公开课教案(实数)
《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容1. 实数的概念及其分类;2. 实数与数轴的关系;3. 实数的运算性质。
二、教学目标1. 理解实数的定义,掌握实数的分类;2. 掌握实数与数轴的关系,能正确地在数轴上表示实数;3. 理解并掌握实数的运算性质,提高运算能力。
三、教学难点与重点1. 教学重点:实数的定义、分类和运算性质;2. 教学难点:实数与数轴的关系,实数的运算性质。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、铅笔。
五、教学过程1. 实践情景引入(5分钟)利用数轴上的点表示物体位置,引导学生思考实数与数轴的关系。
2. 知识讲解(15分钟)(1)实数的定义与分类;(2)实数与数轴的关系;(3)实数的运算性质。
3. 例题讲解(15分钟)选取具有代表性的例题,讲解实数运算的步骤和技巧。
4. 随堂练习(10分钟)设计有针对性的练习题,让学生及时巩固所学知识。
5. 小组讨论(5分钟)将学生分成小组,讨论实数运算中遇到的问题及解决方法。
6. 答疑解惑(10分钟)针对学生提出的问题,进行解答,巩固所学知识。
六、板书设计1. 实数的定义、分类;2. 实数与数轴的关系;3. 实数的运算性质;4. 例题及解答过程;5. 练习题及答案。
七、作业设计1. 作业题目:(1)填空题:实数可以分为哪几类?(4)解答题:已知实数a、b,求证:若a²+b²=0,则a=b=0。
2. 答案:(1)有理数、无理数;(2)D;(3)答案不唯一,合理即可;(4)证明过程略。
八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的概念、分类和运算性质掌握程度如何?在教学中是否存在不足之处?2. 拓展延伸:引导学生思考实数在生活中的应用,如温度、长度等,激发学生的学习兴趣。
同时,布置一道拓展题,让学生进一步巩固实数的知识。
重点和难点解析1. 实数的定义、分类和运算性质的教学;2. 实数与数轴的关系的讲解;3. 例题的选取和讲解;4. 随堂练习的设计;5. 作业题目的设计及答案的解析;6. 课后反思与拓展延伸。
《实数》精品教案 2022年公开课一等奖

