通信原理实验报告2
通信原理实验报告2
通信原理实验报告课程名称:通信原理实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名:学号:班级:2012年12 月实验三二进制数字信号调制仿真实验一、实验目的1.加深对数字调制的原理与实现方法;2.掌握OOK、2FSK、2PSK功率谱密度函数的求法;3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较;4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。
二、实验内容1. 复习二进制数字信号幅度调制的原理2. 编写MATLAB程序实现OOK调制;3. 编写MATLAB程序实现2FSK调制;4. 编写MATLAB程序实现2PSK调制;5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。
三、实验原理在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。
数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。
由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。
根据映射后信号的频谱特性,可以分为基带信号和频带信号。
通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。
调制信号为二进制数字基带信号时,对应的调制称为二进制调制。
在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。
相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。
下面分别介绍以上三种调制方法的原理,及其MATLAB实现:本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。
根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。
假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。
通信原理实验报告
实验一、PCM编译码实验实验步骤1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。
2. PCM串行接口时序观察(1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。
分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。
(2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。
分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。
3. PCM编码器(1)方法一:(A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。
(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。
分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。
分析为什么采用一般的示波器不能进行有效的观察。
(2)方法二:(A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。
此时由该模块产生一个1KHz的测试信号,送入PCM编码器。
(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。
分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。
4. PCM译码器(1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。
此时将PCM输出编码数据直接送入本地译码器,构成自环。
通信原理实训报告
一、实训背景随着信息技术的飞速发展,通信技术在各个领域都发挥着越来越重要的作用。
为了使学生更好地理解通信原理,提高实践能力,我们选择了通信原理实训课程。
通过本次实训,我们深入学习了通信系统的基本原理、信号传输与处理技术,以及通信设备的使用与维护。
二、实训目的1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。
2. 熟悉通信设备的使用与维护方法,提高实际操作能力。
3. 培养团队协作精神,提高解决实际问题的能力。
三、实训内容本次实训主要包括以下内容:1. 通信系统基本原理:学习通信系统的基本概念、组成、工作原理等,了解通信系统的发展历程和趋势。
2. 信号传输与处理技术:学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。
3. 通信设备的使用与维护:学习通信设备的操作方法、维护技巧以及故障排除方法。
四、实训过程1. 通信系统基本原理实训(1)通过课堂讲解和实验演示,了解通信系统的基本组成和功能。
(2)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。
(3)通过实验验证通信系统的基本原理,如模拟通信系统的调制解调、数字通信系统的编码解码等。
2. 信号传输与处理技术实训(1)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。
(2)通过实验验证信号传输与处理技术的实际应用,如AM、FM、PM调制解调、数字信号编码解码等。
3. 通信设备的使用与维护实训(1)学习通信设备的操作方法、维护技巧以及故障排除方法。
(2)通过实际操作,掌握通信设备的操作方法,如调制解调器、路由器、交换机等。
(3)学习故障排除方法,提高实际解决问题的能力。
五、实训成果1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。
