⋃,()12321A A -=∉⋃,所以,集合12A A ⋃不是闭集合,③错误.因此,正确的结论个数为1.故选:B.9.BC【分析】对于A,由0xy =得0x =或0y =即可判断;对于B,由不等式性质即可判断;对于C,由菱形性质即可判断;对于D,举反例如a b ==【详解】对于A,若0xy =,则0x =或0y =,故x y +不一定为0,故A 错误;对于B,若a b >,则由不等式性质a c b c +>+,故B 正确;对于C,由菱形性质可知菱形的对角线互相垂直,故C 正确;对于D,若,a b 是无理数,则a b +不一定是无理数,如a b ==0a b +=是有理数,故D 错误.故选:BC.10.ABD【分析】根据题意利用不等式的性质以及作差法、基本不等式逐项分析判断.【详解】对于选项A:设周长为0l >,则圆的面积为22π2π4πl l S ⎛⎫== ⎪⎝⎭圆,正方形的面积为22416l l S ⎛⎫==⎪⎝⎭正方形,因为211,04π16l >>,可得224π16l l >,即S S >圆正方形,故A 正确;对于选项B:原盐水的浓度为a b ,加入0n >克盐,盐水的浓度为a n b n++,则()()n b a a n a b n b b b n -+-=++,因为0,0b a n >>>,可得0,0b a b n ->+>,所以()()0n b a a n a b n b b b n -+-=>++,即a n ab n b+>+,故B 正确;对于选项C:设这两年的平均增长率为x ,则()()()2111A a b A x ++=+,可得1x ,因为()()111122a b a bx ++++=≤=+,即2a b x +≤,当且仅当11a b +=+,即a b =时,等号成立,即这两年的平均增长率不大于2a b+,故C 错误;对于选项D:按第一种策略购物,设第一次购物时的价格为1p 元/kg,购kg n ,第二次购物时的价格为2p 元/kg,购kg n ,两次购物的平均价格为121222p n p n p p n ++=;若按第二种策略购物,第一次花m 元钱,能购1kg mp 物品,第二次仍花m 元钱,能购2kg m p 物品,两次购物的平均价格为12122211m m m p p p p =++.比较两次购的平均价格:()()()()22121212121212121212124220112222p p p p p p p p p p p p p p p p p p p p +--++-=-==≥++++,当且仅当12p p =时,等号成立,所以第一种策略的平均价格不低于第二种策略的平均价格,因而用第二种策略比较经济,故D 正确;故选:ABD.11.AC【分析】利用R 1,Q ()0,Q x f x x ∈⎧=⎨∈⎩ð,对选项A,B 和C 逐一分析判断,即可得出选项A,B 和C的正误,选项D,通过取特殊点()0,1,,A B C ⎫⎛⎫⎪⎪⎝⎭⎝⎭,此时ABC V 为等边三角形,即可求解.【详解】由于R 1,Q()0,Qx f x x ∈⎧=⎨∈⎩ð,对于选项A,设任意x ∈Q ,则()(),1x f x f x -∈-==Q ;设任意Q x ∈R ð,则()()Q,0x f x f x -∈-==R ð,总之,对于任意实数()(),x f x f x -=恒成立,所以选项A 正确,对于选项B,()f x 的值域为{}0,1,又{}[]0,10,1≠,所以选项B 错误,对于选项C,当x ∈Q ,则()()()()1,11f x f f x f ===,当Q x ∈R ð,则()()()()0,01f x f f x f ===,所以选项C 正确,对于选项D,取()0,1,,0,33A B C ⎫⎛⎫-⎪⎪⎝⎭⎝⎭,此时AB AC BC ===ABC V 为等边三角形,所以选项D 错误,故选:AC.12.π0,2x ⎡⎤∃∈⎢⎥⎣⎦,sin 0x <【分析】根据全称命题的否定为特称命题,即可得答案.【详解】命题“π0,2x ⎡⎤∀∈⎢⎣⎦,sin 0x ≥”为全称命题,它的否定为特称命题,即π0,2x ⎡⎤∃∈⎢⎥⎣⎦,sin 0x <;故答案为:π0,2x ⎡⎤∃∈⎢⎥⎣⎦,sin 0x <13.62【详解】设只参加游泳比赛有x 人,则12336x -=+=,得6x =.不参加游泳的人为261214-=,参加田赛未参加游泳的人为936-=人,参加径赛未参加游泳的人为13310-=人,则同时参加田赛和径赛的人为106142+-=人.14.80【分析】根据汽车每小时的运输成本由固定成本和可变成本组成,固定成本为160元,可变成本为316400v 元,可构建函数,利用导数可求函数的极值,极值就是最值.【详解】解:设全程运输成本为y 元,由题意,得3224011601(160)240()64006400y v v v v =+=,0v >,21602240()6400y v v '=-+.令0y '=,得80v =.当80v >时,0'>y ;当080v <<时,0'<y .所以函数3224011601(160)240()64006400y v v v =+=+在()0,80上递减,在()80,+∞上递增,所以80v =km/h 时,720min y =.故答案为:80.15.长为8宽为4时,菜地面积最大,最大值为32【解析】设菜地长为x ,得162x S x -⎛⎫= ⎪⎝⎭,结合基本不等式可求最值【详解】如图,设菜地长为x ,()016x ∈,,则()1611622x S x x x -⎛⎫==- ⎪⎝⎭,结合基本不等式可知,0160x x >->,,则()()21616642x x x x ⎛⎫+--≤= ⎪⎝⎭,当且仅当8x =时,取到最大值,故()116322S x x =-≤,此时长为8,宽为16842-=,菜地面积最大值为3216.(1)21x -≤≤;(2)4≥m .【解析】(1)求出两个命题为真命题时的解集,然后利用p q ∧为真,求解x 的取值范围.(2)依题意可得p q q ⇒,推不出p ,即可得到不等式组224m m -≤⎧⎨≥⎩,解得即可【详解】解:∵2:280P x x --≤,∴24x -≤≤∵22:20q x mx m +-≤,0m >,∴2m x m -≤≤(1)当1m =时,:21q x -≤≤∵p q ∧为真命题,∴p 真且q 真即2421x x -≤≤⎧⎨-≤≤⎩,∴21x -≤≤(2)设集合{}|24A x x =-≤≤,{}2|m x m B x -=≤≤若p 是q 的充分不必要条件,则AB∴只需满足224m m -≤⎧⎨≥⎩且等号不同时成立得4≥m 17.(1)()4800180833600S x x x=--<<;(2)S 的最大值为1568,此时40x =.【分析】(1)先由题意得1800,2,333xy b a y a b a ===++=+且3,3x y >>,再结合图形即可求解所求S ;(2)由(1)结合基本不等式即可得解.【详解】(1)由题意可得1800,2,333xy b a y a b a ===++=+且3,3x y >>,所以33y a -=,18003600y x x=>⇒<,所以由图()()()()()3322223383823x y S a b a a a x x x x x --=+⨯⨯=+⋅==⋅-----()()()180034800600180831383836003x x x x x x x -⎛⎫=⋅=⋅=-----<<⎪⎝⎭.(2)由(1)()4800180833600S x x x=--<<,所以4800180818082180824015683S x x ⎛⎫=-≤--=+ ⎪⎝⎭,当且仅当48003x x=即40x =时等号成立,所以S 的最大值为1568,此时40x =.18.(1)(2,3]-;(2)[1,3]-;(3)(3,)+∞﹒【分析】(1)求出使f (x )有意义的x 的范围即可;(2)先计算U B ð,再按交集的运算法则计算即可;(3)A B A A B ⋂=⇒⊆,据此即可求解a 的范围﹒【详解】(1)3020x x -≥⎧⎨+>⎩32x x ≤⎧⎨>-⎩,23x ∴-<≤,(2,3]A ∴=-;(2)当1a =-时,()B =-∞,-1,[1,4]U B ∴=-ð,()[1,3]U A B ∴⋂=-ð;(3)A B A =Q I ,A B ∴⊆,3a ∴>,∴a 的求值范围是(3,)+∞.19.(1)2()23f x x x =--(2)m <【分析】(1)根据韦达定理列出方程组解出即可;(2)分离参数得()2122111x m x x x -+∴<=-+--,1x >,利用基本不等式求出右边最值即可.【详解】(1)令()0f x =,则1,2-为方程20ax bx c ++=的两根,则0a ≠,则由题有244423ac b a b a c a ⎧-=-⎪⎪⎪-=⎨⎪⎪=-⎪⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,2()23f x x x ∴=--.(2)由(1)得对()1,x ∀∈+∞,2236x x mx m -->--,即()2231x x m x -+>-,1x >Q ,10x ∴->,()2122111x m x x x -+∴<=-+--,令()211h x x x =-+-,1x >,则()211h x x x =-+≥=-当且仅当211x x-=-,即1x =+时等号成立,故()minh x =m <.。

小升初重点中学招生考试数学模拟试卷及答案(共三套)

小升初重点中学招生考试数学模拟试卷及答案(共三套)

45 个数是( 4064301 )。
4.三个分数22001167,22001165, 22001175中最大的是 (
2017 2015
),最小
的是 (
2016 2017
)。
5.甲、乙两种糖果混合后,平均每千克 18.5 元,其中甲种糖
果每千克 24.8 元,乙种糖果每千克 16.4 元,乙种糖果是甲种糖果
做对题数: 20-4= 16(道)] 6.小明 7:15 从家出发去学校,到学校的时间是 7:50,那
么这段时间分针走了( 210 )度,时针走了( 17.5 )度。[提示: 从 7:15 到 7:50 经过了 35 分,35÷60=172(时) 172×360°= 210° 172÷12×360°=17.5°]
筐的3,如果从 4
乙筐中取出
40
个放入甲筐,这时乙筐苹果的个数是甲筐的2。甲、 5
乙两筐原有苹果多少个?(7 分)
40÷3+4 4-5+2 2=40÷27=140(个)
140× 3 =60(个) 3+4
140- 60= 80(个 ) 答:甲筐原有苹果 60 个,乙筐原有苹果 80 个。
6.甲、乙两人同时从山脚开始爬山,到达山顶后立即下山, 甲、乙两人下山的速度都是各自上山速度的 2 倍,甲到山顶时乙 距山顶还有 500 米,甲回到山脚时乙刚好下到半山腰,求山脚到 山顶的路程。(7 分)
号。”孙飞说:“丁是 2 号,丙是 3 号。”李亮说:“丁是 1 号,
乙是 3 号。”又知道赵明、钱平、孙飞、李亮每人只说对了一半,
那么丙的号码是( A )。
A.4
B. 3
C.2
D.1
[提示:甲、Βιβλιοθήκη 、丙、丁分别是 1,3,4,2]三、计算。(20 分) 1.下面各题,能简算的要简算。(15 分) (1)4113×34+ 5114× 45+ 6115×56 =124×3+205×4+306×5

中招考试数学模拟试卷(附带答案)

中招考试数学模拟试卷(附带答案)

