余热回收吸收式热泵应用前景共55页文档

合集下载

热泵在余热回收中的应用共52页文档

热泵在余热回收中的应用共52页文档

1
0















16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
热泵在余热回收中的应用
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散

吸收式热泵在余热回收领域的创新应用

吸收式热泵在余热回收领域的创新应用

吸收式热泵在余热回收领域的创
新应用
吸收式热泵在余热回收领域的创新应用
吸收式热泵是一种先进的能源回收技术,近年来在余热回收领域得到了广泛的创新应用。

它能够利用低温热能源,如废热、太阳能等,通过热量转移的方式,产生高温热能。

这种热泵技术的创新应用,为工业和生活提供了可持续的能源解决方案。

在工业领域,吸收式热泵被广泛应用于余热回收系统中。

工厂和制造业通常会产生大量的废热,传统上往往被浪费掉。

而吸收式热泵可以将这些废热转化为有用的高温热能。

通过回收和再利用废热,工厂可以降低能源消耗,减少对化石燃料的依赖,同时也降低了对环境的负面影响。

另外,吸收式热泵在生活领域也有创新的应用。

例如,在集中供暖系统中,吸收式热泵可以回收低温热水的热能,提供高温水供暖。

这种方式不仅可以提高供暖效率,减少能源消耗,还可以降低居民的能源开支。

此外,吸收式热泵还可以应用于热水供应系统,通过废热回收产生热水,满足家庭和商业需求。

除了工业和生活领域,吸收式热泵还在农业和温室种植领域有创新的应用。

农业生产通常需要大量的
热能,而吸收式热泵可以利用太阳能或废热为温室提供热能,使得温室内的作物生长更加稳定和高效。

这种方式不仅可以降低农业生产成本,还可以减少温室气体排放,对环境更加友好。

总的来说,吸收式热泵在余热回收领域的创新应用带来了许多好处。

它不仅可以提高能源利用效率,降低能源消耗,还可以减少环境污染。

随着技术的不断发展和创新,吸收式热泵有望在更多的领域得到应用,为可持续发展做出更大的贡献。

吸收式热泵回收余热技术的应用分析

吸收式热泵回收余热技术的应用分析

吸收式热泵回收余热技术应用分析一、吸收式热泵回收余热技术简介:溴化锂吸收式热泵包括蒸发器、吸收器、冷凝器、发生器、 泵和其他附件等。

它以蒸汽为驱动热源,在发生器内释放热量稀溶液并产生冷剂蒸汽。

冷剂蒸汽进入冷凝器,释放冷凝热传热管内的热水,自身冷凝成液体后节流进入蒸发器。

冷剂水经冷剂泵喷淋到蒸 发器传热管表面,吸收流经传热管内低温热源水的热量Qe 使热源水温度降低后流出机组,冷剂水吸收热量后汽化成冷剂蒸汽, 进入吸收器。

被发生器浓缩后 的溴化锂溶液返回吸收器后喷淋,吸收从蒸发器过来的冷剂蒸汽,并放出吸收热 Qa,加热流经吸收器传热管的热水。

热水流经吸收器、冷凝器升温后,输送给热用户。

吸收式热泵原理图吸收式热泵常以溴化锂溶液作为工质,对环境没有污染,不破坏大气臭氧 层,而且具有高效节能的特点。

可以配备溴化锂吸收式热泵,回收利用各种低品 位的余热或废热,达到节能、减排、降耗的目的。

二、热电分公司概况: 1、宇光高新热电: 一期建设:2X12MW 中温次高压抽凝式汽轮发电机组,4X 75t/h 循环流化床锅炉,总装机两 机四炉,总装机容量24MW/ 2005年3月投产。

二期建设:2008年新建一台12MV 抽背机组,2009年3月又新建一台75吨/时循环流化床 锅炉。

热交换器、屏蔽Qg,加热溴化锂 Qc 加热流经冷凝器 6底bnrt+Xa*tAJl亂需廈•IKE褴處Eli -i.」A皿三期建设:2009年7月,三期再建两台25MV机组,配套两台240t/h循环流化床锅炉,到2010年10月20日投产。

四期建设:2013年7月,四期再建一台240t/h (168MWV循环流化床热水锅炉,2013年11 月20日投产。

2、热负荷发展估算表:如上表可计算:1)额定工况下供热能力:机组额定低压抽汽量(0.294MPa)为268.16t/h,其供热量为670.4GJ/h ;机组额定中压抽汽量(0.981MPa)为284 t/h,其供热量为710GJ/h。

利用热泵技术对某热电厂排汽余热进行回收

利用热泵技术对某热电厂排汽余热进行回收

利用热泵技术对某热电厂排汽余热进行回收【摘要】在热电厂热电机组的运行过程中,汽轮机排汽会产生大量的余热,这些余热被冷却塔进行冷却,造成了浪费,同时也造成了一定的汽水损失。

吸收式热泵具有回收低温热量的功能,可以吸收利用这些余热。

以北方某300MW热电机组为例,对利用吸收式热泵回收低温余热进行了可行性分析,通过分析得到吸收式热泵能够回收机组的排汽余热,增加了机组热效率,减少了余热的浪费,具有显著的经济、社会和环境效益。

【关键词】热电厂排汽余热吸收式热泵节能降耗1 前言国家十二五能源规划通过采取加快推进新能源研发,加强节能增效等手段实现对能源的合理利用,其中节能增效包括节约能源和提高能源效率两大方面。

随着国家经济的发展,城市的规模也迅猛扩张,我国很多地方出现了集中热源不足的问题。

而作为集中供热热源主力的热电厂却大多数存在大容量、高参数供热机组所产生的大量低压缸排汽余热没有得到利用,而是直接通过循环冷却水系统排放到大气环境,所以如何对热电厂排汽余热进行回收便显得尤为重要。

[1]本文以我国北方某热电厂300MW热电机组排汽余热回收项目为例,对利用吸收式热泵回收该热电机组排汽余热进行了可行性分析。

[2]2 项目概况考虑对该热电厂热电机组排汽余热进行回收,提高供热效率,扩大供热面积。

前期已完成热电厂部分相关信息调研,如表1所示。

该电厂供热参数中供回水温度设计值为130/70℃,但是实际运行中回水温度根本不能够达到70℃,按照实际运行温度热网回水55℃进行设计,供热水温度130℃,热网循环水流量按8000m3/h。

3 方案简介本方案按电厂首站改造增加吸收式热泵回收排汽冷凝进行设计。

本方案使用汽轮机部分供热抽汽作为热源,回收一台汽轮机部分凝汽器循环水的余热,通过吸收式热泵将供热回水从55℃加热至110.3℃,再利用原系统热网加热器将热网水加热到130℃提供给市政供热。

4 工艺系统流程图5 经济效益分析5.1 电厂余热回收供热收益分析本方案热泵额定运行工况下可回收循环水余热205.9MW,单位面积供热负荷按60W/㎡计算,可以增加供热面积343万平方米。

利用吸收式热泵回收余热技术介绍

利用吸收式热泵回收余热技术介绍

优点: 优点
机组在供热期和非供热期都有较高效率
不足: 不足
改造投资大,难度大;技术新,风险大; 改造投资大,难度大;技术新,风险大; 背压时以热定电,热负荷变化时影响机组发电量。 背压时以热定电,热负荷变化时影响机组发电量。
China HuaDian Electric Power Research Institute
7
China HuaDian Electric Power Research Institute
华电电力科学研究院
HUADIAN ELECTRIC POWER RESEARCH INSTITUTE
(二)“NCB”新型供热机组 ”
实现方法: 实现方法:
采用新型供热机组; 采用新型供热机组; 低压缸可根据需要切除; 低压缸可根据需要切除; 机组在抽凝与背压间转换
China HuaDian Electric Power Research Institute
4
华电电力科学研究院
HUADIAN ELECTRIC POWER RESEARCH INSTITUTE
(三)电厂(300MW机组)节能潜力分析 电厂(300MW机组) 机组
热泵回收余热的抽汽供热机组能流图
(四)集中设置吸收式热泵供热
实现方法: 实现方法: 在电厂利用吸收式热泵将热网水一次加热至90℃ 在电厂利用吸收式热泵将热网水一次加热至 ℃ ,抽汽二次加热至 120 ℃ ;0.5MPa饱和蒸汽驱动热泵 饱和蒸汽驱动热泵 优点: 优点 利用吸收式热泵回收 余热, 余热,耗电低 不足: 不足 热泵容量大,占地多; 热泵容量大,占地多; 抽汽量大, 抽汽量大,对发电有影响
供热机组回收循环水(排汽) 供热机组回收循环水(排汽)余热供 回收循环水 热技术介绍 热技术介绍