2. 熟悉通信设备的使用与维护方法,提高实际操作能力。
3. 培养团队协作精神,提高解决实际问题的能力。
六、实训总结通过本次通信原理实训,我们收获颇丰。
通信原理实验报告
通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。
就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。
抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。
(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。
(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。
(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。
2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。
P09 测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。
3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。
抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。
通信原理2DPSK调制与解调实验报告
通信原理课程设计报告一. 2DPSK基本原理1.2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。
现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。
则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。
图1.1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。
如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。
所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。
定义∆Φ为本码元初相与前一码元初相之差,假设:∆Φ=0→数字信息“0”;∆Φ=π→数字信息“1”。
则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0 π π 0 π π 0 π 0 0 π或:π 0 0 π 0 0 π 0 π π 02. 2DPSK信号的调制原理一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。
2DPSK 信号的的模拟调制法框图如下图 1.2.1,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。
图1.2.1 模拟调制法2DPSK信号的的键控调制法框图如下图1.2.2,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。
选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。
图1.2.2 键控法调制原理图3. 2DPSK信号的解调原理2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。
(1) 2DPSK信号解调的极性比较法它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。
通信原理实验2
①以9号模块“NRZ-I”为触发,观测“I”;以9号模块 “NRZ-Q”为触发,观测“Q”。
②以9号模块“基带信号”为触发,观测“调制输出”。 ③以9号模块的“基带信号”为触发,观测13号模块的 “SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复 出载波。 ④以9号模块的“基带信号”为触发观测“DBPSK解调输 出”,多次单击13号模块的“复位”按键。观测“DBPSK解 调输出”的变化。
⑤以信号源的CLK为触发,测9号模块LPF-FSK,观测眼 图。
实验项目三 2PSK调制及解调实验
1、实验原理框图
256K
信号源
PN15
载波1 基带信号
256K
载波2
BPSK解调 输出
门限
低通
判决 LPF-BPSK 滤波
9# 数字调制解调模块
反相
I NRZ_I
取反
NRZ_Q Q
相干载波
13# 载波同步及位同步模块
模块9:TH4(调制输出) 模块13:TH2(载波同步输入) 载波同步信号输入
模块13:TH1(SIN)
模块9:TH10(相干载波输入) 用于解调的载波
模块9:TH4(调制输出) 模块9:TH7(解调输入)
解调信号输入
模块9:TH12(BPSK输出) 模块13:TH7(锁相环输入) 锁相环信号输入
模块13:TH5(BS2)
(4)波形观测 ①示波器CH1接9号模块TH1基带信号,CH2接9号模块 TH4调制输出,以CH1为触发对比观测FSK调制输入及输出, 验证FSK调制原理。 ②将PN序列输出频率改为64KHz,观察载波个数是否发 生变化。 ③尝试以学号作为基带信号,观测调制输出波形。
④以9号模块TH1为触发,用示波器分别观测9号模块 TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、 TH8(FSK 解调输出),验证FSK解调原理。
通信原理实验报告.
《通信原理》实验报告地点通信实验室学院信息工程学院专业班级通信082姓名同组成员学号指导教师2010年 12月实验2 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数;2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G2.频率计1台3.20M双踪示波器1台4.小电话单机1部五、实验内容及步骤1.插入有关实验模块:在关闭系统电源的条件下,将“时钟与基带数据发生模块”,插到底板“G”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。