中招考试数学模拟试卷(附带答案)(满分:120分考试时间:120分钟)一选择题(本大题共10小题共30.0分)1.2022的倒数的相反数为()A. −2022B. 2C. 12022D. −120222.下列运算错误的是()A.a+2a=3aB. (a2)3=a6C. a2⋅a3=a5D. a6÷a3=a23.如图所示的几何体它的俯视图是()A. B. C. D.4.如图AB//CD DA⊥AC垂足为A若∠ADC=35°则∠1的度数为()A. 65°B. 55°C. 45°D. 35°5.小明家1至6月份的用水量统计如图所示关于这组数据下列说法中错误的是()A. 众数是6吨B. 平均数是5吨C. 中位数是5吨D. 方差是436.如果关于x的分式方程mx−2−2x2−x=1无解那么m的值为()A. 4B. −4C. 2D. −27.用一块圆心角为216°的扇形铁皮做一个高为40cm的圆锥形工件(接缝忽略不计)那么这个扇形铁皮的半径是()cm.A. 30B. 50C. 60D. 808.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量)当x≤−2时y随x的增大而减小且−2≤x≤1时y的最大值为9则a的值为()A.1或−2B. 1C. √2D. −√2或√29. 如图 矩形ABCD 中 E 是AB 的中点 将△BCE 沿CE 翻折 点B落在点F 处 tan∠DCE =43.设AB =x △ABF 的面积为y 则y 与x的函数图象大致为( ) A. B.C. D.10.如图 四边形ABCD 为菱形 AB =BD 点B C D G 四个点在同一个圆⊙O 上 连接BG 并延长交AD 于点F 连接DG 并延长交AB 于点E BD 与CG 交于点H 连接FH 下列结论:①AE =DF ②FH//AB ③△DGH ∽△BGE ④当CG 为⊙O 的直径时 DF =AF .其中正确结论的个数是( )A. 1B. 2C. 3D. 4二 填空题(本大题共8小题 共24.0分)10. 我国推行“一带一路”政策以来 已确定沿线有65个国家加入 共涉及总人口约达46亿人 用科学记数法表示该总人口数为______人.11. 分解因式:2a 2−8b 2=______.12. 在一个口袋中有4个完全相同的小球 它们的标号分别为1 2 3 4 一人从中随机摸出一球记下标号后放回 再从中随机摸出一个小球记下标号 则两次摸出的小球的标号之和大于4的概率是______.13. 已知{x =2y =−3是方程组{ax +by =2bx +ay =3的解 则a 2−b 2=______.14.如图在平面直角坐标系中以O为圆心适当长为半径画弧交x轴于点M交y轴于点N再分别以点M N为圆心大于MN的长为半径画弧两弧在第二象限交于点P若点P的坐标为(a,b)则a 与b的数量关系为______.15.如图△ABC中A B两个顶点在x轴的上方点C的坐标是(−1,0).以点C为位似中心在x轴的下方作△ABC的位似图形△A′B′C并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a则点B的横坐标是______.16.如图在直升机的镜头下观测牡丹园A处的俯角为30°B处的俯角为45°如果此时直升机镜头C处的高度CD为200米点A B D在同一条直线上则A B两点间的距离为______米.(结果保留根号)17.如图直线y=−x+5与双曲线y=kx (x>0)相交于A B两点与x轴相交于C点△BOC的面积是52.若将直线y=−x+5向下平移1个单位则所得直线与双曲线y=kx(x>0)的交点坐标为______ .18.如图放置的△OAB1△B1A1B2△B2A2B3…都是边长为1的等边三角形点A在x轴上点O B1B2B3…都在直线l上则点A2019的坐标是______.三解答题(本大题共7小题共66.0分)19.(1)计算:(−1)20229+(sin30°)−1+(5−√2)0−|3−√18|+82019×(−0.125)2019(2)解方程:2x +1=xx+220.为推进“传统文化进校园”活动某校准备成立“经典诵读”“传统礼仪”“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有______人将条形图补充完整(2)扇形图中m=______n=______(3)根据报名情况学校决定从报名“经典诵读”小组的甲乙丙丁四人中随机安排两人到“地方戏曲”小组甲乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.21.如图⊙O是△ABC的外接圆AE平分∠BAC交⊙O于点E交BC于点D∠ABC的平分线BF交AD于点F.(1)求证:BE=EF(2)若DE=4DF=3求AF的长.(x>0)经过△OAB的顶点A和OB的中点C AB//x轴点A的坐标为(2,3).22.如图双曲线y=kx(1)确定k的值(2)若点D(3,m)在双曲线上求直线AD的解析式(3)计算△OAB的面积.23.某商场经营某种品牌的童装购进时的单价是60元.根据市场调查在一段时间内销售单价是80元时销售量是200件而销售单价每降低1元就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式(3)若童装厂规定该品牌童装销售单价不低于76元且商场要完成不少于240件的销售任务则商场销售该品牌童装获得的最大利润是多少?24.已知:如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点与x轴交于A B两点A点在B点左侧.点B的坐标为(1,0)OC=3BO.(1)求抛物线的解析式(2)若点D是线段AC下方抛物线上的动点求四边形ABCD面积的最大值(3)若点E在x轴上点P在抛物线上.是否存在以A C E P为顶点且以AC为一边的平行四边形?若存在求出点P的坐标若不存在请说明理由.25.通过类比联想引申拓展研究典型题目可达到解一题知一类的目的.下面是一个案例请补充完整.原题:如图1点E F分别在正方形ABCD的边BC CD上∠EAF=45°连接EF则EF=BE+DF 试说明理由.(1)思路梳理∵AB=AD26.∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合.∵∠ADC=∠B=90°27.∴∠FDG=180°点F D G共线.根据______易证△AFG≌______得EF=BE+DF.(2)类比引申如图2四边形ABCD中AB=AD∠BAD=90°点E F分别在边BC CD上∠EAF=45°.若∠B ∠D都不是直角则当∠B与∠D满足等量关系______时仍有EF=BE+DF.(3)联想拓展如图3在△ABC中∠BAC=90°AB=AC点D E均在边BC上且∠DAE=45°.猜想BD DE EC应满足的等量关系并写出推理过程.已知:如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点与x轴交于A B两点A点在B点左侧.点B的坐标为(1,0)OC=3BO.(1)求抛物线的解析式(2)若点D是线段AC下方抛物线上的动点求四边形ABCD面积的最大值(3)若点E在x轴上点P在抛物线上.是否存在以A C E P为顶点且以AC为一边的平行四边形?若存在求出点P的坐标若不存在请说明理由.参考答案1.【答案】B的倒数为−3−3的相反数为3.【解析】解:根据相反数和倒数的定义得:−13故选:B.根据相反数的定义只有符号不同的两个数是互为相反数倒数的定义互为倒数的两数乘积为1求出即可.此题主要考查了相反数和倒数的定义正确记忆只有符号不同的两个数是互为相反数若两个数的乘积是1我们就称这两个数互为倒数.2.【答案】D【解析】解:∵a+2a=3a∴选项A不符合题意∵(a2)3=a6∴选项B不符合题意∵a2⋅a3=a5∴选项C不符合题意∵a6÷a3=a3∴选项D符合题意.故选:D.根据同底数幂的除法乘法合并同类项的方法以及幂的乘方与积的乘方的运算方法逐项判定即可.此题主要考查了同底数幂的除法乘法合并同类项的方法以及幂的乘方与积的乘方的运算方法要熟练掌握.3.【答案】B【解析】解:∵DA⊥AC垂足为A∴∠CAD=90°∵∠ADC=35°∴∠ACD=55°∵AB//CD∴∠1=∠ACD=55°故选:B.利用已知条件易求∠ACD的度数再根据两线平行同位角相等即可求出∠1的度数.本题主要考查了平行线的性质垂直的定义等知识点熟记平行线的性质定理是解题关键.4.【答案】C【解析】解:这组数据的众数为6吨平均数为5吨中位数为5.5吨方差为43吨 2.故选:C.根据众数平均数中位数和方差的定义计算各量然后对各选项进行判断.本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大则平均值的离散程度越大稳定性也越小反之则它与其平均值的离散程度越小稳定性越好.也考查了平均数众数中位数.5.【答案】A【解析】解:{3x<2x+4①3−x3≥2②由①得x<4由②得x≤−3由①②得原不等式组的解集是x≤−3故选:A.解出不等式组的解集即可得到哪个选项是正确的本题得以解决.本题考查解一元一次不等式组在数轴上表示不等式的解集解题的关键是明确解一元一次不等式组的方法.6.【答案】B【解析】【分析】本题考查了圆锥的计算属于基础题.根据题意可得r=35R可得(35R)2+402=R2即可得解.【解答】解:设这个扇形铁皮的半径为Rcm底面圆的半径为rcm根据题意得:2πr=216⋅π⋅R180即r=35R因为r2+402=R2所以(35R)2+402=R2解得R=50即这个扇形铁皮的半径为50cm.故选:B.7.【答案】B【解析】【分析】本题主要考查菱形的判定解题的关键是掌握菱形的定义和各判定及矩形的判定.根据菱形的定义及其判定矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO BO=DO∴四边形ABCD是平行四边形当AB=AD或AC⊥BD时均可判定四边形ABCD是菱形当∠ABO=∠CBO时由AD//BC知∠CBO=∠ADO∴∠ABO=∠ADO∴AB=AD∴四边形ABCD是菱形当AC=BD时可判定四边形ABCD是矩形故选:B.8.【答案】A【解析】解:过点C1作C1N⊥x轴于点N过点A1作A1M⊥x轴于点M 由题意可得:∠C1NO=∠A1MO=90°∠1=∠2=∠3则△A1OM∽△OC1N∵OA=5OC=3∴OA1=5A1M=3∴OM=4∴设NO=3x则NC1=4x OC1=3则(3x)2+(4x)2=9解得:x=±35(负数舍去)则NO=95NC1=125故点C的对应点C1的坐标为:(−95,12 5).故选:A.直接利用相似三角形的判定与性质得出△ONC1三边关系再利用勾股定理得出答案.此题主要考查了矩形的性质以及勾股定理等知识正确得出△A1OM∽△OC1N是解题关键.9.【答案】C【解析】本题主要考查点与圆的位置关系解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.由Rt△APB中AB=2OP知要使AB取得最小值则PO需取得最小值连接OM交⊙M于点P′当点P位于P′位置时OP′取得最小值据此求解可得.解:∵PA⊥PB∴∠APB=90°∵AO=BO∴AB=2PO若要使AB取得最小值则PO需取得最小值连接OM交⊙M于点P′当点P位于P′位置时OP′取得最小值过点M作MQ⊥x轴于点Q则OQ=3MQ=4∴OM=5又∵MP′=2∴OP′=3∴AB=2OP′=6故选C.10.【答案】D【解析】解:①∵四边形ABCD是菱形∴AB=BC=DC=AD又∵AB=BD∴△ABD和△BCD是等边三角形∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°又∵B C D G四个点在同一个圆上∴∠DCH=∠DBF∠GDH=∠BCH∴∠ADE=∠ADB−∠GDH=60°−∠EDB∠DCH=∠BCD−∠BCH=60°−∠BCH∴∠ADE=∠DCH∴∠ADE=∠DBF在△ADE和△DBF中{∠EAD=∠FDB AD=DB∠ADE=∠DBF∴△ADE≌△DBF(ASA)∴AE=DF故①正确②由①中证得∠ADE=∠DBF∴∠EDB=∠FBA∵B C D G四个点在同一个圆上∠BDC=60°∠DBC=60°∴∠BGC=∠BDC=60°∠DGC=∠DBC=60°∴∠BGE=180°−∠BGC−∠DGC=180°−60°−60°=60°∴∠FGD=60°∴∠FGH=120°又∵∠ADB=60°∴F G H D四个点在同一个圆上∴∠EDB=∠HFB∴∠FBA=∠HFB∴FH//AB故②正确③∵B C D G四个点在同一个圆上∠DBC=60°∴∠DGH=∠DBC=60°∵∠EGB=60°∴∠DGH=∠EGB由①中证得∠ADE=∠DBF∴∠EDB=∠FBA∴△DGH∽△BGE故③正确④如下图∵CG为⊙O的直径点B C D G四个点在同一个圆⊙O上∴∠GBC=∠GDC=90°∴∠ABF=120°−90°=30°∵∠A=60°∴∠AFB=90°∵AB=BD∴DF=AF故④正确正确的有①②③④故选:D.①由四边形ABCD是菱形AB=BD得出△ABD和△BCD是等边三角形再由B C D G四个点在同一个圆上得出∠ADE=∠DBF由△ADE≌△DBF得出AE=DF②利用内错角相等∠FBA=∠HFB求证FH//AB③利用∠DGH=∠EGB和∠EDB=∠FBA求证△DGH∽△BGE④利用CG为⊙O的直径及B C D G四个点共圆求出∠ABF=120°−90°=30°再利用等腰三角形的性质求得DF=AF.此题综合考查了圆及菱形的性质等边三角形的判定与性质全等三角形的判定和性质运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.11.【答案】4.6×109【解析】解:46亿=4.6×109.故答案为:4.6×109科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值>1时n是正数当原数的绝对值<1时n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数表示时关键要正确确定a的值以及n的值.12.【答案】2(a+2b)(a−2b)【解析】【分析】本题主要考查提公因式法分解因式和利用平方差公式分解因式熟记公式是解题的关键难点在于要进行两次分解因式.先提取公因式2再对余下的多项式利用平方差公式继续分解.【解答】解:2a2−8b2=2(a2−4b2)=2(a+2b)(a−2b).故答案为2(a+2b)(a−2b).13.【答案】58【解析】【分析】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意画出树状图然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果 两次摸出的小球的标号之和大于4的有10种情况∴两次摸出的小球的标号之和大于4的概率是:1016=58.故答案为58. 14.【答案】1【解析】解:∵{x =2y =−3是方程组{ax +by =2bx +ay =3的解 ∴{2a −3b =2①2b −3a =3②解得 ①−② 得a −b =−15①+② 得a +b =−5∴a 2−b 2=(a +b)(a −b)=(−5)×(−15)=1 故答案为:1.根据{x =2y =−3是方程组{ax +by =2bx +ay =3的解 可以求得a +b 和a −b 的值 从而可以解答本题. 本题考查二元一次方程组的解 解答本题的关键是明确二元一次方程组的解得意义 巧妙变形 利用平方差公式解答.15.【答案】a +b =0【解析】解:利用作图得点OP 为第二象限的角平分线所以a +b =0.故答案为a +b =0.利用基本作图得OP 为第二象限的角平分线 则点P 到x y 轴的距离相等 从而得到a 与b 互为相反数.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段作一个角等于已知角作已知线段的垂直平分线作已知角的角平分线过一点作已知直线的垂线).也考查了第二象限点的坐标特征.(a+3)16.【答案】−12【解析】解:设点B的横坐标为x则B C间的横坐标的长度为−1−x B′C间的横坐标的长度为a+1∵△ABC放大到原来的2倍得到△A′B′C∴2(−1−x)=a+1(a+3).解得x=−12(a+3).故答案为:−12设点B的横坐标为x然后表示出BC B′C的横坐标的距离再根据位似比列式计算即可得解.本题考查了位似变换坐标与图形的性质根据位似比的定义利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.17.【答案】(200√3−200)【解析】【分析】本题考查了含30°角直角三角形的性质勾股定理平行线性质等内容解决本题的关键是利用CD的长分别在两三角形中求出AD与BD的长.在三角形ACD中利用勾股定理求出AC长在三角形BCD中根据等腰三角形性质得到BD长即可求解.【解答】解:∵EC//AD∴∠A=30°∠CBD=45°CD=200∵CD⊥AB于点D.∴在Rt△ACD中∠CDA=90°AC=2CD=400∴AD=√AC2−CD2=200√3在Rt△BCD中∠CDB=90°∴DB=CD=200∴AB=AD−DB=200√3−200答:A B两点间的距离为(200√3−200)米.故答案为:(200√3−200)18.【答案】(20212,2019√32)【解析】解:∵△OAB1△B1A1B2△B2A2B3…都是边长为1的等边三角形点O B1B2B3…都在直线l上∴点B1的坐标为(12,√32)点B2的坐标为(1,√3)点B3的坐标(32,3√32)…点B n的坐标为(n2,n√32)∴点A n的坐标为(n2+1,n√32)∴点A2019的坐标为(20192+1,2019√32)即A2019的坐标为(20212,2019√32).故答案为:(20212,2019√32).根据等边三角形的性质结合一次函数图象上点的坐标特征可得出点B n的坐标进而可得出点A n的坐标即可求出结论.本题考查了点的规律问题根据点的坐标的变化找出点A n的坐标是解题的关键.19.【答案】解:(1)原式=−1+2+1−3√2+3−1=4−3√2(2)去分母得:2x+4+x2+2x=x2解得:x=−1经检验x=−1是分式方程的解.【解析】(1)原式利用乘方的意义零指数幂负整数指数幂法则绝对值的代数意义以及积的乘方运算法则计算即可求出值(2)分式方程去分母转化为整式方程求出整式方程的解得到x的值经检验即可得到分式方程的解.此题考查了解分式方程以及实数的运算熟练掌握运算法则是解本题的关键.20.【答案】解:(1)100(2)25108(3)树状图分析如下:∵共有12种情况恰好选中甲乙的有2种∴P(选中甲乙)=212=16.【解析】【分析】本题考查了扇形统计图条形统计图及列表与树状图法求概率的知识解题的关键是能够列树状图将所有等可能的结果列举出来难度不大.(1)用地方戏曲的人数除以其所占的百分比即可求得总人数减去其它小组的频数即可求得民族乐器的人数从而补全统计图(2)根据各小组的频数和总数分别求得m和n的值即可(3)列树状图将所有等可能的结果列举出来然后利用概率公式求解即可.【解答】解:(1)∵根据两种统计图知地方戏曲的有13人占13%∴报名参加课外活动小组的学生共有13÷13%=100人参加民族乐器的有100−32−25−13=30人统计图为:故答案为:100(2)∵m%=25100×100%=25%∴m=25n=30100×360°=108°故答案为:25108(3)见答案21.【答案】(1)证明:∵AE平分∠BAC∴∠1=∠4∵∠1=∠5∴∠4=∠5∵BF平分∠ABC∴∠2=∠3∵∠6=∠3+∠4=∠2+∠5即∠6=∠EBF∴EB=EF(2)解:∵DE=4DF=3∴BE=EF=DE+DF=7∵∠5=∠4∠BED=∠AEB∴△EBD∽△EAB∴BEEA =DEBE即7EA=47∴EA=494∴AF=AE−EF=494−7=214.【解析】(1)通过证明∠6=∠EBF得到EB=EF(2)先证明△EBD∽△EAB再利用相似比求出AE然后计算AE−EF即可得到AF的长.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点叫做三角形的外心.也考查了圆周角定理.22.【答案】解:(1)将点A(2,3)代入解析式y=kx得:k=6(2)将D(3,m)代入反比例解析式y=6x得:m=63=2∴点D坐标为(3,2)设直线AD解析式为y=kx+b将A(2,3)与D(3,2)代入得:{2k +b =33k +b =2解得:{k =−1b =5则直线AD 解析式为y =−x +5(3)过点C 作CN ⊥y 轴 垂足为N 延长BA 交y 轴于点M∵AB//x 轴∴BM ⊥y 轴∴MB//CN//x 轴∵C 为OB 的中点∴N 为OM 的中点∴CN =12BM ON =12OM ∴S △OCN S △OBM =14∵A C 都在双曲线y =6x 上 ∴S △OCN =S △AOM =3由33+S △AOB =14 得:S △AOB =9则△AOB 面积为9.【解析】此题属于反比例函数综合题 涉及的知识有:待定系数法确定函数解析式 坐标与图形性质 三角形中位线定理 以及反比例函数k 的几何意义 熟练掌握待定系数法是解本题的关键.(1)将A 坐标代入反比例解析式求出k 的值即可(2)将D 坐标代入反比例解析式求出m 的值 确定出D 坐标 设直线AD 解析式为y =kx +b 将A 与D 坐标代入求出k 与b 的值 即可确定出直线AD 解析式(3)过点C 作CN ⊥y 轴 垂足为N 延长BA 交y 轴于点M 得到CN 与BM 平行 根据C 为OB 的中点 由三角形中位线定理得出N 为OM 的中点 得到CN =12BM ON =12OM 确定出S △OCN S△OBM =14 利用反比例函数k的几何意义得出S△OCN=S△AOM=3得到33+S△AOB =14求出三角形AOB面积即可.23.【答案】解:(1)根据题意得=−20x+1800所以销售量y件与销售单价x元之间的函数关系式为y=−20x+1800(60≤x≤80)(2)w=(x−60)y=(x−60)(−20x+1800)=−20x2+3000x−108000所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式w=−20x2+3000x−108000(3)根据题意得−20x+1800≥240解得x≤78∴76≤x≤78w=−20x2+3000x−108000对称轴为x=−30002×(−20)=75∵a=−20<0∴抛物线开口向下∴当76≤x≤78时w随x的增大而减小∴x=76时w有最大值最大值=(76−60)(−20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【解析】本题考查了二次函数的应用:根据实际问题列出二次函数关系式然后利用二次函数的性质特别是二次函数的最值问题解决实际中的最大或最小值问题.(1)销售量y件为200件加增加的件数:(80−x)×20(2)利润w等于单件利润×销售量y件即w=(x−60)(−20x+1800)整理即可(3)先利用二次函数的性质得到w=−20x2+3000x−108000的对称轴为x=−30002×(−20)=75而−20x+ 1800≥240得76≤x≤78根据二次函数的性质得到当76≤x≤78时w随x的增大而减小把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.24.【答案】(1)SAS △AFE(2) ∠B +∠D =180°(3)猜想:DE 2=BD 2+EC 2证明:连接DE′ 根据△AEC 绕点A 顺时针旋转90°得到△ABE′∴△AEC≌△ABE′∴BE′=EC AE′=AE∠C =∠ABE′ ∠EAC =∠E′AB在Rt △ABC 中∵AB =AC∴∠ABC =∠ACB =45°∴∠ABC +∠ABE′=90°即∠E′BD =90°∴E′B 2+BD 2=E′D 2又∵∠DAE =45°∴∠BAD +∠EAC =45°∴∠E′AB +∠BAD =45°即∠E′AD =45°在△AE′D 和△AED 中{AE′=AE ∠E′AD =∠DAE AD =AD∴△AE′D≌△AED(SAS)∴DE =DE′∴DE 2=BD 2+EC 2.【解析】解:(1)∵AB=AD∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合.∴∠BAE=∠DAG∵∠BAD=90°∠EAF=45°∴∠BAE+∠DAF=45°∴∠EAF=∠FAG∵∠ADC=∠B=90°∴∠FDG=180°点F D G共线在△AFE和△AFG中{AE=AG∠EAF=∠FAG AF=AF∴△AFE≌△AFG(SAS)∴EF=FG即:EF=BE+DF.(2)∠B+∠D=180°时EF=BE+DF∵AB=AD∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合∴∠BAE=∠DAG∵∠BAD=90°∠EAF=45°∴∠BAE+∠DAF=45°∴∠EAF=∠FAG∵∠ADC+∠B=180°∴∠FDG=180°点F D G共线在△AFE和△AFG中{AE=AG∠FAE=∠FAG AF=AF∴△AFE≌△AFG(SAS)∴EF=FG即:EF=BE+DF.(3)根据△AEC绕点A顺时针旋转90°得到△ABE′根据旋转的性质可知△AEC≌△ABE′得到BE′=EC AE′=AE∠C=∠ABE′∠EAC=∠E′AB根据Rt△ABC中的AB=AC得到∠E′BD=90°所以E′B2+ BD2=E′D2证△AE′D≌△AED利用DE=DE′得到DE2=BD2+EC2此题主要考查了几何变换关键是正确画出图形证明△AFG≌△AEF.此题是一道综合题难度较大题目所给例题的思路为解决此题做了较好的铺垫.25.【答案】解:(1)∵B(1,0)∴OB=1∵OC=3BO∴C(0,−3)∵y=ax2+3ax+c过B(1,0)C(0,−3)∴{c=−3a+3a+c=0解这个方程组得{a=34 c=−3∴抛物线的解析式为:y=34x2+94x−3(2)过点D作DM//y轴分别交线段AC和x轴于点M N在y=34x2+94x−3中令y=0得方程34x2+94x−3=0解这个方程得x1=−4∴A(−4,0)设直线AC的解析式为y=kx+b∴{0=−4k+bb=−3解这个方程组得{k=−34 b=−3∴AC的解析式为:y=−34x−3∵S四边形ABCD=S△ABC+S△ADC=152+12⋅DM ⋅(AN +ON) =152+2⋅DM 设D(x,34x 2+94x −3)当x =−2时 DM 有最大值3此时四边形ABCD 面积有最大值272(3)如图所示①过点C 作CP 1//x 轴交抛物线于点P 1 过点P 1作P 1E 1//AC 交x轴于点E 1 此时四边形ACP 1E 1为平行四边形∵C(0,−3)∴设P 1(x,−3)∴34x 2+94x −3=−3 解得x 1=0∴P 1(−3,−3)②平移直线AC 交x 轴于点E 交x 轴上方的抛物线于点P 当AC =PE 时 四边形ACEP 为平行四边形∵C(0,−3)∴设P(x,3)∴34x 2+94x −3=3 x 2+3x −8=0解得x =−3+√412或x =−3−√412此时存在点P 2(−3+√412,3)和P 3(−3−√412,3) 综上所述存在3个点符合题意 坐标分别是P 1(−3,−3) P 2(−3+√412,3) P 3(−3−√412,3).【解析】(1)已知了B 点坐标 易求得OB OC 的长 进而可将B C 的坐标代入抛物线中 求出待定系数的值 即可得出抛物线的解析式.(2)根据A C 的坐标 易求得直线AC 的解析式.由于AB OC 都是定值 则△ABC 的面积不变 若四边形ABCD 面积最大 则△ADC 的面积最大 可过D 作x 轴的垂线 交AC 于M x 轴于N 易得△ADC 的面积是DM与OA积的一半可设出N点的坐标分别代入直线AC和抛物线的解析式中即可求出DM的长进而可得出四边形ABCD的面积与N点横坐标间的函数关系式根据所得函数的性质即可求出四边形ABCD的最大面积.(3)本题应分情况讨论:①过C作x轴的平行线与抛物线的交点符合P点的要求此时P C的纵坐标相同代入抛物线的解析式中即可求出P点坐标②将AC平移令C点落在x轴(即E点)A点落在抛物线(即P点)上可根据平行四边形的性质得出P点纵坐标(P C纵坐标的绝对值相等)代入抛物线的解析式中即可求得P点坐标.此题考查了二次函数解析式的确定图形面积的求法平行四边形的判定和性质二次函数的应用等知识综合性强难度较大.。