教学过程设计㈡例题讲解:1.把以下各数填入相应的集合内:13,2899,72,38-,, -π,… ①有理数集合}{ ;②无理数集合}{ ; ③正实数集合}{ ;④负实数集合}{ .分析:带根号的数不一定都是无理数,外边没“-〞的也不一定就是正数,应先化简再判断.2899,72,38-,0.35都是有理数;13,-π,0.3131131113…是无理数;38- ,-π是负实数,其余都是正实数.㈢实数与数轴上的点的关系问题:每个有理数都可以用数轴上的点来表示,无理数是否也可以用数轴上的点表示出来?你能在数轴上找到表示π、2的点吗?分析:在数轴上作表示π、2的点,由数构形,由形找点.构形:直径为1的圆周长即是π;边长是1的正方形对角线长即为2.找点:如以下列图所示:数轴上的点与实数是一一对应的,即数轴上的所有点都表示实数,每个实数都可用数轴上的点表示. 三、课堂训练 1.以下说法中错误的选项是〔 〕B .π是无理数C .2是无理数D .2是实数 2.以下说法中正确的选项是〔 〕 A .小数都是有理数 B .有理数是实数C .无限小数都是无理数D .实数是无理数3. 以下说法中正确的有〔 〕A .数轴上的每一个点都表示一个有理数教师出示问题,学生思考解决,并阐述做题依据和方法,之后教师总结归纳,师生达成一致教师提出问题,学生以小组为单位进行讨论交流,教师参与到学生中去,教师利用课件演示圆滚动的过程,学生观察,直官感受直径为1哥单位长度的圆从原点沿数轴向右滚动一周圆上的点由原点到达点o ',点o '所表示的数就是π教师布置课堂限时训练,检测教学效果,之后师生订正答案,并根据解题情况进行针对性的评析在教学中学生在解决问题中表现出的不同水平,让学生交流各自解决问题的策略,不断获得解决问题的经验,提高思维水平从学生已有的知识水平出发,体会无理数也可以用数轴上的点来表示.从形的角度再一次体会无理数,同时感受实数与数轴上的点的一一对应关系.检测本节课的教学效果,及时反响B .数轴上的每一个点都表示一个无理数C .数轴上的每一个点都表示一个整数D .数轴上的每一个点都表示一个实数 4.以下说法中正确的有〔 〕①带根号的数是无理数 ②无理数是带根号的数 ③每个实数都有平方根 ④每个实数都有立方根 A .1个 B .2个 C .3个 D .4个 5.比较它们的大小〔用“<〞号连接〕: -1.4, 3.3, π,2 ,1.5, 3- 1.在数轴上作出线段:“12-=a 〞.2.实数a 、b 在数轴上的位置如下列图,请化简:332)(b a b a -++ 四、小结归纳2.实数的两种分类;3.实数与数轴上的点是一一对应关系. 五、作业设计课本86-87页: 1、2、7、8 补充:5的点表示的数是2.数轴上表示1,2的对应点分别是A 、B ,点B 关于点A 的对称点为C ,那么C 点所表示的数为 .3.坐标平面内一点A(-2,3),将点A 先向右平移2个单位,再向下平移3个单位,得到A ′,那么A ′的坐标为 .4.x 、y 为实数,且499+---=x x y ,求y x +的值教师组织学生回忆本节知识,学生谈个人收获,师生交流.学生谈本节课学到的知识以及解题体会13.3 实数一、无理数定义、 二、实数分类 三、例题分析实数定义教 学 反 思年级八年级课题13.1 平方根〔2〕课型新授教学媒体多媒体教学目标知识技能1.了解有的正数的算术平方根开不尽方;2.了解无限不循环小数特点;3.会用计算器算术求平方根;4.会比较开不尽方的正数的算术平方根与有理数的大小.过程方法通过拼正方形,体验解决问题方法的多样性,开展学生的形象思维和抽象思维;探究2的大小,培养估算意识,了解从两个方向无限逼近的数学思想,并学会比较开不尽方的正数的算术平方根与有理数的大小.情感态度认识数学和生活实际的密切关系,建立自信心,提高学习热情.教学重点初步感受无理数,能进行比较教学难点探究2大小教学过程设计教学程序及教学内容师生行为设计意图一、情境引入用两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长.二、探究新知1.拼法:按以下列图所示,很容易用两个面积为1的小正方形拼成一个面积为2的大正方形.2.问题:①拼成的大正方形的边长是多少?②你能像上节课那样得到一个平方等于2的正有理数吗?③我们只能把边长表示为2,那么2是多大呢?2的大小:∵12=1,22=4,∴1<2<4;∵22=2.25,∴1.4<2<1.5;∵22=2.0164,∴1.41<2<1.42;∵22=2.002225,∴1.414<2<1.415;……如此进行下去,可以得到2的更精确地近似值.事实教师提出问题,组织学生动手拼剪.教师参与学生活动,适当帮助指导学生完成拼图活动,并及时肯定学生各种割、拼的方法.教师设计并向学生提出问题,组织学生思考,交流,并引导学生尝试总结归纳,估算出2的大小,理解无限不循环小数的特点.调动学生思维的积极性,通过拼图活动,经历发现无理数的过程.通过形的研究来感受无理数的存在.从而对数的认识进一步加深,为实现从有理数到实数的过渡作好铺垫.教师设计问题,逐层深入,对学生进行启发引导,通过对2的大小估计,再次从数的角度来感受无理数的存在性.培养学生的估算能力,渗透估算的思想和方法,感受从两端无限逼近的数学思想.上,2=1.414 213 56…,同π一样,是一个无限不循环小数,这样的数与以前学的有理数一样吗?得到:小数位数无限且小数局部不循环的小数叫无限不循环小数.像7,5,3,2这样,所有开方开不尽的正数的算术平方根都是无限不循环小数. 4.用计算器计算算术平方根的三个步骤:①进入();②输入(被开方数);③输出()用计算器计算,并将计算结果填在表中.0625.0 625.025.6 5.62 625 6250 观察上表,你发现什么了吗?(1)被开方数增大,算术平方根怎样变化?(2)被开方数与算术平方根的小数点有何移动规律?(3)直接写出:_____625000;_____62500==.得到:被开方数增大(或减小),那么算术平方根也增大(或减小);被开方数的小数点向左〔右〕移动两位,它的算术平方根的小数点也相应的向左〔右〕移动一位.用一块面积为400cm 2的正方形纸片沿边的方向,能否裁出一块面积为300cm 2的长方形纸片, 使它的长宽之比为3:2?分析:大正方形的面积为400 cm 2,可求出其边长为400=20cm ;要裁出面积为300cm 2的长方形纸片,并使其长宽之比为3:2,通过列方程可求得长和宽须分别为cm cm 502,503,用计算器求得1.750≈,所以3.21503≈,而21.3>20,即要裁出的长方形的长大于正方形的边长,故不能裁出.如果不使用计算器,因为21493503=>>20,所以不能裁出.不用计算器,估计一个整数的算术平方根的技巧:将这个整数a 拆成两个整数m 、n 的积,那么a 的算术平方根必在m 、n 之间,m 、n 越接近,估值越精确.如,24的算术平方根在4、6之间;56的算术平方根在7、8之间,这种方法虽然简便,但对有的数只能估计一个粗略范围,如50的算术平方根只能估计在5、10之间。
《实数》精品课件精品公开课

