运动控制课程设计
《运动控制系统》课程设计任务书
理解运动控制系统的基本原理和组成 掌握运动控制系统的调试方法 掌握运动控制系统的优化方法
提高运动控制系统的性能和稳定性 提高运动控制系统的适应性和灵活性 提高运动控制系统的可靠性和安全性
确定运动控制系统的目标和需求
编写运动控制系统的软件代码
选择合适的运动控制算法和硬件设备
测试和调试运动控制系统
系统原理:阐述运动控制系统的基本原理和设计思路 硬件组成:详细描述运动控制系统的硬件组成和功能 软件编程:介绍运动控制系统的软件编程方法和实现过程 调试过程:描述运动控制系统的调试过程和注意事项
性能优化:优化运动控制系统 的性能,如提高响应速度、降 低能耗、提高稳定性等
基本功能:实现运动控制系统 的基本功能,如速度控制、位 置控制、力控制等
趋势
方案论证:对初步设计方案进 行论证,确保方案的可行性和
创新性
硬件选型:选择合适的传感器、控制器、执行器等硬件设备 硬件搭建:根据硬件选型结果,搭建运动控制系统的硬件平台 编写硬件电路原理图:根据硬件搭建结果,绘制硬件电路原理图 编写硬件PCB图:根据硬件电路原理图,绘制硬件PCB图,用于制作电路板
测试方法:模拟实际应用场 景进行测试
测试目的:验证系统功能是 否满足设计要求
测试内容:系统稳定性、准 确性、响应速度等
优化方法:根据测试结果进 行系统优化,提高系统性能
制定设计方案:根据设计题 目,制定初步设计方案
确定设计题目:根据课程要 求,选择合适的设计题目
文献调研:查阅相关文献,了 解相关领域的研究现状和发展
提高系统的响应速度 降低系统的误差 提高系统的稳定性
优化系统的控制算法 提高系统的抗干扰能力 优化系统的人机交互界面
软件设计:包括系统架构设 计、模块划分、接口设计等
运动控制系统的课程设计
运动控制系统的课程设计一、课程目标知识目标:1. 学生能理解运动控制系统的基本概念、组成和分类。
2. 学生能掌握运动控制系统中常见传感器的原理和应用。
3. 学生能描述运动控制系统的执行机构工作原理及其特点。
4. 学生了解运动控制算法的基本原理,如PID控制、模糊控制等。
技能目标:1. 学生具备运用所学知识分析和解决实际运动控制问题的能力。
2. 学生能设计简单的运动控制系统,并进行仿真实验。
3. 学生能熟练使用相关软件和工具进行运动控制系统的调试与优化。
情感态度价值观目标:1. 学生培养对运动控制系统相关技术的兴趣,激发学习热情。
2. 学生养成合作、探究的学习习惯,培养团队协作精神。
3. 学生认识到运动控制系统在工程实际中的应用价值,增强社会责任感。
课程性质:本课程为电子信息工程及相关专业高年级学生的专业课程,旨在帮助学生掌握运动控制系统的基本原理、设计方法和实际应用。
学生特点:学生已具备一定的电子、电气和控制系统基础,具有较强的学习能力和实践操作能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生的动手能力和创新能力培养。
通过本课程的学习,使学生具备运动控制系统设计、调试和应用的能力。
教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 运动控制系统概述- 运动控制系统的基本概念、组成和分类- 运动控制系统的发展及应用领域2. 运动控制系统传感器- 常见运动控制传感器的工作原理、特性及应用- 传感器的选型及接口技术3. 执行机构- 电动伺服电机、步进电机、液压气动执行机构的工作原理及特点- 执行机构的控制策略及性能分析4. 运动控制算法- PID控制算法原理及其在运动控制中的应用- 模糊控制、神经网络等其他先进控制算法介绍5. 运动控制系统设计- 系统建模、控制器设计及仿真- 硬件在环(HIL)仿真与实验- 运动控制系统调试与优化6. 运动控制系统实例分析- 分析典型运动控制系统的设计过程及解决方案- 案例教学,培养学生的实际操作能力教学内容安排与进度:- 第1周:运动控制系统概述- 第2-3周:运动控制系统传感器- 第4-5周:执行机构- 第6-7周:运动控制算法- 第8-9周:运动控制系统设计- 第10周:运动控制系统实例分析教材章节关联:本课程教学内容与教材中第3章“运动控制系统”相关内容相衔接,涵盖第3章中的3.1-3.5节。
四足运动控制课程设计
四足运动控制课程设计一、课程目标知识目标:1. 学生能够理解四足动物的运动原理,掌握四足机器人的基本结构及其功能。
2. 学生能够描述四足运动控制的基本算法,并了解其在实际应用中的优势。
3. 学生能够解释步态生成与调节的基本方法,并分析不同步态对运动性能的影响。
技能目标:1. 学生能够设计并搭建简单的四足机器人模型,进行基本的运动控制实验。
2. 学生通过编程实践,掌握四足运动控制的基本技巧,实现对四足机器人的速度、方向和步态的有效控制。
3. 学生能够运用所学知识,针对特定场景提出四足机器人的优化方案,解决实际问题。
情感态度价值观目标:1. 学生通过课程学习,培养对机器人科技的兴趣和好奇心,激发创新意识。
2. 学生在团队协作中学会沟通与交流,培养合作精神和集体荣誉感。
3. 学生能够认识到四足运动控制在灾害救援、环境监测等领域的应用价值,增强社会责任感。
课程性质:本课程为实践性较强的综合课程,结合了机械、电子、计算机等多学科知识。
学生特点:六年级学生具备一定的逻辑思维能力和动手能力,对新鲜事物充满好奇心。
教学要求:注重理论与实践相结合,关注学生个体差异,提高学生的动手实践能力和创新能力。
通过课程目标的分解与实现,使学生在知识、技能和情感态度价值观方面得到全面提升。
二、教学内容1. 四足动物运动原理:介绍四足动物的运动特点、步态分类及运动学参数。
- 教材章节:第二章“四足动物运动学基础”2. 四足机器人结构与功能:讲解四足机器人的基本结构、驱动方式和传感器应用。
- 教材章节:第三章“四足机器人结构与设计”3. 四足运动控制算法:学习四足运动控制的基本算法,如PID控制、模糊控制等。
- 教材章节:第四章“四足运动控制算法与应用”4. 步态生成与调节:分析四足机器人步态生成与调节的方法,以及不同步态对运动性能的影响。