吸收式热泵研究进展及应用现状

吸收式热泵研究进展及应用现状

14暖通空调HV&AC 2020年第50卷第10期吸收式热泵研究进展及应用现状**国家自然科学基金资助项目(编号= 51778115),中央高校基 本科研业务费资助项目(编号:N182502043)东北大学纪强仍韩宗伟厶沈阳群贺新能源科技有限公司张孝顺柯起厚吕鑫摘要梳理了吸收式热泵热力学分析与优化的理论研究成果,介绍了吸收式热泵在建筑 供热、温度转换和工业余热回收领域的应用现状。

在供热方面,吸收式热泵可有效利用空气、 土壤及地下水等低品位热源,降低化石燃料所占供热能源比例,减轻对大气污染。

在温度转换 与工业余热回收方面,应用吸收式热泵可提高系统能源利用效率,实现系统节能性与经济性双 收益。

关键词吸收式热泵清洁供热温度转换余热回收能源利用效率低品位热源Research progress and application status ofabsorption heat pumpsBy Ji Qiang^ , Han Zongwei , Zhong Xiooshun , Ke Qihou and Lu XinAbstract Reviews the theoretical researches of thermodynamic analysis and optimization ofabsorption heat pump (AHP), and presents the application status of AHP in building heating, temperature conversion and industrial waste heat recovery. In heating aspect , AHP can effectively utilize low-grade heat sources such as air, soil and groundwater, so as to reduce the proportion of fossil fuels in heating energy and reduce air pollution. In temperature conversion and industrial waste heat recovery aspects, the application of AHP can improve the energy utilization efficiency of the system, and achieve dual benefits of energy saving and economy.Keywords absorption heat pump, clean heating, temperature conversion , waste heat recovery, energy utilization efficiency, low-grade heat source★ Northeastern University, Shenyang, China0引言从2011年到2017年,我国一次能源总耗量由28. 5亿t 增长到48. 0亿t (以标准煤计),其中建 筑和工业领域为能耗大户,其能耗约占社会总能耗 的90%口切。