《实数》精品课件精品公开课一、教学内容本节课选自《数学》八年级下册教材第五章“实数”的第一节“实数的概念与性质”。
详细内容包括:实数的定义与分类、实数与数轴的关系、实数的性质(包括大小比较、运算律等)。
二、教学目标1. 理解实数的定义,掌握实数的分类,能将实数与数轴上的点一一对应。
2. 掌握实数的大小比较方法,了解实数的运算律,并能应用于实际计算。
3. 培养学生的数感和逻辑思维能力,提高解决实际问题的能力。
三、教学难点与重点教学难点:实数的性质及其在数轴上的应用。
教学重点:实数的定义与分类,实数的大小比较和运算。
四、教具与学具准备1. 教具:多媒体课件、黑板、实数教学挂图。
2. 学具:直尺、圆规、练习本、铅笔。
五、教学过程1. 实践情景引入(5分钟)通过播放一段关于温度计的视频,引导学生关注温度计上的实数,引出实数的概念。
2. 新课导入(15分钟)(1)讲解实数的定义与分类,让学生了解实数包括有理数和无理数。
(2)通过数轴上点的移动,让学生理解实数与数轴的关系。
3. 例题讲解(20分钟)讲解实数的大小比较、实数的运算等性质,结合例题进行分析。
4. 随堂练习(10分钟)让学生完成教材上的练习题,巩固所学知识。
六、板书设计1. 实数的定义与分类2. 实数与数轴的关系3. 实数的性质① 大小比较② 运算律七、作业设计1. 作业题目:(2)比较下列各组实数的大小:2. 答案:(1)实数:有理数、无理数;不是实数:虚数。
(2)根据实数的大小比较法则进行判断。
(3)根据实数的运算规律进行计算。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解实数在生活中的应用,激发学生的学习兴趣。
在讲解实数的性质时,结合例题进行分析,让学生掌握实数的运算方法。
课后,教师应关注学生对实数概念的理解,加强个别辅导,提高学生的数学素养。
拓展延伸方面,可以引导学生研究实数在实际问题中的应用,如物理、化学等领域的计算问题。
重点和难点解析1. 实数的定义与分类2. 实数与数轴的关系3. 实数的大小比较方法4. 实数的运算规律5. 教学过程中的实践情景引入6. 作业设计中的题目难度与答案解析一、实数的定义与分类实数的定义:实数包括有理数和无理数,有理数是可以表示为两个整数之比的数,无理数则不能表示为两个整数之比。
实数精品教案设计(通用5篇)

实数精品教案设计(通用5篇)2022-03-22作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么应当如何写教案呢?以下是小编精心整理的实数教案设计,欢迎阅读与收藏。
实数教案设计篇1教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。
(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算。
(3)正确运用公式:(≥0,≥0)(≥0,>0)这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念。
●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律。
(2)能用类比的方法解决问题,用已有知识去探索新知识。
●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养。
教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算。
(2)发现规律:(≥0,≥0)(≥0,>0)教学难点(1)类比的学习方法。
(2)发现规律的过程。
教学准备:教材、、电脑。
电脑软件:Word,Powerpoint。
教学过程第一环节:复习引入(2分钟,学生通过回答问题,回顾旧知)问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法()交换律、结合律,分配律。
问题2:实数包含哪些数?答:有理数,无理数。
问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题。
实数教案设计篇2一.教学目标知识与技能目标:掌握实数运算的法则和运算顺序,会用计算器进行简单的混合运算,并解决一些简单的实际问题。
过程与方法目标:通过回顾有理数的运算法则和运算律,了解有理数的运算法则和运算律在实数范围内同样适用。
情感与态度目标:通过计算器的使用,提高学生的应用意识;通过对实际问题的解决,体验数学的应用性特点。
《实数》 教案 (公开课)2022年人教版数学

6.3 实 数第1课时 实 数1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;(重点)2.进一步理解有理数和无理数的概念,会把实数进行分类;(重点)3.理解实数与数轴的关系,并进行相关运用.(难点)一、情境导入为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225〞改为其他数字,如“200〞,这时怎样确定边长?二、合作探究探究点一:实数的相关概念及分类【类型一】 无理数的识别在以下实数中:157,3.14,0,9,π,5,…,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个 解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,5,….应选C. 方法总结:常见无理数有三种形式:第一类是开方开不尽的数;第二类是化简后含有π的数;第三类是无限不循环的小数.【类型二】 实数的分类把以下各数分别填到相应的集合内:,27,4,5,3-7,0,π2,-3125,227…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数. 解:,4,5,0,-3125,227,3.14,…}; (2)无理数集合{27,3-7,π2…,…}; (3)整数集合{4,5,0,-3125,…};,3-7,-3125,…}.方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.探究点二:实数与数轴上的点【类型一】 求数轴上的点对应的实数如以下列图,数轴上A ,B 两点表示的数分别是-1和3,点B 关于点A 的对称点为C ,求点C 所表示的实数.解析:首先结合数轴和条件可以求出线段AB 的长度,然后利用对称的性质即可求出点C 所表示的实数.解:∵数轴上A ,B 两点表示的数分别为-1和3,∴点B 到点A 的距离为1+ 3.那么点C 到点A 的距离也为1+ 3.设点C 表示的实数为x ,那么点A 到点C 的距离为-1-x ,∴-1-x =1+3,∴x =-2- 3.∴点C 所表示的实数为-2- 3.方法总结:此题主要考查了实数与数轴之间的对应关系,两点之间的距离为两数差的绝对值.【类型二】 利用数轴进行估算如以下列图,数轴上A ,B 两点表示的数分别是3,那么A ,B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个 解析:∵3≈,∴3,3,4,5,∴A ,B 两点之间表示整数的点共有4个.应选C. 方法总结:要确定两点间的整数点的个数,也就是需要比较两个端点与邻近整点的大小,牢记数轴上右边的点表示的实数比左边的点表示的实数大.三、板书设计实数⎩⎪⎨⎪⎧实数的分类⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数分数无理数实数与数轴——实数与数轴上的点一一对应本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的根底上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。
实数复习课公开课教案