- 教材章节:第五章“步态生成与优化”5. 编程实践:利用Arduino、Python等编程语言,实现四足机器人的运动控制。
电机运动控制课程设计
电机运动控制课程设计一、课程目标知识目标:1. 学生能理解电机运动控制的基本原理,掌握电机类型、特点及其在自动化领域的应用。
2. 学生能描述电机运动控制中涉及的关键参数,如电压、电流、转速和转矩等,并理解它们之间的关系。
3. 学生能掌握电机运动控制的基本电路及其工作原理,包括启动、停止、正反转和速度控制等。
技能目标:1. 学生能够运用所学知识,设计简单的电机运动控制电路,并进行模拟实验。
2. 学生能够通过编程实现对电机运动参数的调节,实现对电机运动的精确控制。
3. 学生能够运用电机运动控制知识解决实际生活中的问题,具备一定的动手操作和创新能力。
情感态度价值观目标:1. 学生通过本课程的学习,培养对电机运动控制技术的兴趣,提高学习积极性。
2. 学生在团队合作中学会沟通、协作,培养团队精神和责任感。
3. 学生能够认识到电机运动控制在工业自动化等领域的重要性,增强对科技创新和社会发展的关注。
课程性质:本课程为实践性较强的学科,要求学生将理论知识与实际操作相结合,培养学生的动手能力和创新能力。
学生特点:学生为初中生,对电机运动控制有一定的基础知识,好奇心强,喜欢动手实践。
教学要求:教师应注重理论与实践相结合,充分调动学生的积极性,引导学生主动参与课堂讨论和实验操作,提高学生的实际操作能力。
同时,关注学生的个体差异,给予个性化指导,使每个学生都能达到课程目标。
通过课程学习,学生能够将所学知识应用于实际生活中,实现学习成果的转化。
二、教学内容1. 电机原理与类型:介绍电机的基本原理、分类及各类电机的特点和应用场景,重点关注直流电机和交流电机的结构和工作原理。
教材章节:第一章《电机原理与类型》2. 电机运动控制参数:讲解电机运动控制中涉及的关键参数,如电压、电流、转速和转矩等,并分析它们之间的关系。
教材章节:第二章《电机运动控制参数》3. 电机运动控制电路:介绍电机运动控制的基本电路,包括启动、停止、正反转和速度控制等,分析各电路的工作原理。
运动控制课程设计不可逆直流PWM双闭环调速系统
运动控制课程设计-不可逆直流PWM双闭环调速系统运动控制课程设计-不可逆直流PWM双闭环调速系统一、设计背景和目的随着工业自动化的快速发展,运动控制系统的应用越来越广泛。
其中,不可逆直流PWM双闭环调速系统在许多场合具有重要作用。
本设计旨在加深对运动控制理论的理解,通过实际操作,掌握不可逆直流PWM双闭环调速系统的设计方法。
二、系统概述不可逆直流PWM双闭环调速系统主要包括电流反馈环和速度反馈环。
电流反馈环主要用于控制电流,速度反馈环则主要用于控制转速。
通过两个环路的协同作用,实现对电机转速的精确控制。
三、系统设计1.硬件设计本系统主要由功率电路、控制电路、检测电路和驱动电路组成。
功率电路包括PWM逆变器和整流器,用于实现直流电转换为交流电,并根据控制信号调节输出电压。
控制电路主要包括控制器和算法,用于实现对电流和转速的反馈控制。
检测电路包括电流检测和速度检测,用于实时监测电流和转速。
驱动电路包括PWM驱动器和H桥驱动器,用于驱动电机旋转。
2.软件设计本系统的软件部分主要包括电流控制环和速度控制环的实现。
电流控制环通过比较实际电流与设定电流的差值,运用PI(比例积分)控制算法调节PWM逆变器的输出电压,以实现对电流的精确控制。
速度控制环则通过比较实际速度与设定速度的差值,运用PI控制算法调节PWM驱动器的占空比,以实现对转速的精确控制。
两个环路之间采用串联连接,电流控制环作为速度控制环的内环,以实现对电流和转速的高效控制。
四、测试与分析1.测试方法为验证本系统的性能,需要进行电流控制环测试和速度控制环测试。
在电流控制环测试中,设定电流值,观察实际电流是否能够快速、准确地跟踪设定值。
在速度控制环测试中,设定转速值,观察实际转速是否能够快速、准确地跟踪设定值。
2.结果分析通过测试,可以发现本系统在电流控制环和速度控制环方面均具有较好的性能。
在电流控制环测试中,实际电流能够快速、准确地跟踪设定值,跟踪误差较小。
运动控制系统课程设计-上海交通大学自动化系
运动控制系统课程设计实验指导书上海交通大学自动化教学实验室第一章 硬件介绍及注意事项一、实验设备的基本组成运动控制系统主要组成如下:1.FX3U PLC;2.触摸屏;2. 变频器;3. 交流异步电动机和编码器;4. 直流电机和变阻器。
伺服与变频调速控制系统实验装置布置图 如下所示:由PLC、触摸屏、变频器、交流电机、直流电机和电阻组成的运动控制系统,其中PLC为控制核心,负责采集交流电机转速并控制变频器输出;触摸屏用于显示系统状态和接收操作指令;交流电机为被控对象,直流电机和电阻组成可调负载。
二、硬件连接1、通过USB接口将计算机与PLC连接。
2、接好实验箱上的连线或被控对象板的其他连线。
3、检查是否有错误,然后开机实验。
三、 对参加实验学生的要求:1、仔细阅读实验指导书,复习与实验相关的理论知识,明确每次实验目的,了解实验内容和方法。
2、按实验指导书中的要求进行接线和操作,经检查和实验老师同意后再通电。
3、在实验中注意观察,记录有关的数据和图像,并由指导老师复查后才能结束实验。
4、实验后应断电,整理实验台,恢复到实验前的状况。
5、认真填写实验报告,按规定格式作出图标、曲线、并分析实验结果。
6、爱护实验设备,遵守实验室规章制度。
伺服与变频调速控制系统实验装置设备布置图第二章 交流变频调速系统课程设计1)本课程设计主要设备1、FX3U PLC;触摸屏。
2、变频器。
3、交流异步电动机和编码器。
4、直流电机和变阻器。
2)本课程设计的性质和任务本课程设计是自动化专业本科生的综合教学实践课。
该课程设计涉及到自动控制原理、电力拖动自动控制系统、数字程序控制系统、微机控制技术等课程的内容。
本课程设计的基本任务是:1. 熟悉和掌握开环交流变频调速系统的基本结构、工作原理和机械特性,以及对该系统的硬件设备选型和配置,编制和调试用户程序。