2024届陕西省西安市重点中学中考数学全真模拟试题含解析

2024届陕西省西安市重点中学中考数学全真模拟试题含解析

2024届陕西省西安市重点中学中考数学全真模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°2.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个3.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.424.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC 的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A .5B .2C .52D .255.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .6.下列方程中是一元二次方程的是( )A .20ax bx c ++=B .2211x x +=C .(1)(2)1x x -+=D .223250x xy y --=7.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米)4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70B .4.65,4.75C .4.70,4.70,D .4.70,4.758.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .9.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A .259×104B .25.9×105C .2.59×106D .0.259×10710.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.12.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).13.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.14.不等式组42348xx-+<⎧⎨-≤⎩①②的解集是_____.15.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:S Ⅲ=________.16.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.三、解答题(共8题,共72分)17.(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p (桶)与销售单价x (元)的函数图象如图所示.(1)求日均销售量p (桶)与销售单价x (元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?18.(8分)先化简,再求值:22x 3x 311x 1x 2x 1x 1--⎛⎫÷-+ ⎪-++-⎝⎭,再从0x 4<<的范围内选取一个你最喜欢的值代入,求值. 19.(8分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?20.(8分)如图,在△ABC 中,D 为BC 边上一点,AC=DC ,E 为AB 边的中点,(1)尺规作图:作∠C 的平分线CF ,交AD 于点F (保留作图痕迹,不写作法);(2)连接EF ,若BD=4,求EF 的长.21.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.22.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.23.(12分)(1)解方程:11322xx x--=---.(2)解不等式组:312215(1) xxx x-⎧<-⎪⎨⎪+≥-⎩24.某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】根据DE ∥AB 可求得∠CDE =∠B 解答即可.【题目详解】解:∵DE ∥AB ,∴∠CDE =∠B =46°,故选:C .【题目点拨】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.2、C【解题分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确;③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【题目详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【题目点拨】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.3、B【解题分析】求出AD =BD ,根据∠FBD +∠C =90°,∠CAD +∠C =90°,推出∠FBD =∠CAD ,根据ASA 证△FBD ≌△CAD ,推出CD =DF 即可.【题目详解】解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【题目点拨】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4、C【解题分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【题目详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt △DBE 中,1=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 1=11+(a-1)1.解得a=52. 故选C .【题目点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系. 5、B【解题分析】根据相似三角形的判定方法一一判断即可.【题目详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B .【题目点拨】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 6、C【解题分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【题目详解】解:A 、当a =0时,20ax bx c ++=不是一元二次方程,故本选项错误;B 、2211x x+=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确;D 、223250x xy y --=是二元二次方程,故本选项错误;故选:C .【题目点拨】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.7、D【解题分析】根据中位数、众数的定义即可解决问题.【题目详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【题目点拨】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.8、A【解题分析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.9、C【解题分析】绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.【题目详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【题目点拨】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.10、B【解题分析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【题目详解】解:∵半径OC垂直于弦AB,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【题目点拨】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、25【解题分析】∵AC 是⊙O 的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD ,∴∠ABD=∠BDO ,∵∠ABD+∠BDO=∠AOC ,∴∠ABD=25°,故答案为:25.12、y =x 2+2x (答案不唯一).【解题分析】设此二次函数的解析式为y =ax (x+2),令a =1即可.【题目详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y =ax (x+2),把a =1代入,得y =x 2+2x .故答案为y =x 2+2x (答案不唯一).【题目点拨】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.13、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.14、2<x≤1【解题分析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.【题目详解】由①得x>2,由②得x≤1,∴不等式组的解集为2<x≤1.故答案为:2<x≤1.【题目点拨】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15、1:3:5【解题分析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,S S S=1:4:9,∴::ADE AFG ABC∴SⅠ:SⅡ:SⅢ=1:3:5.故答案为1:3:5.点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方.16、24【解题分析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;三、解答题(共8题,共72分)17、(1)日均销售量p (桶)与销售单价x (元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.【解题分析】(1)设日均销售p (桶)与销售单价x (元)的函数关系为:p=kx+b (k≠0),把(7,500),(12,250)代入,得到关于k ,b 的方程组,解方程组即可;(2)设销售单价应定为x 元,根据题意得,(x-5)•p -250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x 1=9,x 2=13,满足7≤x≤12的x 的值为所求;【题目详解】(1)设日均销售量p (桶)与销售单价x (元)的函数关系为p=kx+b ,根据题意得7500{12250k b k b +=+=, 解得k=﹣50,b=850,所以日均销售量p (桶)与销售单价x (元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程 (x ﹣5)(﹣50x+850)﹣250=1350,解得x 1=9,x 2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.【题目点拨】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.18、原式=11x -,把x=2代入的原式=1. 【解题分析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式=()()()21311·1131x x x x x x x +-+--+--- =11x - 当x=2时,原式=119、A、B两种型号的空调购买价分别为2120元、2320元【解题分析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:200 2311200y xx y-=⎧⎨+=⎩解得:21202320 xy=⎧⎨=⎩答:A、B两种型号的空调购买价分别为2120元、2320元20、(1)见解析;(1)1【解题分析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【题目详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【题目点拨】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.21、(1)50;(2)16;(3)56(4)见解析【解题分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【题目详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22、(1)50,108°,补图见解析;(2)9.6;(3)13.【解题分析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【题目详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:650×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 .【题目点拨】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.23、(1)无解;(1)﹣1<x≤1.【解题分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【题目详解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1)()3122151x x x x -⎧<-⎪⎨⎪+≥-⎩①②,由①得:x >﹣1,由②得:x≤1,则不等式组的解集为﹣1<x≤1.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解题分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【题目详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m +75(50﹣m )≤4000,且50﹣m ≥0,解得,5≤m ≤10,利润是30m +20(50﹣m )=1000+10m ,当m 取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【题目点拨】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.。