实数复习课教案活动目标1.复习平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.复习无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.复习数轴、相反数、绝对值的性质,并在实数范围内准确运用。
4. 能对实数进行运用和比较大小。
活动重点1. 平方根、立方根的概念、性质,会求一个实数的平方根、立方根。
2.对实数准确分类和比较大小。
活动难点:掌握实数的有关概念及会进行实数大小比较;会进行开平方和开立方运算,会求一个非负数的算术平方根;能够运用实数的有关性质解决问题教学准备课件、导学案活动过程一、 知识疏理(一) 平方根、算术平方根、立方根⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 设计意图:对比复习平方根、算术平方根、立方根让学生对知识之间的联系,进一步掌握它们之间的区别,达到正确求一个数的方根的目的。
一点一练我能行!1.明辩事非3是9的算术平方根 ( )0的平方根是0,0的算术平方根也是0 ( )(-2)2的平方根是2- ( )64的立方根是4± ( )-10是1000的一个立方根 ( )2.填一填25的平方根是 16的算术平方根是 27的立方根是______ 327 的平方根是_________3.火眼睛睛(1)A .3B .3-C .3±D . 9(2)下列说法中正确的是( )A .81的平方根是±3B .1的立方根是±1C .1=±1D .-5是5的平方根的相反数(3)下列式子中① 4是16的算术平方根,即4= ②4是16的算术平方根,即4=③-7是49的算术平方根,即7= ④7是(-7)²的算术平方根,即7= 其中正确的是( )A. ①③B. ②③C. ②④D. ①④(二)实数的分类、性质、比较大小、运算1.实数分类(按定义分和按正负分)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0分类中特别强调无理数的形式针对练习:(2) 73是( ): A .无理数B .有理数C .整数D .负数1、在下列各数、、、、、、、、27111311010010001.672232.0051525354.0 π 中无理数的个数是( )A .2B .3C .4D .52、把下列各数填在相应的大括号内: 1010010001.2,64,333.3,14.3,,75,13---π 整数集合:{ ……};分数集合:{ ……};有理数集合:{ };无理数集合:{ }。
《实数》示范公开课教学设计

《实数》教学设计1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.2.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法.【教学重点】1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.【教学难点】利用数轴上的点表示无理数.学生每人准备好草稿纸、铅笔;教师准备课件、图片、圆规.一、复习回顾把下列各数分别填入相应的括号内:◆教学目标◆教学重难点◆◆课前准备◆◆教学过程二、合作交流,探究新知(一)实数的概念及分类有理数和无理数统称为实数按大小分类:意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.效果:让学生讨论回答,形成共识:实数也可以分为正实数、0、负实数,并体会到了分类中不能出现遗漏和重复的要求.实数的相关概念1.在有理数中,数a 的相反数是什么?绝对值是什么?当a 不为0时,它的倒数是什么?2.2的相反数是什么?35的倒数是什么?3,0,—π的绝对值分别是什么?意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的.效果:学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义.知识整理(1)相反数:a 与—a 互为相反数;0的相反数仍是0;(2)倒数:当a ≠0时,a 与a 1互为倒数(0没有倒数);(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;即:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a aa实数运算1. 在有理数范围内,能进行哪些运算?(加、减、乘、除、乘方),用哪些运算律?2. 判断下列各式成立吗?2552⋅=⋅351535153=⎪⎪⎭⎫⎝⎛⋅⋅=⋅⋅()33332112742724=+=+意图:从复习入手,类比有理数中的相关运算及运算律,得到有理数的运算及运算律对实数仍然适用.效果:学生类比有理数中相关运算,体会到了实数范围内的运算及运算律. (二)实数与数轴上点的对应关系如图所示,认真观察,探讨下列问题:议一议:(1)如图,OA=OB,数轴上A点对应的数表示什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?知识整理(1)每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的;(2)在数轴上,右边的点表示的数总比左边的点表示的数大.意图:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.效果:经过学生的探讨,认识到了数轴上点A表示的数是2,它是一个无理数,这表明有理数不能将整个数轴填满.进而观察到点A在表示数1和2的点之间,因此“数轴上,右边的点表示的数总比左边的点表示的数大”在实数范围内仍然适用.三、运用新知例1 分别求下列各数的相反数、倒数和绝对值.四、巩固新知1. 判断题:.11(3);225(2);64 )1(3 012-1 -2A B2. 把下列各数填入相应的集合内:五、归纳小结◆教学反思略.。
人教初中数学七下《实数》教案 (公开课获奖)1

实数第一课时 【教学目标】 知识与技能:了解无理数和实数的概念以及实数的分类; 知道实数与数轴上的点具有一一对应的关系。
过程与方法:在数的开方的根底上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
情感态度与价值观:通过了解数系扩充体会数系扩充对人类开展的作用;敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
教学重点:了解无理数和实数的概念; 对实数进行分类。
教学难点:对无理数的认识。
【教学过程】一、复习引入无理数: 利用计算器把以下有理数95,119,847,53,3-写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式 即:5.095,18.0119,875.5847,6.053,0.33 ===-=-= 归纳:任何一个有理数〔整数或分数〕都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。
比方33,5,2-等都是无理数。
14159265.3=π…也是无理数。
二、实数及其分类:1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:按照定义分类如下:实数⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数 按照正负分类如下:OACB 实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。
物理是符合是否也可以用数轴上的点表示出来吗?活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
人教版数学七年级下册6.3《实数》优秀教学案例