注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。
2.加电:打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
3. 非同步函数信号源测试:频率计和示波器监测P03测试点,按上述设置测试非同步函数信号源输出信号波形,记录其波形参数。
4.同步正弦波信号源测试:频率计和示波器监测P04测试点,按上述设置测试同步正弦波信号源输出信号波形,记录其波形参数。
5.用户电话测试:1)电话模块接上电话单机,说话或按住某个数字键不放,用示波器测试其发端波形。
2)用信号连接线连接P03与P06/P08两铆孔,即将函数信号送入电话的接收端,调节信号的频率和幅度,听听筒中发出的声音。
6. 关机拆线:实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。
六、实验报告要求1.记录非同步、同步函数信号的幅度、频率、直流分量等参数,画出测试的波形图。
(1).非同步函数信号源测试:三角波: T=0.8s, Vp-p=1.3v 正弦波: T=0.52ms,Vp-p=1.2v方波:T=0.56ms,VP-P=2.2v同步正弦:T=0.5ms,Vp-p=0.52v2.记录电话数字键波形,了解电话拨号的双音多频的有关技术。
数字键波形记录:1: 2:3: 4:5: 6:7: 8:9: 0:实验2 集成乘法器幅度调制电路一、实验目的1.通过实验了解振幅调制的工作原理;2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系;3.掌握用示波器测量调幅系数的方法。
通信原理实验报告答案(3篇)
第1篇一、实验目的1. 理解通信系统的基本原理和组成。
2. 掌握通信系统中的调制、解调、编码、解码等基本技术。
3. 熟悉实验仪器的使用方法,提高动手能力。
4. 通过实验,验证通信原理理论知识。
二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。
2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。
3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。
三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。
2. 信号源:提供调制、解调所需的信号。
3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。
四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。
(2)将信号源信号输入调制器,观察调制后的信号波形。
(3)调整解调器参数,如解调方式、解调频率等。
(4)将调制信号输入解调器,观察解调后的信号波形。
2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。
(2)将调制信号输入解调器,观察解调后的信号波形。
(3)调整调制器参数,如调制方式、调制频率等。
(4)将解调信号输入调制器,观察调制后的信号波形。
3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。
(2)将信息信号输入编码器,观察编码后的数字信号。
(3)设置解码器参数,如解码方式、解码长度等。
(4)将编码信号输入解码器,观察解码后的信息信号。
4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。
(2)将信号源信号输入传输线路,观察传输过程中的信号变化。
(3)调整传输线路参数,如衰减、反射等。
(4)观察传输线路参数调整对信号传输的影响。
五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。
2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。
哈工大通信原理实验报告
通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:__________________姓名:___________________学号:______________扌旨导教师:______ 倪洁__________ 实验时间:2015 年12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1. 了解帧同步的提取过程。
2. 了解同步保护原理。
3. 掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、 实验内容1. 观察帧同步码无错误时帧同步器的维持状态。
2. 观察帧同步码有一位错误时帧同步器的维持态和捕捉态3. 观察帧同步器假同步现象和同步保护器。
四、 实验步骤1. 开关K301接2.3脚。
K302接1.2脚。
2. 接通电源,按下按键 K1,K2,K300,使电路工作。
3. 观察同步器的同步状态将信号源中的 SW001 SW002 SW003设置为 11110010,10101010,11001100 (其中第 2-8 位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302, TP304,TP305,TP306,观察上述信号波形, 使帧同步码(SW001的2-8位)措一位,重新做上述观察, 此时除了 TP303外,个点波形不变,说明同步状态仍在维持。
4. 观察同步器的失步状态。
通信原理硬件实验报告
通信原理硬件实验报告实验二抑制载波双边带的产生一.实验目的:1.了解抑制载波双边带(SC-DSB)调制器的基本原理。
2.测试SC-DSB 调制器的特性。
二.实验步骤:1.将TIMS 系统中的音频振荡器(Audio Oscillator)、主振荡器(Master Signals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按图连接。