中招考试数学模拟试卷(附带有答案)

中招考试数学模拟试卷(附带有答案)

中招考试数学模拟试卷(附带有答案)(满分:120分;考试时间:120分钟)第I卷(选择题共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,不选或选出的答案超过一个均记零分。

)1.关于0,下列说法中正确的是( )A. 0没有倒数B. 0没有绝对值C. 0没有相反数D. 0没有平方根2.下列运算正确的是()A.x6+x6=2x12B. a2•a4-(-a3)2=0C. (x-y)2=x2-2xy-y2D. (a+b)(b-a)=a2+b23.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=34°,则∠2的度数是()A. 68°B. 56°C. 65°D. 43°4.下列各式计算错误的是()A. B.C. D.5.在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A. 点AB. 点BC. 点CD. 点D6.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B. “汽车累积行驶10000km,从未出现故障”是不可能事件C. 襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D. 若两组数据的平均数相同,则方差小的更稳定7.如图已知扇形的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面积为( )A. 4B. 6C. 9D. 128.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A. B. C. D.9.如图,某舰艇以28海里小时向东航行.在A处测得灯塔M在北偏东方向,半小时后到B处.又M在北偏东方向,此时灯塔与舰艇的距离MB是.A.海里B. 海里C. 海里D. 14海里10.如图,抛物线与轴交于点,与轴的交点在点与点之间(不包括这两点),对称轴为直线.有下列结论:abc<0;5a+3b+c>0;-< a<-;④若点,在抛物线上,则.其中正确结论的个数是()A. B. C. D.第II卷(非选择题共90分)二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.)11.华为公司始终坚持科技创新,她堪称为中国企业的脊梁.华为麒麟990芯片是目前市场运行速度最快的芯片,它采用7纳米制造工艺,已知7纳米=0.000000007米,用科学记数法将0.000000007表示为________.12.分解因式:=___________13.我县抽考年级有1万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了200名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这1万多名学生的抽考成绩的全体是总体;②每个学生是个体;③200名考生是总体的一个样本;④样本容量是200.你认为说法正确的有______ 个.14.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树________棵.15.已知关于x,y的二元一次方程组的解满足x+y>1,则满足条件的k的最小整数是.16.如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为______.三、解答题(本大题共7小题,满分62分,解答应写出必要的文字说明、证明过程或推演步骤)17. (本题满分8分)(1)(2)化简:,并从0≤x <5中选取合适的整数代入求值.18. (本题满分8分)电子政务、数字经济、智慧社会…一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,赛后对全体参赛学生成绩按A ,B ,C ,D 四个等级进行整理,得到如图所示的不完整的统计图表.(1)参加此次比赛的学生共有________人,a =________,b =________;(2)请计算扇形统计图中C 等级对应的扇形的圆心角的度数;(3)已知A 等级五名同学中包括来自同一班级的甲、乙两名同学,学校将从这五名同学中随机选出两名参加市级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.19. (本题满分8分)如图,AB 是⊙O 的直径,射线BC 交⊙O 于点D ,E 是劣弧AD 上一点,且,过点E 作EF ⊥BC 于点F ,延长FE 和BA的等级频数 频率 A 5 0.1 B a 0.4 C 15 b D100.2延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=6,求△GOE的面积.20.(本题满分8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.21.(本题满分8分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?22.(本题满分10分)如图,已知二次函数的图像经过点A(-4,0),顶点为B,一次函数的图像交y轴于点M,P是抛物线上一点,点M关于直线AP的对称点N恰好落在抛物线的对称轴直线BH上(对称轴直线BH与x轴交于点H).(1)求二次函数的表达式;(2)求点P的坐标;(3)若点G是第二象限内抛物线上一点,G关于抛物线的对称轴的对称点是E,连接OG,点F是线段OG上一点,点D是坐标平面内一点,若四边形BDEF是正方形,求点G的坐标.23.(本题满分12分)一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).(1)当∠AFD=___°时,DE// AB;当∠AFD=____°时,EF//AB;当∠AFD=____°时,DF//AC;(2)在旋转过程中,DF与AB的交点记为P,如图2,若△BFP有两个内角相等,求∠AFD的度数;(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.参考答案1.A2.B3.B4.C5.D6.D7.A8.A9.C 10.C11. 7×10-9 12. 13. 14. 2 15. 500 16.317. 18. 2018.519.解:(1)=-1+4+-2-2×=-1+4+-2-=1(2)=[-]•=•=从0≤x<5可取x=1此时原式==120.解:(1)50,20,0.3;(2)由图表可知,C等级的人数占总参赛人数的30%,360°×30%=108°,即扇形统计图中C 等级对应的扇形的圆心角的度数为108°(3)设A等级中甲,乙两名同学以外的其他三位同学分别为A1,A2,A3,树状图如图,则甲、乙两名同学都被选中的概率为.21.解:(1)如图,连接OE∵∴∠1=∠2∵OB=OE∴∠2=∠3∴∠1=∠3∴OE∥BF∵BF⊥GF∴OE⊥GF∴GF是⊙O的切线(2)设OA=OE=r在Rt△GOE中,∵AG=6,GE=6∴由OG2=GE2+OE2可得(6+r)2=(6)2+r2解得:r=3即OE=3则S△GOE=•OE•GE=×3×=922.解:(1)设直线y1=ax+b与y轴交于点D在Rt△OCD中,OC=3,tan∠ACO=.∴OD=2即点D(0,2)把点D(0,2),C(3,0)代入直线y1=ax+b得b=2,3a+b=0,解得,a=-∴直线的关系式为y1=-x+2;把A(m,4),B(6,n)代入y1=-x+2得m=-3,n=-2∴A(-3,4),B(6,-2)∴k=-3×4=-12∴反比例函数的关系式为y2=-因此y1=-x+2,y2=-(2)由S△AOB=S△AOC+S△BOC=×3×4+×3×2=9(3)由图象可知,当x<0时,不等式ax+b>的解集为x<-323解:(1)设每次下降的百分率为a根据题意,得:50(1-a)2=32解得:a=1.8(舍)或a=0.2答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500-20x)=6000整理,得x2-15x+50=0解得:x1=5,x2=10因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.24.解:(1)把x=-4,y=0代入得,解这个方程,得b=2∴二次函数的表达式是(2)∵一次函数的图像交y轴于点M(0,2)∴OM=2∴.∵∴AH=OH=2∴NH=4.∵△APM≌△APN∴PM=PN,则PM2=PN2过点P作PQ⊥BH于Q,交y轴于R.设点①如图1,当点N在AM上方时,N(-2,4)由PM2=PN2得.解得x1=-4(舍去),x2=2∴P1(2,6).②如图2,当点N在AM下方时,N(-2,4)同理可得x1=-4(舍去),.∴(3)如图3,过F作FC⊥BH于C,FT⊥GE于T,FT交x轴于点S.∵四边形BFED是正方形∴△ETF≌△BCF∴FT=FC,ET=BC设FS=CH=m,FC=FT=t,则E(m-t,m+t).∴.化简整理,得m2+2m-2mt=-t2+6t.∵△GTF∽△OSF∴即化简整理,得m2+2m-2mt=t2+2t.∴-t2+6t=t2+2t,解得t1=0(舍去),t2=2.∴m2-2m-8=0,解得m1=-2(舍去),m2=4.∴G(-6,6)25.解:(1)30;60(2),AF平分∠CAB当如图3所示:当时,;如图4所示:当时.如图5所示:当时综上所述,∠APD的度数为或或;(3)∠FMN=∠FNM.理由:如图6所示:∵∠FNM 是△BMN的一个外角∴∠FNM=∠B+∠BMN∵∠B=30°∴∠FNM=∠B+∠BMN=30°+∠BMN∵∠BMF是△AFM的一个外角∴∠BMF=∠MAF+∠AFM即∠BMN+∠FMN=∠MAF+∠AFM又∵∠MAF=30°,∠AFM=2∠BMN∴∠BMN+∠FMN=30°+2∠BMN∴∠FMN=30°+∠BMN∴∠FNM=∠FMN。

中招考试数学模拟考试卷(附带答案解析)

中招考试数学模拟考试卷(附带答案解析)