回收电厂余热的新型吸收式热泵系统

回收电厂余热的新型吸收式热泵系统

回收电厂余热的新型吸收式热泵系统洪文鹏;何建军【摘要】火力发电厂中仍存在大量废热浪费的现象,回收该部分余热可有效提高电厂供热性能.提出一种由两级蒸发器串联耦合成的新型吸收式热泵系统以提升热泵机组性能与电厂能源利用率,新系统采用电厂锅炉排污水作为第二蒸发器的热源,同时回收循环冷却水与排污水余热,采用Aspen Plus软件进行模拟,以中国东北某200 MW火电机组典型供热系统为例与新系统进行对比分析.研究结果表明,新系统较典型系统COP提高6.21%,年节约煤资源15358.91吨,投资回收期约3.82年,新型吸收式热泵系统具有良好的社会经济效益,新系统的提出为火力发电厂能量梯级利用提供了理论支撑,对节能减排与环境保护有着重要意义.【期刊名称】《东北电力大学学报》【年(卷),期】2019(039)003【总页数】7页(P67-73)【关键词】吸收式热泵;余热利用;循环水;排污水;AspenPlus模拟【作者】洪文鹏;何建军【作者单位】东北电力大学能源与动力工程学院,吉林吉林132012;东北电力大学能源与动力工程学院,吉林吉林132012【正文语种】中文【中图分类】TK657.5能源问题是当今社会人们热议的话题之一,人类的各种生产活动离不开能源的支撑,人类社会的发展离不开优质能源的出现和先进能源技术的使用.目前我国对能源的需求不断增加,与此同时我国能源的利用率远低于发达国家,使得能源供应紧张及环境污染问题日趋严重.由于煤电在我国仍将长期占据主导地位,如何节约能耗是新时期政府和电力企业积极探索的新领域[1~3].吸收式热泵技术作为一种回收利用中低品位热源,实现从低温向高温输送热能,提高热能利用率的装置,目前已逐渐成熟并且广泛应用在石油、化工、冶金和电厂等各个领域[4~5].在相同的集中供热面积下,采用吸收式热泵技术供热将比传统供热方式在能源消耗方面节约40%左右,清洁生产与节能降耗效果显著.利用吸收式热泵回收电厂循环水余热,可三位一体实现缓解煤资源紧张、节能减排和电厂经济效益创收,为电厂变革以及新电厂建设提供了一种新思路、新措施[6~7].张学镭等[8]研究了回收循环水余热的热泵供热系统的可行性并建立了供热系统流程图,计算额定工况与变工况热泵系统性能,对系统进行了热力性能评价.刘媛媛[9]等为了充分发挥吸收式热泵在燃煤电厂供热系统中的节能性,提出一种由两级第一类溴化锂吸收式热泵串并联耦合而成的新系统.鲁敬妮[10]利用等效焓降法计算了12 MW的发电量和煤耗等指标通过净现值和动态投资回收期法对热泵余热回收系统进行经济性评价.刘刚[11]等通过建立相应的热经济性计算模型,分析了热泵投切的热负荷转折点、余热水温度以及抽汽流量、压力对机组热经济性的影响.Gogoi TK[12]等提出了一种复合式汽轮机发电循环和溴化锂蒸气吸收制冷系统的热力学分析,计算了各系统构件的功率循环、能量利用率和系统中各组分的不可逆工作效率.周振起[13]等提出了一种利用锅炉排污和汽轮机抽汽驱动吸收式热泵预热凝汽器凝结水的方案并验证了可行性.Aspen Plus作为大型通用模拟软件,在化工设计、动态模拟方面有着举足轻重的地位,刘金平[14]等应用Aspen Plus软件对自复叠式热泵进行了流程模拟,并分析了流程中各点参数.史俊杰[15]采用Aspen plus软件对热泵进行建模分析,从理论角度证明了吸收式热泵的热电联产供热方式比单独的热电联产供热方式更具有节能性.车德勇[16]等以某200 MW抽凝式机组及其供热系统为例,采用Aspen Plus软件建立单、双效溴化锂吸收式热泵模型,并进行变工况模拟对比分析.国内外学者都在不断开发研究更高效、更安全、更环保的吸收式热泵技术.对吸收式热泵热力学性能、循环优化、工程应用等方面进行了一系列研究,然而电厂中热泵机组供热量不足,所占份额不超过总供热量的一半,电厂中仍有排污水余热未利用直接排放,本文采用文献[9]对吸收式热泵的各关键部件数学建模,以Aspen Plus软件模拟系统流程,以中国东北某200 MW火电机组供热系统为例进行分析与研究,提出一种由两级蒸发器串联耦合成的新型吸收式热泵系统,并结合典型吸收式热泵系统分析新系统的热力性能、可行性与经济性.1 新型吸收式热泵系统及模拟本文以中国东北某200 MW火电机组现有的吸收式热泵系统为研究对象,电厂采用第一类增热型吸收式热泵系统,以高品位热能蒸汽(汽轮机抽汽)作为热泵机组的驱动热源,溴化锂-水作为工质对,回收电厂循环冷却水等低品位热能用于热网水升温后供热.热泵系统主要由发生器、冷凝器、蒸发器、吸收器、溶液热交换器、溶液泵和各种阀门组成,电厂实际运行时仍存在大量废热(如锅炉尾部烟气、排污水等)未利用,热泵系统供热量占整个供热系统约40 %,仍有很大发展空间.根据电厂实际需求,提出一种由两级蒸发器串联耦合成的新系统,第一蒸发器回收部分电厂冷却水余热,第二蒸发器回收锅炉排污水余热,加大余热回收力度,提高热泵机组性能.系统流程图,如图1所示.G—发生器;C—冷凝器;E1—第一蒸发器;E2—第二蒸发器;A—吸收器图1 新型吸收式热泵系统流程图1.1 评价准则吸收式热泵的热力经济性用热力系数COP表示为(1)公式中:Qh为制热量;Qg为发生器的热负荷;Qe为蒸发器的热负荷;Wp为溶液泵的耗功量,溶液泵的耗功量Wp相对于其他部件的换热量来说相对较小,通常忽略不计.节煤量:ΔA=Qr·t·λ,(2)公式中:ΔA为节煤量;Qr为系统热能节约量,即热泵余热回收量;t为时间;λ为当量热力折算标煤数,根据2008年发布的《综合能耗计算通则》,λ为0.034 12 t/GJ.1.2 Aspen Plus模拟假定热泵系统模拟时处于稳定状态和热平衡条件下运行,系统中各部件的压力损失及热损失均忽略不计,工质不存在发热和吸热不足情况,均为饱和状态,节流阀内为绝热节流.采用Aspen Plus中HeatX、Mixer、Pump、Valve和Flash2等模块进行模拟,用HeatX模拟发生器、冷凝器、蒸发器和吸收器,发生器选择闪蒸管来满足水蒸汽与溶液分离要求,吸收器选择混合器满足水蒸汽与浓溶液混合要求,溶液泵的工作效率取66 %,选择适当模块按照工作原理将它们用物流连接,建立完整的模拟系统.以电厂机组实际运行为例,选用循环冷却水参数为33 ℃、0.2 MPa、3 000 t/h,热网水参数为50 ℃、0.2 MPa、2 000 t/h,以0.2 MPa、250 ℃的汽轮机抽汽作为驱动热源,对新型吸收式热泵系统进行模拟计算.模拟流程图,如图2所示.模拟中各个模块说明,如表1所示.图2 新型吸收式热泵系统Aspen Plus模拟流程图表1 模型中单元操作模块说明模块名称模拟部件模块名称模拟部件FSQ1第一发生器ZFQ1第一蒸发器FSQ2第二发生器ZFQ2第二蒸发器LNQ冷凝器XSQ1第一吸收器JLF节流阀XSQ2第二吸收器RYF溶液阀RYB溶液泵RJHQ热交换器1.3 锅炉排污水余热回收的可能性分析在汽包锅炉正常运行过程中,常常通过排出一定量被污染锅水的方式来保证锅水的品质,锅炉排污分为连续排污和定期排污.锅炉排污不仅量大,而且温度较高,直接排放会造成热浪费与热污染情况.锅炉排污水经排污扩容系统回收部分工质,饱和蒸汽引至除氧器,剩余浓缩污水经引流汇总后排至吸收式热泵蒸发器内.需要特殊说明的是,电厂实际运行时的疏放水,轴封漏气等余热均可一同回收.国内对于锅炉的排污率有着严格的控制,排污率规定凝汽器式电厂锅炉的允许排污率为2%~3%,但在实际运行当中,考虑电厂折旧,人为操作等情况,大多数锅炉的排污率都会超过允许值.排污扩容器的能量平衡方程为Gphpφ=Gqhq+Gshs,(3)排污扩容器的质量平衡方程为Gp=Gq+Gs,(4)公式中:Gp为锅炉排污量;Gq为扩容器饱和蒸汽量;Gs为扩容器疏水量;hp 为汽包压力下饱和水比焓;hq为扩容压力下饱和蒸汽比焓;hs为扩容压力下饱和水比焓;φ为扩容器热效率,一般取0.98.扩容器的疏水量为(5)该电厂有6台同类型的200 MW机组,电厂机组排污系统参数如表5所示,根据公式(3)~公式(5)计算,可知额定工况下排污水量为3.23 kg/s,假设6台机组运行工况相同,则6台机组汇总后的排污水量为19.38 kg/s.因排污水中含有钾、钠、镁的化合物以及重碳酸化合物,需在管道加设污水处理装置,第二蒸发器选用耐腐蚀材料.200 MW机组排污系统参数,如表2所示.表2 200 MW机组排污系统参数参数数值参数数值参数数值锅炉蒸发量t/h670汽包压力/MPa14.82汽包排污水温度/℃341.45扩容器压力/MPa0.71扩容疏水温度/℃165.53扩容器效率/%98锅炉排污率/%3G-发生器;C-冷凝器;E-蒸发器;A-吸收器图3 典型吸收式热泵系统流程图2 系统对比分析选用典型吸收式热泵系统对比分析新系统的优劣,典型系统流程图如图3所示,模拟流程图如图4所示.为了便于分析对比二者性能,新系统与参比系统部分参数相同:汽轮机抽汽和排汽流量与温度、循环冷却水进口流量与温度、热网水进口流量和温度.模拟得到各状态点的组分,质量流量等未知参数,计算结果如表3所示. 