2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整缓冲放大器的K1,使其输出到乘法器的电压振幅为1V。
3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V 作为载波信号。
4.测量乘法器的输出电压,并绘制其波形。
见下图:5.调整音频振荡器的输出,重复步骤4。
见下图:6.将电压控制振荡器(VCO)模快和可调低通滤波器(Tuneable LPF)模块按图连接。
8.将可调低通滤波器的频率范围选择范围至“wide”状态,并将频率调整至最大,此时截至频率大约在12kHz 左右。
LPF 截止频率最大的时候输出:(频响)9.将可调低通滤波器的输出端连接至频率计,其读数除360 就为LPF 的3dB 截止频率。
10.降低可调LPF 的截止频率,使SC-DSB 信号刚好完全通过低通滤波器,记录此频率(fh=fc+F)。
11.再降低3dB 截止频率,至刚好只有单一频率的正弦波通过低通滤波器,记录频率(fl=fc-F)只通过单一频率的LPF 输出:12.变化音频振荡器输出为频率为800Hz、500Hz,重复步骤10、11。
OSC=500HZOSC=800HZ 的频响:三、思考题1、如何能使示波器上能清楚地观察到载波信号的变化?答:可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一些,可通过调整音频震荡器来完成。
2.用频率计直接读SC—DSB 信号,将会读出什么值。
答:围绕一个中心频率来回摆动的值。
通信原理综合实验报告
重庆交通大学信息科学与工程学院综合性设计性实验报告专业班级:通信工程姓名:学号:实验所属课程:通信原理实验室(中心):语音八楼指导教师:许登元实验完成时间:2013 年1月1日教师评阅意见:签名:年月日实验成绩:一、设计题目基于MATLAB的通信系统仿真——信源编解码二、实验目的:1.综合应用《Matlab编程与系统仿真》、《信号与系统》、《现代通信原理》等多门课程知识,使我们建立通信系统的整体概念;2.培养我们系统设计与系统开发的思想;3.培养我们利用软件进行通信仿真的能力。
4.培养我发现问题,解决问题,查阅资料解决问题的能力。
5、培养我熟练掌握MATLAB,运用此matlab软件工具进行通信仿真的能力三、实验设备及软件:PC机一台,MATBLAB。
四、实验主要内容及要求:1、对通信系统有整体的较深入的理解,深入理解自己仿真部分的原理的基础,画出对应的通信子系统的原理框图2、提出仿真方案;3、完成仿真软件的编制4、仿真软件的演示5、提交详细的设计报告五、实验原理1、PCM基本原理脉冲编码调制(PCM)简称脉码调制,它是一种用二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。
因此此种通信方式抗干扰能力强,因此在很多领域都得到了广泛运用。
PCM信号的形成主要由三大步骤组成,包括:抽样、量化和编码。
它们分别完成时间上离散、幅度上离散及量化信号的二进制表示。
量化分为均匀量化和非均匀量化,为了减小小信号的量化误差,我们常使用的是非均匀量化。
非均匀量化分为A 律和µ律。
我国采用的是A 律,但由于A 律不好实现,所以我们常用近似的13折线编码。
1.1抽样抽样即是将时间连续的模拟信号由一系列时间离散的样值所取代的过程它实现的是信号在时间上的离散化。
抽样信号要想无失真的恢复出原信号,抽样频率必须要满足抽样定理。
即:如果信号的最高频率为f H ,那么抽样频率fs 必须要满足fs>=2f H .1.2量化经过抽样后的信号还并不是数字信号,它只实现了时间上的离散化。
通信原理实验报告(终)
通信原理实验报告班级: 12050641姓名:谢昌辉学号: 1205064135实验一 抽样定理实验一、实验目的1、 了解抽样定理在通信系统中的重要性。
2、 掌握自然抽样及平顶抽样的实现方法。
3、 理解低通采样定理的原理。
4、 理解实际的抽样系统。
5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。
6、 理解低通滤波器的相频特性对抽样信号恢复的影响。
7、 理解带通采样定理的原理。
二、实验器材1、 主控&信号源、3号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图保持电路S1信号源A-outmusic抽样电路被抽样信号抽样脉冲平顶抽样自然抽样抽样输出抗混叠滤波器LPFLPF-INLPF-OUTFPGA 数字滤波FIR/IIR译码输出编码输入3# 信源编译码模块图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。
平顶抽样和自然抽样信号是通过开关S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4kHz 的巴特沃斯低通滤波器)或FPGA 数字滤波器(有FIR 、IIR 两种)。
反sinc 滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
要注意,这里的数字滤波器是借用的信源编译码部分的端口。
在做本实验时与信源编译码的内容没有联系。
四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
1、关电,按表格所示进行连线。
源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
通信原理实验报告_2
通信原理实验报告一、实验目的1、熟悉信号源实验模块提供的信号类别;2、加深对PCM编码过程的理解;3、掌握2ASK、2FSK的调制、解调原理;二、4.通过观察噪声对信道的影响, 比较理想信道与随机信道的区别, 加深对随机信道的理解。
三、实验器材实验模块---信号源双踪示波器模拟信号数字化模块数字调制模块信道模拟模块数字解调模块连接线三、实验原理测试工具---示波器:(1)示波器的输入功能区: 从通道1和通道2输入2、(2)示波器的测量功能区: QuickMeas光标调节和快速测量, 可以测量电压和频率;auto-scale自动触发扫描;在左上角的按钮可以调节扫描时间;在右上角的按钮可以调节水平位置。