中招考试数学模拟考试卷(附带答案解析)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.) 1.(4分)(﹣2)3的值等于( ) A .﹣6B .6C .8D .﹣82.(4分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .3.(4分)下列运算正确的是( ) A .2a +3b =5ab B .(﹣ab )2=a 2b C .a 2•a 4=a 8D .2a 6a 3=2a 34.(4分)三通管的立体图如图所示,则这个几何体的主视图是( )A .B .C .D .5.(4分)下列说法中不正确的是( ) A .对角线垂直的平行四边形是菱形 B .对角线相等的平行四边形是矩形 C .菱形的面积等于对角线乘积的一半 D .对角线互相垂直平分的四边形是正方形6.(4分)如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF ∥BC 时,∠EGB 的度数是( )A .135°B .120°C .115°D .105°7.(4分)定义新运算:a ⊕b ={ab (b >0)−a b(b <0)例如:4⊕5=45,4⊕(﹣5)=45.则函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .8.(4分)如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件.下列添加的条件其中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD 2=BD •CDD .AD •BD =AC •AB9.(4分)如图,平行于x 轴的直线与函数y =k1x (k 1>0,x >0),y =k2x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为4,则k 1﹣k 2的值为( )A .8B .﹣8C .4D .﹣410.(4分)关于x的方程ax2+(1﹣a)x﹣1=0,下列结论正确的是()A.当a=0时,方程无实数根B.当a=﹣1时,方程只有一个实数根C.当a=1时,有两个不相等的实数根D.当a≠0时,方程有两个相等的实数根11.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)8a+7b+2c>0;(3)若点A(﹣3,y1)、点B(−12,y2)、C(72,y3)在该函数图象上,则y1<y3<y2;(4)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.1个B.2个C.3个D.4个12.(4分)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE绕点E顺时针旋转90°得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45°;③若正方形的边长为2,则点M在射线AB上运动时,CF有最小值√2.其中结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(本大题共6小题,共计24分,只要求填写最后结果,每小题填对4分.)13.(4分)不等式组{1−2x<5x−1<1的解集是.14.(4分)如图,在宽为4、长为6的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15,设铺设的石子路的宽为x,依题意可列方程.15.(4分)要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为 .16.(4分)如图,在大楼AB 的正前方有一斜坡CD ,CD =4米,坡角∠DCE =30°,小红在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A 、C 、E 在同一直线上.则大楼AB 的高度 .(结果保留根号)17.(4分)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2),反比例函数y =kx(k ≠0)的图象经过▱OABC 的顶点C ,则k = .18.(4分)有一科技小组进行了机器人行走性能试验.在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7min 同时到达C 点,甲机器人前3分钟以am /min 的速度行走,乙机器人始终以60m /min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的函数图象,请结合图象,完成下列填空:A 、B 两点之间的距离是 m ,a = m /min ,点F 的坐标 .三、解答题(本大题共7小题,共计78分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.(10分)(1)计算:2sin45°+(3﹣π)0+|√2−√83|﹣(12)﹣1.(2)先化简:(2a+2+a2−4a2+4a+4)÷a2−2aa+2,再从﹣2,﹣1,0,1中选出合适的数代入求值.20.(8分)下列数据是甲、乙、丙三人各10轮投篮的得分(每轮投篮10次,每次投中记1分):丙得分的平均数与众数都是7,得分统计表如下:测试序号 1 2 3 4 5 6 7 8 9 10得分7 6 8 a7 5 8 b8 7(1)丙得分表中的a=,b=;(2)若在他们三人中选择一位投篮得分高且较为稳定的投手作为主力,你认为选谁更合适?请用你所学过的统计知识加以分析说明(参考数据:S甲2=0.81,S乙2=0.4,S丙2=0.8);(3)甲、乙、丙三人互相之间进行传球练习,每个人的球都等可能的传给其他两人,球最先从乙手中传出,经过三次传球后球又回到乙手中的概率是多少?(用树状图或列表法解答)21.(10分)小云在学习过程中遇到一个函数y=16|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0 121 322 523 …y0 116167161 954872…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=16|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.22.(12分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.23.(12分)某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?24.(13分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.(13分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.参考答案与解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.)1.(4分)(﹣2)3的值等于()A.﹣6 B.6 C.8 D.﹣8【分析】根据有理数的乘方的运算法则即可得到结果.【解答】解:(﹣2)3=﹣8;故选:D.2.(4分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.3.(4分)下列运算正确的是()A.2a+3b=5ab B.(﹣ab)2=a2bC .a 2•a 4=a 8D .2a 6a 3=2a 3【分析】根据合并同类项法则,同底数幂的乘法以及幂的乘方与积的乘方法则解答. 【解答】解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误; C 、原式=a 6,故本选项错误; D 、原式=2a 3,故本选项正确.故选:D .4.(4分)三通管的立体图如图所示,则这个几何体的主视图是( )A .B .C .D .【分析】根据从正面看得到的图形是主视图,可得答案. 【解答】解:从正面看是一个倒写的“T ”字; 故选:B .5.(4分)下列说法中不正确的是( ) A .对角线垂直的平行四边形是菱形 B .对角线相等的平行四边形是矩形 C .菱形的面积等于对角线乘积的一半 D .对角线互相垂直平分的四边形是正方形【分析】根据矩形、菱形、正方形的判定定理即可作出判断.【解答】解:A 、对角线垂直的平行四边形是菱形,正确,故不符合题意;B 、对角线相等的平行四边形是矩形,正确,故不符合题意;C 、菱形的面积等于对角线乘积的一半,正确;故不符合题意;D 、对角线互相垂直平分且相等的四边形是正方形,故选项错误,故符合题意.故选:D .6.(4分)如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF ∥BC 时,∠EGB 的度数是( )A .135°B .120°C .115°D .105°【分析】过点G 作HG ∥BC ,则有∠HGB =∠B ,∠HGE =∠E ,又因为△DEF 和△ABC 都是特殊直角三角形,∠F =30°,∠C =45°,可以得到∠E =60°,∠B =45°,有∠EGB =∠HGE +∠HGB 即可得出答案.【解答】解:过点G 作HG ∥BC ,∵EF ∥BC ; ∴GH ∥BC ∥EF ;∴∠HGB =∠B ,∠HGE =∠E ;∵在Rt △DEF 和Rt △ABC 中,∠F =30°,∠C =45° ∴∠E =60°,∠B =45°∴∠HGB =∠B =45°,∠HGE =∠E =60° ∴∠EGB =∠HGE +∠HGB =60°+45°=105° 故∠EGB 的度数是105°; 故选:D .7.(4分)定义新运算:a ⊕b ={ab (b >0)−a b (b <0)例如:4⊕5=45,4⊕(﹣5)=45.则函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【分析】根据题意可得y =2⊕x ={2x (x >0)−2x (x <0),再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y =2⊕x ={2x (x >0)−2x (x <0);当x >0时,反比例函数y =2x在第一象限; 当x <0时,反比例函数y =−2x在第二象限; 又因为反比例函数图象是双曲线,因此D 选项符合. 故选:D .8.(4分)如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件.下列添加的条件其中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD 2=BD •CDD .AD •BD =AC •AB【分析】利用有两组角对应相等的两个三角形相似可对A 进行判定;先利用等腰三角形的性质和圆周角定理得到∠DAC =∠B ,然后利用有两组角对应相等的两个三角形相似可对B 进行判定;利用两组对应边的比相等且夹角对应相等的两个三角形相似可对C 、D 进行判定.【解答】解:A 、因为∠ADC =∠BDA ,∠ACD =∠DAB ,所以△DAC ∽△DBA ,所以A 选项添加的条件正确;B 、由AD =DE 得∠DAC =∠E ,而∠B =∠E ,所以∠DAC =∠B ,加上∠ADC =∠BDA ,所以△DAC ∽△DBA ,所以B 选项添加的条件正确;C 、由AD 2=DB •CD ,即AD :DB =DC :DA ,加上∠ADC =∠BDA ,所以△DAC ∽△DBA ,所以C 选项添加的条件正确;D 、由AD •BD =AC •AB ,不能确定∠ABD =∠DAC ,即不能确定点D 为弧AE 的中点,所以不能判定△DAC ∽△DBA ,所以D 选项添加的条件错误. 故选:D .9.(4分)如图,平行于x 轴的直线与函数y =k 1x (k 1>0,x >0),y =k2x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为4,则k 1﹣k 2的值为( )A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=12AB•y A=12(a﹣b)h=12(ah﹣bh)=12(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴;∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=12AB•y A=12(a﹣b)h=12(ah﹣bh)=12(k1﹣k2)=4;∴k1﹣k2=8.故选:A.10.(4分)关于x的方程ax2+(1﹣a)x﹣1=0,下列结论正确的是()A.当a=0时,方程无实数根B.当a=﹣1时,方程只有一个实数根C.当a=1时,有两个不相等的实数根D.当a≠0时,方程有两个相等的实数根【分析】直接利用方程解的定义根的判别式分析求出即可.【解答】解:A、当a=0时,方程为x﹣1=0;解得x=1;故当a=0时,方程有一个实数根;不符合题意;B、当a=﹣1时,关于x的方程为﹣x2+2x﹣1=0;∵Δ=4﹣4=0;∴当a=﹣1时,方程有两个相等的实数根,故不符合题意;C、当a=1时,关于x的方程x2﹣1=0;故当a=1时,有两个不相等的实数根,符合题意;D、当a≠0时,Δ=(1﹣a)2+4a=(1+a)2≥0;∴当a≠0时,方程有相等的实数根,故不符合题意;故选:C.11.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a +b =0;(2)8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (−12,y 2)、C (72,y 3)在该函数图象上,则y 1<y 3<y 2;(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .1个B .2个C .3个D .4个【分析】根据抛物线的对称轴为直线x =2,则有4a +b =0;由于x =﹣1时,y =0,则a ﹣b +c =0,易得c =﹣5a ,所以8a +7b +2c =8a ﹣28a ﹣10a =﹣30a ,再根据抛物线开口向下得a <0,于是有8a +7b +2c >0;利用抛物线的对称性得到(12,y 3),然后利用二次函数的增减性求解即可,作出直线y =﹣3,然后依据函数图象进行判断即可. 【解答】解:∵x =−b2a =2; ∴4a +b =0,故①正确.∵抛物线与x 轴的一个交点为(﹣1,0); ∴a ﹣b +c =0 又∵b =﹣4a ;∴a +4a +c =0,即c =﹣5a ;∴8a +7b +2c =8a ﹣28a ﹣10a =﹣30a ; ∵抛物线开口向下; ∴a <0;∴8a +7b +2c >0,故②正确;∵抛物线的对称轴为x =2,C (72,y 3);∴(12,y 3).∵﹣3<−12<12,在对称轴的左侧; ∴y 随x 的增大而增大; ∴y 1<y 2<y 3,故③错误.方程a (x +1)(x ﹣5)=0的两根为x =﹣1或x =5;过y =﹣3作x 轴的平行线,直线y =﹣3与抛物线的交点的横坐标为方程的两根;依据函数图象可知:x1<﹣1<5<x2,故④正确.故选:C.12.(4分)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE绕点E顺时针旋转90°得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45°;③若正方形的边长为2,则点M在射线AB上运动时,CF有最小值√2.其中结论正确的是()A.①②③B.①②C.①③D.②③【分析】延长AE交DC的延长线于点H,由“AAS”可证△AME≌△HCE,可得AE=EH,由直角三角形的性质可得AE=EF=EH,可判断①;由四边形内角和定理可求2∠ADE+2∠EDF=270°,可得∠ADF=135°,可判断②;连接FC,过点C作CF'⊥DF于F',由∠CDF=45°,知点F在DF上运动,即得当CF⊥DF时,CF有最小值为CF'的长度,而CF'=√2,即CF有最小值为√2,可判断③正确.【解答】解:如图,延长AE交DC的延长线于点H;∵点E是CM的中点;∴ME=EC;∵AB∥CD;∴∠MAE=∠H,∠AME=∠HCE;∴△AME≌△HCE(AAS);∴AE =EH ; 又∵∠ADH =90°; ∴DE =AE =EH ;∵AE 绕点E 顺时针旋转90°得到EF ; ∴AE =EF ,∠AEF =90°; ∴AE =DE =EF ,故①正确; ∵AE =DE =EF ;∴∠DAE =∠ADE ,∠EDF =∠EFD ;∵∠AEF +∠DAE +∠ADE +∠EDF +∠EFD =360°; ∴2∠ADE +2∠EDF =270°; ∴∠ADF =135°;∴∠CDF =∠ADF ﹣∠ADC =135°﹣90°=45°,故②正确; 如图,连接FC ,过点C 作CF '⊥DF 于F ';∵∠CDF =45°; ∴点F 在DF 上运动;∴当CF ⊥DF 时,CF 有最小值为CF '的长度; ∵CD =2,∠CDF =45°; ∴CF '=√2=√2,即CF 有最小值为√2,故③正确; 故选:A .二、填空题(本大题共6小题,共计24分,只要求填写最后结果,每小题填对4分.) 13.(4分)不等式组{1−2x <5x −1<1的解集是 ﹣2<x <2 .【分析】分别求出每一个不等式的解集,从而确定不等式组的解集. 【解答】解:{1−2x <5①x −1<1②;解不等式①得:x >﹣2; 解不等式②得:x <2;故不等式组的解集为﹣2<x <2. 故答案为:﹣2<x <2.14.(4分)如图,在宽为4、长为6的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15,设铺设的石子路的宽为x,依题意可列方程(4﹣x)(6﹣x)=15 .【分析】首先设铺设的石子路的宽应为x米,由题意得等量关系:(长方形的宽﹣石子路的宽)×(长方形的长﹣石子路的宽)=15,根据等量关系列出方程即可.【解答】解:设铺设的石子路的宽应为x米,由题意得:(4﹣x)(6﹣x)=15;故答案为:(4﹣x)(6﹣x)=15.15.(4分)要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为288°.【分析】设底面圆的半径为4x,则母线长为5x,设圆心角为n°,根据题意列方程求解即可.【解答】解:∵底面圆的半径与母线长的比是4:5;∴设底面圆的半径为4x,则母线长为5x,设圆心角为n°;根据题意得2π×4x=nπ×5x 180;解得n=288;故答案为:288°.16.(4分)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.则大楼AB的高度(6+4√3)米.(结果保留根号)【分析】在直角三角形DCE中,利用锐角三角函数定义求出DE的长,过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设BF=DF=x(米),表示出BC,BD,DC,由题意得到三角形BCD 为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°;∴DE=12DC=2米;过D作DF⊥AB,交AB于点F;∵∠BFD=90°,∠BDF=45°;∴∠FBD=45°,即△BFD为等腰直角三角形;设BF=DF=x米;∵四边形DEAF为矩形;∴AF=DE=2米,即AB=(x+2)米;在Rt△ABC中,∠ABC=30°;∴BC=ABcos30°=√32=√3=√3(2x+4)3(米);BD=√2BF=√2x米,DC=4米;∵∠DCE=30°,∠ACB=60°;∴∠DCB=90°;在Rt△BCD中,根据勾股定理得:2x2=(2x+4)23+16;解得:x=4+4√3;则AB=(6+4√3)米;故答案为:(6+4√3)米.17.(4分)如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2),反比例函数y=kx(k≠0)的图象经过▱OABC的顶点C,则k=﹣2 .【分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答】解:连接OB,AC,交点为P;∵四边形OABC是平行四边形;∴AP =CP ,OP =BP ; ∵O (0,0),B (1,2); ∴P 的坐标(12,1);∵A (3,1);∴C 的坐标为(﹣2,1);∵反比例函数y =kx(k ≠0)的图象经过点C ; ∴k =﹣2×1=﹣2; 方法二:∵四边形OABC 是平行四边形; ∴OA ∥BC ,OC ∥AB ; ∵O (0,0),A (3,1).∴A 向下平移1个单位,再向左平移3个单位与O 重合; ∴B 向下平移1个单位,再向左平移3个单位与C 重合; ∵B (1,2); ∴C (﹣2,1);∵反比例函数y =k x (k ≠0)的图象经过点C ; ∴k =﹣2×1=﹣2; 故答案为:﹣2.18.(4分)有一科技小组进行了机器人行走性能试验.在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7min 同时到达C 点,甲机器人前3分钟以am /min 的速度行走,乙机器人始终以60m /min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的函数图象,请结合图象,完成下列填空:A 、B 两点之间的距离是 70 m ,a = 95 m /min ,点F 的坐标 (3,35) .【分析】结合图象得到A 、B 两点之间的距离,甲机器人前2分钟的速度即a 的值,以及3分钟时甲、乙机器人之间的距离.【解答】解:由图象可知,A 、B 两点之间的距离是70m ; 甲机器人前2分钟的速度为:(70+60×2)÷2=95(m /min ); 即a =95m /min ;由图象可知3min 后甲、乙机器人之间的距离为:95×3﹣60×3﹣70=35(m ); ∴点F 的坐标为(3,35); 故答案为:70,95,(3,35).三、解答题(本大题共7小题,共计78分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.(10分)(1)计算:2sin45°+(3﹣π)0+|√2−√83|﹣(12)﹣1.(2)先化简:(2a+2+a 2−4a 2+4a+4)÷a 2−2aa+2,再从﹣2,﹣1,0,1中选出合适的数代入求值. 【分析】(1)代入特殊角的三角函数值,化简零指数幂,算术平方根,立方根,负整数指数幂,绝对值,然后算乘法,再算加减;(2)先将小括号内的式子进行通分计算,然后算括号外面的除法,最后根据分式有意义的条件选取合适的a 的值,代入求值. 【解答】解:(1)原式=2×√22+1+|√2−2|﹣2=√2+1+2−√2−2 =1; (2)原式=[2a+2+(a+2)(a−2)(a+2)2]•a+2a(a−2)=(2a+2+a−2a+2)•a+2a(a−2)=2+a−2a+2•a+2a(a−2)=aa+2•a+2a(a−2)=1a−2;∵a+2≠0,a(a﹣2)≠0;∴a≠±2且a≠0;∴a可以取1或﹣1;当a=1时,原式=11−2=−1;当a=﹣1时,原式=1−1−2=−13.20.(8分)下列数据是甲、乙、丙三人各10轮投篮的得分(每轮投篮10次,每次投中记1分):丙得分的平均数与众数都是7,得分统计表如下:测试序号 1 2 3 4 5 6 7 8 9 10得分7 6 8 a7 5 8 b8 7(1)丙得分表中的a=7 ,b=7 ;(2)若在他们三人中选择一位投篮得分高且较为稳定的投手作为主力,你认为选谁更合适?请用你所学过的统计知识加以分析说明(参考数据:S甲2=0.81,S乙2=0.4,S丙2=0.8);(3)甲、乙、丙三人互相之间进行传球练习,每个人的球都等可能的传给其他两人,球最先从乙手中传出,经过三次传球后球又回到乙手中的概率是多少?(用树状图或列表法解答)【分析】(1)根据众数、得到a、b中至少有一个为7,再根据平均数进而确定a=b=7;(2)求出甲、乙、丙的平均数、众数,通过平均数、众数比较得出乙、丙较好,再根据方差,得出乙的成绩较好,较稳定;(3)用树状图表示所有可能的情况,从中得出第三轮又回到乙手中的概率.【解答】解:(1)由众数的意义可知,a、b中至少有一个为7,又平均数是7,即(7+6+8+7+5+8+8+7+a+b)÷10=7;因此,a=7,b=7;故答案为:7,7;(2)甲的平均数为:110(5×2+6×4+7×3+8)=6.3分,众数是6分;乙的平均数为:110(6×2+7×6+8×2)=7分,众数为7分;丙的平均数为:x 丙=7分,众数为7分;从平均数上看,乙、丙的较高,从众数上看乙、丙较高; 但S 乙2=0.4<S 丙2=0.8; 因此,综合考虑,选乙更合适.(3)根据题意画树状图如下::共有8种等情况数,其中经过三次传球后球又回到乙手中的有2种; 则经过三次传球后球又回到乙手中的概率是:28=14.21.【答案】解:(1)当﹣2≤x <0时,对于函数y 1=|x |,即y 1=﹣x ,当﹣2≤x <0时,y 1随x 的增大而减小,且y 1>0;对于函数y 2=x 2﹣x +1,当﹣2≤x <0时,y 2随x 的增大而减小,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当﹣2≤x <0时,y 随x 的增大而减小. 故答案为:减小,减小,减小. (2)函数图象如图所示:(3)∵直线l 与函数y =16|x |(x 2﹣x +1)(x ≥﹣2)的图象有两个交点; 观察图象可知,x =﹣2时,m 的值最大,最大值m =16×2×(4+2+1)=73; 故答案为:73.22.【答案】解:(1)如图; 连接BD ,∵∠BAD =90°;∴点O必在BD上,即:BD是直径;∴∠BCD=90°;∴∠DEC+∠CDE=90°;∵∠DEC=∠BAC;∴∠BAC+∠CDE=90°;∵∠BAC=∠BDC;∴∠BDC+∠CDE=90°;∴∠BDE=90°,即:BD⊥DE;∵点D在⊙O上;∴DE是⊙O的切线;(2)∵DE∥AC;∵∠BDE=90°;∴∠BFC=90°;∴CB=AB=8,AF=CF=12AC;∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°;∴∠CDE=∠CBD;∵∠DCE=∠BCD=90°;∴△BCD∽△DCE;∴BCCD=CDCE;∴8CD=CD2;∴CD=4;在Rt△BCD中,BD=√BC2+CD2=4√5同理:△CFD∽△BCD;∴CFBC=CDBD;∴CF8=4√5;∴CF=8√5 5;∴AC=2CF=16√5 5.23.【答案】解:(1)设每台B 型空气净化器的进价为x 元,则每台A 型净化器的进价为(x +300)元; 根据题意得:6000x =7500x+300;解得:x =1200;经检验,x =1200是原方程的根;∴x +300=1500.答:每台B 型空气净化器的进价为1200元,每台A 型空气净化器的进价为1500元.(2)设B 型空气净化器的售价为x 元;根据题意得:(x ﹣1200)(4+1800−x 50)=3200; 整理得:(x ﹣1600)2=0;解得:x 1=x 2=1600.答:电器商社应将B 型空气净化器的售价定为1600元.24.【答案】【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC =∠A ,可证DF ∥AB ;(2)过点D 作DM ⊥AB 交AB 于点M ,由题意可得点F 在以D 为圆心,DF 为半径的圆上,由△ACD 的面积为S 1的值是定值,则当点F 在DM 上时,S △ABF 最小时,S 最大;(3)过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,由勾股定理可求BG 的长,通过证明△BGD ∽△BHE ,可求EC 的长,即可求AE 的长.【解答】解:(1)∵△ABC 是等边三角形∴∠A =∠B =∠C =60°由折叠可知:DF =DC ,且点F 在AC 上∴∠DFC =∠C =60°∴∠DFC =∠A∴DF ∥AB ;(2)存在;过点D作DM⊥AB交AB于点M;∵AB=BC=6,BD=4;∴CD=2∴DF=2;∴点F在以D为圆心,DF为半径的圆上;∴当点F在DM上时,S△ABF最小;∵BD=4,DM⊥AB,∠ABC=60°∴MD=2√3∴S△ABF的最小值=12×6×(2√3−2)=6√3−6∴S最大值=12×2×3√3−(6√3−6)=﹣3√3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H;∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=√3FG=√3∵BD2=BG2+DG2;∴16=3+(BF+1)2;∴BF=√13−1∴BG=√13∵EH⊥BC,∠C=60°∴CH=EC2,EH=√3HC=√32EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD ∽△BHE∴DG BG =EH BH ∴√3√13=√32EC 6−EC 2 ∴EC =√13−1∴AE =AC ﹣EC =7−√1325.【答案】【分析】(1)已知点A 坐标可确定直线AB 的解析式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B 的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C 的坐标,在△POB 和△POC 中,已知的条件是公共边OP ,若OB 与OC 不相等,那么这两个三角形不能构成全等三角形;若OB 等于OC ,那么还要满足的条件为:∠POC =∠POB ,各自去掉一个直角后容易发现,点P 正好在第二象限的角平分线上,联立直线y =﹣x 与抛物线的解析式,直接求交点坐标即可,同时还要注意点P 在第二象限的限定条件.(3)分别以A 、B 、Q 为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A (1,﹣4)代入y =kx ﹣6,得k =2;∴y =2x ﹣6;令y =0,解得:x =3;∴B 的坐标是(3,0).∵A 为顶点;∴设抛物线的解析为y =a (x ﹣1)2﹣4;把B (3,0)代入得:4a ﹣4=0;解得a =1;∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣3.(2)存在.∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ;此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣3,解得m =1−√132(m =1+√132>0,舍); ∴P (1−√132,√13−12).(3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ;∴ADOD =DQ 1DB ,即√56=13√5,∴DQ 1=52;∴OQ1=72,即Q1(0,−72);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB;∴OBOD=OQ2OB,即36=OQ23;∴OQ2=32,即Q2(0,32);③如图,当∠AQ3B=90°时,作AE⊥y轴于E;则△BOQ3∽△Q3EA;∴OBQ3E=OQ3AE,即34−OQ3=OQ31;∴OQ32﹣4OQ3+3=0,∴OQ3=1或3;即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,−72)或(0,32)或(0,﹣1)或(0,﹣3).。