3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”
2024年《实数》课件精品公开课

2024年《实数》课件精品公开课一、教学内容本节课选自2024年教材《数学》七年级下册第十章《实数》的第一节“实数的概念与性质”。
具体内容包括:实数的定义、分类和性质,以及实数在数轴上的表示。
涉及教材的章节为第十章第一节,内容包括1.1实数的定义与分类;1.2实数的性质;1.3实数与数轴。
二、教学目标1. 知识与技能:使学生理解实数的概念,掌握实数的分类及性质,能够运用实数解决实际问题。
2. 过程与方法:通过数轴上的实数表示,培养学生的数感和空间观念,提高学生的抽象思维能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探索精神。
三、教学难点与重点教学难点:实数的性质及其在数轴上的表示。
教学重点:实数的概念及其分类。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、三角板。
五、教学过程1. 导入:通过生活中实数的例子,如身高、体重等,引出实数的概念。
2. 呈现:讲解实数的定义,呈现实数的分类及性质。
3. 示范:在数轴上表示实数,讲解实数与数轴的关系。
4. 练习:让学生在数轴上表示给定的实数,并描述实数的性质。
5. 讲解:结合例题,讲解实数运算的法则。
六、板书设计1. 实数的定义:有理数和无理数的统称。
2. 实数的分类:整数、分数、无理数。
3. 实数的性质:大小关系、加减乘除运算规律。
4. 实数与数轴:数轴上的点表示实数,实数与数轴一一对应。
七、作业设计1. 作业题目:(1)填空题:在数轴上表示下列实数:3, 2/3, √3。
(2)选择题:下列哪个数是有理数?A. √2 B. 3/4 C. π D. √1(3)解答题:比较大小:1/2, 0, 1/2。
2. 答案:(1)3在数轴上表示为一个点,位于0的左边,2/3在数轴上表示为一个点,位于0的右边,√3在数轴上表示为一个点,位于1和2之间。
(2)B(3)1/2 < 0 < 1/2八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的概念和性质掌握较好,但在数轴上表示实数时,部分学生存在一定困难。
教案二:《实数》

教案二:《实数》
一、教学目标
1.理解实数的概念,包括有理数和无理数。
2.掌握实数的分类方法。
3.能进行实数的运算。
二、教学重难点
1.重点:实数的概念和分类。
2.难点:实数的运算,特别是无理数的运算。
三、教学方法
讲授法、讨论法、练习法。
四、教学过程
1.导入
回顾有理数的概念,引出无理数,从而引出实数的概念。
2.讲解实数的概念
(1)定义实数,包括有理数和无理数。
(2)举例说明无理数的存在。
3.实数的分类
(1)按定义分类,分为有理数和无理数。
(2)按性质分类,如正实数、负实数和零。
4.实数的运算
(1)实数的加法、减法、乘法、除法。
(2)运算律在实数运算中的应用。
5.例题讲解
进行实数运算的例题分析。
6.课堂练习
让学生进行实数的分类和运算练习。
7.总结归纳
总结实数的概念、分类和运算方法。
8.作业布置
布置课后作业,巩固实数的知识。
《实数》精品教案

《实数》精品教案一、教学内容1. 实数的定义及性质2. 无理数的理解与表示3. 实数的分类及数轴上的表示4. 实数的四则运算法则及性质二、教学目标1. 理解实数的概念,掌握实数的分类及性质。
2. 学会表示无理数,理解无理数在数学中的意义。
3. 能够运用实数的四则运算法则进行混合运算,提高解决问题的能力。
三、教学难点与重点教学难点:无理数的理解与表示、实数的混合运算。
教学重点:实数的定义、性质及分类,实数与数轴的关系。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:直尺、圆规、计算器。
五、教学过程1. 导入:通过实际情景引入实数概念,例如:测量物体长度时,无法得到一个精确的整数,从而引出实数的定义。
2. 新课导入:讲解实数的定义、性质,引导学生理解实数的分类。
3. 实例讲解:以π和√2为例,讲解无理数的概念及表示方法。
4. 互动环节:让学生在数轴上表示出不同的实数,加深对实数与数轴关系的理解。
5. 例题讲解:讲解实数的四则运算法则,通过例题巩固所学知识。
6. 随堂练习:布置一些实数运算的题目,让学生当堂练习,及时发现问题并进行解答。
8. 课堂小结:布置课后作业,提醒学生复习所学内容。
六、板书设计1. 实数的定义、性质及分类2. 无理数的概念及表示方法3. 实数与数轴的关系4. 实数的四则运算法则七、作业设计1. 作业题目:2. 答案:(1)实数:π,3/2,2^3,5;无理数:√2。
(2)2π + 3√2 5 = 2π + 3√2 5,(3 + √2)(2 √2) = 6 2√2 + 2√2 2 = 4。
八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念和性质掌握情况较好,但在无理数的理解和实数混合运算方面还存在问题,需要在今后的教学中加强训练。
2. 拓展延伸:引入更复杂的实数运算,如分数指数幂、对数等,为学生今后的学习打下基础。
同时,通过实际应用问题,让学生体会实数在生活中的重要性。
《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课选自人教版《数学》七年级下册第十章《实数》,具体内容包括教材第1节“实数的概念”、第2节“实数的性质”以及第3节“实数的运算”。
通过本节课的学习,使学生掌握实数的定义、性质以及运算方法。
二、教学目标1. 知识与技能:理解实数的概念,掌握实数的性质,熟练进行实数的运算。
2. 过程与方法:通过自主探究、合作交流的方式,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生运用数学知识解决实际问题的意识。
三、教学难点与重点重点:实数的概念、性质及运算方法。
难点:理解无理数的概念,掌握实数的运算规则。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、三角板。
五、教学过程1. 导入:通过生活中的实例,引入实数的概念,激发学生的学习兴趣。
实践情景:测量一根木料的长度,得到一个无法用分数表示的数值。
2. 自主探究:让学生阅读教材,了解实数的概念、性质及运算方法。
例题讲解:讲解教材例题,引导学生掌握实数的性质和运算规则。
如何表示一个无理数?实数与有理数的区别是什么?随堂练习:布置一些实数运算的练习题,让学生当堂完成。
六、板书设计1. 实数的概念2. 实数的性质3. 实数的运算方法4. 实数与有理数的区别七、作业设计1. 作业题目:证明:如果a、b是实数,那么a²+b²≥0。
2. 答案:(1)3+√2;(2)52√3;(3)8√5;(4)3√2。
证明:根据平方的性质,a²≥0,b²≥0,所以a²+b²≥0。
八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、性质及运算方法掌握程度如何?哪些地方需要加强?2. 拓展延伸:了解实数在生活中的应用,如测量、建筑等领域,提高学生运用数学知识解决实际问题的能力。
重点和难点解析1. 实数的概念及与有理数的区别。
《实数》课件精品公开课