3、(3)示波器的控制功能区, Run/Stop可以暂停便于得出波形4、模拟信号数字化(PCM编码)脉冲编码调制(PCM)简称为脉码调制, 它是一种将模拟语音信号变换成数字信号的编码方式。
PCM的原理框图:PCM主要包括抽样、量化与编码三个过程。
抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。
(1)、采样: 利用奈奎斯特定律, fs 2fb,(fs是采样频率, fb是信号的截止频率), 满足这个不等式关系信号才不会重叠, 以致信号不能还原。
(2)、量化: 模拟信号的量化分为均匀量化和非均匀量化。
本实验模块中所用到的PCM编码芯片TP3067是采用近似于A律函数规律的13折线(A=87.6)的压扩特性压扩特性来进行编码的。
A律13折线:(3)、编码所谓编码就是把量化后的信号变换成代码, 其相反的过程称为译码。
当然, 这里的编码和译码与差错控制编码和译码是完全不同的, 前者是属于信源编码的范畴。
本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。
PCM电路原理图:3.2ASK 调制原理将载波在二进制基带信号1或0的控制下通或断, 即用载波幅度的有无来代表信号中的“1”或者是“0”, 这样就可以得到2ASK 信号, 这种二进制振幅键控方式称为通—断键控(OOK )。
通信原理实验报告 (2)
通信原理实验报告(2)广西科技大学通信原理实验报告学院:班级:姓名:班别: 学号:指导老师:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握集中插入帧同步码时分复用信号的帧结构特点。
二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。
2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI 译码输出波形。
三、基本原理本实验使用数字信源模块和HDB3 编译码模块。
1、数字信源此NRZ信号为集中扩入帧同步码时分复用信号,试验中数据码用红色发光二极管指示。
其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为17.5KB,帧结构如图1-2所示。
帧长为24位,其中首位为无定义位,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
本模块有以下测试点及输入输出点:+5V +5V电源输入点(2个)CLK 晶振信号测试点BS-OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图 1-1 数字信源方框图图 1-2 帧结构FS信号、NRZ-OUT信号之间的相位关系如图1-3所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111,FS信号的低电平,高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT码第一位起始时间超前一个码元。
图1-3 FS、NRZ-OUT波形2. HDB3 编译码原理框图如图1-4 所示。
本单元有以下信号测试点:●-12V -12V电源输入点●+5V +5V电源输入点●NRZ 译码器输出信号●BS-R 锁相环输出的位同步信号●(AMI)HDB3 编码器输出信号●BPF 带通滤波器输出信号●(AMI-D)HDB3-D (AMI)HDB3 整流输出信号图1-4 HDB3编译方框图本模块上的开关K4 用于选择码型,K4 位于左边(A 端)选择AMI 码,位于右边(H 端)选择HDB3码。
通信原理硬件实验二 PSK调制解调
电子信息与自动化学院《通信原理》实验报告学号:姓名:实验名称:硬件实验二 PSK调制解调实验成绩:一、实验目的1.掌握PSK调制解调的工作原理及性能要求;2.进行PSK调制、解调实验,掌握相干解调原理和载波同步方法;3.理解PSK相位模糊的成因,思考解决办法。
二、实验仪器1.RZ9681实验平台2.实验模块:•主控模块•基带信号产生与码型变换模块-A2•信道编码与频带调制模块-A4•纠错译码与频带解调模块-A53.100M双通道示波器4.信号连接线5.PC机(二次开发)三、实验原理1、PSK调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传“0”和传“1”。
图3.3.3 1 2PSK调制信号波形PSK调制由“信道编码与频带调制-A4”模块完成,该模块基于FPGA和DA芯片,采用软件无线电的方式实现频带调制。
图3.3.3.2 PSK调制电路原理框图硬件实验二PSK调制解调实验报告姓名:学号:上图中,基带数据和时钟,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成PSK的调制后,再经DA数模转换即可输出相位键控信号,调制后的信号从4P9输出。
2、PSK解调原理实验中2PSK信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字costas环提取相干载波,二相PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。
图3.3.3.3 数字科斯塔斯特环原理图设已调信号表达式为(A1为调制信号的幅值),经过乘法器与载波信号A2(A2为载波的幅值)相乘,得:可知,相乘后包括二倍频分量和分量(为时间的函数)。
因此,需经低通滤波器除去高频成分,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制VCO载波频率和相位,得到和调制信号同频同相的本地载波。
通信原理实验报告(8份)
通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。
掌握HDB3码的编译规则。
了解滤波法位同步在的码变换过程中的作用。
二、实验器材主控&信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