2. 熟悉和掌握转速单闭环有静差交流变频调速系统的基本结构、工作原理和机械特性,编制和调试用户程序。
运动控制系统课程设计_双闭环直流调速系统
运动控制系统课程设计设计名称双闭环直流调速系统专业班级自动化10—3学号**********姓名王韶雨指导教师李铁鹰运动控制系统课程设计设计名称双闭环直流调速系统专业班级自动化10—3学号**********姓名张浩宇指导教师李铁鹰目录一、设计任务 (2)1、设计对象参数 (2)2、性能指标 (2)3、课程设计的主要内容和要求 (2)3.1电力拖动不可逆直流调速系统主电路的设计 (2)3.2控制电路的设计 (2)二、电力拖动不可逆直流调速系统主电路的设计 (3)1、整流电路和整流器件的选择 (3)2、整流变压器参数的计算 (3)3、整流器件的保护 (4)4、平波电抗器参数的计算 (4)5、触发电路的选择 (4)三、直流双闭环调速系统原理图设计 (5)1系统的组成 (5)2系统的电路原理图 (6)3直流双闭环调速系统调节器设计 (6)3.1获得系统设计对象 (8)3.2电流调节器的设计 (6)3.3转速调节器的设计 (11)四、系统起动过程分析 (16)一、设计任务1、设计对象参数(1)P nom=30KW (2)U nom=220V (3)I nom=136A(4)n nom=1460r/min (5)R a =0.2Ω(6)R Σ=0.6Ω(7)C e=0.2 v.min/r (8)RΣ=0.18Ω(9)K S=42(10)T oi=0.002 s (11)T0=0.01 s (12)λ=1.5(13)U*nm=8 V (14)U*im=8 V2、性能指标σi≤5% σn≤10% 3、课程设计的主要内容和要求3.1电力拖动不可逆直流调速系统主电路的设计(1)整流电路和整流器件的选择(2)整流变压器参数的计算(3)整流器件的保护(4)平波电抗器参数的计算(5)触发电路的选择3.2控制电路的设计(1)建立双闭环不可逆直流调速系统的动态数学模型(2)电流调节器的设计计算(3)转速调节器的设计计算二、电力拖动不可逆直流调速系统主电路的设计1、整流电路和整流器件的选择目前在各种整流电路中,应用最为广泛的是三相桥式全控整流电路,其原理图如图1所示,其中阴极连接在一起的三个晶体管(VT1,VT3,VT5)称为共阴极组;阳极连接在一起的三个晶体管(VT4,VT6,VT2)称为共阳极组。
plc运动控制技术课程设计
plc运动控制技术课程设计一、课程目标知识目标:1. 让学生掌握PLC(可编程逻辑控制器)的基本原理和运动控制技术的基础知识。
2. 使学生了解并能够解释PLC在工业运动控制中的应用场景和优势。
3. 让学生掌握PLC编程中与运动控制相关的基本指令和编程逻辑。
技能目标:1. 培养学生能够运用PLC进行简单的运动控制系统的设计、编程和调试能力。
2. 培养学生通过分析实际运动控制需求,设计出合理的PLC控制方案的能力。
3. 提高学生团队协作能力和实际问题解决能力,能在小组项目中有效沟通和协作。
情感态度价值观目标:1. 培养学生对PLC运动控制技术产生浓厚的兴趣,激发学生探究工业自动化领域的热情。
2. 培养学生具有创新意识和实践精神,敢于面对挑战,勇于尝试新的解决方案。
3. 培养学生严谨的科学态度和良好的工程伦理观,认识到技术在生产生活中的重要性和责任感。
课程性质:本课程为实践性较强的课程,以理论讲授和实验操作相结合的方式进行。
学生特点:学生具备一定的电气基础和编程知识,具有较强的动手能力和好奇心。
教学要求:注重理论与实践相结合,充分调动学生的主观能动性,培养学生的创新能力和实际操作技能。
在教学过程中,将课程目标分解为具体可衡量的学习成果,以便于教学设计和评估。
二、教学内容1. PLC基本原理与结构:介绍PLC的组成、工作原理、性能指标等,对应教材第一章内容。
2. PLC编程基础:讲解PLC编程语言、基本指令、编程逻辑,对应教材第二章内容。
3. 运动控制基础:介绍运动控制的基本概念、类型和常用的运动控制器件,对应教材第三章内容。
4. PLC在运动控制中的应用:分析实际应用案例,讲解PLC在运动控制中的接线方式、程序设计方法等,对应教材第四章内容。
5. 运动控制系统的设计与调试:学习运动控制系统的设计步骤、调试方法及故障排查技巧,对应教材第五章内容。
6. 实践操作:安排学生进行实验操作,包括PLC编程、运动控制系统的搭建和调试,结合教材附录中的实验指导书进行。
电机与运动控制课程设计
电机与运动控制课程设计一、课程目标知识目标:1. 理解电机的基本原理和分类,掌握电机在运动控制中的应用。
2. 学习电机的主要参数,如电压、电流、功率、转速等,并能运用相关公式进行计算。
3. 掌握电机运动控制的基本方法,包括启动、停止、正反转、调速等。
技能目标:1. 能够正确选择和使用电机,进行简单的运动控制电路设计。
2. 学会使用运动控制相关器件,如继电器、接触器、控制器等,完成电机控制电路的搭建。
3. 培养实际操作能力,能够独立完成电机运动控制实验,并对实验结果进行分析。
情感态度价值观目标:1. 培养学生对电机与运动控制技术的好奇心和探索精神,激发学生学习兴趣。
2. 培养学生的团队合作意识,学会在小组合作中共同解决问题,提高沟通与协作能力。
3. 增强学生的环保意识,了解电机在节能减排方面的作用,培养学生的社会责任感。
本课程针对高中年级学生,结合电机与运动控制相关知识,注重理论与实践相结合。
在教学过程中,关注学生特点,充分调动学生的主观能动性,培养其创新思维和实践能力。
通过本课程的学习,使学生能够掌握电机与运动控制的基本知识和技能,为后续相关专业学习打下坚实基础。
同时,注重培养学生的情感态度和价值观,使其成为具有创新精神和责任感的新时代青年。
二、教学内容1. 电机原理及分类:介绍电机的基本工作原理,包括电磁感应定律;讲解直流电机、交流电机、步进电机等常见电机类型及其特点和应用场景。
教材章节:第一章 电机原理与分类2. 电机主要参数:学习电机的主要技术参数,如电压、电流、功率、转速等;掌握相关计算公式和相互之间的关系。