图4 典型吸收式热泵系统Aspen Plus模拟流程图表3 新型、典型吸收式热泵系统模拟状态点参数对比状态点位置温度/℃压力/kPa蒸汽分率浓度/%质量流量/(kg·s-1)1发生器1出口91.59/91.5958.40/58.400.07/0.0759.00/59.00267.5/267.52发生器2水蒸汽出口128.67/145.958.40/58.401.00/1.000.00/0.0016.99/16.993发生器2溶液出口128.67/145.958.40/58.400.00/0.0062.94/62.94250.76/250.764冷凝器出口85.03/85.0358.40/58.400.00/0.000.00/0.0016.99/16.995节流阀出口11.20/11.201.33/1.330.11/0.130.00/0.0016.99/16.996第一蒸发器出口11.20/11.201.33/1.331.00/1.000.00/0.0016.99/16.997第二蒸发器出口164.00/—1.33/—1.00/—0.00/—16.99—8热交换器浓溶液出口55.30/55.3058.40/58.400.00/0.0062.94/62.94250.76/250.769溶液阀出口55.36/55.361.33/1.330.00/0.0062.94/62.94250.76/250.7610吸收器1出口132.53/124.271.33/1.330.19/0.0059.0059.00267.5/267.511吸收器2出口47.23/47.231.33/1.330.00/0.0059.0059.00267.5/267.512溶液泵出口47.26/47.2658.40/58.400.00/0.0059.00/59.00267.5/267.514热交换器稀溶液出口91.52/91.5258.40/58.400.07/0.0759.00/59.00267.5/267.5CQ汽轮机抽汽250.00/250.00200.00/200.001.00/1.000.00/0.0013.03/13.03FQ汽轮机乏汽138.00/138.00200.00/200.001.00/1.000.00/0.0013.03/13.03XHS1循环水进口33.00/33.00200.00/200.000.00/0.000.00/0.00833.33/833.33XHS2循环水出口22.43/22.43200.00/200.000.00/0.000.00/0.00833.33833.33PWS1排污水进口165.53/—710.00/—0.00/—0.00/—19.38/—PWS2排污水出口165.04—/710.00/—0.88/—0.00/—19.38/—RWS1热网水进口50.00/50.00200.00/200.000.00/0.000.00/0.00555.56/555.56RWS2热网水经吸收器后70.78/68.68200.00/200.000.00/0.000.00/0.00555.56/555.56RWS3热网水经冷凝器后88.36/86.26200.00/200.000.00/0.000.00/0.00555.56/555.562.1 对比分析新系统是由两级蒸发器串联耦合而成,以典型吸收式热泵系统为参比系统,研究讨论新系统的热力性能.经Aspen Plus模拟软件模拟后,新系统与参比系统各部件热力性能如表4所示(已忽略溶液泵所做功),可以看出:(1)在两系统相同额定工况下,新系统供热量为89.18 MW,参比系统为84.30MW,热泵机组性能整体提高5.79 %,根据公式(1)计算热力系数COP提高约为6.21 %,这是由于新系统第二级蒸发器多回收的排污水余热使热网水温度升高,以某一小区为例,居民采暖热负荷为60 W/m2,新系统新增加供热面积8.13×104 m2,加强了电厂供热能力.(2)参比系统回收的余热为36.78 MW,新系统回收余热为41.68 MW,多回收余热为4.9 MW,根据公式(2)计算电厂节约标准煤炭量,以东北为例,在一年中按3 000 h的供暖期计算,节约煤炭为15 358.91 t,参比系统节煤量为13 553.28 t,新系统较参比系统节约煤量有明显提升,约为13.32%.表4 新系统和参比系统的热力性能参数新系统参比系统参数新系统参比系统热网水回水温度/℃50.0050.00热网水供水温度/℃88.3686.26发生器部件换热量/MW47.4845.72冷凝器部件换热量/MW40.9440.94蒸发器部件换热量/MW41.6836.78吸收器部件换热量/MW48.2443.36热交换器部件换热量/MW45.3945.39COP1.881.772.2 经济性分析能源的综合梯级利用与转换问题绝不仅仅是单纯的热力学计算问题,系统的提出与改进必将有材料、研制等方面费用,本文提出新系统与参比系统相比结构复杂,因此很有必要对新系统进行经济性分析,同样选用典型吸收式热泵系统作为对比系统,以投资回收期作为指标[10],计算公式为(6)公式中:tp为系统投资回收期;Dtot为系统总投资成本;Dr为单位热价;ty为年运行小时;Qr为余热回收量;Dt为系统设备折旧费;t1为设备使用寿命;Dw 为年运行维护费用.系统总投资成本Dtot=dAHPQAHP+Dcon,dAHP为热泵设备单位成本(以供热量计);QAHP为热泵供热量;Dcon为系统安装成本.系统经济性分析所用原始数据,如表6所示.表6 经济性分析原始数据参数数值参数数值建设安装费Dcon/元30%Dtota热泵设备投资单位成本dAHP/(元/kW)260a热泵使用寿命t1/年20年运行时间/h3000b年运行维护费用Dw/(元/年)4%Dtota设备折旧费Dt/元5%Dtota单位热价Dr/(元/GJ)22c注:a-由电科院提供;b-根据北方地区集中供暖时常确定;c-根据北方地区燃煤热电厂平均供暖热价确定.根据公式(6)计算表6新系统和参比系统的热力性能,结果如表7所示.明显看出,新系统总投资成本与维护费用均高于参比系统,但是新系统余热回收量较参比系统要多,投资回收期较参比系统要少,新系统的收益高于参比系统.回收排污水余热可增强热泵系统的供热能力并减少电厂投资回收期限.表7 新系统与参比系统投资回收期参数新系统参比系统参数新系统参比系统热泵设备投资单位成本dAHP/(元/kW)260260热泵供热量QAHP/MW89.1884.30余热回收量Qr/MW41.6836.78系统总投资成本Dtot万元33123 131.1设备折旧费Dt/万元165.62156.56年运行维护费用Dw/(万元/年)132.50125.24投资回收期tp/年3.824.143 结论本文采用Aspen Plus软件,模拟研究了东北某200 MW燃煤热电厂中的吸收式热泵系统,考虑在实际生产中电厂存在排污水的余热仍有利用空间,同时吸收式热泵系统供热能力可以继续提升,提出由双蒸发器串联耦合成的新型吸收式热泵系统,并讨论了回收排污水的可能性,计算获得排污水流量.通过对新系统与典型系统热力性能和经济性对比分析,得出以下结论:(1)热泵系统性能提高.新系统供热量为89.18 MW,参比系统为84.30 MW,热泵机组性能提高5.79 %,新系统增大了电厂供热面积,加强了电厂供热能力.(2)新系统余热回收量增加.新系统不仅回收循环水余热,还将排污水余热有效利用起来,新系统回收余热为41.68 MW,参比系统回收余热为36.78 MW,多回收余热为4.9 MW.(3)节煤量明显增加.新系统节约煤碳为15 358.91 t,参比系统节约煤碳为13 553.28 t,节煤量提高为13.32 %.(4)经济性效果显著.新系统投资回收期为3.82年,相对于参比系统投资回收期为4.14年,回收期与经济效益方面都有着明显优势.因此本文所提出的双蒸发器串联耦合回收电厂余热的新型吸收式热泵系统,同时吸收循环水与排污水余热以提升热泵机组性能,并为电厂带来了可观的经济性效益,具有一定的工程实践指导意义.参考文献【相关文献】[1] 杨勇平,杨志平,徐刚,等.中国火力发电能耗状况及展望[J].中国电机工程学报,2013,33(23):1-11.[2] 毕夏,史长东,程竹.低碳背景下我国新能源行业利用现状及发展前景分析[J].东北电力大学学报,2012,32(5):86-90.[3] 洪文鹏,滕达.分布式冷热电联供系统集成及应用分析[J].东北电力大学学报,2018,38(5):54-63.[4] 戴永庆.溴化锂吸收式制冷技术及应用[M].北京:机械工业出版社,2000.[5] 陈红,谢继红.热泵技术及其应用[M].北京:化学工业出版社,2006:1-39.[6] 陈光明,石玉琦.吸收式制冷(热泵)循环流程研究进展[J].制冷学报,2017(4):1-22.[7] 郭培军,隋军,金红光.立式升温型溴化锂吸收式热泵的设计与变工况研究[J].工程物理学报,2012,33(6):907-912.[8] 张学镭,陈海平.回收循环水余热的热泵供热系统热力性能分析[J].中国电机工程学报,2013,33(8):1-8.[9] 刘媛媛,隋军,刘浩.燃煤热电厂串并联耦合吸收式热泵供热系统研究[J].中国电机工程学报,2016,36(22):6148-6155.[10] 鲁敬妮,屠珊,王红娟,等.吸收式热泵回收机组余热经济性分析[J].热力发电,2017,46(2):136-140.[11] 刘刚.吸收式热泵在供热机组中适用性及经济性研究[J].汽轮机技术,2018,80(3):216-220.[12] T.K.Gogoi,K.Talukdar.Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water-libr vapor absorption refrigerationsystem[J].Energy Conversion & Management,2014,83(7):119-132.[13] 周振起,马玉杰,王静静,等.吸收式热泵回收电厂余热预热凝结水的可行性研究[J].流体机械,2010,38(12):73-76.[14] 刘金平,朱海明,刘雪峰.基于Aspen Plus的自复叠热泵模拟[J].制冷,2010,29(1):1-8.[15] 史俊杰.吸收式热泵与热电联产耦合供暖的热力系统建模[D].北京:华北电力大学,2012.[16] 车德勇,吕婧,高龙,等.溴化锂吸收式热泵回收循环水余热的模拟研究[J].热力发电,2014(12):38-43.。