《实数》课件精品公开课一、教学内容本节课选自教材第九章《实数》的第一节,详细内容包括实数的定义、性质及其分类。
重点讲解无理数的概念及其与有理数的区别,实数的运算法则,以及实数在数轴上的表示。
二、教学目标1. 让学生掌握实数的定义,理解无理数的概念,并能正确区分有理数与无理数。
2. 使学生掌握实数的运算法则,并能熟练进行实数的加减乘除运算。
3. 培养学生运用数轴表示实数的能力,提高数形结合的思维能力。
三、教学难点与重点难点:无理数的理解及其运算;实数在数轴上的表示。
重点:实数的定义;实数的运算法则;数轴上的实数表示。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:直尺、圆规、计算器。
五、教学过程1. 实践情景引入:通过生活中的实例,如测量物体长度、计算面积等,引出实数的概念。
2. 知识讲解:(1)实数的定义:包括有理数和无理数。
(2)实数的性质:封闭性、可比较性、可运算性。
(3)实数的分类:整数、分数、无理数。
(4)无理数的理解:通过平方根、立方根等例子,让学生直观感受无理数的存在。
3. 例题讲解:(1)实数的加减乘除运算。
(2)实数在数轴上的表示。
4. 随堂练习:(1)判断题目:区分有理数和无理数。
(2)计算题目:实数的加减乘除运算。
(3)作图题目:在数轴上表示给定的实数。
六、板书设计1. 实数的定义及性质。
2. 实数的分类:整数、分数、无理数。
3. 实数的运算法则。
4. 数轴上的实数表示。
七、作业设计1. 作业题目:(3)在数轴上表示实数3、2、√5。
2. 答案:(1)π、√2、3/2、5都是实数。
(2)和:2/3 + √3 + 4 + 1/2 = 9/2 + √3;差:2/3 √3 = 2/3 √3;积:2/3 × √3 = √3/3;商:2/3 ÷ √3 =2/(3√3)。
(3)见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念有了更深入的了解,但部分学生对无理数的理解仍存在困难,需要在今后的教学中加强引导。
第四讲实数(教案)

1.教学重点
-实数的概念:理解实数的定义,区分有理数和无理数,掌握实数的分类。
-举例:解释为什么π和√2是无理数,与有理数的区别。
-实数的运算:熟练进行实数的加减乘除运算,掌握混合运算的法则。
-举例:讲解π+2、(√3-√2)×√6等运算,强调运算规则。
-实数与数轴的关系:理解实数在数轴上的表示,掌握数轴上实数的大小比较。
第四讲实数(教案)
பைடு நூலகம்一、教学内容
本讲主要依据人教版数学八年级下册第十章《实数》的内容展开。教学内容包括:
1.实数的概念:有理数和无理数的定义,实数的分类。
2.无理数的性质:无理数的表示方法,如π和√2,以及它们与有理数的运算规律。
3.实数的运算:实数的加减乘除,以及混合运算的法则。
4.实数与数轴:实数与数轴的关系,实数在数轴上的表示。
五、教学反思
在今天实数的教学中,我发现学生们对于实数的概念和分类掌握得还不错,但无理数的理解上存在一些困难。尤其是无理数的运算和大小比较,这些部分明显感觉到学生们的困惑。这也让我意识到,无理数作为实数中的一个特殊部分,需要我们更加深入和直观地去讲解。
在讲授过程中,我尝试通过数轴和实际案例来帮助学生理解无理数。例如,用π的例子来说明无理数在实际生活中的应用,让学生感受到数学与生活的紧密联系。但我也发现,仅仅依靠理论讲解和案例分析还不够,需要更多实际操作来加深学生的印象。
-解决方法:设计实际情境题目,让学生体会实数在生活中的应用,提高数学建模能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如圆周率π)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
《实数》教案—第一课时