教材章节:第二章 电机的主要技术参数3. 运动控制基本方法:讲解电机启动、停止、正反转、调速等基本控制方法;介绍相应控制器件,如继电器、接触器、控制器等。
教材章节:第三章 电机运动控制基本方法4. 运动控制电路设计:学习运动控制电路的设计原理,包括控制电路的搭建、调试和优化;进行实际操作练习。
运动控制课程设计《二十四寸圆盘拉伸机直流调速系统的设计》
运动控制系统二十四寸圆盘拉伸机直流调速系统的设计学院:班级:学号:姓名:指导老师:日期:前言《运动控制系统》是普通高等工科学校自动化专业和控制相关专业的主要课程,而本次运动控制系统工程基础课程设计是在学习完《运动控制系统》这门课程后一个重要性的实践性教学环节,通过把理论知识运用于实践,加深对这门课程的理解和掌握其精髓,通过实践巩固理论知识,实现理论与实践的完美结合,为今后解决实际问题打下坚实的基础。
同时也加强实践意识,培养迅速把理论知识运用于实践的能力。
在《运动控制系统》理论课程中,我们学习了闭环控制的直流调速系统,双闭环直流调速和调节器的工程设计,直流调速系统的数字控制,可逆直流调速系统,闭环控制的异步电机变压调速系统,笼型异步电机变频变压调速系统等方面的知识。
通过该课程设计可以进一步对所学知识的掌握,了解电机调速控制系统的基本原理和设计方法,培养独立分析问题和解决问题的能力。
并对工业自动化中的相关常识得到了解,同时对工业自动化的各种绘图工具进行深层次的掌握,训练作为一名控制工程师在各个方面的综合能力,为今后在工作岗位上奠定扎实的基础。
众所周知,直流电机在现代工业中是一种很重要的电机.它可以作电动机使用,也可以作发电机使用,此外还有其它特殊的用途。
直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
近年来,在电力电子变换器中以晶闸管为主的可控器件已经基本被功率开关器件所取代,因而变换技术也由相位控制转变成脉宽调制(PWM);交流可调拖动系统正逐步取代直流拖动系统。
然而,直流拖动控制毕竟在理论上和实践上都比较成熟,而且我国早期的许多工业生产机械都是采用直流拖动控制系统,所以它在工业生产中还占有相当大的比重,短时间内不可能完全被交流拖动系统所取代。
目录第一章设计概述 (1)1.1 设计目的 (1)1.2 设计内容 (1)1.3 课题设计要求 (1)第二章调速方案选择 (3)2.1 直流调速的一般原理 (3)2.2 开环直流调速系统 (4)2.3 转速负反馈直流调速系统 (5)2.4 带电流截止负反馈的直流调速系统 (7)2.5 双闭环直流调速系统 (8)第三章调速系统主回路的设计 (11)3.1主回路的电气原理图 (11)3.2主电路的过电压和过电流保护 (12)3.3主回路的参数计算 (12)3.3.1确定变压器T的参数,变压器为消除三次谐波而采用Y接法。
《运动控制系统》课程设计任务书.
《运动控制系统》课程设计任务书一、设计目的与任务课程设计的主要目的是通过设计某直流电机调速系统或交流电机的调速系统或者应用交直流电机的调速的控制系统的设计实践,了解一般电力拖动与控制系统设计过程、设计要求、应完成的工作内容和具体设计方法。
通过设计也有助于复习、巩固以往所学的知识,达到灵活应用的目的。
电力拖动与控制系统设计必须满足生产设备和生产工艺的要求,因此,设计之前必须了解设备的用途、结构、操作要求和工艺过程,在此过程中培养从事设计工作的整体观念。
课程设计应强调能力培养为主,在独立完成设计任务的同时,还要注意其他几方面能力的培养与提高,如独立工作能力与创造力;综合运用专业及基础知识的能力,解决实际工程技术问题的能力;查阅图书资料、产品手册和各种工具书的能力;工程绘图的能力;书写技术报告和编制技术资料的能力。
二、教学内容及基本要求在接到设计任务书后,按原理设计和工艺设计两方面进行。
1.原理图设计的步骤1)根据要求拟定设计任务。
2)根据电力拖动与控制系统的设计要求设计主电路。
3)根据主电路的控制要求设计控制回路4)要考虑保护环节,如过电压、过电流等的保护。
5)总体检查、修改、补充及完善。
主要内容包括:6)进行必要的参数计算和设计必要的软件控制流程。
7)正确、合理地选择各电器元器件,按规定格式编制元件明细表。
2.工艺设计步骤1)根据电力拖动与控制系统的任务书的设计要求,或者根据运用电力拖动调速等的设计控制对象及工艺的要求,进行分析。
2)选择合适的设计方案,论证设计方案的合理性。
3)根据设计方案设计合适的电力拖动与控制系统的或运用电力拖动调速的控制系统的主电路和控制电路,并画出相应比较相尽得电路图。
4)进行相应的参数进算,包括电子元器件的参数的计算与选取。
5)软件设计至少要包含比较完整的软件设计流程图。
要求学生能独立完成课程设计内容。
达到本科毕业生应具有的基本设计能力。
三、课程教学的特色说明要求学生掌握一定的理论基础知识,同时具备一定的实践设计技能,并且能够电力拖动与控制系统课程中讲授的内容结合实际情况进行系统设计以及编程。
运动控制课程设计任务书
以下设计任选其一做为自己的设计题目来完成设计一:逻辑无环流直流调试系统的设计。
(1)结合运动控制实验指导书中的MCLⅡ型实验台给出的直流电机参数,利用自己所学的数子电路或微机知识选择合适的逻辑控制环节构成一个数字双闭环逻辑无环流控制系统。
确定系统的设计方案。
(由于实验台的硬件限制可采用实验台上的模拟逻辑控制环节进行调试)(2)根据自己确定的方案进行理论结构设计及参数计算。
(3)对数字控制部分程序流程编写和程序实现。
(4)根据需要在实验台进行实验调试完成设计。
(5)完成设计报告书和总结。
设计二:设计低速直流电机调速系统(1)采用单片机或其他实验板设计数字控制的直流调速系统,要求,实时显示当前电机的转速,电动机可以双向调速,且电机最低转速应满足n≤nN/100。
(2)根据自己确定的方案进行理论结构设计及参数计算。
(3)对数字控制部分程序流程编写和程序实现。
(4)根据需要进行实验调试完成设计。
(5)完成设计报告书和总结。