重点中学招生数学模拟试卷(含答案)

重点中学招生数学模拟试卷(含答案)

重点中学招生试卷姓名:成绩:一、填空题(每题2分,共20分)1.在自然数0,1,2,…,8,9中,质数的个数与偶数的个数的和是(9)。

2.一张4平方厘米的长方形纸,对着四次所得到的小长方形的面积是(0.25cm2)。

3.64)6.)<(11)7.8.)。

A.0B.1C.2D.无数2.某商品若打九折出售,就可以盈利100元;若打八折出售,可以盈利78元,则该商品的成本是(A)元A.98B.220C.118D.1203.把浓度为20%、30%、40%的三种盐水按2:3:5的比例混合在一起,得到的盐水浓度为(B).A.32%B.33%C.34%D.35%4.王叔叔用36米篱笆靠一面墙围成一个长方形的养鸡栏(如右图),要想围成的最大面积,最大面积是(A )平方米。

A.162B.144C.81D.3245.两数相除得3余10,被除数、除数、商与余数之和是143,这两个数分别是( C )A.100和34B.110和30C.100和30D.95和401.已知图中三角形ABC 的面积为180平方厘米,是平行四边形DEFC 面积的3倍.那么,图中阴影部分的面积是多少?180÷3÷2=30(第1L 22.一牧民在一片草地的A处放牛,现在他要牵着牛到河流L的岸边让牛饮水,然后把牛牵往这片草地的B处,请画出你认为最近的线路。

(不需要写作图步骤,但要保留作图痕迹)。

五、解决问题(每题5分,共30分)1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?(500×70%+300×50%)÷(500+300)=62.5%答:略。

2.升水。

若答:略。

3.休息了答:略。

4.答:略。

5.40千米/小时。

问甲车提前了多少分钟出发?30分钟=0.5小时(60+40)×0.5÷60=5/6(小时)=50(分钟)答:略。

2024年重庆市重点中学小升初数学模拟试卷附参考答案

2024年重庆市重点中学小升初数学模拟试卷附参考答案

2024年重庆市重点中学小升初数学模拟试卷(满分:100分时间:60分钟)姓名:________ 分数:_______一、填空题(每题4分,共12题,共48分)1、如果两数的和是64,两数的积可以整除975,那么这两个数的差等于_____。

2、甲、乙、丙三人进行100米赛跑,当甲到达终点时,乙离终点还有8米,丙离终点还有12米。

如果甲、乙、丙赛跑时速度不变,那么,当乙到达终点时,丙离终点还有_____米。

3、国家规定某工职人员每月工资超出800元的部分缴纳个人所得税,若税率为20%,某公务员12月份缴纳了45.46元的税费,则他12月份的工资是_____元。

4、甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过时的时间是10秒,那么,乙车上的乘客看见甲车在他的窗口外经过的时间是_____秒。

5、如图所示,正方形的边长为10,则图中阴影部分的面积是_____。

6、有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,则这个两位数和这个一位数分别是_____、_____。

7、正方形网格中的交点,我们称之为格点。

如图所示的网格图中,每个小正方形的边长都为1。

现有格点A、B,那么,在网格图中能找出_____个不同的格点,使得A、B和这个格点为顶点的三角形的面积为2。

8、小明、小刚、小强分别担任语文、数学、外语某一门学科的课代表,并分别有篮球、排球、乒兵球三种爱好中的一种,若已知:(1)爱好排球、篮球的和小明一起去游泳;(2)爱好乒乓球的常和数学课代表一起写作;(3)小刚一点也不爱好篮球;(4)语文课代表对乒乓球、排球一窍不通。

由此可以推断,小明、小刚、小强分别担任的学科课代表是_____、_____、_____。

9、假设某星球的一天只有6小时(即钟表盘分为6个大格),每小时是36分钟,那么3点18分时,时针与分针所成的锐角是_____度。

重点高中提前批招生数学模拟卷(含答案)

重点高中提前批招生数学模拟卷(含答案)

考场_________ 班级_________ 姓名_________ 学号_________初三中考数学模拟试卷一、选择题(共8题,每题5分,共40分):1.国家质检总局出台了国内销售的纤维制品甲醛含量标准, 从20XX 年1月1 日起正式实施.该标准规定:针织内衣. 床上用品等直接接触皮肤的制品,甲醛含量应在百万分之七十五以下. 百万分之七十五用科学记数法表示应写成.........................( ) A .75×10-7; B .75×10-6; C .7.5×10-6; D .7.5×10-5 2.如图:是一个正方体的平面展开图,当把它拆成一个正方体, 与空白面相对的字应该是................................................( ) A .北 B .京 C .欢 D .迎3.若),(),,(222111y x P y x P 是二次函数)0(2≠++=abc c bx ax y 的图象上的两点,且21y y =,则当21x x x +=时,y 的值为..............................................( )A .0B .cC .ab- D .a b ac 442-4.如图,有三根长度相同横截面为正方形的直条形木块1I 、2I 、3I ,若将它们靠紧放 置在水平地面上时,且A 、B 、C 恰在一直线上,木块1I 、2I 、3I 的体积分别为1V 、2V 、3V ,则下列结论中正确的是……………( )A .321V V V +=B .2312V V V +=C .232221V V V += D .3122V V V =5.红星学校准备开办一些学生课外活动的兴趣班 计算机 奥数 英语口语 计划人数1009060班 计算机 英语口语 音乐艺术 报名人数280250200若计划招生人数和报名人数的比值越大,表示学校开设该兴趣班相对学生需要的满足程度就越高,那么根据以上数据,满足程度最高的兴趣班是...........( ) A .计算机班; B .奥数班; C .英语口语班; D .音乐艺术班1I2I3IAA 1BB 1CC 16.如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .687.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列结论中正确的个数有.....................( )图1AF BCDEHG(1)图1中的BC 长是8cm (2)图2中的M 点表示第4秒时y 的值为242cm (3)图1中的CD 长是4cm (4)图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个8.在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,AB=AE , AC=AD. 那么在下列四个结论中:(1) AC ⊥BD ;(2)BC=DE ; (3)∠DBC=12 ∠DAB ;(4) △ABE 是正三角形,正确的是..................................( ) A .(1)和(2); B .(2)和(3); C .(3)和(4); D .(1)和(4) 二、填空题(共8题,每题5分,共40分)9.一元二次方程0522=++x kx 有根的k 的取值范围是________________.10.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a ,右图轮子上方的箭头指着的数字为b ,数对(a ,b )所有可能的个数为n ,其中a +b 恰为偶数的不同数对的参数为m ,则m/n 等于_____________. 11.如图,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h ,注水时间为t ,则h 与t之间的关系大致为下图中的 (填标号).⑵ ⑶12.在平面直角坐标系中,点A 的坐标为(0,4),点B 的坐标为(-1,0),以线段AB 上h Oth Oth Oth Ot一点P 为圆心作圆与OA ,OB 均相切,则点P 的坐标 .13.等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动, 当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 秒.14.从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm ,如图甲。