《实数》教案教材分析本课是青岛版八年级下册第七单元第8课,是新授课。
本节课是在学生学习了平方根、立方根以后,接触过具体的无理数的基础上,将数从有理数扩展到实数.在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义,本课属于较简单水平。
《数学课程标准》中提出:理解数与代数运算的知识,提高发现和提出问题的能力,能否使用恰当的语言有条理的表达数学思想的过程,观察、实验、归纳的方法,能从现实生活中发现并提出简单的数学问题的观念。
据此,本课教学目标可以包含:实数概念和实数的分类等方面。
本课教学可以采取对比法、归纳法、练习巩固法等方法开展教学。
学生分析本课的教学对象是14岁左右的学生,这个年龄阶段的学生已经具备运算能力、思维能力和空间想象能力,具有易受外界影响可塑性大、主动尝试、追求独立和情绪两极波动的特点。
八年级的学生通过之前的学习和生活实践,已经掌握运用平方根、立方根计算等方法,能够得出实数的定义和分类。
通过学习本课,学生可以获得在合作交流中获取知识的方法、观察、发现、归纳、概括的能力、理解特殊到一般再到特殊的认知规律观念的提升。
学生采用合作交流法等方法学习本课。
教学目标知识与技能1.了解实数概念和实数的分类;2.会说出一个实数的相反数和绝对值;3.了解实数与数轴上的点一一对应;过程与方法1.经历数系从有理数扩展到实数的过程;2.培养从特殊到一般、具体到抽象的逻辑思维能力;情感态度和价值观1.渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系;2.通过学生之间的相互交流,增强学生的合作意识;重点难点教学重点实数概念和实数的分类;教学难点正确理解无理数的意义;教学方法教法引导发现法、合作交流法、练习巩固法学法观察分析法,探究归纳法课时安排3课时第1课时课前准备教师准备1.课件、多媒体;2.收集、整理有理数的分类;3.搜索、编辑本课中利于的素材(图片、视频、音频等);4.批阅学生预习内容,总结共性问题,确定准确结论,重点查阅小组负责人的预习成果;5.制作多媒体课件,有效衔接各教学环节;学生准备1.练习本;2.阅读教材,找出关键内容,提出不解问题,完成导学;教学过程一、新课导入(时间2分钟)教师:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?学生:(1)有理数分为整数和分数(2)无理数是无限不循环小数,带根号的数不一定是无理数。
《实数》word教案 (公开课获奖)2022沪科版 (7)

6.2 实数教学目标:1.知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数;2.知道实数和数轴上的点一一对应; 有理数估算2的探索过程,从中感受“逼近〞的数学思想,开展数感,激发学生的探索创新精神. 教学重点: 1、知道无理数的客观存在性、无理数和实数的概念; 2、会判断一个数是有理数还是无理数. 教学难点:无理数探究中“逼近〞思想的理解 一、学前准备 【自学新知】 1、用计算器计算,把以下有理数写成小数的形式,你能发现什么:53-, 847, 119, 911, 95, 5 结论:任何一个有理数都可以写成有限小数或无限循环小数的形式2、我们把 叫做无理数。
和 统称为实数。
如:333252,,,-…都是无理数,π=3.14159265…也是无理数。
3、以下各数哪些是有理数?哪些是无理数?31,3.1,020********…,2,-π,38,36,325,2π。
4、用根号表示的数一定是无理数吗?二、探究活动【探究无理数】探索活动1 2是个整数吗?为什么?探索活动2 那么,2是一个分数吗?面对这个问题,我们该如何解决呢?请同学们分组讨论。
探索活动3 2到底多大呢?请同学们根据前面的结果,分组讨论,精确地估计2的范围。
归纳结论:这是一个无限不循环小数,我们称这样的数是 。
我们把有理数和无理数统称为 。
【例题研讨】例 1.把以下各数填入相应的集合内,432,-39,3.1415,10,0.6,0,3125-, 3π,4916 ,010********……(1)有理数集合:{ …}(2)无理数集合:{ …}(3)整数集合: { …}(4)正实数集合:{ …}例2.判断题:〔1〕无限小数是无理数〔 〕 〔2〕无理数都是无限小数〔 〕〔3〕有理数都是实数 〔 〕 〔4〕实数可分为正实数和负实数〔 〕〔5〕带根号的数都是无理数〔 〕 〔6〕无理数比有理数少〔 〕〔7〕实数与数轴上的点一一对应 〔 〕例3、请用“逐步逼近法〞估计5的大小,并保存3个有效数字。
《实数》全章教案 好用