设计三:变频调速系统SPWM控制环节的设计(1)变频调速系统SPWM的原理图的设计。
(2)利用电子线路及单片机设计对系统的各环节组成及参数进行设计。
(3)设计出硬件连接图和程控软件架构图。
(4)根据设计的方案完成实验调试,并记录参数对系统动态特性的影响。
(5)完成设计报告书和总结。
二、课程设计考核1、每位学生上交一份课程设计成果,其成果方式:实验设备上设计的系统或Protus仿真原理和源程序代码或微控板调速系统实物演示。
2、每位学生上交一份课程设计报告。
内容包括:设计说明、系统电路原理图、课程设计小结(认识及收获)。
3、随机抽取40%左右学生对设计内容质疑,学生对质疑问题进行答辩。
4、根据课程设计报告,质疑成绩、课程设计过程中的表现,由指导教师按五级记分制平定成绩。
运动过程控制课程设计
运动过程控制课程设计一、课程目标知识目标:1. 学生能理解运动过程控制的基本概念,掌握运动学的基本公式,并能够运用这些知识分析简单的运动过程。
2. 学生能够描述和解释运动过程中的速度、加速度、位移等物理量的关系和变化。
3. 学生能够运用物理原理,解释运动过程中控制参数对运动轨迹和运动状态的影响。
技能目标:1. 学生能够设计简单的运动控制实验,运用实验方法和数据分析技巧来探究运动过程。
2. 学生通过实际操作,掌握运动控制器的基本使用方法,能够进行基础的编程和调试。
3. 学生能够运用数学工具,解决运动过程中的计算问题,具备一定的数学建模能力。
情感态度价值观目标:1. 学生通过本课程的学习,培养对物理科学的兴趣,激发探索自然界运动规律的欲望。
2. 学生在学习中培养合作精神,通过团队协作完成实验和问题探究,增强集体荣誉感。
3. 学生通过解决实际运动控制问题,认识到科学技术在现实生活中的应用,增强创新意识和实践能力。
课程性质:本课程属于理科学科,以理论讲授与实验操作相结合的方式进行,注重理论与实践的融合。
学生特点:考虑到学生处于高中年级,具备一定的物理基础和数学运算能力,同时具有较强的求知欲和动手能力。
教学要求:教学中应注重启发式教学,鼓励学生主动思考,通过案例分析、实验探究等形式,提高学生的参与度和实践操作能力。
同时,注重培养学生的科学态度和创新思维,将知识目标、技能目标和情感态度价值观目标有效结合,促进学生的全面发展。
二、教学内容1. 基本概念与原理:- 运动过程控制的基本定义与分类- 速度、加速度、位移等物理量的关系和计算- 牛顿运动定律及其在运动控制中的应用2. 运动控制实验与分析:- 运动控制器的基本原理与操作方法- 编程与调试基础,实现简单的运动控制- 实验数据分析与处理技巧3. 运动过程控制案例分析:- 案例一:直线运动控制- 案例二:曲线运动控制- 案例三:圆周运动控制4. 教学内容的安排与进度:- 第一周:基本概念与原理学习- 第二周:运动控制器操作与编程基础- 第三周:运动控制实验与数据分析- 第四周:案例分析与应用实践教材关联:- 教材第一章:运动过程控制基本概念与原理- 教材第二章:运动控制器及其编程- 教材第三章:运动控制实验设计与数据分析- 教材第四章:运动过程控制案例分析教学内容确保科学性和系统性,注重理论与实践相结合,使学生能够通过本课程的学习,掌握运动过程控制的基本知识和技能。
控制物体的运动教案
控制物体的运动教案一、教学目标1.了解物理学当中的牛顿运动定律。
2.掌握对物体的运动进行定量、定性分析的方法和技能。
3.理解如何通过物体的质量、速度、加速度等变量来计算物体的动量、动能等物理量。
4.学会使用计算机等工具控制物体的运动,制作虚拟模拟实验。
二、教学内容1.牛顿运动定律2.控制物体的运动3.制作虚拟模拟实验三、教学步骤1.介绍牛顿运动定律的基本概念。
2.对物理量进行定量分析,引入动量、动能等概念,讲解密度、体积等基本定义。
3.引入控制物体的运动,给出物质的实际应用,让学生在熟悉牛顿运动定律的基础上,掌握控制物体的技术方法。
4.进一步发掘学生的潜力,引导其使用计算机等工具制作虚拟模拟实验,以提高其对物理学知识的理解程度。
四、教学方法1.理论教学采用讲授与实践相结合的方法,把理论与实验相结合,深入浅出地讲解牛顿运动定律以及动量、动能等概念。
2.模拟实验为学生提供虚拟模拟实验的机会,并根据学生的不同反应及时调整实验参数,通过实验的方式让学生感受物理学知识的乐趣。
3.互动教学采用互动的方式,开展课堂讨论,通过双方的互动交流,让学生深入理解物理学的基础知识。
五、教学评估1.理解程度评估根据学生的讲解,以及模拟实验等方面的表现,对学生的物理学知识掌握情况进行评估。
2.学业质量评估在课后对学生进行考核,以检验学生掌握物理知识的成果。
3.综合评估综合考虑学生在课堂互动、个人表现等方面的表现,给出学生最终的评估。
六、教学反思本次课程以牛顿运动定律为核心,帮助学生掌握物理学的基本概念。
结合虚拟模拟实验,使学生能够将理论联系实际,更好地理解物理学的本质。
在教学中,我们要注意以实际应用为重点,引导学生发掘自身的创造力,让学生在理论学习的基础上,掌握如何使用计算机等工具制作虚拟模拟实验的方法,达到学以致用的目标。
运动控制系统课程设计算
运动控制系统课程设计算一、教学目标本课程的教学目标是使学生掌握运动控制系统的基本原理、方法和应用。
具体包括:1.知识目标:学生能够理解运动控制系统的概念、组成、工作原理和分类,掌握常用的运动控制算法和策略,了解运动控制系统在工程中的应用。
2.技能目标:学生能够运用运动控制系统的基本原理和方法解决实际问题,具备分析和设计运动控制系统的的能力。
3.情感态度价值观目标:学生能够认识运动控制系统在现代工业和日常生活中的重要性,培养对运动控制技术的兴趣和热情,提高创新意识和团队合作能力。
二、教学内容本课程的教学内容主要包括:1.运动控制系统的基本概念、组成和分类。
2.运动控制系统的数学模型和分析方法。
3.常用的运动控制算法和策略,如PID控制、模糊控制、神经网络控制等。
4.运动控制系统的仿真和实验,包括硬件设备和软件工具的使用。
5.运动控制系统在工程中的应用案例。