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当前,手机移动支付已经成为新型的消费方式,中国正在向无现金社会发展.下表是妈妈元旦当天的微信零钱支付明细:则元旦当天,妈妈微信零钱最终的收支情况是()微信转账﹣60.00扫二维码付款﹣105.00微信红包.+88.00便民菜站﹣23.00A.收入88元B.支出100元C.收入100元D.支出188元2.在一只不透明的口袋中放入红球5个,黑球1个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n是()A.3B.4C.5D.63.下列计算正确的是()A.5+=8B.(﹣2a2b)3=﹣6a2b3C.(a﹣b)2=a2﹣b2D.=a﹣24.某次校运会共有13名同学报名参加百米赛跑,他们的预赛成绩各不相同,现取其中前6名参加决赛,小勇同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.平均数B.众数C.中位数D.方差5.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.6.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+16B.16+8C.24+16D.4+47.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是()A.18°B.36°C.54°D.72°8.在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线上y=x2+bx+1的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为()A.2B.3C.4D.59.如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A,下列叙述正确的是()①反比例函数的表达式是y=﹣;②一次函数y=x+5与反比例函数y=的图象的另一个交点B的坐标为(﹣8,2);③直线AB与y轴的交点为(5,0);④S△AOB=15.A.①②③④B.②③④C.①④D.②③10.四巧板是一种类似七巧板的传统智力玩具,它是由一个长方形按如图1分割而成,这几个多边形的内角除了有直角外,还有45°、135°、270°角.小明发现可以将四巧板拼搭成如图2的T字形和V字形,那么T字形图中高与宽的比值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.因式分解:﹣3x3y2+6x2y3﹣3xy4=.12.圆锥底面圆的半径为3,其侧面展开图是半圆,则圆锥母线长为,该圆锥体积为.13.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为.14.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠OBC的度数为,∠P的度数为.15.如图,将边长为9的正方形纸片ABCD沿MN折叠,使点A落在BC边上A′点处,点D的对应点为点D′,若A′B=3,则DM=.16.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为个,第n层含有正三角形个数为个.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(5分)计算:(﹣3)2﹣2÷(1﹣)﹣|﹣2|.18.(5分)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,求a的取值范围.19.(8分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.20.(12分)为了了解学生掌握垃圾分类知识的情况,增强学生环保意识.某校举行了“垃圾分类,人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为及格)进行整理、描述和分析,下面给出了部分信息:七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)在上述表格中:a=,b=,c=;(2)根据上述数据,你认为该校七、八年级中哪个年级的学生掌握垃圾分类知识的情况较好?请说明理由(写出一条理由即可);(3)该校德育处从八年级测试成绩前四名甲、乙、丙、丁学生中,随机抽取2名学生参加全市现场垃圾分类知识竞赛,请用列表法或画树状图法求出必有甲同学参加比赛的概率.21.(6分)如图,一架飞机以每小时900千米的速度水平飞行,某个时刻,从地面控制塔O(塔高300m)观测到飞机在A处的仰角为28°,5分钟后测得飞机在B处的仰角为45°,试确定飞机的飞行高度.(结果用含非特殊角的三角函数与根式表示即可)22.(7分)如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.23.(7分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成筑路任务,求y与x之间的函数关系式.(3)在(2)的条件下,若每天需付给甲队的筑路费用为0.1万元,需付给乙队的筑路费用为0.2万元,且甲、乙两队施工的总天数不超过24天,则如何安排甲、乙两队施工的天数,使施工费用最少,并求出最少费用.24.(10分)如图,△ACE内接于⊙O,AB是⊙O的直径,弦CD⊥AB于点H,交AE于点F,过点E作EG∥AC,分别交CD、AB的延长线于点G、M.(1)求证:△ECF∽△GCE;(2)若tan G=,AH=3,求⊙O半径.25.(12分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E 是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当前,手机移动支付已经成为新型的消费方式,中国正在向无现金社会发展.下表是妈妈元旦当天的微信零钱支付明细:则元旦当天,妈妈微信零钱最终的收支情况是()微信转账﹣60.00扫二维码付款﹣105.00微信红包.+88.00便民菜站﹣23.00A.收入88元B.支出100元C.收入100元D.支出188元【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:﹣60﹣105+88﹣23=﹣100;所以元旦当天,妈妈微信零钱最终的收支情况是支出100元.故选:B.2.在一只不透明的口袋中放入红球5个,黑球1个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n是()A.3B.4C.5D.6【分析】根据概率公式列出关于n的分式方程,解方程即可得.【解答】解:根据题意可得=;解得:n=3;经检验n=3是分式方程的解;即放入口袋中的黄球总数n=3;故选:A.3.下列计算正确的是()A.5+=8B.(﹣2a2b)3=﹣6a2b3C.(a﹣b)2=a2﹣b2D.=a﹣2【分析】分别运用二次根式、整式和分式的运算法则逐项排除即可.【解答】解:A.,故A选项不合题意;B.(﹣2a2b)3=(﹣2)3(a2)3b3=﹣8a6b3,故B选项不合题意;C.(a﹣b)2=a2﹣2ab+b2,故C选项不合题意;D.,故D选项符合题意.故选:D.4.某次校运会共有13名同学报名参加百米赛跑,他们的预赛成绩各不相同,现取其中前6名参加决赛,小勇同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.平均数B.众数C.中位数D.方差【分析】由于有13名同学参加百米赛跑,要取前6名参加决赛,故应考虑中位数的大小.【解答】解:共有13名学生参加比赛,取前6名,所以小勇需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数;所以小勇知道这组数据的中位数,才能知道自己是否进入决赛.故选:C.5.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出不等式组的解集并在数轴上表示出来,找出符合条件的选项即可.【解答】解:由①得x<3;由②得x≥﹣2;故此不等式组的解集为﹣2≤x<3;在数轴上的表示为:.故选:A.6.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+16B.16+8C.24+16D.4+4【分析】由三视图知该几何体是高为4、上底三角形的三边分别为2、2、4的三棱柱,据此可得.【解答】解:由三视图知,该几何体是三棱柱;其侧面积为2×2×4+4×4=16+16;故选:A.7.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是()A.18°B.36°C.54°D.72°【分析】正五边形的性质和圆周角定理即可得到结论.【解答】解:∵AF是⊙O的直径,五边形ABCDE是⊙O的内接正五边形;∴,,∠BAE=108°;∴;∴∠BAF=∠BAE=54°;∴∠BDF=∠BAF=54°;故选:C.8.在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线上y=x2+bx+1的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为()A.2B.3C.4D.5【分析】根据点A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,可以得到b的值,然后将函数解析式化为顶点式,再根据题目中的条件,即可得到正整数n的最小值,本题得以解决.【解答】解:∵点A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点;∴x=−=;解得,b=﹣4;∴抛物线解析式为y=x2﹣4x+1=(x﹣2)2﹣3;∵将抛物线y=x2+bx+1向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点;∴n的最小值是4;故选:C.9.如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A,下列叙述正确的是()①反比例函数的表达式是y=﹣;②一次函数y=x+5与反比例函数y=的图象的另一个交点B的坐标为(﹣8,2);③直线AB与y轴的交点为(5,0);④S△AOB=15.A.①②③④B.②③④C.①④D.②③【分析】先求出点A的坐标,再根据A的坐标可得反比例函数表达式;联立方程组可得一次函数与反比例函数的另一个交点;利用待定系数法求出直线AB的解析式,可得与y轴的交点;根据三角形的面积公式可得△AOB的面积.【解答】解:当x+5=﹣2x时,x=﹣2;∴A(﹣2,4);∴反比例函数的表达式为y=﹣,故①正确;联立方程组;解得或;∴另一个交点的坐标为(﹣8,1),故②错误;设直线AB的解析式为y=kx+b;把A、B的坐标代入可得;解得k=,b=5;∴直线AB的解析式为y=x+5,与y轴的交点为(0,5),故③错误;设直线AB交y轴于点C,如图;则C(0,5);S△AOB=5×8﹣=15,故④正确.故选:C.10.四巧板是一种类似七巧板的传统智力玩具,它是由一个长方形按如图1分割而成,这几个多边形的内角除了有直角外,还有45°、135°、270°角.小明发现可以将四巧板拼搭成如图2的T字形和V字形,那么T字形图中高与宽的比值为()A.B.C.D.【分析】如图1中,设AB=a,则AC=DE=a,CE=2a,求出h,l,可得结论.【解答】解:如图1中,设AB=a,则AC=DE=a,CE=2a;∴h=a+2a,l=2a;∴==;故选:C.二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.因式分解:﹣3x3y2+6x2y3﹣3xy4=﹣3xy2(x﹣y)2.【分析】先提公因式,然后再利用完全平方公式继续分解即可.【解答】解:﹣3x3y2+6x2y3﹣3xy4=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2;故答案为:﹣3xy2(x﹣y)2.12.圆锥底面圆的半径为3,其侧面展开图是半圆,则圆锥母线长为6,该圆锥体积为9π.【分析】设圆锥母线长为l,根据弧长公式得到2π×3=,解方程得到圆锥母线长为6,再利用勾股定理计算圆锥的高,然后利用圆锥的体积公式求解.【解答】解:设圆锥母线长为l;根据题意得2π×3=;解得l=6;即圆锥母线长为6;所以圆锥的高==3;所以圆锥的体积=×π×32×3=9π.故答案为:6,.13.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为1100人.【分析】用该校的总人数乘以成绩为“良”和“优”的人数所占的百分比即可.【解答】解:根据题意得:2000×=1100(人);答:其中成绩为“良”和“优”的总人数估计为1100人.故答案为:1100人.14.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠OBC的度数为29°,∠P的度数为32°.【分析】设BP与圆O交于点D,连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC=180°﹣∠A=61°,由等腰三角形的性质得出∠OCD=∠ODC=61°,求出∠DOC =58°,由直角三角形的性质即可得出结果.【解答】解:设BP与圆O交于点D,连接OC、CD,如图所示:∵PC是⊙O的切线;∴PC⊥OC;∴∠OCP=90°;∵∠A=119°;∴∠ODC=180°﹣∠A=61°;∵OC=OD;∴∠OCD=∠ODC=61°;∴∠DOC=180°﹣2×61°=58°;∵OB=OC;∴∠OBC=∠OCB=∠DOC=29°;∴∠P=90°﹣∠DOC=32°;故答案为:29°,32°.15.如图,将边长为9的正方形纸片ABCD沿MN折叠,使点A落在BC边上A′点处,点D的对应点为点D′,若A′B=3,则DM=2.【分析】连接AM,MA′,由于A′B=3,则CA′=6,在Rt△ADM和Rt△MCA′中由勾股定理求得DM的值.【解答】解:如图所示:连接AM、A′M.由翻折的性质可知:DM=D′M,AM=A′M.设MD=x,则MC=9﹣x.∵A′B=3,BC=9;∴A′C=6.在Rt△MCA′中,MA′2=A′C2+MC2=36+(9﹣x)2,在Rt△ADM中,AM2=AD2+DM2=81+x2.∴36+(9﹣x)2=81+x2,解得x=2;即DM=2.故答案为:2.16.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为114个,第n层含有正三角形个数为(12n﹣6)个.【分析】通过观察可得,第n层每两个正方形之间含有正三角形(2n﹣1)个,则该层共有正三角形为(12n ﹣6)个.【解答】解:由题意得,第1层每两个正方形之间有1个正三角形,该层共有6个正三角形;第2层每两个正方形之间有3个正三角形,该层共有18个正三角形;第3层每两个正方形之间有5个正三角形,该层共有30个正三角形;…第n层每两个正方形之间有(2n﹣1)个正三角形,该层共有6(2n﹣1)=(12n﹣6)个正三角形;∴第10层每两个正方形之间有12×10﹣6=114个正三角形,该层共有6个正三角形;故答案为:114,12n﹣6.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(5分)计算:(﹣3)2﹣2÷(1﹣)﹣|﹣2|.【分析】首先计算乘方和绝对值,然后计算除法,最后从左向右依次计算,求出算式的值即可.【解答】解:(﹣3)2﹣2÷(1﹣)﹣|﹣2|=9﹣2×﹣2=9+2(+1)﹣2=9+2+2﹣2=11.18.(5分)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,求a的取值范围.【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集,再判断即可.【解答】解:解不等式①得:;解不等式②得:;∴不等式组的解集为;又∵不等式x﹣5>0的解集是x>5;∴;解得:a≤﹣6;故a的取值范围为a≤﹣6.19.(8分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=100°求得BE平分∠CBF,继而求得答案.【解答】证明:(1)∵四边形ABCD是平行四边形;∴CD=AB,CD∥AB;∴∠DCE=∠F,∠FBC+∠BCD=180°;∵E为AD的中点;∴DE=AE.在△DEC和△AEF中;;∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)由(1)可知BF=2AB,EF=EC;∵∠BCD=100°;∴∠FBC=180°﹣100°=80°;∵BC=2AB;∴BF=BC;∴BE平分∠CBF;∴∠ABE=∠FBC=×80°=40°20.(12分)为了了解学生掌握垃圾分类知识的情况,增强学生环保意识.某校举行了“垃圾分类,人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为及格)进行整理、描述和分析,下面给出了部分信息:七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)在上述表格中:a=7,b=7.5,c=50%;(2)根据上述数据,你认为该校七、八年级中哪个年级的学生掌握垃圾分类知识的情况较好?请说明理由(写出一条理由即可);(3)该校德育处从八年级测试成绩前四名甲、乙、丙、丁学生中,随机抽取2名学生参加全市现场垃圾分类知识竞赛,请用列表法或画树状图法求出必有甲同学参加比赛的概率.【分析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率.【解答】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6;∴a=7;由条形统计图可得,b=(7+8)÷2=7.5;c=(5+2+3)÷20×100%=50%;即a=7,b=7.5,c=50%;故答案为:7,7.5,50%;(2)八年级学生掌握垃圾分类知识较好,理由如下:八年级的8分及以上人数所占百分比大于七年级;故八年级学生掌握垃圾分类知识较好;(3)画树状图为:共有12种等可能的结果数,其中必有甲同学参加比赛的结果数为6种;∴必有甲同学参加比赛的概率为=.21.(6分)如图,一架飞机以每小时900千米的速度水平飞行,某个时刻,从地面控制塔O(塔高300m)观测到飞机在A处的仰角为28°,5分钟后测得飞机在B处的仰角为45°,试确定飞机的飞行高度.(结果用含非特殊角的三角函数与根式表示即可)【分析】首先根据飞机的速度与时间算出AB的长度,再过点O作OD⊥AB,垂足为D,设OD=x千米,由∠OBD=45°,可得BD=OD=x千米,则AD=(x+75)千米,再利用三角函数可算出x的值,进而可得到CD的长.【解答】解:由题意得:AB==75(千米);过点O作OD⊥AB,垂足为D;设OD=x千米,在Rt△OBD中;∵∠OBD=45°;∴BD=OD=x千米;在Rt△OAD中,AD=AB+BD=(x+75)千米,∠A=28°;∵tan A=;∴=tan28°;解得x=;∴CD=OD+OC=(+0.3)(km);答:飞机的飞行高度为()km.22.(7分)如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x 轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;(3)根据图象即可求得k1x+b<时,自变量x的取值范围.【解答】解:(1)∵点C(2,4)在反比例函数y=的图象上;∴k2=2×4=8;∴y2=;如图,作CE⊥x轴于E;∵C(2,4),点B是线段AC的中点;∴B(0,2);∵B、C在y1=k1x+b的图象上;∴;解得k1=1,b=2;∴一次函数的解析式为y1=x+2;(2)由;解得或;∴D(﹣4,﹣2);∴S△COD=S△BOC+S△BOD=×2×2+×2×4=6;(3)由图可得,当0<x<2或x<﹣4时,k1x+b<.23.(7分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成筑路任务,求y与x之间的函数关系式.(3)在(2)的条件下,若每天需付给甲队的筑路费用为0.1万元,需付给乙队的筑路费用为0.2万元,且甲、乙两队施工的总天数不超过24天,则如何安排甲、乙两队施工的天数,使施工费用最少,并求出最少费用.【分析】(1)设乙队完成此项任务需要x天,则甲队完成此项任务(x+10)天,然后根据甲队单独施工45天和队单独施工30天的工作量相同,可以得到相应的分式方程,从而可以得到甲、乙两队单独完成此项任务各需多少天;(2)根据题意,可以得到y与x的函数关系式;(3)根据(2)中的条件和题意,可以得到总费用与甲施工天数之间的函数关系式,然后利用一次函数的性质,即可解答本题;【解答】解:(1)设乙队完成此项任务需要x天,则甲队完成此项任务(x+10)天;;解得,x=20;经检验,x=20是原分式方程的解;∴x+10=30;答:甲、乙两队单独完成此项任务各需30天、20天;(2)由题意可得;=1;化简,得y=﹣x+20;即y与x之间的函数关系式是y=﹣x+20;(3)设施工的总费用为w元;w=0.1x+0.2y=0.1x+0.2×(﹣x+20)=x+4;∵甲、乙两队施工的总天数不超过24天;∴x+y≤24;即x+(﹣x+20)≤24;解得,x≤12;∴当x=12时,w取得最小值,此时w=3.6,y=12;答:安排甲施工12天、乙施工12天,使施工费用最少,最少费用是3.6万元.24.(10分)如图,△ACE内接于⊙O,AB是⊙O的直径,弦CD⊥AB于点H,交AE于点F,过点E作EG∥AC,分别交CD、AB的延长线于点G、M.(1)求证:△ECF∽△GCE;(2)若tan G=,AH=3,求⊙O半径.【分析】(1)根据题意易证∠ACD=∠AEC,∠AEC=∠G,然后根据相似三角形的性质与判定即可求出答案.(2)连接OC,设OC=r,根据勾股定理以及锐角三角函数的定义即可列出方程求出r的值.【解答】解:(1)∵AB为⊙O直径,CD⊥AB∴=;∴∠ACD=∠AEC;∵EG∥AC;∴∠G=∠ACD;∴∠AEC=∠G;又∵∠ECF=∠GCE∴△ECF∽△GCE;(2)连接OC,设OC=r;∵∠G=∠ACH;∴;在Rt△AHC中;∴;在Rt△HOC中,OH2+HC2=OC2∴;∴25.(12分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E 是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?【分析】(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0);∴0=1+b﹣3;解得b=2;∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4;∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0;∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m);过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m;∴AE==﹣m;∵AE=EF=2;∴﹣m=2;解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上;∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,连接CN,CM,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上;由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m;∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=;解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是。