吸收式热泵余热回收技术原理及在热电厂中的应用

吸收式热泵余热回收技术原理及在热电厂中的应用

吸收式热泵余热回收技术原理及在热电厂中的应用柳立慧新疆电力科学研究院(乌鲁木齐830011)摘要:介绍了吸收式热泵余热回收技术的基本原理和特点,该技术可回收利用大量循环冷却水的低温余热,回收的余热用于冬季供暖,可大大增加现有热源的供热能力,节能节水效益显著。

关键词:热泵;余热;热电厂0概述2009年的哥本哈根气候变化谈判会议上,我国政府明确量化碳减排目标(到2020年,单位G D P二氧化碳排放比2005年下降40%至45%),展示了中国在应对气候变化、履行大国责任方面的积极态度。

这充分表明我国不再单纯追求经济的增长速度,而是更加强资源的有效利用,关注可持续增长“节能减排”降耗已被摆在前所未有的高度。

而提高能源利用率、加强余热回收利用是节约能源、降低碳排放、保护环境是根本措施。

吸收式热泵余热回收技术以其高效节能和具备显著经济效益的特点,尤为引人注目。

1吸收式热泵原理吸收式热泵是一种利用低品位热源,实现将热量从低温热源向高温热源泵送的循环系统。

是回收利用低温位热能的有效装置,具有节约能源、保护环境的双重作用。

吸收式热泵可以分为两类。

第一类吸收式热泵,也称增热型热泵,是利用少量的高温热源,产生大量的中温有用热能。

即利用高温热能驱动,把低温热源的热能提高到中温,从而提高了热能的利用效率。

第一类吸收式热泵的性能系数大于1,一般为1.5~2.5。

第二类吸收式热泵,也称升温型热泵,是利用大量的中温热源产生少量的高温有用热能。

即利用中低温热能驱动,用大量中温热源和低温热源的热势差,制取热量少于但温度高于中温热源的热量,将部分中低热能转移到更高温位,从而提高了热源的利用品位。

第二类吸收式热泵性能系数总是小于1,一般为0.4~0.5。

两类热泵应用目的不同,工作方式亦不同。

但都是工作于三热源之间,三个热源温度的变化对热泵循环会产生直接影响,升温能力增大,性能系数下降。

目前,吸收式热泵使用的工质为L i Br—H2O或N H3—H2O,其输出的最高温度不超过150℃。

基于石化行业的吸收式热泵余热回收技术分析

基于石化行业的吸收式热泵余热回收技术分析

基于石化行业的吸收式热泵余热回收技术分析随着经济的发展和人们生活水平的提高,石油、天然气等化石能源的需求不断增加。

而石油、天然气等化石能源的提取、加工、使用过程中会产生大量的废热,如果这些废热得不到合理的利用,就会浪费大量的能源资源,增加环境负担。

因此,如何有效地回收利用这些废热,成为了一个重要的研究方向。

基于石化行业的吸收式热泵余热回收技术,是一种有效的废热利用技术,具有很大的应用前景。

一、吸收式热泵的原理吸收式热泵是一种将低温热能转化为高温热能的技术,利用吸收剂的溶解度与温度的变化来完成热能的转化过程。

其基本工作原理为:将低温余热通过换热器传递给吸收剂,并通过吸收剂的溶解度与温度的变化来完成热能的转化;吸收剂在吸收低温余热的同时,从稀溶液转变为浓溶液,释放出吸收热;然后将浓溶液通过换热器将吸收热传递给水,将其蒸发成为蒸汽,从而达到提高温度的目的;然后将蒸汽通过冷凝器冷却,回收热能,形成冷凝水,再通过减压器降压,回到吸收器中,从而完成一次循环。

二、以石化行业为例的吸收式热泵余热回收技术石化行业中,炼油、化工、油气田等生产过程中均会产生大量的废热,这些废热是可以利用的,如油气田的热采过程中产生的大量热水,可用于生产用水、供暖等;炼油过程中产生的烟气废热,可用于蒸馏、加热以及压缩气体的预热等;化工过程中产生的废热,可用于加热反应槽、干燥器、冷却水等。

以上这些废热均可通过吸收式热泵技术进行回收利用,将其转化为高温高品质的热能,供热、供电等,从而节约能源、减少排放。

如以炼油过程中产生的烟气废热为例,采用吸收式热泵技术回收利用,可使烟气温度从180℃降至60℃以下,并再次用于蒸馏加热、压缩气体预热等,日节约能源约15000立方米。

在油气田中,采用吸收式热泵技术回收利用热水废热,可使生产用水的温度提高10℃左右,从而减少热能的浪费,提高能源的利用效率。

三、吸收式热泵余热回收技术的优点1. 废热回收利用效率高:吸收式热泵的转化效率高,可将低品质的热能转化为高温高品质的热能,且不需要额外消耗燃料等能源物质,可大量节约能源资源。

回收电厂余热的新型吸收式热泵系统

回收电厂余热的新型吸收式热泵系统

回收电厂余热的新型吸收式热泵系统摘要:近年来,随着社会的发展,我国的电力工程的发展也突飞猛进。

我国北方城镇集中供热面积增长迅速,城市供热热源紧张,这就对热电联产企业供热机组的供热能力提出了新的要求。

对于能源消耗大户火力发电厂来说,其燃料燃烧总发热量中电能的转化率只有35%~40%,而其余大部分的热量主要通过锅炉烟囱和循环水冷却塔散失到环境中,凝汽冷凝造成的冷源热损失一般约为2300kJ/kg。

以600MW发电机组为例,其主蒸汽量约为2000t/h,则凝汽热损失约4.6×103GJ/h,折合标准煤约为157t/h。

乏汽热量对于电厂来说作为废热被排放,但对于仅需低品位热源的建筑采暖而言则是巨大的能源浪费。

如果将低压缸排汽的热量应用于供热,既可以大幅提高电厂综合能源利用率,降低电厂煤耗,又能有效缓解供热热源不足的问题,有利于减轻大气环境压力。

因此,对循环水余热加以回收利用是提高发电厂能源利用效率的重要手段。

关键词:回收电厂余热;新型吸收式;热泵系统引言热泵系统是利用逆卡诺热循环原理,通过机械做工实现热量从低温传递高温的一种工艺。

热泵运行过程中有三大循环:热源水循环、中介水循环、热媒水循环,以列管换热器为媒介进行热量萃取,达到余热回收节能的目的,为高质量安全平稳运行打下坚实工艺保障。

1重要性目前,我国供热机组在冬季处于抽气运行工况的机组约占火电厂装机总量的30%。

从现状看,传统抽气供热的方法,尚存在不足。

供热汽轮机抽气量增大后,机组一次调频能力下降,需要充分考虑电网自平衡能力,减小电网安全隐患。

研究发现利用热泵供热替代传统抽气供热,总热效率将增加。

与此同时,节煤量也增加,在额定抽气工况下热泵供热性能优于抽气供热工况。

因此,有必要对传统供热的方法进行分析,对供热的节能性加以重视。

热泵在运行过程真正用于增加空气势能所消耗的电能在总耗电量中仅占15%,而约85%的电能转化为热能,以风冷或者水冷的方式排放到空气中以保证热泵的正常运行。

浅议吸收式热泵和电厂余热回收

浅议吸收式热泵和电厂余热回收

浅议吸收式热泵和电厂余热回收中国在气候变化的应对措施方面,对大国应担负的责任一直认真履行职责,持续控制碳排比。

这些都充分表明了,我国已经开始从单纯地追求经济增长速度,向如何更加有效利用资源,逐步进行转化。

并在未来相当长的一段时间内,将工作重心放在“节能减排”降耗等环境问题的关注上。

其中,所采取的最根本措施,就是将碳排量进一步降低、加强对能源充分的节约和利用,实现保护生态平衡的最终目标。

而吸收式热泵余热回收技术的显著特征便是,具有持续的经济效益,在一定程度上能够实现高效节能。

所以,吸收式热泵余热回收技术应得到广泛的应用。

一、吸收式热泵原理作为一种利用低品位热源以及回收利用低温位热能的有效装置,吸收式热泵能实现将热量从低温热源向高温热源泵完成传送的循环系统。

它具有双重功效,能保护环境和节约能源。

吸收式热泵可以分为两类:第一类称增热型热泵,即通过对少量的高温热源进行充分利用,产生大量的中温有用热能,也就是通过高温热能驱动,逐渐提升低温热源的热能至中温,进而使热能的利用效率得到大幅提高。