三、教学方法为了达到本课程的教学目标,将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握运动控制系统的基本概念、原理和算法。
2.案例分析法:通过分析实际应用案例,使学生了解运动控制系统在工程中的应用和设计方法。
3.实验法:通过实验操作,使学生熟悉运动控制系统的硬件设备和软件工具,培养学生的动手能力。
4.讨论法:通过分组讨论和课堂讨论,激发学生的思考和创造力,提高团队合作能力。
四、教学资源为了支持本课程的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用《运动控制系统》作为主教材,提供系统的理论知识。
2.参考书:推荐《运动控制工程》等参考书籍,为学生提供更多的学习资料。
3.多媒体资料:制作课件和教学视频,以图文并茂的形式展示运动控制系统的原理和应用。
4.实验设备:准备运动控制实验平台和相关设备,为学生提供实践操作的机会。
五、教学评估本课程的教学评估将采用多种方式,以全面、客观地评价学生的学习成果。
具体包括:1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和课堂表现。
运动控制系统课程设计
前言一、 性能指标σi ≤5% σi ≤10%二、 设计对象参数P nom =550kW U nom =750V I nom =780A n nom =375r/min T i =0.03sT m =0.084s C e =1.92V •min/r R ∑=0.1Ω K s =75 T oi =0.002sT o =0.01s λ=1.5 U *nm =12V U *im =12V一、整流电路和整流器件的选择1.整流电路:三相全控桥式整流电路(1)三相全控桥式整流电路(电阻性负载)1)电路结构三相半波整流的变压器存在直流磁化问题,三相全控桥式整流电路可看作是三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT4,VT6,VT2)的串联组合。
2)工作原理(α=0º时)一个周期内,晶闸管的导通顺序T1→VT2→VT3→VT4 →VT5→VT6。
将一周期相电压分为六个区间:①在ωt1~ωt2区间:u 相电压最高,VT1触发导通,v 相电压最低,VT6触发导通,负载输出电压ud =uuv 。
②在ωt2~ωt3区间:u 相电压最高,VT1触发导通,w 相电压最低,VT2触发导通,负载输出电压ud =uuw 。
③在ωt3~ωt4区间:v 相电压最高,VT3触发导通,w 相电压最低,VT2触发导通,负载输出电压ud =uvw 。
④在ωt4~ωt5区间:v 相电压最高,VT3触发导通,u 相电压最低,VT4触发导通,负载输出电压ud = uvu 。
⑤在ωt5~ωt6区间:w 相电压最高,VT5触发导通,u 相电压最低,VT4触发导通,负载输出电压ud = uwu 。
⑥在ωt6~ωt7区间:w 相电压最高,VT5触发导通,v 相电压最低,VT6触发导通,负载输出电压ud = uwv 。
三相桥式全控整流电路带电阻负载α =60度时的波形三相桥式全控整流电路带电阻负载α =90度时的波形3)三相全控桥式整流电路的工作特点:①任何时候共阴、共阳极组各有一只元件同时导通才能形成电流通路。
运动技能学习与控制课程设计
四、考评与反馈
3、多元化反馈:除教师评价外,鼓励 学生之间的相互评价和小组讨论,使
学生在互动中取长补短,共同进步
4、针对性 的反馈
针对学生的个体差异 和不同需求,教师将 提供有针对性的反馈 ,指导学生制定适合 自己的学习计划和方 法
四、考评与反馈
四、考评与反馈
5、反馈与调整 :教师将根据学 生的反馈情况, 及时调整教学内 容和方法,以提 高教学效果
PART.2
二、内容分析
01
本课程内容主要包括运动技能学 习的基本理论、运动技能控制的 基本方法、运动技能学习的实践 技巧和运动技能在实际中的应用
02
在教学过程中,将结合学科研究 新进展、实践发展新经验、社会 需求新变化进行讲解,使学生能 够学以致用,提高运动技能水平
二、内容分析
1、运动技能学习的基本理论: 本部分内容包括运动技能学习的 认知规律、神经生理机制等
教学目标
一、教学理念
1、知识与 技能目标
使学生掌握运动技能 学习与控制的基本理 论、方法和实践技巧 ,为学生在体育领域 的进一步发展奠定基 础
一、教学理念
2、能力目标:培养学生自主学习、 合作学习、探究学习的能力,提高 学生运用运动技能解决实际问题的
能力
一、教学理念
3、思维目标:通过运动 技能的学习与控制,培养 学生的逻辑思维、创新思
P内容的 安排与整合
三、过程与方法
1、教师将根据教学大纲和学生 的实际需求,
对运动技能学习的基本理论、运动技能控制的基本方法 、运动技能学习的实践技巧和运动技能在实际中的应用 等核心内容进行系统讲解
三、过程与方法
2、在教学 过程中,
注重理论与实践相结 合,使学生在理解和 掌握运动技能学习基 本理论的同时,能运 用所学知识解决实际 问题
运动控制课程设计心得总结
运动控制课程设计心得总结一、课程目标知识目标:使学生掌握运动控制的基本原理,理解运动控制系统中各组成部分的作用及其相互关系;掌握基本的运动控制算法,并能运用到实际问题的解决中。
技能目标:培养学生运用所学知识,设计简单的运动控制系统,提高学生的动手实践能力和问题解决能力;通过课程学习,使学生具备对运动控制系统进行分析、调试和优化的能力。
情感态度价值观目标:激发学生对运动控制技术的兴趣,培养学生主动探究、积极思考的学习态度;强调团队协作,提高学生的沟通与协作能力;通过课程学习,使学生认识到运动控制技术在工业生产和国防建设中的重要性,增强学生的社会责任感和使命感。
课程性质分析:本课程属于工程技术类课程,注重理论与实践相结合,强调学生的动手实践能力。
学生特点分析:根据学生所在年级的特点,他们在前期的学习中已具备一定的物理、数学和工程基础,对运动控制有一定了解,但尚未深入掌握运动控制系统的设计与实践。