重点中学招生数学模拟试卷含答案

重点中学招生数学模拟试卷含答案

重 点 中 学 招 生 试 卷姓名: 成绩:一、填空题(每题2分,共20分)1.在自然数0,1,2,…,8,9中,质数的个数与偶数的个数的和是( 9 )。

2.一张4平方厘米的长方形纸,对着四次所得到的小长方形的面积是( 0.25cm 2 )。

3.一个正方形的边长增加2厘米,面积就增加36平方厘米,原来这个正方形的面积是( 64 )平方厘米。

4.观察前两个图形中数字的规律,第三个图形中的“?”表示的数是( 587 )。

5. 父亲今年37岁,儿于今年13岁,( 7 )年前父亲的年龄是儿子的5倍。

6.请给出5个质数,把它们按从小到大的顺序排列起来,使每相邻的两个数都相差 6. ( 5 )<( 11 )<( 17 )<( 23 )<( 29 )7. 星期天,小华去爬山,上山每小时2千米,下山沿原路返回,每小时3千米,小华来回的平均速度是每小时( 2.4 )千米。

8.两个自然数X 、Y 的最大公因数是14,最小公倍数是280,它们的和X+Y=(126或294 )。

9.有一列数:0,3,8,15,24,…… 第50个数是( 2499 )。

10. 将4361 的分子与分母同时加上( 20 )后得79. 二、选择题(每题2分,共20分)1. 71<( )<41符合条件的分数有( D )个。

A.0 B.1 C.2 D.无数2.某商品若打九折出售,就可以盈利100元;若打八折出售,可以盈利78元,则该商品的成本是( A )元A.98B.220C.118D.1203.把浓度为20%、30%、40%的三种盐水按2:3:5的比例混合在一起,得到的盐水浓度为( B ).A.32%B.33%C.34%D.35%4.王叔叔用36米篱笆靠一面墙围成一个长方形的养鸡栏(如右图),要想围成的最大面积,最大面积是( A )平方米。

A.162B.144 D.3245. 两数相除得3余10,被除数、除数、商与余数之和是143,这两个数分别是( C )A.100和34B.110和30C.100和30D.95和40三、计算:(每题4分,共20分)8+98+998+9998+99998 9999×2222+3333×3334=100+1000+10000+100000 =3333×6666+3333×3334=111100 = (151+172)×15×17 10÷6+11÷6+12÷6+13÷6+14÷6 =1/15×15×17+2/17×15×17 =(10+11+12+13+14) ÷6=17+30 =60÷6=47 =1021+61+121+201+301+421+561 =(1-1/2+1/2-1/3+…+1/7-1/8)=1-1/8=7/8四、图形与操作(每题5分,共10分)1.已知图中三角形ABC 的面积为180平方厘米,是平行四边形DEFC 面积的3倍.那么,图中阴影部分的面积是多少?液的浓度是多少?(500×70%+300×50%)÷(500+300)=62.5%答:略。

小升初重点中学招生考试数学模拟卷(二) l (通用版,含答案 )(30张)

小升初重点中学招生考试数学模拟卷(二) l (通用版,含答案 )(30张)

是( B )。
A. 957
B. 64
C. 56
D. 33
[提示:b=42 (999-42)÷43=22…11,42+22=64]
2.有 1 克、2 克、4 克、8 克的砝码各一个,最多能称出( B ) 种不同质量的物体 。
A.8 B.15 C.36 D.64
[提示:4+8+ 2+ 1= 15(种 )]
3.甲、乙、丙三人练习投篮,一共投了 180 次,有 45 次没 投进。已知甲、乙一共投进 82 次,乙、丙一共投进 89 次,则丙 投进( C )次。
A.26 B.37 C.53 D.64
[提示:180-45-82=53(次)]
4.如图,梯形 ABCD 的面积为 20,点 E 在 BC 上,三角形 ADE 的面积是三角形 ABE 面积的 2 倍,BE 的长为 2,EC 的长 为 5。那么三角形 DEC 的面积为( A )。
红气球和黄气球各多少个?(5 分)
解:设商店原有红气球 x 个。 24+34x+x=360
1.75x= 336 x= 192
360- 192= 168(个)。 答:商店里原来有红气球 192 个,黄气球 168 个。
8.一条路全长 60 千米,分成上坡、平路、下坡三段,各段 路程长的比依次是 1∶2∶3,某人走各段路程所用的时间之比依次 是 4∶5∶6,已知他上坡的速度是每小时 3 千米,问此人走完全程 用了多少时间?(5 分)
9.一个西瓜重 8 千克,它的质量的 98%是水,在太阳下曝晒, 部分水分蒸发后剩下的水分占总质量的 95%。现在的西瓜的总质
量是( 3.2 )千克。[提示:8×(1-98%)÷(1-95%)=3.2(千克)]
10.如图所示,长方形草地 ABCD 被分成面积相等的甲、乙、 丙、丁四份,其中图形甲的长和宽的比 a∶b=7∶3,则图形乙的 长和宽的比是( 27∶7 )。

2025届益阳市重点中学高三3月份第一次模拟考试数学试卷含解析

2025届益阳市重点中学高三3月份第一次模拟考试数学试卷含解析

2025届益阳市重点中学高三3月份第一次模拟考试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( ) A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞2.已知定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()2xf x m =-,则()2019f =( ) A .1B .-1C .2D .-23.i 是虚数单位,21iz i=-则||z =( ) A .1B .2C .2D .224.函数()y f x =满足对任意x ∈R 都有()()2f x f x +=-成立,且函数()1y f x =-的图象关于点()1,0对称,()14f =,则()()()201620172018f f f ++的值为( )A .0B .2C .4D .15.已知双曲线2222x y 1(a 0,b 0)a b-=>>,过原点作一条倾斜角为π3直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( ) A .21+ B .31+C .2D .56.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg10.1D .10–10.18.已知随机变量X 的分布列如下表: X1-0 1P ab c其中a ,b ,0c >.若X 的方差()13D X ≤对所有()0,1a b ∈-都成立,则( ) A .13b ≤B .23b ≤C .13b ≥D .23b ≥9.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,22x x >,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝10.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞D .(3,1)--11.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞D .(,1)[2,)-∞⋃+∞12.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .78二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点中学招生试卷
姓名:成绩:
一、填空题(每题2分,共20分)
1.在自然数0,1,2,…,8,9中,质数的个数与偶数的个数的和是(9)。

2.一张4平方厘米的长方形纸,对着四次所得到的小长方形的面积是()。

3.一个正方形的边长增加2厘米,面积就增加36平方厘米,原来这个正方形的面积是(64)平方厘米。

4.观察前两个图形中数字的规律,第三个图形中的“?”表示的数是(587)。

5.父亲今年37岁,儿于今年13岁,(7)年前父亲的年龄是儿子的5倍。

6.请给出5个质数,把它们按从小到大的顺序排列起来,使每相邻的两个数都相差6. ( 5 )<(11)<(17)<(23)<(29 )
7. 星期天,小华去爬山,上山每小时2千米,下山沿原路返回,每小时3千米,小华来回的平均速度是每小时()千米。

8.两个自然数X 、Y 的最大公因数是14,最小公倍数是280,它们的和X+Y=(126或294 )。

9.有一列数:0,3,8,15,24,…… 第50个数是( 2499 )。

10. 将4361 的分子与分母同时加上( 20 )后得7
9
.
二、选择题(每题2分,共20分) 1.
71<( )<41
符合条件的分数有( D )个。

D.无数
2.某商品若打九折出售,就可以盈利100元;若打八折出售,可以盈利78元,则该商品的成本是( A )元
3.把浓度为20%、30%、40%的三种盐水按2:3:5的比例混合在一起,得到的盐水浓度为( B ).
% % % %
4.王叔叔用36米篱笆靠一面墙围成一个长方形的养鸡栏(如右图),要想围成的最大面积,最大面积是( A )平方米。

5. 两数相除得3余10,被除数、除数、商与余数之和是143,这两个数分别是( C )
和34 和30 和30 和40
三、计算:(每题4分,共20分)
8+98+998+9998+99998 9999×2222+3333×3334
=100+1000+10000+100000 =3333×6666+3333×3334
=111100 = (151+17
2
)×15×17 10÷6+11÷6+12÷6+13÷6+14÷6
=1/15×15×17+2/17×15×17 =(10+11+12+13+14) ÷6
=17+30 =60÷6
=47 =10
21+61+121+201+301+421+561
=(1-1/2+1/2-1/3+…+1/7-1/8)
=1-1/8 =7/8
四、图形与操作(每题5分,共10分)
1.已知图中三角形ABC 的面积为180平方厘米,是平行四边形DEFC 面积的3倍.那么,图中阴影部分的面积是多少?
180÷3÷2=30(平方厘米)
2.一牧民在一片草地的A 处放牛,现在他要牵着牛到河流L 的岸边让牛饮水,然
后把牛牵往这片草地的B 处,请画出你认为最近的线路。

(不需要写作图步骤,但要保留作图痕迹)。

五、解决问题(每题5分,共30分)
第1题
B ′
B
A
河流
L 题
O
1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?
(500×70%+300×50%)÷(500+300)=%
答:略。

2.甲、乙两容器装有同样多的水,每次从甲容器中倒出升水,从乙容器中倒出升水。

若干次后,甲容器还剩升水,乙容器还剩升水,原来甲容器装有多少升水?
- ÷- ×+=(升)
答:略。

3.一项工程,甲队单独做10天可以完成,乙队单独做20天可以完成,现在两队合作,期间甲队休息了1天,乙队休息了5天(不存在两队同一天休息)。

问:完成整个工程共用了多少天?
(1-1/20×1-1/10×5) ÷(1/10+1/20) +1+5=9(天)
答:略。

4.有两袋面粉,甲袋重126千克,从甲袋中取出31
,从乙袋中取出60%以后,这
时甲、乙两袋余下的面粉重量之比是3∶2。

问乙袋面粉原有多少千克?
126×(1-2/3) ×2/3÷(1-60%)=140(千克)
答:略。

5.甲、乙两车每天同时分别从A、B两地出发,相向而行准时在途中的C地相遇。

如果甲车提前一段时间出发,那么两车将提前30分钟相遇。

已知甲车的速度是60千米/小时,乙车速度是40千米/小时。

问甲车提前了多少分钟出发?
30分钟=小时
(60+40)×÷60=5/6(小时)=50(分钟)
答:略。

6.抽干一口井,在无渗水的情况下,用甲抽水机需20分,用乙抽水机需30分。

现因井底渗水,且每分钟渗水量相同,用两台抽水机合抽18分钟刚好抽干。

如果单独用甲抽水机抽水,多少分钟把水抽干?
1÷[1/20-(1/20+1/30-1/18)]=45(分钟)
答:略。

相关文档
最新文档