第一类吸收式热泵一般为1. 5~2. 5,性能系数比1大。

第二类称升温型热泵,此类吸收式热泵,即对大量的中温热源产生少量的高温有用热能并进行充分利用,也就是对中低温热能驱动完成利用,借大量中温热源和低温热源的热势差,制取温度高于中温热源,但热量少于中温热源的热量,将部分中低热能向更高温位转移,进而使热源的利用品位得到提升。

第二类吸收式热泵的性能系数一般为0. 4~0. 5总是比1小。

两类热泵有着不同的工作方式和不同的应用目的,都是在三热源之间完成工作,其中三个热源的温度产生变化直接影响到热泵循环,增大升温能力,减低性能系数。

目前,NH3—H2O或LiBr—H2O,是吸收式热泵使用的工质,其输出的最高温度低于150℃,ΔT一般为30~50℃是其升温能力,0. 8~1. 6是其制冷性能系数为,1. 2~2. 5是增热性能系数。

吸收式热泵在农村地区余热资源回收中的应用

吸收式热泵在农村地区余热资源回收中的应用

吸收式热泵在农村地区余热资源回收中的应用摘要:在我国农村可以使用吸收式热泵将各种余热资源回收利用。介绍了吸收式热泵的原理,讨论了吸收式热泵在农村地区余热资源回收利用的方式,为农村余热资源的回收利用指出了研究方向。关键词:吸收式热泵;农村;余热;回收利用Application of Absorption Heat Pump in Waste Heat Resource Recycling in Rural AreasAbstract: In rural areas, all kinds of waste heat resources could be recycled by absorption heat pump. The principle of the absorption heat pump was introduced. The mode of absorption heat pump in rural areas was discussed, and the prospects of waste heat recovery in rural areas was also proposed.Key words: absorption heat pump; rural areas; waste heat; recycling utilization在我国农村有些地区主要以柴禾为生活燃料,而这些燃料的利用率比较低,一般都只有10%左右。即使采用节能灶,利用率也不到30%。吸收式热泵以消耗热能为补偿,实现从低温热源向高温热源的泵热过程[1]。与压缩式热泵相比,它突出的优点在于可以直接利用各种热能来驱动,除可以利用燃料燃烧的高势能外,还可以利用自然界中大量存在的低势能,如太阳能、地热、工业废水与乏汽中的余热等。因此利用低级能源驱动的吸收式热泵,不仅具有节能作用,而且能减少温室气体的排放。随着现代农业的高速发展,能源的需求量越来越大。而农村地区很多场合所需要的低温(50~130℃)热能,却是以高热值的一次能源转换获得的,与此同时,大量农业生产中的余热被丢弃,导致能源利用率很低。所以,针对我国农村地区的吸收式热泵节能及应用研究,具有较高的经济效益和环保效益。1吸收式热泵的工作原理吸收循环按用途不同可以分为制冷、热泵、热变换器三类,其中后两者都可以称为吸收式热泵。其理论循环如图1所示。通常所说吸收式热泵(Absorption heat pumps,简称AHP)指的是第一类吸收式热泵,利用高温热能驱动,回收低温热量,提高能源利用率;第二类吸收式热泵又称吸收式热变换器(Absorption heat transformer,简称AHT),AHT利用中低温废热驱动,将部分废热能量转移到更高温位加以利用。无论是哪一类吸收式热泵,其节能的方法都是充分利用了低级能源,从而减少了高级能源的消耗。因此,利用吸收式热泵回收余热等低级能源,可提高一次能源利用率,同时还可以减少因燃料燃烧产生SO2、NO2、烟尘等所造成的环境污染。吸收式热泵的工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。热泵在工作时,它本身消耗一部分能量,把环境介质中储存的能量加以挖掘,通过传热工质循环系统提高温度进行利用,而整个热泵装置所消耗的功仅为输出功中的一小部分,因此,采用热泵技术可以节约大量高品位能源。水从高处流向低处,热由高温物体传递到低温物体,这是自然规律。然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。同样,在能源日益紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等中的热量,热泵被用来将低温物体中的热能传送至高温物体,然后高温物体来加热水或采暖,使热量得到充分利用。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其供暖利用过程如图2所示(图2中1、2、3为循环水泵)。2农村地区吸收式热泵的主要应用2.1水空调的应用空调器的作用已为人们认识和接受,但其昂贵的价格和巨大的耗电量令广大工薪阶层和普通老百姓可望而不可及。电风扇只用于夏季但不能调节温度,暖气片只用于冬季但制热效果不理想,而水空调是制冷又制热的理想空调。水空调是利用家庭做饭时炉灶的余热,将升温的热水经过水管送进空调器内蒸发器中,同时空调器内的风机将室内冷空气吸入蒸发器内,利用热力学原理,二者发生能量交换。水将携带的热量经管壁传给翅片并被冷空气吸收,吸热后冷空气温度升高,并由风机吹入室内;放热后的水温度降低并经回水管道重新流回炉内加热。如此往复循环,室内冷空气不断吸收水放出的热量而温度升高,从而实现制热的目的[2]。整个过程因其设计制造带有自循环功能,无需任何辅助动力,自然重力循环,此项功能彻底克服了其他空调依靠泵才能实现循环的弊端。夏季水空调充分利用不超过17℃的地表水,作为冷源形成良性循环。经表冷器(蒸发器)进行能量交换,可以在炎热高温时吹出20℃左右的冷风,冷热交换使室内温度控制在25℃左右,既无任何污染,又极大地节约了电能,耗电量是一般空调(氟利昂)的1/10[3]。这项技术的应用有很大的前景,在我国农村,灶炉的使用燃料大多效率低,所以热泵可以大幅度地提高燃料的利用率,同时农村用水也多是地下水,这都为热泵的利用提供了良好的环境。2.2沼气中的利用沼气是一种可再生能源,在农村,它的原料来源很广,农业的废弃物、秸秆、生活垃圾等都是其发酵的原料。沼气是一种优质的气体燃料,据试验测定,1 m3沼气完全燃烧可产生约23MJ的热量,即使按60%的热效率计算,也相当于0.6~0.7 kg汽油或4 kg木材燃烧产生的热值。一口10 m3的沼气池,一年可产沼气400 m3,造价仅1 000余元,而其产生的热值相当于节省了1 000~2 000 kg的煤,或节电2 000 kW·h[4]左右。沼气与液化石油气或煤气的数据比较见表1。沼气的比价最低,热值仅次于液化石油气,原料成本也最低。所以,如果将农村沼气作为热源驱动吸收式热泵,就可充分发挥两者的节能、环保和经济上的优势,产生较高的经济和环保效益。虽然吸收式热泵与其他供热方式相比,初期投资成本较高,但热效率及一次能源利用率也高于其他供热方式。例如,热泵用于供热的能量约为燃料能量的1.3倍,与燃煤和燃气锅炉相比,供热的一次能源利用率可分别提高110%和75%以上[5],所以其综合经济效益较高。而且,在我国以煤为主的能源结构和供电效率不高的特定条件下,用沼气作燃料驱动的吸收式热泵的温室气体排放最低,有利于环境保护。近年来国家为了建设生态化农村,投资建设了很多沼气池。因此,可考虑在条件较好的地区建立一定规模的集中式沼气站,以沼气为燃料驱动较大型吸收式热泵,不仅可解决农村土特产品加工过程中的加热干燥问题,而且有利于改善食品加工中的卫生条件,保证食品的品质,同时又减少了温室气体的排放。据统计,如以沼气为能源并结合各领域的节能技术推广应用于农村地区,农村生产和生活中CO2和SO2排放量每年可分别减少1.823×1010 kg和7.130×107 kg,有利于促进农村生态环境的改善。2.3热泵热水器的应用目前市场上热泵热水器种类很多,主要有太阳能助推型、水源和空气源3种系列。太阳能助推式热泵是热泵与太阳能技术结合使用的一种热泵技术;水源热泵是利用一定温度的水源(20℃以上)作为热源,以制冷剂为媒介,将水源中的热量吸收后经压缩机压缩制热,通过热交换器与冷水交换热量以达到取暖和制取热水的目的,水源热泵必须有一定温度和流量的水源;空气源热泵以水源热泵类似方法从空气中获得热量来加热水[6]。3种热泵中,空气源热泵受到的条件限制最小,发展空间最大,因此这里着重对空气源热泵热水器进行分析讨论,其工作流程如图3所示。热泵热水器由压缩机、热交换器、轴流风扇、保温水箱、水泵、储液罐、过滤器、电子膨胀阀和电子自动控制器等组成。接通电源后,轴流风扇开始运转,室外空气通过蒸发器进行热交换,温度降低后的空气被风扇排出系统,同时,蒸发器内部的工质吸热汽化被吸入压缩机,压缩机将这种低压工质气体压缩成高温、高压气体送入冷凝器,被水泵强制循环的水也通过冷凝器,被工质加热后送去供用户使用,而工质被冷却成液体,该液体经膨胀阀节流降温后再次流入蒸发器,如此反复循环工作,空气中的热能被不断“泵”送到水中,使保温水箱里的水温逐渐升高,最后达到55℃左右,正好适合人们洗浴,这就是空气源热泵热水器的基本工作原理[7]。热泵热水器有许多优点:①高效节能。其输出能量与输入电能之比即能效比(COP)一般在2.00~6.00之间,平均可达到3.00以上,而普通电热水锅炉的COP不大于0.95,燃气、燃油锅炉的COP一般只有0.60~0.80,燃煤锅炉的COP更低,一般只有0.30~0.70;②环保无污染。通过吸收环境中的热量来制取热水,所以与传统型的煤、油、气等燃烧加热制取热水方式相比,无任何燃烧外排物,制冷剂对臭氧层零污染,是一种低能耗的环保产品;③运行安全可靠。整个系统的运行无传统热水器(燃油、燃气、燃煤)中可能存在的易燃、易爆、中毒、腐蚀、短路、触电等危险,热水通过高温冷媒与水进行热交换得到,电与水在物理上分离,是一种完全可靠的热水系统;④使用寿命长,维护费用低。使用寿命可长达15年以上,设备性能稳定,运行安全可靠,并可实现无人操作(全自动化智能程序控制);⑤可一年四季全天候运行。该机组热源来源广泛,包括阳光、雨水、空气、地下水和土壤等,无论白天、黑夜、室内、室外、地下室,不管晴天、阴天、刮风下雨或下雪都能照常工作。这样简单的操作对农村用户有着重要的意义[8]。3小结热泵是回收利用低温热能的有效手段之一,吸收式热泵对能源的合理利用和余热的回收效果显著,从节能和环境保护的角度,开发和推广吸收式热泵十分必要。吸收式热泵在农村地区的节能应用,特别是对农村余热资源的回收利用还有很大的潜力,有待充分的挖掘,一般农业上热能利用率为40%左右,可回收利用的余热资源约为余热资源的60%左右,因此吸收式热泵在我国农村地区未来推广应用的市场前景十分广阔。参考文献:[1] 郁永章. 热泵原理与应用[M]. 北京:机械工业出版社,1989.[2] 方贵银. 空气——水热泵系统的节能分析[J]. 安徽工学院学报,1995,14(3):37-40.[3] 韩厚德,卢士勋. 地下冷源在制冷空调工程中的应用研究[J]. 制冷学报,1997(2):17-21.[4] 崔文富. 直燃型溴化锂吸收式制冷工程设计[M]. 北京:中国建筑工业出版社,2000.[5] 王其荣. 发展沼气是可持续发展的有效途径[J]. 技术经济, 2002(3):10-12.[6] 荆有印,王保生,刘同欣,等. 热泵循环的分析与研究[J]. 暖通空调,2005,35(1):47-48.[7] 王越. 机械驱动式分离型热管-热环的研究[D]. 天津:天津轻工业学院,2000.[8] 孙立香. 双源供暖系统的研究[D]. 北京:华北电力大学,2001.。