教学要求:结合课程性质和学生特点,将课程目标分解为具体的学习成果,使学生在理解基本原理的基础上,能够运用所学知识解决实际问题,注重培养学生的实践操作能力和团队协作精神。
后续教学设计和评估将以此为基础,确保课程目标的实现。
二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 运动控制基本原理:涵盖运动控制系统的组成、类型和性能指标,介绍运动控制的基本算法,如PID控制、模糊控制等。
2. 运动控制系统设计:包括控制系统建模、控制器设计、执行器设计等,结合实际案例,使学生掌握运动控制系统设计的方法和步骤。
3. 运动控制系统实践:组织学生进行运动控制实验,提高学生的动手实践能力,包括实验原理、实验设备、实验步骤和实验结果分析。
4. 运动控制系统应用案例分析:分析典型运动控制系统的应用案例,使学生了解运动控制在工业生产、机器人、航空航天等领域的实际应用。
教学大纲安排如下:1. 第一章:运动控制基本原理(2课时)- 1.1 运动控制系统的组成与类型- 1.2 运动控制系统的性能指标- 1.3 常见运动控制算法介绍2. 第二章:运动控制系统设计(4课时)- 2.1 控制系统建模方法- 2.2 控制器设计原理- 2.3 执行器设计方法- 2.4 运动控制系统设计实例分析3. 第三章:运动控制系统实践(4课时)- 3.1 运动控制实验原理- 3.2 实验设备与实验步骤- 3.3 实验结果分析与应用4. 第四章:运动控制系统应用案例分析(2课时)- 4.1 工业生产中的应用案例- 4.2 机器人领域的应用案例- 4.3 航空航天领域的应用案例教学内容注重科学性和系统性,结合教材章节和实际案例,使学生能够系统地掌握运动控制相关知识,为后续学习和实践打下坚实基础。
plc运动控制系统课程设计
plc运动控制系统课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理,掌握其运动控制系统的组成及功能。
2. 学生能描述常见的运动控制环节,如启动、停止、正反转、速度调节等,并了解其在PLC中的应用。
3. 学生能解释运动控制系统中涉及的传感器、执行器的工作原理及其在PLC 系统中的作用。
技能目标:1. 学生能运用PLC编程软件,设计简单的运动控制程序,实现基本运动控制功能。
2. 学生能对运动控制系统进行调试,诊断并解决简单的故障。
3. 学生能通过小组合作,完成一个综合性的PLC运动控制系统的设计与实施。
情感态度价值观目标:1. 学生培养对自动化技术及PLC运动控制系统的兴趣,提高对工程技术学科的认识和热情。
2. 学生在实践过程中,培养团队合作意识,学会相互尊重、沟通与协作。
3. 学生通过课程学习,认识到自动化技术在实际生产中的应用价值,增强学以致用的意识。
课程性质分析:本课程为专业实践课程,旨在帮助学生将理论知识与实际应用相结合,提高学生的动手能力和创新能力。
学生特点分析:学生为高年级本科生,已具备一定的电气工程及自动化基础知识,具有较强的学习能力和探索精神。
教学要求:结合课程性质和学生特点,注重实践操作,以学生为中心,采用项目驱动的教学方法,促使学生主动参与,提高综合运用知识的能力。
通过分解课程目标,确保教学设计和评估的有效性。
二、教学内容1. PLC基本原理与结构:介绍PLC的组成、工作原理、编程语言及通信方式,对应教材第1章内容。
2. 运动控制系统的组成:讲解运动控制系统的基本构成,包括控制器、执行器、传感器等,对应教材第2章内容。
3. 常见运动控制环节:分析启动、停止、正反转、速度调节等环节的实现方法,对应教材第3章内容。
4. PLC编程软件的使用:教授PLC编程软件的操作方法,包括程序编写、下载、调试等,对应教材第4章内容。
5. 运动控制程序设计:指导学生设计简单的运动控制程序,实现基本运动控制功能,对应教材第5章内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动控制课程设计
专 业: 自动化
班级:
姓名:
学号:
指导教师:自动化与电气工程学院2016年 10 月 20 日
直流双环系统的设计及仿真分析
1初始条件
电动机参数为:min /200,7.3,48,200r n A I V U W P N N N N ==== ,电枢电阻
6.5a R =Ω,电枢回路总电阻8R =Ω,允许电流过载倍数2λ=,电势系数0.12min/e C V r =⋅,电磁时间常数0.015l T s =,机电时间常数0.2m T s =,电流反
馈滤波时间常数0.001oi T s =,转速反馈滤波时间常数0.005on T s =,调节器输入输
出电压**
10nm
im cm U U U V ===,调节器输入电阻040R k =Ω,电力晶体管的开关频率1f kHz =,PWM 环节的放大倍数 4.8s K =。
设计指标:稳态无静差,电流超调量%5≤i σ;空载起动到额定转速时的转速超调量%20n ≤σ,过渡过程时间
s t s 1.0≤。
2转速、电流双闭环直流调速系统的组成
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套(或称串级)联接。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
3转速电流双闭环直流调速系统调节器的设计
转速和电流两个调节器的作用
转速调节器的作用
(1)转速调节器是调速系统的主导调节器,它使转速n 很快地跟随给定电压*
n U 变
化,稳态时可减小转速误差,如果采用PI 调节器,则可实现无静差。
(2)对负载变化起抗扰作用。
(3)其输出限幅值决定电机允许的最大电流。
电流调节器的作用
(1)作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压*i U (即外环调节器的输出量)变化。
(2)对电网电压的波动起及时抗扰的作用。
(3)在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。