当没有连续4个连0时与AMI编码规则相同。
当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。
若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。
实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。
同样AMI译码只需将所有的±1变为1,0变为0即可。
而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。
4、实验操作及波形观测。
通信原理实验二
通信原理实验二实验二:调制与解调一、实验目的1. 理解调制与解调的基本概念;2. 掌握调幅(AM)、调频(FM)以及解调的原理;3. 实现AM、FM的信号调制与解调。
二、实验原理1. 调制原理调制是指在通信过程中将信息信号调制到载波上,以便传输的过程。
调制是将信息信号的某些特征参数随时间变化的过程。
1.1 调幅(AM)调制调幅是指通过改变载波的振幅来传输信息的一种调制方式。
调幅信号能够改变载波的背景亮度,使其随着信息信号的变化而变化。
1.2 调频(FM)调制调频是通过改变载波的频率来传输信息的一种调制方式。
调频信号能够改变载波的频率,使其频率随着信息信号的变化而变化。
2. 解调原理解调是指将调制信号中的信息还原出来的过程。
解调过程是调制的逆过程。
2.1 调幅(AM)解调调幅解调是从调幅信号中还原出原始信号的过程。
调幅信号在传输过程中会叠加一定的噪声,因此解调时需要采取一定的处理方法,如包络检波、同步检波等。
2.2 调频(FM)解调调频解调是从调频信号中还原出原始信号的过程。
调频信号在传输过程中对噪声具有较好的抵抗能力,因此解调过程较为简单,常采用频率鉴别解调等方法。
三、实验内容1. 实现AM调制与解调2. 实现FM调制与解调四、实验步骤1. 搭建AM调制电路,将音频信号与载波信号进行调制;2. 实现AM解调,将调制后的信号还原为音频信号;3. 搭建FM调制电路,将音频信号与载波信号进行调制;4. 实现FM解调,将调制后的信号还原为音频信号;5. 测试与观测调制与解调过程中的信号波形变化。
五、实验数据记录与分析(根据实际实验情况填写数据并进行相应的分析)六、实验总结通过本次实验,我们学习了调制与解调的原理,并实际搭建电路进行了AM和FM的调制与解调。
通过观测信号波形变化,我们加深了对调制与解调过程的理解,并掌握了相关的实验操作技巧。
本次实验对我们理解通信原理中的调制与解调起到了很好的辅助作用。
通信原理实验报告
通信原理实验报告实验目的,通过本次实验,掌握数字通信原理的基本知识,了解数字信号的调制与解调原理,掌握数字通信系统的基本结构和工作原理。
实验仪器,数字信号发生器、示波器、频谱分析仪、数字通信系统实验箱等。
实验原理,数字通信是利用数字信号进行信息传输的通信方式。
在数字通信中,数字信号经过调制器调制成模拟信号,通过信道传输到接收端,再经过解调器解调为数字信号,最终恢复原始信号。
本次实验主要涉及到的调制方式有ASK、FSK和PSK。
实验步骤:1. 连接实验仪器,首先将数字信号发生器连接到示波器和频谱分析仪上,然后将示波器连接到数字通信系统实验箱的发送端,频谱分析仪连接到接收端。
2. 设置数字信号发生器,根据实验要求,设置数字信号发生器的频率、幅度和波形。
3. 进行调制实验,依次进行ASK、FSK和PSK的调制实验,观察发送端的波形和频谱,并记录相关数据。
4. 进行解调实验,将接收端连接到示波器上,依次进行ASK、FSK和PSK的解调实验,观察接收端的波形和频谱,并记录相关数据。
5. 数据分析,根据实验数据,分析不同调制方式的特点和性能,比较它们的优缺点。
实验结果:经过实验,我们得到了不同调制方式的波形和频谱图,通过数据分析,我们得出了以下结论:1. ASK调制适用于带宽较窄的通信系统,但抗干扰能力较差。
2. FSK调制适用于抗干扰能力要求较高的通信系统,但带宽较宽。
3. PSK调制适用于对频谱利用率要求较高的通信系统。
结论,本次实验通过实际操作,加深了对数字通信原理的理解,掌握了数字信号的调制与解调原理,对数字通信系统的基本结构和工作原理有了更深入的认识。
实验总结,数字通信技术是现代通信领域的重要组成部分,通过本次实验,我们对数字通信原理有了更加深入的了解,这对我们今后的学习和工作都具有重要意义。
通过本次实验,我们不仅学到了理论知识,还掌握了实际操作的技能,这对我们今后的学习和工作都具有重要意义。
希望在今后的实验中,我们能够继续努力,不断提高自己的实验能力,为今后的科研工作打下坚实的基础。
通信原理_实验报告二
第 6页 共 6页
}
else
{
cout<<' '<<'0'<<endl;
//偶数个 1 ,校验位为 0
}
}
for(int i=0;i<n;i++)
{
if(ar1[i]%2==0)
{
ar2[i]=1;
cout<<' '<<'1';
//奇数个 1 ,校验位为 1
}
else
{
ar2[i]=0;
cout<<' '<<'0';
1.详细描述实验设计思想、程序结构及各模块设计思路; 2.详细描述程序所用数据结构及算法; 3.明确给出测试用例和实验结果; 4.为增加程序可读性,在程序中进行适当注释说明; 5.认真进行实验总结,包括:设计中遇到的问题、解决方法与收获等; 6.实验报告撰写要求结构清晰、描述准确逻辑性强; 7.实验过程中,同学之间可以进行讨论互相提高,但绝对禁止抄袭。
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
cin>>arr[i][j];
if(arr[i][j]==1)
{
ar0[i]++;
}
第 3页 共 6页
}
for(int i=0;i<n;i++)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信原理实验报告课程名称:通信原理实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名:学号:班级:2012年12 月实验三二进制数字信号调制仿真实验一、实验目的1.加深对数字调制的原理与实现方法;2.掌握OOK、2FSK、2PSK功率谱密度函数的求法;3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较;4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。