吸收式热泵在余热回收领域的应用

吸收式热泵在余热回收领域的应用

吸收式热泵在余热回收领域的应用摘要:近年来,能源短缺和环境恶化成为制约我国社会和经济发展和人民生活品质的重要因素。

为了解决能源和环境问题,各国都在积极探索新的节能减排途径。

如何有效地实现废热的循环,降低能耗,是目前国内外研究的一个重要课题。

吸收热泵是一种通过低温度的位热源来将热能通过循环方式输送到高温度的热源,从而达到节约能源和保护环境的目的。

近年来,随着其高效节能等优点的不断发展,其技术日趋成熟。

关键词:吸收式热泵;余热回收领域;应用;引言热泵是以消耗一部分低品位能源为补偿,使热能从低温热源向高温热源传递的装置,由于热泵能将低温热能转换为高温热能,可增加能源的有效利用率,因此它是回收低温余热的重要途径。

1.吸收式热泵概述吸收式热泵是一种利用低品位热源,实现将热量从低温热源向高温热源泵送的循环系统。

是回收利用低温位热能的有效装置,具有节约能源、保护环境的双重作用。

其主要由发生器、冷凝器、蒸发器、吸收器、再生器、溶液泵等组成。

当前,我国是全球经济发展中的第二大经济大国,同时也是全球第一大经济大国,节能减排降耗是当前经济发展的重中之重,而从近年来一系列的环保政策中,我们已经将环境管理放在了空前的高度,而提高能源利用率;强化废热的循环利用是节约能源、降低碳排放、保护环境的基本途径,而当前,能源的综合利用率不足40%,导致能源的大量消耗,因此,如何有效地利用能源已是一个迫切需要解决的问题。

它被广泛地用于余热回收。

2.吸收式热泵工作原理吸收热泵是利用热能作为能量的补充,将低温度下的热传递到较高的温度,是一种能够有效地利用废热进行循环利用的装置。

其关键词有:1.凝结.2.蒸发.3.吸热.4.回热.5.节气门.6..溶液.7.等.Ⅰ类溴化锂吸收式热泵以水为制冷剂,溴化锂水溶液为吸收剂。

本装置是水在低压状态下,较低温度就能蒸发的特点,而且溴化锂溶液对蒸发的水分有很强的吸附能力,然后利用溴化锂溶液和水溶液不同沸点之间存在很大差异的特点而达到的。

吸收式热泵机组在余热供热领域中的应用

吸收式热泵机组在余热供热领域中的应用

一.蒸汽型第一类溴化锂吸收式
热泵机组 驱动热源为0.2~0.8Mpa的蒸 汽;低温热源的热水出口温度 须高于5℃;供热热水的出口温 度比低温热源的热水出口温度 高40~60℃,最高可达100℃; COP=1.75~1.85。
蒸汽型第一类单效型溴化锂吸收式热泵 机组
蒸汽型第一类单效型溴化锂吸收式热泵机组应用案例之一
第二类溴化锂吸收式热泵机组 应用案例之二
采用化工生产工艺的废蒸汽为 驱动热源,二类热泵输出的高 温热水在蒸汽闪发器中闪发, 产生0.25MPa蒸汽,供生产 工艺使用。冷却水用量仅为原二类溴化锂吸收式热泵机组适应温 度范围广,热源出口温度高,单机容量大, 节能效果好,每千瓦供热量的投资小,特别 适用于集中供热和生产工艺系统余热回收利 用,是进行余热回收利用,实现节能减排、 保护环境和可持续发展的一种重要技术装备。
谢谢!
