(4)当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
一旦故障消失,系统立即自动恢复正常。
这个作用对系统的可靠运行来说是十分重要的。
电流调节器的设计
确定时间常数
因为kHz f 1=,所以取: s T s 001.0= 电流滤波时间常数:s T oi 001.0=
电流环小时间常数:s T T T oi s i 002.0=+=∑
选择电流调节器结构
根据设计要求:电流超调量%5≤i δ,且
105.7002
.0015.0<==∑i T T l 电流环设计为典I 系统,选择PI 调节器,其传递函数为()s
s K s W i i i
ACR ττ1
+= 选择电流调节器参数
ACR 超前时间常数: s T l i 015.0==τ,
电流开环增益:要求电流超调量%5≤i δ,所以应取5.0=∑i K T i ,所以
250002
.05
.05.0===
∑i T K I ACR 的比例系数为:63.48
.435.18
015.0250=⨯⨯⨯==s i I
i K R K K βτ 校验近似条件
电流环截止频率:=ci ω1s 250-=I K
(1)晶闸管装置传递函数近似条件:s
ci T 31
≤
ω
ci s s T ω>=⨯=-13.333001
.03131,满足近似条件。
(2)忽略反电动势对电流环影响的条件:l
m ci T T 13
≥ω ci l m s T T ω<=⨯=-17.54015
.02.01
313
,满足近似条件。
(3)小时间常数近似处理条件:oi
s ci T T 1
31≤
ω
ci oi s s T T ω>=⨯=-13.333001
.0001.01
31131。
满足近似条件。
调节器的电阻电容:因为Ω=K R 400,则
Ω=Ω⨯==K K R K R i i 2.1854063.40, 近似取 Ω=K R i 185。
F F R C i
i
i μμτ81.001010
185015
.063
=⨯⨯=
=
,取F μ8.00。
F F R T C oi oi μμ1.01010
40001
.044630=⨯⨯⨯==。
取F μ1.0。
转速调节器的设计
确定时间常数
电流环等效时间常数s T i 004.02=∑
转速滤波时间常数s T on 005.0=
转速环小时间常数s T T T on i n 009.02=+∑=∑
选择转速调节器结构
由于设计要求无静差,且要求设计为典II 系统,转速调节必须含有积分环节;故ASR 选择PI 调节器,传递函数为
s
s K s W n n n ττ1
)(ASR += 选择转速调节其参数
按跟随和抗扰性能都较好的原则, 取h=5,则ASR 的超前时间常数为: s hT n n 045.0009.05=⨯=∑=τ
转速环开环增益:2
2
225.148109
.00252621-=⨯⨯=∑
+=
s T h h K n N 所以,ASR 的比例系数为:4.509
.0085.0010.2
02.105.3162)1(=⨯⨯⨯⨯⨯⨯=+=
∑n RT h T C h K m e n αβ
校验近似条件
转速环截止频率:17.66045.05.1481-=⨯==s K n N cn τω
(1)电流环传递函数简化条件:∑
≤
i
cn T 51ω
cn i s T ω>=⨯=∑
-1100002.051
51,满足简化条件。
(2)小时间常数近似处理条件:on
i cn T T ∑
≤
21
31ω
cn on i s T T ω>=⨯⨯=∑
-15.74005
.0002.021
312131,满足条件。
计算调节器的电阻和电容
Ω=K R 400,Ω=⨯==K 216404.50R K R n n ,可近似取ΩK 220。
F F R C n
n
n μμτ20.01010
220045
.063
=⨯⨯=
=,取F μ20.0。
F F R T C on on μμ5.01010
40005.0446
30=⨯⨯⨯==
,取F μ5.0。
校验转速超调量
m
n
nom b n T T n n z C C ∑∆-∆=*)(2%)(%max λδ
当h=5时,
%2.81%m ax =∆b C C ,而min 7.24612
.08
7.3r C R I n e dnom nom =⨯==∆ 所以%20%0.182
.0009
.02007.24622%2.81%<=⨯⨯
⨯⨯=n δ,满足要求。
4 系统仿真与分析
系统仿真原理图
Matlab接成图如图1所示。
图1双闭环直流调速系统仿真原理图
系统仿真结果图
双闭环直流调速系统的转速仿真波形如图2。
图2双闭环直流调速系统的转速仿真波形图双闭环直流调速系统的电流仿真波形如图3。
图3双闭环直流调速系统的电流仿真波形图
从波形中也可以看出,在启动中转速调节器经历了不饱和,饱和,退饱和三种情况,整个动态过程分为三个阶段:电流上升阶段、恒流升速阶段、转速调节阶段。
第一阶段突加电压,电枢电流迅速上升,速度调节器的输入很快达到限幅值。
第二阶段,ASR始终饱和,转速环相当于开环,保持电流恒定,拖动系统恒加速,转速线形增加。
第三阶段,当转速达到给定值之后,转速调节器和电流调节器的给定电压与反馈电压平衡,输入偏差为零,但是由于积分作用,其输出还很大,所以出现超调。
转速超调之后,转速调节器输入端出现负偏差电压,使它退出饱和状态,进入线形调节阶段,使速度恒定不变,实际仿真结果基本上符合理论分析。
参考文献
[1]?? 阮毅,陈伯时. 电力拖动自动控制系统[M]. 北京: 机械工业出版社, 2009.
[2]?? 李华,范多旺,侯涛等. 计算机控制系统[M]. 北京: 机械工业出版社, 2007.
[3] 薛定宇,王一玲. 控制系统计算机辅助设计[M]. 北京: 清华大学出版社, 2012.
[4]?? 滕青芳,范多旺,董海英. 自动控制原理[M]. 北京: 机械工业出版社, 2015.
[5]?? 曾毅,陈阿莲. 运动控制系统工程[M]. 北京: 机械工业出版社, 2014.。