二、实验内容1. 复习二进制数字信号幅度调制的原理2. 编写MATLAB程序实现OOK调制;3. 编写MATLAB程序实现2FSK调制;4. 编写MATLAB程序实现2PSK调制;5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。
三、实验原理在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。
数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。
由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。
根据映射后信号的频谱特性,可以分为基带信号和频带信号。
通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。
调制信号为二进制数字基带信号时,对应的调制称为二进制调制。
在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。
相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。
下面分别介绍以上三种调制方法的原理,及其MATLAB实现:本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。
根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。
假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。
整个过程可用如下程序段实现:%定义相关参数clear all;close all;A=1fc=2; %2Hz;N_sample=8;N=500; %码元数Ts=1; %1 Baud/sdt=Ts/fc/N_sample; %波形采样间隔t=0:dt:N*Ts-dt;Lt=length(t);%产生二进制信源 d=sign(randn(1,N));%dd=sigexpand((d+1)/2,fc*N_sample); N1=length((d+1)/2);dd=zeros(fc*N_sample,N1); dd(1,:)=(d+1)/2;dd=reshape(dd,1,fc*N_sample*N1); gt=ones(1,fc*N_sample);%NRZ 波形 figure(1)subplot(221);%输入NRZ 信号波形(单极性) d_NRZ=conv(dd,gt);plot(t,d_NRZ(1:length(t)));axis([0 10 0 1.2]); ylabel ('输入信号'); subplot(222);%输入NRZ 频谱 dt=t(2)-t(1); T=t(end); df=1/T;N=length(d_NRZ(1:length(t))); f=-N/2*df:df:N/2*df-df;d_NRZf=fft(d_NRZ(1:length(t))); d_NRZf=T/N*fftshift(d_NRZf);plot(f,10*log10(abs(d_NRZf).^2/T));axis([-2 2 -50 10]);ylabel('输入信号功率谱密度(dB/Hz)');3.2 OOK 调制二进制振幅键控(OOK/2ASK)是利用载波的幅度变化来传递数字信息的,而其频率和初始相位保持不变。
在2ASK 中,载波的幅度只有两种变化状态,分别对应二进制信息“0”和“1”。
2ASK 信号的一般表达式为:()t t s t e c ωcos )(2ASK =其中,∑-=n s n nT t g a t s )()(。
所以,要进行OOK 调制,定义完二进制数字序列和载波参量后,将之相乘即可。
相关的MATLAB 指令如下:ht=A*cos(2*pi*fc*t); s_2ask=d_NRZ(1:Lt).*ht; subplot(223) plot(t,s_2ask);axis([0 10 -1.2 1.2]); ylabel('OOK');要对OOK 调制之前与之后信号的频域特性进行比较,可以通过比较两者的功率谱密度曲线来实现。
也就是求出OOK 调制信号s_2ask 的功率谱密度函数,并将之与3.1中求得的基带信号的功率谱密度函数进行比较。
根据《通信原理》的学习,可以知道,求解某信号功率谱密度的过程就是先求出该信号的傅立叶变换,再求该傅立叶变换的幅值的绝对值的平方的过程。
如何求功率谱密度函数在实验二中已经详细介绍过了,本处不再赘述。
根据前面的介绍,我们已经知道要求得某信号的傅立叶变换,可以通过调用实验一附录中的T2F 子函数实现,也可以直接编程实现。
实验二中使用的都是子函数调用的方式,下面给出直接编程实现傅立叶变换的MATLAB 程序:dt=t(2)-t(1); T=t(end); df=1/T;N=length(s_2ask);f=-N/2*df:df:N/2*df-df; s_2askf=fft(s_2ask);s_2askf=T/N*fftshift(s_2askf); subplot(224)plot(f,10*log10(abs(s_2askf).^2/T)); axis([-fc-4 fc+4 -50 10]);ylabel('OOK 功率谱密度(dB/Hz )');通过以上程序,我们将基带信号波形及其功率谱密度曲线,OOK 调制信号及其功率谱密度曲线分别画在了同一个图的四个子图中,以方便对调制前后信号的频域特性进行比较。
3.3 2FSK 调制频移键控是利用载波的频率的变化来传递数字信息的。
在2FSK 中,载波的频率随二进制基带信号在f 1和f 2两个频率点间变化。
故其表达式为:⎩⎨⎧++=”时发送“”时发送“0),cos(A 1),cos(A )(212FSK n n t t t e θωϕω《通信原理》中已经介绍过,2FSK 信号的调制可通过两个方法实现,一是将2FSK 信号理解为两路不同频率的ASK 信号相加的结果;二是将2FSK 信号表示成如下的形式:()cos(22())C n S n s t A f t h a g t nT ππ∞=-∞=+-∑第一种方法实现起来相当简单,直接参照3.2中ASK 信号的产生方法,产生两路不同频率的ASK 信号,将之相加即可得到2FSK 信号,这种方法留待同学们课后自己实现。