第二类溴化锂吸收式热泵机组升温特性曲线
第二类溴化锂吸收式热泵机组的中温废 热源热量(无直接利用价值的热量)、 输出的高温热量(有直接利用价值的热 量)及低温热量(由冷却水带走、无直 接利用价值的热量)之间的比例约为 1:0.48:0.52,即机组的性能系数 (COP)为0.48,余热回收利用率高。
直燃型第一类溴化 锂吸收式热泵机组 应用案例之一
华北油田采油站 采用2台单机供热 量2.91MW的直 燃型一类热泵供 热,替代原来的 原油加热炉,年 节省原油750吨。
三.烟气型第一类溴化锂吸收式热
泵机组 驱动热源为温度≥250℃的高温 烟气 ;低温热源的热水出口温度 须高于5℃;供热热水的出口温 度比低温热源的热水出口温度高 40~60℃,最高可达到100℃; COP:单效热泵1.75~1.85, 双效热泵2.3~2.45。

热电联产供热系统中吸收式热泵技术的应用分析

热电联产供热系统中吸收式热泵技术的应用分析

热电联产供热系统中吸收式热泵技术的应用分析【摘要】在实际的应用中,采取热电联产供热系统,不仅是节能降耗的有效途径,而且与热电联产结合的吸收式热泵供热技术,更是可以将大量冷却水的低温余热回收利用,以此来增加现有的热源供热能,节约能源。

以下本篇就将分析热电联产供热系统中吸收式热泵技术的应用。

【关键词】热电联产;供热技术;吸收式热泵;冷却水引言基于一般的热电联产供热系统,应用吸收式热泵技术,不仅可以提高常规热电联产供热系统的节能效率,也可以针对有效利用余热提高系统性能。

以下就结合具体事例,分析在热电联产供热系统中对于吸收式热泵技术的应用。

1、热电联产供热系统的优点在我国的城市建设中,对于不断扩大的供热规模以及当前有效的热源供热能力都产生不小的影响,为保证热源供应,特别是对于冬季北方地区的供热中能耗巨大,应用热电联产供热系统进行节能减排,热电联产供热系统中,就是集中供热的方式,不仅具有很高的经济性与环保性,也是当前城市集中供热中应用的主要形式。

在城市供热中应用热电联产供热系统,节省热能源,提高能源利用率。

2、热电联产供热系统中应用吸收式热泵技术的优势为降低城市供热中的矛盾,增加热源供热能力以及提高热网输送能力,可以将吸收式热泵供热技术应用到热电联产供热系统中,汽轮机的背压供热与抽气供热方式与热电联产系统相结合,根据背压供热汽轮机的排汽压力需大于大气压力,因此在实际中不必考虑动力装置与管路的热损失,并且也可以满足理论上的热能利用率;根据抽气供热与热电联产供热系统的应用,主要通过汽轮机上抽气口【1】,对其进行可调节抽气量的方式进行抽气,采用这样的技术形式,不仅不必增加原热电联产供热系统的吸收式热泵机组,可以直接对大量冷却水的低温余热进行再回收利用,并且能够在员热电厂规模不变的条件下,实现对冬季热源的供热能力需求。

并且在基于热电联产的吸收式热泵供热中,经过调整之后的系统,需要改造传统换热站,还要将普通水-水换热机组换成大温差的吸收式换热机组,采用这样的热点联产供热不仅可以优化热电厂实际工程条件,也可以大幅度提高系统的热源供热能力。

我国余热利用现状与技术进展

我国余热利用现状与技术进展

我国余热利用现状与技术进展随着能源意识的不断提高,余热利用逐渐成为我国节能减排的重要措施之一。

本文将围绕我国余热利用现状与技术进展展开,旨在让读者了解我国余热利用的现状、技术发展趋势以及未来前景。

余热是指工业生产过程中产生的各种废热、废气、废液等,这些废弃的能源如果能得到合理的利用,将会为企业带来可观的经济效益和环保效益。

目前,我国余热利用主要集中在冶金、化工、建材、轻工等领域,其中冶金和化工行业的余热利用技术最为成熟。

在余热利用技术方面,我国已经逐渐形成了以回收和再利用为主的技术体系,包括热交换、热泵、余热锅炉等。

同时,我国政府也加大了对余热利用的支持力度,通过政策引导、财政补贴等方式推动余热利用产业的发展。

近年来,我国余热利用技术在不断创新和进步,一些新的技术和设备逐渐得到应用和推广。

例如,余热回收装置的设计和制造水平不断提高,使得余热回收效率得到显著提升;高温废弃物处理技术也不断得到改进,使得废弃物的处理更加环保和经济。

工业生产领域:工业生产是我国能源消耗的主要领域之一,同时也是余热产生的主要领域。

在工业生产中,通过应用余热回收技术,将废弃的能源回收再利用,可以大大降低企业的生产成本,提高能源利用效率。

制造业领域:制造业是我国经济发展的重要支柱产业之一,同时也是余热产生的重要领域。

在制造业中,通过应用余热回收技术,将生产过程中产生的废热、废气等回收再利用,可以显著降低企业的生产成本,提高资源利用效率。

建筑业领域:建筑业是我国经济发展的重要产业之一,同时也是余热产生的重要领域。

在建筑业中,通过应用余热回收技术,将建筑废弃物中的可再利用材料回收再利用,可以大大降低建筑成本,同时也有利于环保。

农业领域:农业是我国经济发展的基础产业之一,同时也是余热产生的重要领域。

在农业中,通过应用余热回收技术,将废弃的农产品、农作物秸秆等回收再利用,可以大大降低农业生产成本,同时也有利于环保。

随着技术的不断进步和政府支持力度的加大,我国余热利用市场前景广阔。

吸收式热泵及其在余热利用中的应用

吸收式热泵及其在余热利用中的应用

供 热 场 所
量7.7MW的蒸汽
型一类热泵供热,
替代原来的原油 加热炉,年节省
35 ℃
废热水
45 ℃
原油5600吨,每
年节能效益上千 万元人民币。
回灌地下
联合站
蒸汽型第一类单效型溴化锂吸收式热泵机组应用案例之二
阳煤集团热电厂采用8台单机供热量30MW的蒸汽型第 一类溴化锂吸收式热泵机组进行采暖供热,补偿热源为 0.5Mpa蒸汽,低温热源为温度40℃的凝汽器冷却水,提供 90℃的采暖热水,可回收利用96MW冷凝热,回收的余热量 可满足192万m2的建筑供热。同时还可减少电厂冷却塔水。
2.2 第二类吸收式热泵(2)
T 0’ Tg’ Tg’ 废热源 Ⅱ类热泵 环境 T 0’ T h’ 可利用热
高温热水 或蒸汽 (45%) 中温废热 (100%) 冷却水
Q0 ’
(55%)
第Ⅱ类热泵Th’>Tg’>T0’
Ⅱ 能量转化示意图
热收支图
2.3 第二类吸收式热泵(3)
Q2 2
溶 剂 泵
冷凝器


余热温度出口高于15℃(一般在20~ 50℃),上限没有要求。获得热源温度 比废热出口温度高40~60℃,热水温度 可达到100℃以上。
蒸汽型第一类单效型溴化锂吸收式热泵机组应用案例之一
锅 炉
蒸汽0.5MPa
胜利油田换热站 一类热泵
凝水
采用6台单机供热
85 ℃
发生器
冷凝器
采暖水
蒸发器
吸收器
65 ℃
2.1 第一类吸收式热泵(2)
Tg 驱动热源 Qg Th Ⅰ类热泵 废热源 T0 T0 第Ⅰ类热泵Tg>Th>T0 可用回热 驱动热源 (100%) 高温热水 (180%) 低温余热
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档