试
例1:求下列各数的算术平方根。
0.0025; 121; ;
例2:下列各式表示什么意思?你能求出它们的值吗?
学生活动:模仿教材例1的模式,注意语言的准确性和书写的规范性。
学生板演,全班同学做完后修改板演同学的错误,用彩笔改出来。
例3:(口答)
81的算术平方根是___________
的值是__________
教学重点
用有理数估计无理数的大致范围
教学难点
能用有理数估计一个带算术平方根符号的无理数的大致范围.
教 学 过 程 设 计
问题与情境设计
师生活动设计
情
景
引
入
1能否用两个面积为1的小正方形拼成一个面积为2的大正方形?
问:拼成的这个面积为2 的大正方形的边长应该是多少呢?
边长为 ,
有多大呢?
请同学们猜想
自
3.会求一个立方数的立方根.
过程
方法
类比平方根学习立方根,感悟类比学习方法;使学生进一步体验立方与开立方的互逆关系,培养学生逆向思维解决问题的习惯.
教学重点
理解立方根概念及符号表示,能熟练求一个数的立方根.
教学难点
理解立方根的意义、符号.
t
自
主
探
究
1.若 ,那么______叫做的平方根,记作 =。
2.情景问题:
教
学
目
标
知识
技能
1.理解平方根的概念、开平方的概念;
2.明确算术平方根与平方根的区别与联系;
3.进一步明确平方与开方是互为逆运算。
过程
方法
1.加强概念形成过程的教学,让学生们互相交流与合作,变学会知识为会学知识;
2.培养学生的求同和求异思维,能从相似的事物中观察到共同点和不同点.
实数教案语言

实数教案语言教案标题:实数教案语言教案目标:1. 理解实数的概念和性质。
2. 掌握实数的四则运算规则。
3. 能够在实际问题中应用实数进行计算和解决。
教学资源:1. 教材:包含实数相关知识点的教材章节。
2. 白板/黑板和彩色粉笔/白板笔。
3. 教学PPT或投影仪。
教学步骤:引入:1. 创设情境:通过一个实际生活中的例子引入实数的概念,如温度的正负值、钱的收入和支出等。
2. 引导学生思考:提问学生实数的定义是什么,实数与有理数的关系是什么。
知识讲解:1. 通过教材或PPT介绍实数的定义和性质,包括实数的分类(有理数和无理数)、实数的表示方式等。
2. 详细讲解实数的四则运算规则,包括加法、减法、乘法和除法。
示例演练:1. 给出一些简单的实数运算例题,引导学生通过运算符合实数运算规则的思考和操作。
2. 鼓励学生积极参与,提供解题思路和方法的指导。
拓展应用:1. 提供一些实际问题,要求学生运用实数进行计算和解决,如温度计算、货币兑换等。
2. 引导学生分析问题,提供解题思路和方法的指导。
巩固练习:1. 提供一些综合性的实数运算练习题,巩固学生对实数概念和运算规则的理解和掌握。
2. 讲解解题思路,鼓励学生独立解题,并及时纠正错误。
总结反思:1. 对本节课的内容进行总结,强调实数的重要性和应用价值。
2. 鼓励学生提问和分享对本节课的理解和感悟。
教学评估:1. 针对学生的课堂表现和练习成绩进行评估,检查学生对实数概念和运算规则的掌握情况。
2. 可以通过小组讨论、个人答题等形式进行评估。
教学延伸:1. 鼓励学生进行实数的进一步研究和学习,拓宽实数的应用领域。
2. 提供相关的参考书籍和网上资源,供学生深入学习和探索。
以上是一个针对实数教案语言的基本框架,具体的教案内容和教学方法可以根据教学实际情况进行调整和补充。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公开课教案
上课内容:6.3实数
上课时间:
上课地点:学术报告厅
授课老师:陈凤友
【教学目标】
1、了解实数的意义,能对实数按要求进行分类。
2、了解实数范围内,相反数、倒数、绝对值的意义。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
【教学重点】理解实数的概念。
【教学难点】正确理解实数的概念。
【教学过程】
预习案
自学指导
1、自学课本49—51页内容,完成以下内容:
有理数有理数
2、归纳:任何一个有理数都可以写成_______小数或________小数的形式。
反过来,任何______小数或____________小数也都是有理数
观察通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________
π=也是无理数
小数, ____________小数又叫无理数, 3.14159265
结论: _______和_______统称
为实数
你能举出一些无理数吗?
3、试一试把实数分类
像有理数一样,无理数也有正负
之分。
例如2,33,π是____
无理数,2-,33-,π-是____无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:
实数
3、我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?
(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?
从图中可以看出OO ′的长时这个圆的周长______,点O ′的坐标是_______
这样,无理数
可以用数轴上的点表示出来
(2)
总结 ①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________
当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数
② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的
实数______
4、讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
总结 数a 的相反数是______,这里a 表示任意____________。
一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______
探究案
【课堂练习】
1、把下列各数分别填入相应的集合里:
3322
7
8,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7
378π
----- 正有理数{ }
负有理数{ }
正无理数{ } 负无理数{ }
2、下列实数中是无理数的为( )A. 0 B. 3.5- C.2 D.9
3、下列说法正确的有( )
⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数
⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数都是负实数
⑸非负实数中最小的数是0。
A. 2个 B. 3个 C. 4个 D.5个
【要点归纳】:1、本节课你有那些收获? 2、还有没解决的问题吗?
【拓展训练】
无理数的特征:
1.圆周率及一些含有的数
2.开不尽方的数
3.有一定的规律,但循环的无限小数
注意:带根号的数不一定是无理数
一、判断下列说法是否正确:
1.实数不是有理数就是无理数。
( )
2.无限小数都是无理数。
( )
3.无理数都是无限小数。
( )
4.带根号的数都是无理数。
( )
5.两个无理数之和一定是无理数。
( )
6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。
(
)
三 、1、 把下列各数填入相应的集合内:
有理数集合{ } 无理数集合{ }
整数集合{ } 分数集合{ }
实数集合{ }
B. 1.414 3.14
2、下列各数中,是无理数的是()A. 1.732。