下面我们介绍用第二种方法产生2FSK 信号的MATLAB 程序设计过程。
首先,为了使2FSK 信号不至覆盖了前面产生的信号,新建一个图,其指令为: figure(2)然后,在这个图上画2FSK 信号的波形,及其功率谱密度曲线波形。
%2FSK%s_2fsk=A*cos(2*pi*fc*t+int(2*d_NRZ-1)); sd_2fsk=2*d_NRZ-1;s_2fsk=A*cos(2*pi*fc*t+2*pi*sd_2fsk(1:length(t)).*t); subplot(223) plot(t,s_2fsk);axis([0 10 -1.2 1.2 ]); xlabel('t'); ylabel('2FSK') subplot(224)求出2FSK 调制信号的功率谱密度函数:%[f,s_2fsk]=T2F(t,s_2fsk); dt=t(2)-t(1); T=t(end); df=1/T;N=length(s_2fsk);f=-N/2*df:df:N/2*df-df; s_2fsk=fft(s_2fsk);s_2fsk=T/N*fftshift(s_2fsk);plot(f,10*log10(abs(s_2fsk).^2/T)); axis([-fc-4 fc+4 -50 10]);xlabel('f'); ylabel('2FSK 功率谱密度(dB/Hz)');3.4 2PSK 调制相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移键控(2PSK)。
其时域表达式为:)cos(A )(2PSK n c t t e ϕω+=与2ASK 信号的产生方法相比较,2PSK 和2ASK 只是对s(t)的要求不同,在2ASK 中s(t)是单极性的,而在2PSK 中s(t)是双极性的基带信号。
除此之外,所有的设计流程都是相似的。
参考程序如下:%2PSK 信号d_2psk=2*d_NRZ-1;s_2psk=d_2psk(1:Lt).*ht; subplot(221) plot(t,s_2psk);axis([0 10 -1.2 1.2]); ylabel('2PSK'); subplot(222)求出2PSK 调制信号的功率谱密度函数:%[f,s_2pskf]=T2F(t,s_2psk); dt=t(2)-t(1); T=t(end); df=1/T;N=length(s_2psk);f=-N/2*df:df:N/2*df-df; s_2pskf=fft(s_2psk);s_2pskf=T/N*fftshift(s_2pskf);plot(f,10*log10(abs(s_2pskf).^2/T)); axis([-fc-4 fc+4 -50 10]);ylabel('PSK 功率谱密度(dB/Hz )'); 四、实验内容(1)按照如上介绍的方法,分别产生一组长度为500的二进制单极性不归零信号和归零信号,存档名为Q3_1。
并求分别求出它们的功率谱密度。
请写出相应的MATLAB 程序,将不归零信号波形及功率谱和归零信号波形及功率谱分别画在同一图形的四个子图中,将结果图保存,贴在下面的空白处。
程序:clear all;close all;A=1fc=2; %2Hz;N_sample=8;N=500; %码元数Ts=1; %1 Baud/sdt=Ts/fc/N_sample; %波形采样间隔t=0:dt:N*Ts-dt;Lt=length(t);%产生二进制信源d=sign(randn(1,N));%dd=sigexpand((d+1)/2,fc*N_sample);N1=length((d+1)/2);dd=zeros(fc*N_sample,N1);dd(1,:)=(d+1)/2;dd=reshape(dd,1,fc*N_sample*N1);gt=ones(1,fc*N_sample);%NRZ 波形gt2=ones(1,fc*N_sample/2)%RZboxing/////figure(1)subplot(221);%输入NRZ信号波形(单极性)d_NRZ=conv(dd,gt);plot(t,d_NRZ(1:length(t)));axis([0 10 0 1.2]); ylabel ('输入信号');subplot(222);%输入NRZ频谱dt=t(2)-t(1);T=t(end);df=1/T;N=length(d_NRZ(1:length(t)));f=-N/2*df:df:N/2*df-df;d_NRZf=fft(d_NRZ(1:length(t)));d_NRZf=T/N*fftshift(d_NRZf);plot(f,10*log10(abs(d_NRZf).^2/T));axis([-2 2 -50 10]);ylabel('输入信号功率谱密度(dB/Hz)');%/////////subplot(223);%输入NRZ信号波形(单极性)d_RZ=conv(dd,gt2);plot(t,d_RZ(1:length(t)));axis([0 10 0 1.2]); ylabel ('输入信号');subplot(224);%输入NRZ频谱dt=t(2)-t(1);T=t(end); df=1/T;N=length(d_RZ(1:length(t))); f=-N/2*df:df:N/2*df-df;d_RZf=fft(d_RZ(1:length(t))); d_RZf=T/N*fftshift(d_RZf);plot(f,10*log10(abs(d_RZf).^2/T));axis([-2 2 -50 10]);ylabel('输入信号功率谱密度(dB/Hz)'); 图形:05100.51输入信号-2-1012-40-200输入信号功率谱密度(d B /H z )5100.51输入信号-2-112-40-200输入信号功率谱密度(d B /H z )ZX AND LZ(2)对刚才产生的长度为500的不归零波形对载波频率为2Hz ,幅度为1的余弦信号进行OOK 调制,并求出调制信号的功率谱密度。